
Article Not peer-reviewed version

Two-Tier Efficient QoE Optimization for

Partitioning and Resource Allocation in

UAV-Assisted MEC

Huaiwen He * , Xiangdong Yang , Feng Huang , Hong Shen

Posted Date: 17 June 2024

doi: 10.20944/preprints202406.1107.v1

Keywords: Unmanned aerial vehicle; Multi-access edge computing; Task offloading; Large-scale IoT

network; Shrinkage ratio

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3446853
https://sciprofiles.com/profile/3584926

Article

Two-Tier Efficient QoE Optimization for Partitioning
and Resource Allocation in UAV-Assisted MEC

Huaiwen He 1*,† , Xiangdong Yang 1,2,† , Feng Huang1,2 and Hong Shen 3

1 School of Computer, Zhongshan Institute, University of Electronic Science and Technology of China, China;
he_huai_wen@aliyun.com

2 School of Computer Science and Engineering, University of Electronic Science and Technology of China, China;
yangxiangdong@std.uestc.edu.cn,202321080835@std.uestc.edu.cn

3 School of Engineering and Technology, Central Queensland University, Australia; h.shen@cqu.edu.au
* Correspondence: he_huai_wen@aliyun.com
† Huaiwen He and Xiangdong Yang contributed equally as co-first authors.

Abstract: Unmanned aerial vehicles (UAVs) have increasingly become integral to multi-access edge computing

(MEC) due to their flexibility and cost-effectiveness, especially in the B5G and 6G eras. This paper aims to

enhance the Quality of Experience (QoE) in large-scale UAV-MEC networks by minimizing the shrinkage ratio

through optimal decision-making in computation mode selection for each user device (UD), UAV flight trajectory,

bandwidth allocation, and computing resource allocation at edge servers. However, the interdependencies among

UAV trajectory, binary task offloading mode, and computing/network resource allocation across numerous IoT

nodes pose significant challenges. To address these challenges, we formulate the shrinkage ratio minimization

problem as a mixed-integer nonlinear programming (MINLP) problem and propose a two-tier optimization

strategy. To reduce the scale of the optimization problem, we first design a low-complexity UAV partition coverage

algorithm based on the Welzl method and determine the UAV flight trajectory by solving a Traveling Salesman

Problem (TSP). Subsequently, we develop a coordinate descent (CD) based method and an alternating direction

method of multipliers (ADMM) based method for network bandwidth and computing resource allocation in

the MEC system. The CD-based method is simple to implement and has a low computational complexity, while

the ADMM-based method can further enhance the optimization result through joint optimization. Extensive

simulations demonstrate that our proposed algorithms perform well in large-scale edge networks and outperform

other representative benchmark methods.

Keywords: Unmanned aerial vehicle; Multi-access edge computing; Task offloading; Large-scale IoT network;

Shrinkage ratio;

1. Introduction

In recent years, Mobile Edge Computing (MEC) has emerged as a prominent computing paradigm
to accommodate the rapid proliferation of Internet of Things (IoT) devices and novel application
scenarios such as virtual reality (VR), augmented reality (AR), autonomous driving, and intelligent
robotics [1]. However, ground-based MEC networks face inherent limitations in coverage, deployment
flexibility, and the handling of hotspot issues due to the immobility of MEC servers. The limitations of
stationary infrastructure present challenges in accommodating the dynamic edge network environment.
Consequently, researchers have increasingly focused on UAV-assisted MEC (UAV-MEC), which offers
significant advantages in terms of high mobility and low deployment costs [2,3].

The existing body of work addresses numerous challenges associated with UAV-MEC systems,
including the limited computational and battery capacities of UAVs, trajectory planning, cooperative
control of multiple UAVs, and data transmission security. Various optimization problems have been
formulated to tackle these challenges by adjusting offloading decisions, bandwidth allocation, caching
strategies, and UAV trajectories. Common optimization objectives include minimizing task execution
time [4], reducing energy consumption [5,6], or balancing a weighted combination of both [7]. For
instance, resource allocation and task offloading ratios are jointly optimized to minimize the total
energy consumption of user devices (UDs) under partial offloading strategies [8], and the joint design

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0003-4437-4277
https://orcid.org/0009-0000-8507-2940
https://doi.org/10.20944/preprints202406.1107.v1
http://creativecommons.org/licenses/by/4.0/

2 of 19

of UAV trajectory, task allocation, and communication resource management aims to minimize a
weighted sum of execution latency and energy consumption [9]. Similarly, maximizing computational
efficiency to ensure robust system performance is another focus [10,11]. However, these objectives
often emphasize system performance over the Quality of Experience (QoE) for UDs, potentially leading
to unfair resource allocation.

From the users’ perspective, it is crucial to consider both waiting time and execution time to
measure QoE in UAV-MEC systems. Several studies have addressed this by formulating optimization
problems aimed at minimizing task response time, which encompasses both waiting and execution
times [12,13]. For instance, [14] proposes a joint optimization approach that considers offloading ratios,
service policies, and UAV trajectories to minimize the maximum delay of delay-sensitive tasks in each
time slot. Furthermore, [15] introduces a comprehensive metric called the shrinkage ratio, balancing
factors such as waiting time, execution time, task length, and UD computational capabilities, providing
a straightforward and effective measure of optimization efficiency in UAV-MEC networks. However,
these studies often assume that computation tasks are divisible and do not fully account for the impact
of a large number of UDs in UAV-MEC systems. In reality, the increasing number of UDs and the
binary offloading model for indivisible tasks present significant challenges in maintaining good QoE
for users.

Optimizing user QoE in large-scale edge networks remains a challenging problem, as measuring
user experience typically involves considering response latency rather than task execution latency
[16]. The offloading decisions of multiple users, resource allocation strategies, and UAV trajectories
often lead to tightly coupled optimization problems. A holistic metric called the shrinkage ratio has
been proposed to reconcile variables such as waiting delay, processing delay, and the computational
resources of edge devices [15]. However, previous work did not account for the binary offloading
approach nor the impact of a growing number of nodes within expansive IoT networks on the
complexity of the solution.

In this paper, we investigate the QoE-oriented computation task offloading optimization problem
in a large scale UAV-MEC network with considering binary offloading mode at each UD. We aim to
minimize the sum of shrinkage ratios for all UDs by jointly optimizing UAV trajectory, task offload-
ing mode selection, network bandwidth and computation resource allocation. To handle the high
complexity of large number of UDs and the coupling of drone trajectory for each coverage partition
and resource allocation for computation task, we propose an efficient propose a two-tier optimization
scheme to solve it. We first develop a low-complexity partition coverage algorithm algorithm based on
Welzl method and determine the UAV flight trajectory by solving a TSP problem. Subsequently, for the
network bandwidth and computing resource allocation sub-problem, we develop a low-complexity
CD-based method for the small scale Iot network and a ADMM-based method which can leverages
parallel computing to enhance solving speed, suitable for large-scale networks.

The main contributions of this paper are summarized as follows:

1. We extend model in [13,15] to handle binary task offloading mode and large scale nodes in a
UAV-MEC system. Our model takes into consideration the impact of UAV on the response time
of UDs while leveraging the radius coverage of UAV to reduce the high complexity in large-scale
node scenarios. Our model exhibits practicality and scalability in resource allocation within
large-scale IoT-enabled UAV-MEC.

2. We propose an two-tier optimization scheme to decouple the drone trajectory planning and
resource allocation for computation task. We design a circle cover algorithm based on Welzl
method to divide area into smaller partitions to reduce the scale of the problem.

3. We develop a CD-based method and a ADMM-based method for the task offloading mode
selection and resource allocation in UAV-MEC system. The CD-based method has a linear
complexity with respect to network scale, while the ADMM-based approach can convergence
fast, making it suitable for large-scale networks.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.20944/preprints202406.1107.v1

3 of 19

4. We conduct plenty of numerical simulations to evaluate the effectiveness and practicability of
our algorithm. Our algorithm outperforms all baseline algorithms and its number of iteration
exhibits a linear relationship with the scale of network.

The rest of this paper is organized as follows. Section 2 discusses the related work on UAV-MEC.
In Section 3, we present a system model for user QoE optimization in large-scale edge networks and
formulate it as a combinatorial optimization problem. Section 4 provides the algorithm for solving this
optimization problem. In Section 5, we validate the effectiveness of the algorithm through numerical
experiments. Section 6 concludes this paper and discusses future work.

2. Related Work

Unmanned aerial vehicles (UAVs) have garnered significant attention in the field of mobile
edge computing (MEC) due to their low cost and high flexibility, which can substantially enhance the
coverage and efficiency of edge networks [3]. For instance, Xiang et al. [17] propose a joint optimization
algorithm for UAV-MEC that incorporates task offloading strategies and UAV trajectory planning,
demonstrating superior energy efficiency and convergence compared to other methods. Similarly, He
et al. [18] focus on optimizing 3-D multi-UAV trajectories in MEC systems to ensure fairness in task
allocation and minimize energy consumption. Zhang et al. [19] utilize UAVs as aerial relay platforms
to forward signals from ground or air to edge servers or other edge devices. Liu et al. [5] investigate
the use of UAVs as resource-constrained mobile edge nodes that provide limited computing services
to terminal devices, acting as relays for computation tasks that cannot be completed locally. Gao et al.
[20] address secure data transmission in UAV-relay assisted maritime MEC systems by proposing a
scheme that optimizes transmit power, time slot allocation, and UAV trajectory, enhancing both system
security and computation capability.

Integration of UAVs with new-generation communication technologies has also been explored.
Jiao et al. [21] maximize the rate of strong users while ensuring the target rate for weak users in an
intelligent reflecting surface (IRS)-based UAV-assisted NOMA downlink network by optimizing the
IRS-UAV location. Wang et al. [22] propose an energy minimization scheme for UAV-based MEC and
traffic offloading in broadband Terahertz (THz) mobile networks. Additionally, M. A. Baker Siddiki
Abir et al. [23] introduce a digital twin-based aerial MEC architecture for 6G networks, employing
UAVs as aerial base stations with MEC capabilities to deliver high network performance for real-time
and latency-sensitive applications.

Recent research has also explored the synergy between UAVs and machine learning to enhance
MEC systems. For example, Chen et al. [24] leverage deep reinforcement learning to optimize UAV
trajectory and resource allocation in real-time, improving overall system efficiency under dynamic
network conditions. Li et al. [25] use federated learning in UAV-assisted MEC to enable distributed
model training while preserving data privacy, essential for sensitive applications. Xu et al. [26] develop
a scalable optimization framework combining graph theory and convex optimization to manage UAV
trajectories and resource allocation in dense urban environments, reducing computational complexity
and adapting to the varying demands of heterogeneous IoT devices. However, these studies primarily
focus on enhancing system performance and often overlook the Quality of Experience (QoE) for user
devices, potentially leading to unfair resource distribution.

QoE in UAV-MEC systems is crucial that attracted some researcher attention. Tian et al. [27]
design a three-tier UAV-MEC network that includes users, drones, and a cloud center, introducing an
optimization metric called the response ratio based on user preferences and real-time requirements.
Shen et al. [15] propose a metric called the shrinkage ratio to measure the optimization efficiency
brought by the UAV-MEC network to users, transforming QoE optimization into a minimization
problem of the shrinkage ratio. However, many of these studies assume divisible computation tasks
and do not fully consider the challenges posed by a large number of user devices and the binary
offloading model for indivisible tasks, which significantly impacts QoE.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.20944/preprints202406.1107.v1

4 of 19

Figure 1. Architecture of the UAV-MEC network with Hover-Fly Mode

3. System Model and Problem Formulation

We consider the UAV-assisted MEC network as shown in Figure 1, which comprises I UDs
and a UAV equipped with a lightweight edge computing server. The set of all UDs is denoted by
I = {1, 2, ..., I}. Each UD has an indivisible, computation-intensive task oi characterized by the tuple
⟨ci, ui⟩ within a time period, where ci represents the amount of computation workload (in CPU cycles),
and ui denotes the data size (in bytes). It is assumed that each generated task can be completely
processed in a single time period.

3.1. UAV Coverage Partition and Flight Model

In a reality Iot network, the spatial distribution of UDs usually exhibits a certain level of clustering
[28], so here we partition them into multiple circles area with a same radius which equals to the
coverage radius of UAV [29]. Let P = {1, 2, ..., P} denote all the coverage circles of UAV, where
qp =

(
xp, yp, 0

)
represents the coordinates of the center of coverage circle p, and the set Ip represents

all user equipment located within coverage circle p. Let qm = (xm, ym, 0) denote the location of
UD-m, where xm and ym represent the horizontal and vertical coordinates respectively, satisfying
0 ≤ xm ≤ xmax, 0 ≤ ym ≤ ymax, ∀m.

We assume that UAV employ a hover-fly-hover mode similar to [30]. The UAV’s movement
can be simplified to constant-speed linear motion between multiple coverage circles. The UAV
does not perform task offloading while in transit and only provides task computing services to
UDs within a coverage circle when hovering above it. The UAV starts from a designated coverage
area and traverses all coverage circles along the shortest path. Let the non-repetitive ordered set
w = {w1, w2, ..., wP | wp ∈ P , ∀p = 1, 2, ..., P} represent the UAV’s trajectory. Once the partition set P
is obtained, we can determine the UAV trajectory w by solving a standard small scale TSP problem.

3.2. Computation Model

Due to the indivisibility of computation tasks, we adopt a binary task offloading mode for each
UDs. We define a binary decision variable di ∈ {0, 1} for UD i to determine the offloading choice. If
di equals 1, the computation task is offloaded to the edge server on the UAV; otherwise, the task is
processed locally.

3.2.1. Local Computing

If di = 0, then UD i can process the computation task locally at the initial stage of the system
without waiting for the UAV’s arrival. Let f l

i denote the local CPU frequency of UD i. Thus, the total
delay of task oi in local computation mode can be expressed as:

Tl
i =

ci

f l
i

(1)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.20944/preprints202406.1107.v1

5 of 19

3.2.2. Edge Computing

If di = 1, then UD i needs to wait for the UAV to reach its partition and then offload task to the
UAV for execution. When the UAV is hovering over coverage circle p, multiple user devices within the
set Ip communicate with the UAV through orthogonal frequency-division multiple access (OFDMA)
such that interference among multiple UDs can be neglected. During the task offloading process, the
uplink bandwidth W is allocated to multiple UDs selecting the offloading computation mode, enabling
parallel transmission. To ensure resources wastage, channel bandwidth should only be allocated to
UDs who select the edge computation mode.Thus, we have the following bandwidth constraints:

∑
i∈Ip

Wi ≤W, ∀Ip (2)

Wi

{
= 0, di = 0
> 0, di = 1

, ∀i ∈ I (3)

Since air-to-ground communication only occurs when the UAV is in a hovering state, there is
no Doppler frequency shift during communication due to the UAV’s high-speed movement [31]. Let
qi = (xi, yi, 0) represent the three-dimensional coordinates of UD i. When the UAV hovers over
coverage circle p and provides task offloading services to UD i, the channel gain between them can be
expressed as hi =

g0

(xp−xi)
2
+(yp−yi)

2
+z2

, where g0 represents the unit-distance channel gain at 1 meter.

The data transmission rate can be expressed as:

ri = Wi · log2

(
1 +

Pi · hi

N2
0

)
(4)

where Pi denotes the transmission power of UD i, and N0 represents the additive Gaussian white noise
power. The delay of task oi offloaded to the UAV can be expressed as:

To
i =

ui
ri

(5)

Assuming that tasks offloaded to the UAV can be executed in parallel, the UAV’s computational
resources need to be allocated to multiple user tasks. Let f edge represent the computational frequency
of the edge server, and fi represent the computational frequency allocated to UD i by the edge server.
Then, in the edge computation mode, the execution time of task oi on the UAV can be expressed as:

Te
i =

ci
fi

(6)

Similar to the bandwidth allocation constraints (2) and (3), the allocation of UAV’s computational
resources should also satisfy the following conditions:

∑
i∈Ip

fi ≤ f edge, ∀Ip (7)

fi

{
= 0, di = 0
> 0, di = 0

, ∀i ∈ I (8)

We consider a fixed hover time, that is, the UAV hovers in each area for the same duration Th, and
the time required for the UAV to fly from the previous area wp−1 to the area wp is denoted as T f

wp . The

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.20944/preprints202406.1107.v1

6 of 19

total time required for the area wp to wait for the UAV to reach the center of the area can be expressed
as:

Tw
wp =

p−1

∑
j=1

(
T f

wj + Th
)
+ T f

wp (9)

In the edge computation mode, the total delay incurred by user i in processing its computational
task within coverage area wp can be expressed as:

Te
i = Tw

wp + To
i + Te

i , ∀i ∈ Iwp (10)

In addition, due to the usually negligible transmission time compared to task offloading and
drone computation [32], the total latency incurred by user i in processing its computing task can be
expressed as:

Ti = di · Te
i + (1− di) · Tl

i (11)

3.3. Problem Formulation

We aim to optimize the QoE of task offloading services in UAV-edge networks, a goal achieved by
minimizing the sum of all user devices’ shrinkage rates. Similar to [15], the sum of system shrinkage
rates can be represented as:

S = ∑
wp∈w

∑
i∈Iwp

Si = ∑
wp∈w

∑
i∈Iwp

Ti

Tl
i

(12)

By jointly optimizing the partitioning strategy of coverage areas P , the UD’s computation mode
selection d = {di}, uplink bandwidth B = {Bi}, and UAV’s computation resource allocation strategy
f = { fi}, the objective is to minimize the sum of all users’ shrinkage rates. It is noteworthy that
the coverage strategy P here includes the coordinates of each coverage circle and the set of user
devices it contains. Thus, the aforementioned problem of minimizing the sum of shrinkage rates can
be formulated as:

(P1) min
P ,d,B, f

S (13)

s.t. (2), (3), (7), (8)

di ∈ {0, 1}, ∀i ∈ I (14)

Ip ̸= ∅, ∀p ∈ P (15)

Ip1 ∩ Ip2 = ∅, ∀p1, p2 ∈ P , p1 ̸= p2 (16)

I1 ∪ I2 ∪ ...∪ IP = I (17)

To
i + Te

i ≤ Th, ∀i ∈ I (18)

Here, constraints (2), (3), (7), (8) ensure that the uplink bandwidth for task offloading and the UAV’s
computation resources are allocated only to valid links, (15)-(17) restrict the feasibility of the coverage
strategy, (18) ensures that each device completes the task offloading within the hover time. Due to the
involvement of binary constraint (14) and a non-convex objective function, P1 is a coupled MINLP
problem. Clearly, solving it directly is challenging.

4. Algorithm Design

In this section, an efficient two-tier algorithm is proposed to address the formulated non-convex
problem. Firstly, a polynomial-time complexity greedy algorithm based on the Welzl method [33]
for the UAV set covering problem (USCP) is proposed to obtain a feasible P . Secondly, from the
perspectives of algorithm complexity and solution quality, two different strategies are proposed in the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.20944/preprints202406.1107.v1

7 of 19

second tier for computation mode selection and resource allocation problem. The process of the global
algorithm is depicted in Figure 2.

Figure 2. The solution flowchart of the global algorithm

4.1. UAV Set Covering Probelm

Since the user devices within a single coverage circle can concurrently receive task offloading
services provided by the UAV, to enhance system efficiency, we aim to minimize the number of
coverage areas, thus minimizing the time spent by UAVs in position shifting. This problem can be
described as a fixed-radius circular coverage problem or an UAV set covering problem, which aims to
cover all UDs within the system area using multiple circles with a fixed radius r, while minimizing the
number of circles used. This is a typical NP-hard problem, for which there is no polynomial-time exact
algorithm. In this section, we propose the Welzl-based UAV set covering (WUSC) algorithm, which
provides an approximate solution to the coverage circle set in polynomial time.

Figure 3. The WUSC algorithm for iteratively shrinking regions

The Welzl algorithm is an incremental algorithm used to solve the minimum enclosing circle
problem. It takes all points within a circular coverage area and returns the minimum radius of the
circle. We consider iteratively invoking this algorithm to solve the fixed-radius circular coverage
problem. As shown in Figure 3, the boundary of the system area is continuously reduced until there
exists a device exactly on the boundary. Then, starting from a point i on the boundary and initializing
a coverage area Ip = {i}, the device closest to this point within the region is added to the set Ip, and it
is determined using the Welzl algorithm whether the set can be completely covered by a circle with a
radius not exceeding r. This process is repeated until all user devices are included in some coverage
set. Algorithm 1 describes the detailed procedure of the WUSC algorithm.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.20944/preprints202406.1107.v1

8 of 19

Algorithm 1: WUSC algorithm
Input: Location of all UDs qi, ∀i, UAV covering radius r
Output: Covering result P

1 Initialize UDs set Q, checked points set Qc and covering circle set P = ∅ ;
2 while length of Qc < M do
3 Narrow down the region boundary and retrieve the boundary points set Qb ;
4 while (Qb = Qb \Qc) is not empty do
5 Let qb = Qb[0], Qu = Q \Qc as the unchecked point set ;
6 Sort Qu in ascending based on the distances to qb ;
7 Let Pb = ∅ as a new covering circle ;
8 while Qu is not empty do
9 Let qu = Qu[0] ;

10 Update Pb = Pb ∪ {qu}, Qu = Qu \ {qu} ;
11 Invoke the Welzl algorithm to obtain the minimum radius rp covers Pb ;
12 if rp > r then
13 break ;

14 Update Qc = Qc ∪ Pb,P = P ∪ {Pb} ;

15 Return P ;

Additionally, once the coverage strategy P is obtained, the UAV trajectory w can be obtained by a
standard TSP model based on the partitions. Then, P1 can be reformulated as:

(P2) min
d,W , f

S (19)

s.t. (2), (3), (7), (8), (14), (18)

Note that P2 is still a MINLP problem. However, since the hover time is constant, there is no coupling
between multiple partitions, and thus, the problem can be divided into multiple smaller sub-problems
for parallel solution based on the partition dimension. We will present the algorithms for P2 as follows.

4.2. Computation Mode Selection and Resource Allocation

We can decompose P2 into P independent sub-problems in the following form according to the
coverage areas:

(P2.1) min
dp ,Wp , fp

∑
i∈Iwp

di ·
(

Tw
wp + To

i + Te
i

)
+ (1− di) · Tl

i

Tl
i

(20)

s.t. (2), (3), (7), (8), (14), (18)

For problem P2.1, we will propose two different algorithms to solve it. The first is a low-complexity
CD-based algorithm, suitable for smaller-scale IoT networks. The second is a joint optimization
algorithm based on ADMM technique, designed for larger-scale networks that require higher solution
precision.

4.2.1. Alternating Optimization using CD Method

In this section, we consider alternating iterative optimization of discrete and continuous variables.
Given the computation mode d, let Ip(0) represent the set of UDs choosing local computation mode in

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.20944/preprints202406.1107.v1

9 of 19

coverage area p, and Ip(1) represent the set of users choosing edge computation mode. Then, P2.1 can
be equivalently transformed into the following form:

(P2.1’) min
Wp , fp

∑
i∈Ip(1)

To
i + Te

i

Tl
i

(21)

s.t. (2), (7), (18)

Wi, fi > 0, ∀i ∈ Ip(1) (22)

P2.1’ is a convex problem, which can obtain the optimal closed-form solution for the problem
using the KKT conditions. By introducing Lagrange multipliers λ = {λi, ∀i ∈ I}, ν1, ν2 for the
inequality constraints (18), (2), (7), we can obtain the Lagrangian function as:

L(Wp, fp;λp, ν1, ν2) = ∑
i∈Ip(1)


ui

Wi · log2

(
1 + Pi ·hi

N2
0

)
· Tl

i

+
ci

fi · Tl
i
+ λi ·

[
−Th +

ci
fi

+
ui

Wi · log2

(
1 + Pi ·hi

N2
0

)

+ ν1 ·

 ∑
i∈Ip(1)

Wi −W

+ ν2 ·

 ∑
i∈Ip(1)

fi − f edge


(23)

The corresponding KKT conditions can be derived as:

1 + λi − ν1 ·
W2

i ·log2

(
1+ Pi ·hi

N2
0

)
·Tl

i

ui
= 0, ∀i ∈ Ip(1) (a)

1 + λi − ν2 ·
f 2
i ·T

l
i

ci
= 0, ∀i ∈ Ip(1) (b)

ν1 ·
(

∑i∈Ip(1) Wi −W
)
= 0 (c)

ν2 ·
(

∑i∈Ip(1) fi − f edge
)
= 0 (d)

∑i∈Ip(1) Wi −W ≤ 0 (e)
∑i∈Ip(1) fi − f edge ≤ 0 (f)
λi, ν1, ν2 ≥ 0 (g)

λi ·

 ui

Wi ·log2

(
1+ Pi ·hi

N2
0

) + ci
fi
− Th

 = 0, ∀i ∈ Ip(1) (h)

ui

Wi ·log2

(
1+ Pi ·hi

N2
0

) + ci
fi
− Th ≤ 0, ∀i ∈ Ip(1) (i)

(24)

Based on the KKT system of equations (24), we can derive the following lemma:

Lemma 1. When the optimal solution of P2.1’ is obtained, the resources are fully allocated to the users, i.e.,
∑i∈Ip(1) Wi = W, ∑i∈Ip(1) fi = f edge hold strictly.

Proof. From (a), (b), (c), (d), (g), it can be inferred that ν1, ν2 > 0. Substituting (c) and (d) into
the equations yields ∑i∈Ip(1) Wi = W and ∑i∈Ip(1) fi = f edge, which means that the bandwidth
and computational resources should be allocated entirely to the users when the optimal solution is
achieved.

We refer to the resource allocation strategy obtained without considering constraints (18) as
the optimal solution SOPT , and the optimal solution of P2.1’ as a suboptimal solution S∗. Based on
whether SOPT = S∗, we can analyze P2.1’ in the two different cases as follows.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.20944/preprints202406.1107.v1

10 of 19

1) SOPT = S∗, meaning that there is no UDs violate the hovering constraint under S∗. In this
case, we have the following lemma for this optimal solution.

Lemma 2. When SOPT = S∗ holds, both Wp
∗ and fp

∗ have corresponding closed-form solutions.

Proof. We have λp = 0 when hovering constraints are not in effect. Based on (a) and (b), we have

W2
i = ui

ν1·log2

(
1+ Pi ·hi

N2
0

)
·Tl

i

and f 2
i = ci

ν2·Tl
i
. Then we have

√
ν1 =

∑i∈Ip(1)

√√√√ ui

log2

(
1+

Pi ·hi
N2

0

)
·Tl

i

W and
√

ν2 =

∑i∈Ip(1)

√
ci
Tl

i
f edge . Finally, substituting ν1 and ν2 into (a) and (b) yields the following closed-form solutions

for Wi, fi, ∀i ∈ Ip(1):

Wi =

√
ui

log2

(
1+ Pi ·hi

N2
0

)
·Tl

i

∑j∈Ip(1)

√
uj

log2

(
1+

Pj ·hj
N2

0

)
·Tl

j

·W, fi =

√ ci
Tl

i

∑j∈Ip(1)

√
cj

Tl
j

· f edge (25)

2) SOPT ̸= S∗, which means that some UDs violate the hover constraint under SOPT . If the S∗
has a solution, it indicates that the suboptimal strategy assigns additional bandwidth or computation
resources to those UDs that exceed the hover time, allowing them to complete the computation
within Th. However, this approach simultaneously increases the time consumed for other non-
violating devices. Let IA

p = {i | i ∈ Ip(1), To
i + Te

i > Th} denote the set of UDs which choose the
edge computing mode and violate the hover constraint, and IB

p = Ip(1) \ IA
p represents the others.

According to (24), a complex system of equations with (3|Ip(1)|+ 2) variables and equalities can be
derived. Enumerating 2I possible closed-form solutions is impractical. Moreover, if the S∗ has no
solution, it implies the bandwidth and computation resource of the UAV is insufficient to meet the
computational demands of all selected offloading UDs within the given hover time Th. Therefore,
these two parts {d} and {W , f} cannot be fully decoupled by the CD method.

In summary, we can obtain the optimal {W , f} in O(1) using (25) for the first type of problem.
For the second type, the corresponding KKT equations either have no solution or are challenging to
solve directly. To minimize coupling and simplify the solution of the KKT equations, a greedy strategy
can be adopted by converting the second type problem approximately to the first type. Additionally,
for the computation mode {d}, we consider obtaining a locally optimal solution through a simple
one-dimensional linear search. For convenience, let dp = (d1, d2, ..., d|p|) represent the computation
modes of all UDs within coverage area p. At the beginning of the (l − 1)-th iteration, the initial value
is defined as dl−1

p . Each user attempts to change their computation mode based on dl−1
p :

dl−1
p (i) =

(
dl−1

1 , ..., dl−1
i−1,⊕(dl−1

i), dl−1
i+1, ..., dl−1

|p|

)
(26)

where ⊕(·) denotes the negation operation for binary variables, e.g., ⊕(1) = 0, ⊕(0) = 1. This
generates |p| different computation modes, and the one with the smallest shrinkage rate is selected as
the return value for the (l − 1)-th iteration. A locally optimal solution is achieved when no user can
further reduce the global shrinkage rate by changing their computation mode. Algorithm 2 describes
the detailed procedure of the CD-based greedy (CD-Greedy) algorithm for P2.1.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.20944/preprints202406.1107.v1

11 of 19

Algorithm 2: CD-Greedy Algorithm for P2.1

Input: Initial computation mode d0
p

Output: d∗
p, W∗

p , f ∗p
1 Initialize l ← 0 ;
2 while The shrinkage ratio has decreased do
3 foreach UD i ∈ Ip do
4 Calculate dl

p(i) using (26) ;
5 Calculate Wp, fp using (25) based on dl

p(i) ;
6 while IA

p ̸= ∅ do
7 Let j = arg maxj{Tl

j , ∀j ∈ Ip(1)} ;

8 Update dl
p(i)[j] = 0 ;

9 Update Wp, fp and IA
p with updated dl

p(i) ;

10 Calculate Sp(i) based on dl
p(i), Wp, fp ;

11 Let i∗ ← arg mini
{
Sp(i) | ∀i ∈ Ip(1)

}
;

12 Update dl
p ← dl

p(i∗) ;
13 Update l ← l + 1 ;

14 Return
{

d∗
p, W∗

p , f ∗p
}
=
{

dl
p, W l

p, f l
p

}
;

4.2.2. Joint Optimization Using ADMM Method

The main advantage of the CD-based algorithm lies in its simplicity and relatively high efficiency
due to the closed-form resource allocation strategy. However, alternating optimization is prone to
falling into local optima, and the one-dimensional search causes the number of iterations required
for convergence to increase with the network scale. In this section, we will propose an ADMM-
based algorithm to jointly optimize computation mode and resource allocation. The main idea is
to decompose the coupled problem P2.1 into |Ip| parallel small-scale MINLP problems. First, to
eliminate the coupled inequality constraints, we introduce auxiliary variables to reformulate P2.1 into
the following equivalent form:

(P2.2) min
dp ,Wp , fp ,xp ,yp

∑
i∈Ip

q(di, Wi, fi) + g(xp, yp) (27)

s.t. (14), (22)

xi, yi ≥ 0, ∀i ∈ Ip (28)

xi = Wi, yi = fi, ∀i ∈ Ip (29)

∑
i∈Ip

xi ≤W, ∑
i∈Ip

yi ≤ f edge (30)

ui

xi · log2
(
1 + Pi · hi/N2

0
) + ci

yi
≤ Th, ∀i ∈ Ip (31)

where q(di, Wi, fi) is the simplified form of the original objective function:

q(di, Wi, fi) =
di ·
(
To

i + Te
i
)
+ (1− di) · Tl

i

Tl
i

(32)

g(xp, yp) is the equivalent form of the inequality constraints in the original problem:

g(xp, yp) =

{
0 if (xp, yp) ∈ Gp

+∞ otherwise
(33)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.20944/preprints202406.1107.v1

12 of 19

where Gp denotes the feasible set of g(xp, yp):

Gp =

(xp, yp) | ∑
i∈Ip

xi ≤W, ∑
i∈Ip

yi ≤ f edge;
ui

xi · log2
(
1 + Pi · hi/N2

0
) + ci

yi
≤ Th, ∀i ∈ Ip

 (34)

Problem P2.2 can be effectively decomposed using the ADMM method to find the optimal solution
to the dual problem. By introducing Lagrange multipliers for the equality constraint (29), we can
represent the augmented Lagrangian function of P2.2 as:

L(u, v, θ) = ∑
i∈Ip

q(u) + g(v) + αi · (Wi − xi) + βi · (fi − yi)

− c
2
· ∑

i∈Ip

(Wi − xi)
2 − c

2
· ∑

i∈Ip

(fi − yi)
2

(35)

where u = {dp, Wp, fp}, v = {xp, yp}, θ = {αp, βp}, and c > 0 represents the step size. The
corresponding dual problem can be formalized as:

(P2.3) max
θ

d(θ) (36)

where d(θ) = minu,v{L(u, v, θ) | u ∈ U , v ∈ V} represents the Lagrangian dual function of L, U =

{(dp, Wp, fp) |Wi, fi ≥ 0, di ∈ {0, 1}, ∀i ∈ Ip}, V = {(xp, yp) | xi, yi ≥ 0, ∀i ∈ Ip}.
The ADMM method solves the dual problem P2.3 by iteratively optimizing {u, v, θ}. Let the

solution obtained at the l-th iteration be {ul , vl , θl}. The operations required in the (l + 1)-th iteration
can be described as the following three steps:

Step 1: Given {vl , θl}, minimize L by finding suitable {ul}.

ul+1 = arg min
u
L(u, vl , θl) (37)

Since there is no coupling among multiple users, (37) can be decomposed into |Ip| identical subprob-
lems solved in parallel. Each subproblem can be formulated as:

ul+1
i = arg min

u∈U
q(di, Wi, fi) + αi · (Wi − xi) + βi · (fi − yi)−

c
2
·
[
(Wi − xi)

2 + (fi − yi)
2
]

(38)

When di = 0, we have Bi = fi = 0. In this case, ul+1
i can be directly computed using (38).

When di = 1, (38) becomes a standard convex optimization problem and yields a closed-form optimal
solution. For example, by separating Wi and fi into two independent parts, setting the first derivative
to zero and combining with the Cardano formula, we can obtain a unique optimal solution. Therefore,
we consider the two possible values of di separately. After obtaining the corresponding Wi and fi, they
are substituted into (38), and the smaller value is chosen as the optimal solution for ul+1

i . Note that the
time complexity for solving each subproblem ul+1

i is O(1).

Step 2: Given {ul+1, θl}, minimize L by finding suitable {vl+1}.
From (33), it is evident that to ensure the problem’s solvability, it is necessary to ensure vl+1 ∈ Gp.

Since the offloading decisions are known, here we only need to consider the auxiliary variables

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.20944/preprints202406.1107.v1

13 of 19

corresponding to the edge computing mode UDs. The solution for vl+1 can be formulated as a convex
problem in the following form:

(P2.4) arg min
v ∑

i∈Ip(1)
αi · (Wi − xi) + βi · (fi − yi)−

c
2
·
[
(Wi − xi)

2 + (fi − yi)
2
]

(39)

s.t. (28), (29), (30), (31)

To obtain the optimal solution to P2.4, we consider using convex optimization solver, e.g., CPLEX,
CVX. Solvers based on standard convex optimization methods like interior point methods ensure
that the obtained solution is the optimal solution, thereby preventing the problem P2.4 from being
infeasible due to g(v) taking on positive infinity.

Step 3: Given {ul+1, vl+1}, minimize L by finding suitable {θ}.
This can be achieved by updating the Lagrange multipliers θl

m according to the following rules:

αl+1
i = αl

i − c · (W l+1
i − xl+1

i) (40)

βl+1
i = βl

i − c · (f l+1
i − yl+1

i) (41)

Obviously, the time complexity for updating the Lagrange multipliers is O(I).
Repeat the above three steps until the absolute errors of u and v reach the desired accuracy. The

absolute errors of both can be measured by the following equation:

∑
i∈Ip

(
|W l

i − xl
i |+ | f l

i − yl
i |
)
≤ 2δ (42)

where δ is a predefined error bound, typically a very small positive number. Due to the presence
of duality gap for P2.1, the ADMM algorithm may not converge to the optimal solution. Therefore,
when the algorithm terminates, the dual optimal solution {dl , W l , f l} is an approximate solution, and
its performance gap will be evaluated through simulation experiments. Algorithm 3 describes the
detailed procedure of the ADMM-based joint optimization algorithm for P2.1.

Algorithm 3: ADMM-based Algorithm for P2.1

Input: Initial u0, v0, θ0

Output: d∗
p, W∗

p , f ∗p
1 Initialize l ← 0 ;
2 while The accuracy is not reaching using (42) do
3 foreach UD i ∈ Ip do
4 Update {dl

i , W l
i , f l

i } using (38) ;

5 Update {xl
p, yl

p} by solving P2.4 ;
6 Update multipliers {αl

p, βl
p} using (40), (41) ;

7 Update l ← l + 1 ;

8 Return
{

d∗
p, W∗

p , f ∗p
}
=
{

dl
p, W l

p, f l
p

}
;

4.3. Computational Complexity Analysis

The WUSC algorithm consists of nested three-level loops, where the outer loop is used to check if
there are any uncovered UDs, and the remaining two loops iterate over the boundary point set and
attempt to construct a new coverage area starting from each boundary point. The time complexity
of implementing the minimum circle covering of n vertices using the Welzl algorithm is O(n), thus

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.20944/preprints202406.1107.v1

14 of 19

the time complexity of generating a coverage area in each iteration of the middle loop is O(|Ip|2). In
addition, considering that WUSC employs sorting, the overall time complexity is O(I2 · log(I)).

Let LCD denote the number of iterations, the time complexity of CD-based greedy algorithm can
be expressed as O

(
LCD ·∑i∈I |Ip(i)|

)
= O

(
LCD ·∑p∈P |Ip|2

)
≤ O

(
L · I2), where Ip(i) represents the

partition where user i located. However, due to the computation modes searching along only one
dimension for each iteration, in most cases, removing the UD with the maximum timeout only needs
one. Therefore, the average time complexity is closer to O(LCD · I).

The time complexity of the ADMM method is mainly determined by Step 2. For example, using an
interior point method would result in a high time complexity of the step 2 of ∑p∈P O(|Ip|3.5) ≤ O(I3.5).
The total computational complexity can be given by O(LADMM · I3.5).

5. Simulation Results

In this section, we evaluate the performance of two algorithms through numerical experiments.
The system area is a square with a side length of 1 km, containing a UAV carrying computing equipment
to provide task offloading services for all UDs. We assume all UDs are homogeneous, with the same
local computing frequency and transmission power, f l

i = 0.1GHz, pi = 1W, ∀i ∈ I . For the UAV,
similar to [15], we set f edge = 10GHz, W = 100MHz, vmax = 20m/s, r = 150m. Additionally, for
channel conditions, we set g0 = −50dBm, N2

0 = −100dBm [9].

(a) KMeans (b) WSUC

Figure 4. Comparison of covering and trajectory results between different covering methods.

Figure 4 shows the results of performing fixed-radius circular coverage in the system area with
100 UDs using KMeans and WUSC algorithms, as well as the shortest path for the UAV departing from
the specified coverage area. KMeans is a commonly used clustering algorithm in machine learning.
The test results indicate that WUSC requires fewer coverage circles than KMeans, which to some
extent reduces the time the UAV spends on location movement, thereby improving the utilization
of bandwidth and computing resources. Experimental results show that compared to the KMeans
method, WUSC reduces the time the UAV spends on location movement by 10%.

Figure 5 depicts the area coverage results for different numbers of UDs in a larger area (10×
10km2). As the total number of UDs increases, the number of coverage circles required by WUSC
slowly rises, while KMeans exceeds the maximum number of circles required to cover the entire area at
M = 8000. The number of coverage circles required by WUSC is close to 1

3 of KMeans, indicating that
in large-scale fixed-radius circular coverage problems, the solution provided by WUSC is significantly
superior to clustering methods.

Figure 6 illustrates the trend of shrinkage ratio variation for different algorithms, where Figure
6(a) represents the convergence curves of shrinkage ratio with the increase of iteration numbers in

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.20944/preprints202406.1107.v1

15 of 19

Figure 5. Number of partitions calculated by different UAV set covering algorithms

a network with 100 UDs. Figure 6(b) shows the trend of shrinkage ratio variation as the network
scale increases for different algorithms. It can be observed from Figure 6(a) that both CD-Greedy
and ADMM methods can converge stably to a good result than CD-OPT after tens of iterations. The
CD-OPT method is similar to the CD-Greedy method, with the difference that CD-OPT utilizes convex
optimization to solve P2.1. In comparison, ADMM has a faster convergence rate, while CD-Greedy
requires iterations close to the total number of devices finally offloaded, which is closely related to the
characteristic of one-dimensional search. Compared to CD-OPT, Random, Local, or Edge methods,
the two proposed algorithms demonstrate excellent performance. From Figure 6(b), it can be seen
that both CD-Greedy and ADMM can work normally in networks with hundreds of edge nodes, with
ADMM reducing the compression ratio by about 5% compared to CD-Greedy. The Random method,
on the other hand, can only choose the Local strategy due to its inability to obtain feasible offloading
schemes.

In Figure 7, we examine the convergence performance of the CD-Greedy, CD-OPT and ADMM
methods. Figure 7(a) shows the variation of the number of iterations required for convergence of
these three algorithms as the number of devices increases from 100 to 1000. When the total number
of UDs increases from 100 to 500, the computing capability of the UAV remains constant. However,
when the number of UDs increases from 500 to 1000, we adjust the computing performance of the
UAV to 10GHz, 20GHz ..., respectively. When the computing resources of the UAV are limited, the
number of iterations required for convergence of both methods remains stable, essentially equal to
the total number of devices finally offloaded. However, as the computing resources of the UAV
increase, more UDs are eventually selected for offloading, leading to a faster increase in the number of
iterations required for convergence in CD-Greedy and CD-OPT. In contrast, the increase in iterations
for the ADMM method is slower. This highlights the advantage of joint optimization algorithms over
alternating optimization algorithms. Figure 7(a) shows the trend of the average execution time per
iteration of three methods with the increase of network size. It can be seen that the execution time of
the convex optimization-based method is more obviously affected by the problem size. However, since
ADMM requires fewer iterations to converge, the overall convergence time is shorter compared to
CD-OPT. In addition, the CD-Greedy method has significant efficiency advantages in large-scale edge
networks, with only millisecond-level execution latency per iteration. This indicates that CD-Greedy

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.20944/preprints202406.1107.v1

16 of 19

(a) Shrink Ratio with iterations (b) Shrink Ratio with different network scale

Figure 6. Comparison of shrink ratio between iterations and network scale.

and ADMM are suitable for different scenarios with high execution efficiency and higher quality
solutions, respectively.

(a) Number of iterations required for convergence (b) Time required for per iteration

Figure 7. Comparison of convergence performance between different network scale.

Finally, Figure 8 illustrates the proportion of UDs offloaded in different coverage areas, with
the coverage areas sorted according to the UAV’s trajectory. The results of CD-OPT are similar to
those of CD-Greedy, so they are not shown in the figure. From the graph, it can be observed that
both CD-Greedy and ADMM tend to select coverage areas near the beginning of the trajectory for
offloading. This is because the fixed hovering time ignores the decision of coverage areas’ influence
on subsequent areas. Moreover, since coverage areas near the beginning of the trajectory typically
have shorter waiting times, offloading more UDs in these areas will result in lower compression ratios.
Additionally, due to limited resources in the system, the probability of selecting coverage areas for
offloading decreases further when the number of devices selected for offloading reaches a certain
threshold. Furthermore, if multiple consecutive service periods are considered, the coverage area at
the end of the previous period will become the starting point for the UAV in the next period, thereby
achieving relative fairness among multiple coverage areas.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.20944/preprints202406.1107.v1

17 of 19

Figure 8. Comparison of offloading UDs in each covering circle.

6. Conclusions and Future Work

In this paper, we investigate the minimization of the shrinkage ratio in large-scale UAV-MEC
networks. To achieve efficient optimization strategies in large-scale networks, we utilize a partitioning
concept combined with a fixed hovering time to decouple interactions between multiple regions,
resulting in two low-complexity algorithms. The CD-Greedy algorithm is simple to implement,
converges stably, and is widely applicable to various mixed-decision efficient optimization scenarios.
The ADMM method, while achieving better optimization results by jointly optimizing integer and
continuous variables with fewer iterations, has a longer execution time due to convex optimization,
making it suitable for scenarios where high-quality solutions are desired and timeliness is not critical.
In our future work, we will focus on enhancing the QoE for dynamic UAV hover times, which presents
greater challenges and aligns more closely with real-world scenarios.

Author Contributions: Methodology, X.Y.; Validation, H.H.; Formal analysis, X.Y. and F.H.; Investigation, X.Y.
and F.H.; Resources, F.H.; Data curation, X.Y. and H.H; Writing—original draft, X.Y.; Writing—review and editing,
H.H. and F.H.; Supervision, H.H and H.S. ; All authors have read and agreed to the published version of the
manuscript.

Funding: This research is supported in part by the Science and Technology Foundation of Guangdong Province,
China, No. 2021A0101180005. The corresponding author is Huaiwen He.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The main data are included in the article, and detailed numerical experimental data
are available on request from the corresponding author.

Acknowledgments: We thank all of the reviewers for their valuable comments.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Feng, C.; Han, P.; Zhang, X.; Yang, B.; Liu, Y.; Guo, L. Computation offloading in mobile edge computing
networks: A survey. Journal of Network and Computer Applications 2022, 202, 103366.

2. Wang, Z.; Sun, G.; Su, H.; Yu, H.; Lei, B.; Guizani, M. Low-Latency Scheduling Approach for Dependent
Tasks in MEC-Enabled 5G Vehicular Networks. IEEE Internet of Things Journal 2024, 11, 6278–6289.

3. Xu, J.; Ota, K.; Dong, M. Big Data on the Fly: UAV-Mounted Mobile Edge Computing for Disaster
Management. IEEE Transactions on Network Science and Engineering 2020, 7, 2620–2630.

4. Nasir, A.A. Latency Optimization of UAV-Enabled MEC System for Virtual Reality Applications Under
Rician Fading Channels. IEEE Wireless Communications Letters 2021, 10, 1633–1637.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.20944/preprints202406.1107.v1

18 of 19

5. Liu, W.; Li, B.; Xie, W.; Dai, Y.; Fei, Z. Energy Efficient Computation Offloading in Aerial Edge Networks
With Multi-Agent Cooperation. IEEE Transactions on Wireless Communications 2023.

6. Michailidis, E.T.; Miridakis, N.I.; Michalas, A.; Skondras, E.; Vergados, D.J.; Vergados, D.D. Energy
Optimization in Massive MIMO UAV-Aided MEC-Enabled Vehicular Networks. IEEE Access 2021,
9, 117388–117403.

7. Pervez, F.; Sultana, A.; Yang, C.; Zhao, L. Energy and Latency Efficient Joint Communication and Compu-
tation Optimization in a Multi-UAV Assisted MEC Network. IEEE Transactions on Wireless Communications
2023, pp. 1–1.

8. Hua, M.; Wang, Y.; Zhang, Z.; Li, C.; Huang, Y.; Yang, L. Optimal Resource Partitioning and Bit Allocation
for UAV-Enabled Mobile Edge Computing. 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall),
2018, pp. 1–6.

9. Zhao, N.; Ye, Z.; Pei, Y.; Liang, Y.C.; Niyato, D. Multi-Agent Deep Reinforcement Learning for Task
Offloading in UAV-Assisted Mobile Edge Computing. IEEE Transactions on Wireless Communications 2022,
21, 6949–6960.

10. Xu, Y.; Zhang, T.; Liu, Y.; Yang, D.; Xiao, L.; Tao, M. UAV-Assisted MEC Networks With Aerial and Ground
Cooperation. IEEE Transactions on Wireless Communications 2021, 20, 7712–7727.

11. Deng, X.; Li, J.; Shi, L.; Wei, Z.; Zhou, X.; Yuan, J. Wireless Powered Mobile Edge Computing: Dynamic
Resource Allocation and Throughput Maximization. IEEE Transactions on Mobile Computing 2022, 21, 2271–
2288.

12. Zhan, C.; Hu, H.; Sui, X.; Liu, Z.; Niyato, D. Completion Time and Energy Optimization in the UAV-Enabled
Mobile-Edge Computing System. IEEE Internet of Things Journal 2020, 7, 7808–7822.

13. Zhang, L.; Ansari, N. Latency-Aware IoT Service Provisioning in UAV-Aided Mobile-Edge Computing
Networks. IEEE Internet of Things Journal 2020, 7, 10573–10580.

14. Chen, Z.; Zheng, H.; Zhang, J.; Zheng, X.; Rong, C. Joint computation offloading and deployment
optimization in multi-UAV-enabled MEC systems. Peer-to-Peer Networking and Applications 2022, pp. 1–12.

15. Shen, L. User Experience Oriented Task Computation for UAV-Assisted MEC System. IEEE INFOCOM
2022 - IEEE Conference on Computer Communications, 2022, pp. 1549–1558.

16. Liu, W.; Xu, Y.; Wu, D.; Wang, H.; Chu, X.; Xu, Y. QoE-aware Data Aggregation in MEC-enabled UAV
Systems: A Matching Game Approach. 2022 IEEE 8th International Conference on Computer and
Communications (ICCC), 2022, pp. 725–730.

17. Xiang, K.; He, Y. UAV-Assisted MEC System Considering UAV Trajectory and Task Offloading Strategy.
ICC 2023 - IEEE International Conference on Communications, 2023, pp. 4677–4682.

18. He, Y.; Gan, Y.; Cui, H.; Guizani, M. Fairness-Based 3-D Multi-UAV Trajectory Optimization in Multi-UAV-
Assisted MEC System. IEEE Internet of Things Journal 2023, 10, 11383–11395.

19. Zhang, S.; Zhang, H.; He, Q.; Bian, K.; Song, L. Joint Trajectory and Power Optimization for UAV Relay
Networks. IEEE Communications Letters 2018, 22, 161–164.

20. Gao, Y.; Lu, F.; Wang, P.; Lu, W.; Ding, Y.; Cao, J. Resource Optimization of Secure Data Transmission for
UAV-Relay Assisted Maritime MEC System. ICC 2023 - IEEE International Conference on Communications,
2023, pp. 3345–3350.

21. Jiao, S.; Fang, F.; Zhou, X.; Zhang, H. Joint Beamforming and Phase Shift Design in Downlink UAV
Networks with IRS-Assisted NOMA. Journal of Communications and Information Networks 2020, 5, 138–149.

22. Wang, F.; Zhang, X. IRS/UAV-Based Edge-Computing and Traffic-Offioading Over 6G THz Mobile Wireless
Networks. ICC 2023 - IEEE International Conference on Communications, 2023, pp. 6480–6485.

23. Baker Siddiki Abir, M.A.; Zaman Chowdhury, M. Digital Twin-based Aerial Mobile Edge Computing
System for Next Generation 6G Networks. 2023 6th International Conference on Electrical Information
and Communication Technology (EICT), 2023, pp. 1–5.

24. Liu, Y.; Peng, M.; Shou, G.; Chen, Y.; Chen, S. Toward Edge Intelligence: Multiaccess Edge Computing for
5G and Internet of Things. IEEE Internet of Things Journal 2020, 7, 6722–6747. doi:10.1109/JIOT.2020.3004500.

25. Li, Y.; Li, H.; Xu, G.; Xiang, T.; Lu, R. Practical Privacy-Preserving Federated Learning in Vehicular Fog
Computing. IEEE Transactions on Vehicular Technology 2022, 71, 4692–4705. doi:10.1109/TVT.2022.3150806.

26. Xu, W.; Sun, Y.; Zou, R.; Liang, W.; Xia, Q.; Shan, F.; Wang, T.; Jia, X.; Li, Z. Throughput Maximization of
UAV Networks. IEEE/ACM Transactions on Networking 2022, 30, 881–895. doi:10.1109/TNET.2021.3125982.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.1109/JIOT.2020.3004500
https://doi.org/10.1109/TVT.2022.3150806
https://doi.org/10.1109/TNET.2021.3125982
https://doi.org/10.20944/preprints202406.1107.v1

19 of 19

27. Tian, S.; Chi, C.; Long, S.; Oh, S.; Li, Z.; Long, J. User preference-based hierarchical offloading for
collaborative cloud-edge computing. IEEE Transactions on Services Computing 2021.

28. Park, Y.; Nielsen, P.; Moon, I. Unmanned aerial vehicle set covering problem considering fixed-radius
coverage constraint. Computers & Operations Research 2020, 119, 104936.

29. Alzenad, M.; El-Keyi, A.; Lagum, F.; Yanikomeroglu, H. 3-D Placement of an Unmanned Aerial Vehicle
Base Station (UAV-BS) for Energy-Efficient Maximal Coverage. IEEE Wireless Communications Letters 2017,
6, 434–437.

30. Du, Y.; Yang, K.; Wang, K.; Zhang, G.; Zhao, Y.; Chen, D. Joint Resources and Workflow Scheduling in
UAV-Enabled Wirelessly-Powered MEC for IoT Systems. IEEE Transactions on Vehicular Technology 2019,
68, 10187–10200.

31. Ji, J.; Zhu, K.; Niyato, D.; Wang, R. Joint Cache Placement, Flight Trajectory, and Transmission Power
Optimization for Multi-UAV Assisted Wireless Networks. IEEE Transactions on Wireless Communications
2020, 19, 5389–5403.

32. Dai, B.; Niu, J.; Ren, T.; Hu, Z.; Atiquzzaman, M. Towards Energy-Efficient Scheduling of UAV and
Base Station Hybrid Enabled Mobile Edge Computing. IEEE Transactions on Vehicular Technology 2022,
71, 915–930.

33. Welzl, E. Smallest enclosing disks (balls and ellipsoids). New Results and New Trends in Computer
Science: Graz, Austria, June 20–21, 1991 Proceedings. Springer, 2005, pp. 359–370.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 doi:10.20944/preprints202406.1107.v1

https://doi.org/10.20944/preprints202406.1107.v1

	Introduction
	Related Work
	System Model and Problem Formulation
	UAV Coverage Partition and Flight Model
	Computation Model
	Local Computing
	Edge Computing

	Problem Formulation

	Algorithm Design
	UAV Set Covering Probelm
	Computation Mode Selection and Resource Allocation
	Alternating Optimization using CD Method
	Joint Optimization Using ADMM Method

	Computational Complexity Analysis

	Simulation Results
	Conclusions and Future Work
	References

