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Abstract: Von Hippel-Lindau disease (VHL) is a multiple organ neoplastic syndrome with autosomal
dominant transmission, complete penetrance, and variable expression caused by mutations in the VHL gene.
Although VHL disease is hereditary in many cases, new mutations cause up to 20 % of the incidence. Mutations
in VHL may cause the development of cysts and tumors in many organs, including brain and spinal cord
hemangioblastoma, renal cell carcinoma (RCC), retinal heman-gioblastoma (RH), pheochromocytoma,
epididymal and broad ligament cystadenomas, endo-lymphatic sac tumor, pancreatic neuroendocrine tumors,
and renal and pancreatic cysts. VHL is a syndrome associated with functional inactivation of the Von Hippel-
Lindau protein (pVHL). pVHL is a tumor suppressor mainly known for its role as a regulator of hypoxia-
inducible factor (HIF) activity. The prevalence of VHL disease is between 1 in 39 000 and 1 in 91 000 individuals
in different regional populations. Here, we review the etiology, epidemiology, pathophysiology, genetics,
clinical manifestations, diagnosis, and current treatments, as well as the molecular aspects of this disease. We
also discuss the animal models used to study this disease, VHL biomarkers, and current VHL clinical trials for
VHL according to NIH.
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1. Introduction

Von Hippel-Lindau disease (VHL) is a rare genetic disorder with autosomal dominant
transmission resulting from deletions or mutations in the VHL gene. VHL disease affects 1 in 36,000
people (10,000 cases in the US and 200,000 cases worldwide). 20% of the cases are de novo. The age
of onset is 26 years, and 97% of individuals with a VHL gene mutation have symptoms at 65 years of
age. The VHL disease affects males and females and all ethnic groups equally. Patients with VHL
disease may experience tumors and/or cysts in up to ten parts of the body, including the brain, spine,
eyes, kidneys, pancreas, adrenal glands, inner ears, reproductive tract, liver, and lung. Most of their
tumors are benign, but still can cause severe damage to the affected body structure. The manifestation
of VHL in each patient can vary; thus, it is essential to check regularly for possible VHL
manifestations throughout a person's lifetime. In general, the most common treatment is surgical,
and it is considered that with good monitoring and early detection, it is possible to treat the disease
and reduce its harmful consequences.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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VHL can also cause malignant tumors; therefore, it is considered to be part of a group of familial
cancer risk factors, which are transmitted genetically.

The current diagnosis is mainly made through DNA testing to verify VHL gene mutations.

The most common symptom of VHL is hemangioblastomas. These are benign tumors that occur
in the brain, spinal cord, and retina. Hemangioblastomas are benign.

The VHL gene product (pVHL) acts as a key regulator of cellular hypoxia. pVHL through the
HIF (hypoxia-inducible factor) complex is indirectly responsible for increased levels of growth
factors, including vascular endothelial factor (VEGF), platelet-derived growth factor (PDGF), and
transforming growth factor alpha (TGF-P). In the case of a nonfunctioning gene such as in VHL
disease, regulation of the HIF complex does not occur. These results in increased levels of various
growth factors allowing for enhanced blood vessel growth (angiogenesis) and tumor formation.

Due to multiple organ involvement, the symptoms and manifestations of VHL overlap with a
wide range of diseases. These include the following: Kidney: sporadic kidney cancer, Birt-Hogg-Dubé
(BHD) syndrome, hereditary leiomyomatosis and renal cell carcinoma (HLRCC), tuberous sclerosis
complex, succinate dehydrogenase subunit (SDH); Adrenal or pheochromocytoma: succinate
dehydrogenase subunit (SDH), multiple endocrine neoplasia 2 syndrome, types A and B (MEN2A
and MEN2B); Inner ear: Meniere's disease; Pancreas: pancreatic cancer; Retina: retinal
hemangioblastomas are unique to VHL. The presence of a retinal hemangioblastoma leads to a
clinical diagnosis of VHL; Brain or spine: hemangioblastomas in the brain or spine are different from
other forms of brain or spine tumors and their diagnosis is considered a criterion for a VHL DNA
test.

2. Von Hippel-Lindau (VHL) Disease: Highlights

The VHL disease is a multiorgan neoplastic syndrome with autosomal dominant transmission,
complete penetrance, and variable expression caused by mutations in the VHL gene. Although VHL
disease is hereditary in many cases, new mutations cause up to 20% of the cases [1]. Pathogenic
variants in the VHL gene predispose individuals to tumors and cysts in many organ systems. These
include brain and spinal cord hemangioblastoma, renal cell carcinoma (RCC), retinal
hemangioblastoma (RH), pheochromocytoma, epididymal and broad ligament cystadenomas,
endolymphatic sac tumor, pancreatic neuroendocrine tumors, and renal and pancreatic cysts [2,3].

2.1. History

Observations relating to VHL disease first appeared in the 19th century. For example, in 1879,
Panas and Rémy illustrated a retinal hemangioblastoma for the first time. Subsequently, von Hippel
contributed to the description of the disease through clinical data obtained from a patient with
multiple retinal lesions that appeared over several years. From all her observations, von Hippel
concluded that the primary retinal lesion was a hemangioblastoma. Later, in 1926, Lindau published
a monograph. In this document, he brought together into one coherent entity the retinal, cerebral,
and visceral components of this disease. Lindau designated "central nervous system angiomatosis"
as this disease entity because he believed that visceral concomitants did not manifest by symptoms.
Finally, ‘Lindau’s disease’ was defined as an association of cerebellar hemangioblastoma with one or
more lesions: retinal hemangioblastoma (the ‘von Hippel tumor”), spinal cord hemangioblastoma,
pancreatic cysts, renal and epididymal abnormalities, and the existence of at least one other family
member with the disease [4]. This term changed to the ‘von Hippel Lindau (VHL)" disease in the
1970s. In 1988, a report explained the linkage of the VHL gene to chromosome 3 [5], and, in 1993, a
research group identified the VHL tumor suppressor gene [6].

2.2. Etiology

Von Hippel-Lindau syndrome (VHL) is a syndrome associated with functional inactivation of
the von Hippel-Lindau protein (pVHL) [7]. The von Hippel-Lindau protein (pVHL) is a tumor
suppressor mainly known for its role as a regulator of hypoxia-inducible factor (HIF) activity [8]. The
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homonymous VHL gene codifies the pVHL protein, localizes on chromosome 3p25, and is expressed
in fetal and adult tissues [9]. On the other hand, VHL-related tumor development follows Knudson's
‘two-hit model’ of tumorigenesis [10]: Patients with VHL are born with a germline mutation in one
copy of their VHL gene in all cells (first hit or event). Somatic mutation in the other copy of the VHL
gene (second hit or event) initiates tumor development in a particular cell [11,12].

2.3. Epidemiology

The disease reports penetrance of >80% by age 60 and an approaching 100% by age 75. The
prevalence of VHL disease is between 1 in 39 000 and 1 in 91 000 individuals in different regional
populations [13,14]. Most are >20 years old and are prone to selection bias due to the inclusion of
clinically affected patients with VHL disease diagnosed before genetic testing was available. For
example, VHL disease had a birth incidence of 1 in 36,000 live births in Eastern England and
prevalences of 1 in 39,000 individuals in South-West Germany, and 1 in 53 000 individuals in eastern
England [15,16]. However, in Denmark, in an unselected cohort of all known Danish carriers of a
disease-causing variant is estimated a VHL prevalence of 1 in 46 900 individuals and an incidence of
1in 27 300 live births [17].

2.4. Pathophysiology

Von Hippel-Lindau syndrome (VHL) is a rare hereditary cancer characterized by the
development of benign or malignant tumors in specific topographic locations. In this sense, central
nervous system hemangioblastoma and clear cell renal cell carcinoma (RCC) are the most frequently
tumors [3].

Tumorigenesis in VHL syndrome is linked to the loss of function of the VHL tumor suppressor
protein in cell differentiation [18] where hypoxia-inducible factors (HIF1 and HIF2) are activated and
accumulate in the cell [19,20]. The consequences of this up-regulation include transcriptional
activation of genes containing hypoxia-responsive elements [21,22]. However, it remains unclear why
the loss of VHL function and subsequent HIF activation lead to tumorigenesis. An explanation
suggests that the ‘second hit’ would cause loss of pivotal VHL function during organ development
leading to maldeveloped structures that represent prerequisites for tumor formation [23].

3. Genetics

3.1. VHL Gene and Protein

In 1988, Seizinger and colleagues mapped the VHL gene. The findings showed that the VHL
gene is located on the short arm of chromosome 3 in the 3p 25-25 region (Figure 1). Moreover, the
VHL gene has 14,500 base pairs of genomic DNA, and 852 nucleotides with three exons that can
generate two mRNAs through a process that causes the loss of exon 2. This gene is conserved in

rodents, flies, and worms [24,25].
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Figure 1. Localization of the VHL gene in Chromosome 3. The VHL gene site is indicated with an
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The VHL gene consists of three exons with the capacity to generate two mRNA transcripts. The
mRNAT1 transcript is composed of exons 1, 2, and 3, and the mRNA2 transcript is composed of exons
1 and 3 (Figure 2). The mRNAL1 transcript encodes two pVHL proteins. When translation occurs, the
complete protein from 1-213 amino acids (aa) with a molecular mass of 24 ~ 30 kDa, also known as
pVHL30, and a small peptide from 54 to 213 aa is translated through an alternative start codon at
codon 54 with a molecular mass of 18 ~ 19 kDa known as pVHL19. Both proteins (pVHL30 and
pVHL19) are localized in the cytoplasm and cell nucleus, respectively [26,27].

(50| IS (S s a2

Figure 2. Structure of the VHL gene. Created with BioRender.com.

The structure of the pVHL protein has two domains: the  domain that ranges from 63 to 155 aa
and the a domain that includes amino acids 156 to 193, as shown in Figure 3. On the other hand, the
protein pVHL30 contains an acidic domain located in amino acids 1-54, absent from the pVHL19
protein. The function of pVHL30 is present in several events. For example, protein degradation via
the proteasome is the most studied, and in addition to both isoforms, it appears to maintain tumor
suppression activity [28].
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Figure 3. The structure of the pVHL protein has two domains: the f domain that ranges from 63 to
155 aa and the a« domain that includes amino acids 156 to 193. Created with BioRender.com.

3.2. Inheritance

The VHL disease is autosomal dominant, that is, it is transmitted from parents to children.
However, the disease can occur sporadically. The mutation is inherited when one parent has the VHL
gen altered (mutated), so each child has a 50% chance of inheriting it. Consistent with the dominant
inheritance pattern, it is enough to have an altered gene to develop the disease. Thus, an affected
parent (who therefore has a mutated gene and a normal one) could pass on the mutated gene to his
offspring, who in turn will develop the disease despite having the other normal gene (see figure 4)
[29]. VHL disease also is autosomal, which means that men and women can suffer from it equally
(Figure 4). People with parents, brothers, or sisters with VHL have a 50% risk of disease. If the person
has an uncle, cousin, or grandparent with VHL, they are also at risk for developing VHL. Moreover,
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it has been reported the presence of the disease in individuals without family background, therefore
it is necessary a differential diagnosis in each individual [30].
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Figure 4. Inheritance of a dominant gene. Created with BioRender.com.

3.3. Mutations

In VHL gene mutation carriers the development of the disease begins with the loss or
inactivation of the wild-type allele. Cytogenetic abnormalities, mutations, or hypermethylation that
cause inactivation of the remaining ‘healthy’ allele (Figure 5). Currently, it is unknown why the
second event occurs in some tissues and not in others [31]. On the other hand, some studies show
that patients develop retinal hemangioblastoma with complete deletion of the VHL gene less
frequently than those with a single amino acid substitution in the VHL gene. In addition, there were
no differences between patients with a truncated variant and those with a single amino acid
substitution [32,33].
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Figure 5. Scheme explaining tumor formation in VHL. Created with BioRender.com.


https://doi.org/10.20944/preprints202406.1103.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 d0i:10.20944/preprints202406.1103.v1

6

Germline VHL mutations cause different protein defects that result in the clinical heterogeneity
of VHL disease. For example, type 1 VHL disease (without pheochromocytoma) is associated with
mutations that cause the complete unraveling of the protein structure (missense mutations in the
hydrophobic core of the VHL protein, protein-truncating mutations, and partial gene deletions). On
the other hand, VHL disease type 2 (with phaeochromocytoma) is associated with missense
mutations at pVHL protein binding sites, causing local defects [34]. Table 1 shows several examples
of the relationship between the type of VHLdisease and some mutations.

Table 1. Clinical classification of VHL and associated mutations. Information obtained from VHLdb
database (https://vhldb.bio.unipd.it/mutations) according to [35]. Database was revised in September

30, 2021.
Clinical Associated
classification mutations References
p-Asn78Ser [36]
p-Pro81Ser [37]
p-Trp117Cys [38]
p-Phel36Ser [36]
In-frame del [39]
Stop at 158 [40]
p-Asn78His [41]
p-Ser65Trp [42]
p-Leu89Pro [43]
p-Serl11Asn [44]
p-SerlllArg [45]
Von Hippel-Lindau
syndrome Type 1 p-Ser80Arg 4]
p-Pro86Leu [38]
p-Ser65Leu [44]
p-Trp88Arg [47]
In-frame del Phe76 [37]
p-GIn96Pro [48]
p-Trp88Ser [37]
p.GIn73X [49]
p-Asn90Ile [50]
p-Leul84Pro [37]
p-lle180Val [43]
p-Cysl62Arg [37]
Von Hippel-Lindau b Phel19Leu [51]

syndrome Type 2

Frameshift [36,52]
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Von Hippel-Lindau
syndrome Type 1
and Type 2

Von Hippel-Lindau
syndrome Type 1
and Type 2B
Von Hippel-Lindau
syndrome Type 1,
Type 2, and Type 2A

Von Hippel-Lindau
syndrome Type 1,
Type 2, and Type 2B

Von Hippel-Lindau
syndrome Type 1,
Type 2, and Type 2C
Von Hippel-Lindau
syndrome Type 1,
Type 2A and Type
2B
Von Hippel-Lindau
syndrome Type 1,
Type 2, Type 2A and
Type 2B
Von Hippel-Lindau
syndrome Type 1,
Type 2, Type 2A,
Type 2B and Type
2C

Von Hippel-Lindau
syndrome Type 2
and Type 2A
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p-Leull8Pro
p-Leul78Pro
p-Ser80Asn
p-Gly93Asp
p-Leul58Pro

p-His115GIn

p-Gly114Cys

p-Argl13X

p-Tyr98His

p-Argl61X

p-Cysl62Tyr
p-Val74Gly
p-Cysl162Trp

p-Leul88Val

p-Gly93Ser

p-Pro86Ser

p-Argl67GIn

p-Argle7Trp

p-Arglé67Trp

p-Vall66Phe

p-Argl61GIn

p-Tyr98His

do0i:10.20944/preprints202406.1103.v1

[36,48]
[37,38]
[43,53]
[38,54]
[37,55]

[37,56]

[36,41]

[42,54]

[38,57]

[42,58,59]

[54,60]
[37,57]
[37,42,56]

[42,57,61]

[37,53,62]

[48]

[53,56,57,63]

[42,63-65]

[37,42,56,66]

[56,67]

[56,68]

[53,57]
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p-Tyr112His [38,69]
Von Hippel-Lindau
syndrome Type 2 p-Argl61Gly [57,70]
and Type 2B
Von Hippel-Lindau

syndrome Type 2,
p-Thr1571Ile [37,54,56]
Type 2A and Type

2B
Von Hippel-Lindau
syndrome Type 2A p-Alal49Ser [71,72]
and Type 2B

Furthermore, Nordstrom-O’Brien reports a mutation spectrum of 43.2% in exon 1, 17% in exon
2, and 39.8% in exon 3 [48]. Mutations are heterogeneous and are widely distributed throughout the
coding sequence, especially in exons 1 and 3. Missense mutations are the most common type of
mutation (61%), followed by frameshift (15.7%), nonsense (13.2%), in-frame insertions / deletions
(6.6%) and splicing mutations (3.5%) [73]. Finally, wild-type allele inactivation may arise due to allelic
loss, hypermethylation, or point mutations [74,75].

pVHL has two domains: domain alpha and domain beta. Most pathogenic missense mutations
are found in two regions of the VHL protein that interact with the elongin C-binding site. In line with
this, several tumor mutations locate in alpha-domain, in the amino acids that contact with elongin C
(residues 158-184 of the o« domain) [76]. The rest of the mutations are in the beta-domain (residue 65—
117 of the § domain) [65,77]. Reports indicate that mutations in Ser111 and Trp117 of pVHL block
HIF binding [78]. Most recurrent mutations are the result of de novo mutations in mutation-
susceptible regions, known as hot spots. The most common hot spots are delPhe76, Asn78Ser, His,
Thr, Pro86Leu, Arg 161 Stop, Cys 162Tyr, Argl67GIn, Trp, and Leu78Pro [37]. Fourteen mutations
(5.5 %) locate at Ser65, nine mutations (3.5 %) at Trp117, (3.1 %) at Phe76, (2.8 % each) at Asn78,
Ser80, Leul35, and Argl6l, (2.4 %) at His115, and five mutations (2 % each) at Gly114 and Leu1l84
[79]. Common germline mutations in VHL are delPhe76, Asn78Ser, Argl61Stop, Argl67Gln,
Argl67Trp, and Leul78Pro [27,37]. Moreover, it has been elucidated the effect of VHL Arg200Trp
mutation on HIF-1 interaction and ubiquitination [80]. In line with this, specific missense mutations
(Argl67Trp and Argl67GIn) are associated with a high risk (62%) of phaeochromocytoma [34].
Furthermore, amino acid substitution (Glu70Lys) at the HIF-a binding site increments specific risk
of developing CNS hemangioblastoma [65], while missense mutations (Leul18Pro or Argl67Trp) are
associated with renal cancer [81] (Figure 6). Finally, the Try98His and Asn (Asn78Ser) associate with
a low risk of RCC (type 2A phenotype).

do0i:10.20944/preprints202406.1103.v1
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Figure 6. Major pVHL mutations associated with the development of tumorigenesis in VHL disease.
The VHL protein has a beta, alpha, beta domain, 2 isoforms are known according to the molecular
weight of pVHL30 and pVHLI18/19, both proteins are tumor suppressor. Created with
BioRender.com.

4. Manifestations, Diagnosis, and Treatment of VHL Disease

Symptoms of VHL disease vary among patients and depend on the size and location of the
tumors. On the other hand, diagnosis can be made based on specific clinical criteria (signs, symptoms,
and imaging), or when molecular genetic testing reveals a change in the VHL gene. Finally, treatment
depends on the location and size of the tumors and usually involves surgical removal of the tumors.
Radiation therapy may be used in some cases (Table 2).

Table 2. Summary of the lesions, symptoms, diagnosis, imaging, and treatment of VHL patients.

Diagnosis
(MR,Magnet

1C

Lesion/frequen

Resonance; Treatment and
cy in patients Symptoms
CT, management
by age
Computed

Tomography
)

CNS Headache,
. . Followed by
hemangioblast gait
repeated MRI
omas (HBs) imbalance, )
scans in
cerebellum ataxia, )
. asymptomatic
and spinal abnormal MR- brain [82] ‘ [82,83]
. patients. In
cord. head http://creativeco
. patients,
Early third position, mmons.org/lice )
symptomatic
decade (ages nausea, nses/by-nc-

tumors should
22-26 years). vomiting, nd/3.0/.
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Hemangioblast
omas occur in
approximately
60 to 80% of
patients with
VHL.

Retinal
hemangioblast
oma (RH).
Median age 21
and 25 years
old, with a
frecuency from
49% to 85%.

Renal cysts.
Commonly it
occurs at the
fourth decade of
life, but this
variant of VHL
disease, could
occurrs as
young as 16
years old. 60%-
70% of the
lesions were

carcinomas, all

and

papilledema

Neurologica
1
impairment,
urinary or
bowel
abnormalitie
s, singultus,
dysphagia,
myelopathic
disorders,
syringomyel
ia, and

polyglobulia

Gradual loss

of vision

Mostly
asymptomat
ic. flank pain

or

hematuria.

MR-spinal

cord

Angiograph
y

Ultrasonogr

aphy

Ultrasound,
Abdominal
MRI or CT
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[84]
http://creativeco

mmons.org/lice
nses/by-nc-
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[85]

http://creativeco

mmons.org/lice
nses/by/4.0/.

(11
http://creativeco

mmons.org/lice

nses/by/4.0/.
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be surgically

removed.

Depending on
the size of the
tumor, surgical
removal is

recommended.

Ablative
treatment:
thermal laser
photocoagulati
on,
cryotherapy,
radiation, and
transpupillary
thermotherapy

Partial
nephrectomy is
the option for
tumors that
have reached 3
cm reduce the
risk of
metastasis
while
maintaining
kidney
function. RCCs
-VHL were

[83,84]

[85-87]

[1,74,7
5,84,87
]

10
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with clear cell

features (RCCs,
Renal Cysts
Clear Cells).

Pheochromocy
toma (PCC).
Diagnosticated
arround the
third decade of
life with a
frecuency of
33%.

Pancreatic
cysts and
pancreatic
neuroendocrin
e tumors
(NETs).
Is diagnosis
already fourth
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remains the
definitive

treatment.

Pancreatic
cysts do not
require
surgical
intervention;
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potential for
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disease are
[1,84,9
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resected with
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partial
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y depending
on location and
size greater
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Endolymphati
¢ sac tumors.
(ELTS).
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VHL disease
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The mean age
of onset is 22
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(range, 12-50
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may be
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of cases.
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unilateral
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[97]
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12

Treatment of
ELTS requires
extensive
surgery with
adequate bone

removal [93,94]
around the
area of the
macroscopicall

y evident

tumor.

Surgery is
rarely
performed in
epididymal

cystadenomas.
[75,95,

routinely 9]

followed by a
physical exam
and

ultrasonograph

y.

Being benign
lesions, they
are usually

managed [97,98]
conservatively.
without

surgery.

The best known pVHL function is the regulation of hypoxia-inducible factor-alpha (HIF-cx)
protein levels through degradation under normoxic conditions [99]. The interaction between pVHL
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and HIF-a requires the hydroxylation dependent on prolyl-4 hydroxylase domain enzymes (PHD1,
-2 and -3) of at least one of two specific proline residues of HIF-a [100]. Subsequently, HIF-a is
ubiquitylated and degraded via the proteasome. Under hypoxic conditions or in the presence of
mutant pVHL [43,101], the pVHL complex cannot recognize HIF-a, then HIF-a accumulates in the
cytoplasm. In the cytoplasm, HIF-a forms a heterodimer with HIF-3. Subsequently, the heterodimer
translocates to the nucleus with the transcriptional coactivator p300, where it binds to response
elements (HRE) [102] and promotes the transcription of many genes involved in angiogenesis,
glucose metabolism, cell survival and tumor progression [103] (Figure 7).

However, the pathogenesis of clear-cell type renal cell carcinomas (ccRCC) implies mTOR
complex 1 (mTORC1). For example, reports show that mTORCI1 activates in 60% to 85% of ccRCCs
[104].

mTOR is a serine/threonine protein kinase. mTOR nucleates two different complexes, mTORC1
and mTORC2 [105]. mTORCI1 is composed of mTOR, the regulatory associated protein of mTOR
(RAPTOR), and the protein mammalian lethal with sec-teen protein 8 [106]. Some mTORC1
substrates are S6 kinase 1 (56K1) and the eukaryotic initiation factor 4E (eIlF4E) binding protein 1 (4E-
BP1). Finally, phosphorylation of S6K1 and 4E-BP1 by mTORCT1 stimulates protein translation [107].

In response to hypoxia, the regulation of mTORCI1 involves the protein regulated in
development and the DNA damage response 1 (REDD1). In this condition, HIF binds to a response
element in the REDD1 promoter for her induction and therefore negatively regulates mTORC1 [108]
(Figure 7a right). Paradoxically, mTORC1 is broadly activated in ccRCCs, pVHL inactivated, HIF
activated, and upregulated REDD1. These findings suggest that other mechanisms favor tumors to
escape growth suppressor signals resulting from pVHL loss and up-regulation of REDD1 [109]
(Figure 7b left).

Another HIF-dependent mechanism that activates mTORC1 is the down-regulation of the
mTOR inhibitor, the DEP domain-containing mTOR-interacting protein (DEPTOR). DEPTOR is
significantly down-regulated in pVHL-deficient ccRCC tumors and cell lines. In this tumor type,
DEPTOR is transcriptionally suppressed by both HIF-1 and HIF-2 mediated by the HIF target gene,
BHLHe40 [110] (Figure 7b left).

Finally, a study revealed a new mechanism for the deregulation of mTORC1 in ccRCC. The
report showed that pVHL represses the regulatory-associated protein of mTOR (RAPTOR), inhibiting
mTORC1 signaling. Therefore, the loss of pVHL function in ccRCC is consistent with the
hyperactivation of mTORC1 signaling. This mechanism describes a novel pVHL-mediated regulation
of mTORC1 by targeted ubiquitination and degradation independent of HIF [111] (Figure 7b right).
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https://doi.org/10.20944/preprints202406.1103.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 June 2024 d0i:10.20944/preprints202406.1103.v1

14

a)  NORMOXIA HIPOXIA

HIF HYDROXILATION NO HIF HYDROXILATION

[ I ] OXYGEN ° ®
° ° TSC1

PROLINE @ a ASPARANGINA
HYDROLASE HYDROLASE
ELONGINS
| ', 1 ReDD1

NO FORMATION COMPLEX

NEGATIVELY
REGULATED

mTORC1
inactive
translocation nuclear

ELONGINS /8

GENE TRANSCRIPTION
FORMATION CDMPLEX , =~ *
D
PROTEOSOME ? +
HIF-mediated
transcriptional activation PROTEIN
PROTEOLYSIS tumor-related genes TRANSLATION
Degradation of HIF-a
b) RENAL CELL CARCINOMA
HIF DEPENDENT FUNCTION OF VHL HIF INDEPENDENT FUNCTION OF VHL
< 5
T (e R ¥ R
ELONGINS J- RAPTOR )
Fial A
NO FORMATION COMPLEX . 1
NEGATIVELY
¢ REGULATED C mi'
. supress mTORC1 S mTORC1
active : active
translocation nuclear \ \ / ]
GENE TRANSCRIPTION
VEGF l
@ D
Cvesrn )Y/ ' '
HIF-medliated
t ipti tivati
e S PROTEIN PROTEIN
TRANSLATION TRANSLATION

tumor-related genes

Figure 7. pVHL function under different conditions. a) Normaloxic and hypoxic conditions. Under
normoxic conditions, pVHL interacts with HIF-a hydroxylated. HIF-a is ubiquitylated and degraded
via the proteasome. In hypoxic conditions, pVHL does not recognize HIF-a. Then, HIF-a dimerizes
with HIF-B. The complex translocates to the nucleus and promotes the transcription of many genes
such as VEGF, PDGF, TGF-a, EGFR, and VEGFR. Another HIF- activated gene activated by HIF-a is
ReDD1 and negatively regulates mTORC1 through Tuberous Sclerosis Complex 2 (TSC2). b) In renal
cell carcinoma conditions, the pVHL mutant does not bind to HIF-a and promotes the transcription
of genes involved in tumor progression. Another gene upregulated by HIF is ReDD1, but mTORC1
is activated. Thus, another HIF-dependent mechanism that activates mTORC1 is DEPTOR down-
regulation. However, pVHL also regulates the deregulation of mTORC1 through the repression of
RAPTOR in renal cell carcinoma. RAPTOR activates mTORC1 by destroying pVHL function.
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pVHL is a critical tumor suppressor in ccRCCs. On the other hand, most patients with ccRCC
are drug-resistant to therapies. Although targeted therapies that inhibit angiogenesis and mTOR
pathways can lead to initial tumor control, most patients develop resistance [112-114]. Therefore, the
identification of additional pVHL substrates could improve therapeutic options for ccRCC. Next, we
review some pVHL substrates and possible therapeutic targets in ccRCCs.

Most reports on pVHL/HIF transcriptional activation have focused on HIF-bound promoters.
However, evidence suggests distal enhancer elements in pVHL/HIF transcriptional control. In this
sense, a study identified a master regulator crucial for the pathogenesis of ccRCC, ZNF395. pVHL
loss stabilizes HIF2a occupancy in tumor-specific gained enhancers. HIF2a recruits, histone
acetyltransferase p300 to maintain H3K27 acetylation, upregulating the expression of ccRCC-specific
genes such as ZNF395. ZNF395 has a functional role in ccRCC tumorigenesis in vitro and in vivo
[115] (Figure 8a-1).

A genome-wide in vitro expression strategy to identify proteins that bind to pVHL when
hydroxylated determined that zinc fingers and homeoboxes 2 (ZHX2) are a novel pVHL substrate
transcription factor. Analysis of tumors from ccRCC patients and pVHL loss-of-function mutations
confirmed pVHL loss usually increases the abundance and nuclear levels of ZHX2 in ccRCC tumors.
Mechanically, this study revealed that ZHX2 could promote NF-kB activation and carcinogenesis of
ccRCC [116]. Another study showed the downstream signaling pathway of ZHX2. ZHX2 facilitated
proliferation and migration in ccRCC cell lines by activating the MEK1/ERK1/2 signaling pathway.
Furthermore, ZHX2 overexpression could induce Sunitinib resistance by activating autophagy
through the MAPK / ERK signal pathway [117] (Figure 8a-2 up).

Another novel genome-wide in vitro expression strategy coupled with a GST-binding screen for
pVHL substrates identified Scm-like with four malignant brain tumor domains 1 (SFMBT1) as a direct
target of pVHL. In renal tumors compared to adjacent normal tissue, the levels of SFMBT1 are high.
On the other hand, the functional characterization of SFMBT1 showed that it promotes ccRCC cell
proliferation, anchorage-independent growth, and tumor xenograft growth. The analysis also
identified sphingosine kinase 1 (SPHK1). SPHK1 is an SFMBT1 target gene that contributes to the
oncogenic phenotype of renal tumors [118]. SEMBT1 and its downstream target gene SPHK1 could
represent a new therapeutic strategy for patients with ccRCC treatment (Figure 8a-2 below).

Finally, mRNA expression levels of both transcription factors (ZHX2 and SFMBT1) in a tissue
microarray constructed using 97 ccRCC samples showed an association with overall survival (OS)
and disease-free survival (DFS) analyses. In this sense, survival analysis demonstrated that poor
clinical outcomes in patients with ccRCC were associated with combined high expression levels of
SFBMT1 and ZHX2. These results suggest that the coexpression of these two targets could be a
promising biomarker for predicting the outcome of patients with ccRCC [119].

However, a study describes the pathologic angiogenic phenotype of missense pVHL missense
mutations in ccRCC. In this case, the SUMO Enhancer (RSUME) sumoylates pVHL mutants. This
post-translational modification promotes HIF-2a stabilization and leads to enhanced VEGF action.
Therefore, it promotes more vascularized tumors. Regarding pathology, RSUME levels are higher in
tumor patients with pVHL mutations and are associated with a poor prognosis in RCC tumors. These
findings suggest that RSUME could be a biomarker of the outcomes of renal cell carcinoma [120]
(Figure 8a-3).

Finally, tumors from ccRCC patients with pVHL loss show elevated TANK binding kinase 1
(TBK1). A study discovered that loss of pVHL or hypoxia in cancer hyperactivates TBK1. As a result
of TBK1 hyperactivation, TBK1 phosphorylates p62 on the Ser366 residue and promotes renal
tumorigenesis [121] (Figure 8a-4).

Regarding SNC hemangioblastomas, the analysis of tissues with mutations in the expressions of
VHL gene showed the JAK2 and STAT3. The results of this study indicate that pVHL binds to JAK2
and STAT3 and mediates its ubiquitination. Furthermore, the study suggests that hemangioblast
progenitor cells can differentiate into neoplastic cells by activating the JAK-STAT signaling pathway
[122] (Figure 8b-1).
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Figure 8. Other targets of pVHL in ¢cRCC and SNC hemangioblastomas. a) ccRCC. 1) The loss of
pVHL stabilizes HIF-a at enhancers, recruits p300 to maintain H3K27 acetylation and up-regulates
ZNF395. ZNF395 promotes the tumorigenesis of ccRCC. 2) ZHX2 and SFMBT1 are novel pVHL
substrates. ZHX2 promotes NF-kB activation, and thus cell growth in ccRCC. On the other hand,
ZHX2 also activates the MAPK / ERK signal pathway, facilitating several cell functions in addition to
causing drug resistance. SFMBT1 promotes SPHK1 expression that contributes to the oncogenic
phenotype. 3) RSUME sumoylates pVHL mutants. This post-translational modification stabilizes HIF-
a and thus enhances VEGF action promoting vascularized tumors. 4) Loss of pVHL hyperactivates
TBK1 phosphorylating p62 and promotes renal tumorigenesis. b) SNC hemangioblastomas. 1) The
pVHL mutant does not ubiquitinate STAT and JAK2. It activates the JAK-STAT signaling pathway,
thus differentiating hemangioblast progenitor cells into neoplastic cells.
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6. Animal Models for the Study of VHL

Current animal models for VHL disease can partially capture the disease by showing the
involvement of a particular organ; therefore, much work is still needed to develop a model that
exhibits several of the clinical manifestations. Other manifestations of VHL disease, such as tumors
of the endolymphatic sac, middle ear, pheochromocytoma, cerebellar, and cervical
hemangioblastomas, are not seen in almost any of the models. Additionally, phenotypes not
associated with VHL disease can also arise from the product of the mutated VHL protein.[123] [124]

The first animal model for VHL disease led to the development of an aberrant placenta and thus
was lethal to the embryo. Mice died in utero at embryonic days 10.5 and 12.5 [125]. However, the use
of conditional VHL knockouts in mice has been shown to be an effective approach to delineate the
role of VHL in individual organ systems.

Eyes. To date, there is still no adequate model to study the CNS and retinal hemangioblastomas.
A zebrafish model has been developed expressing retinal neovascularization from vascular leakage,
edema, and retinal detachment has been developed[126]. Studies have shown an increase in VEGF
and CXCR4A in the CNS in these zebrafish. In fact, this model manifests certain aspects of age-related
macular degeneration, diabetic retinopathy, and some cases of VHL [127]. However, zebrafish do not
develop hemangioblastomas, van Rooijen and colleagues were able to use this zebrafish model to
demonstrate inhibition of angiogenesis through the administration of VEGF receptor tyrosine kinase
inhibition.

Kidney. CCRCC is a malignant kidney neoplasm that arises sporadically or is inherited through
inactivation of VHL, Rankin et al. were the first group to successfully create a model that generated
renal microcysts and macrocysts with similar morphological and molecular characteristics found in
VHL-associated kidney disease[128]. Using Cre-loxp, they eliminated VHL expression from the
proximal tubule using the phosphoenolpyruvate carboxykinase (PEPCK) promoter to drive Cre
expression. Other groups have managed to obtain phenotypes that manifest acute nephritis with
hematuria, proteinuria, and renal failure; characteristic features of pauciimmune RPGN
(glomerulonephritis crescent) with prominent segmental fibrin deposition and fibrinoid necrosis
[129].

Pancreas. Shen et al. produced a model using the insulin promoter factor 1 (Pdx) promoter to
drive Cre expression. Survivors secondary to incomplete penetrance expressed highly vascularized
cysts and microcystic adenomas, eliminating VHL expression throughout the pancreas [130].

Reproductive system. Ksp1.3-Cre mice were crossed with Vhlh#/f mice and Ptenf/? mice. The
modified mice were then bred to generate a mouse model with dual VHL and Pten deficiencies
specific for genital tract epithelium. These mice were able to recapitulate clear cell cystadenoma of
the genital tract. in both males and females [131].

Liver. A mouse model in which VHL was acutely inactivated in utero exhibited embryonic
lethality with liver necrosis and vascular defects [132]. A mouse model that conditionally inactivated
VHL in hepatocytes led to hepatic hemangiomas [133]. Similarly, another model that conditionally
inactivated VHL in a mosaic pattern in multiple organs showed liver hemangiomas, as well as
angiectasias in the pancreas, heart, lung, and kidney [134]. Some other models showed growth
deficiency, angiectasias, hemangiomas, endothelial cell proliferation, severe liver steatosis
(accumulation of neutral fat in hepatocytes), and inflammatory cell infiltration [128].

In recent years, various animal models have been proposed in which the main objective is
inactivation of the VHL gene product in various organs. In these models, the mechanisms associated
with HIF and its link with tumorigenesis. However, these models are generally considered incapable
of recapitulation of the most common characteristics of human VHL disease. To date, there are no
models that develop retinal hemangioblastomas, the most common clinical manifestation of the
disease [135].

7. Biomarkers in VHL Disease

Biomarkers for VHL disease are scarce. However, some studies propose several. For example,
monitoring plasma levels of HIF-dependent molecules would allow monitoring of disease activity in
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VHL patients [84]. Although a report confirmed that elevated plasma VEGF levels are associated with
an increased risk of dying from ccRCC, plasma VEGEF levels are also significantly increased in tumors
without VHL alteration. It suggests that VHL-independent mechanisms are involved in up-
regulation of VEGF in ccRCC [136]. On the other hand, in serum from patients with VHL, no
correlation was found between VEGF levels and the presence of manifestations of VHL disease [137].
Finally, in another study, the presence of abnormalities in VHL did not correlate with overall survival
(OS), disease-specific survival (DSS), and progression or recurrence-free survival (PFS), and the
expression of VEGF had no prognostic value. However, this study showed an association with a
poorer prognosis in patients with no expression of VHL and HIF1-a expression and patients with
overexpression of ERKS [138].

The remarkable phenotypic heterogeneity in organ involvement and tumor onset age between
and within VHL families has not allowed reliable markers to predict the age-related tumor risks in
VHL patients. In this sense, the information shown in Table 3 is a compilation of several molecules
proposed as biomarkers. The samples are mainly renal tissues. The recruited subjects are patients
with VHL disease with ccRCC, while some patients have VHL disease with hemangioblastoma or
pancreatic lesions. The heterogeneity of the disease concerning clinical and molecular issues
manifests itself in the diversity of the molecules described in the table. Last, several molecules are
prognostic biomarkers, which means those that indicate the probability of a change in a future clinical
event, disease recurrence, or progression in an identified population [139].

The main limitation of these studies is the relatively small number of patients, but they provide
an approximation to standard clinical and pathological data that are still essential in the development
of biomarker panels for Von Hippel-Lindau disease addition to the molecular mechanisms that
underlie this disease.

Table 3. Biomarkers in Von Hippel-Lindau disease.

Biomarker Sample Cohort Results/Remarks Ref. ‘
= Patients with VHL showed
significantly shorter telomere
lengths than healthy family
controls.
= Patients in the shorter
telomere group suffered

higher age-related risks of

¢ 300 VHL patients .
Telomere ) VHL-associated central
Blood * 92 healthy family [140]
length nervous system
controls )
hemangioblastomas, renal cell
carcinoma, pancreatic cyst
and neuroendocrine tumors.
= The results indicate that
shorter blood telomere length
is a biomarker of risk in VHL
patients.
Formalin- ¢ 69 patients with * Double c-Myc/HIF-2a-
fixed, metastatic renal positive staining tumors
c-Myc/HIF- i ] T
) paraffin- cell carcinoma showed a significant [141]
o
embedded (mRCC), a association with a lower PFS

primary component of and a significantly worst
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8. Targeted Therapy in VHL Disease

20

outcomes in patients with
ccRCC.

= ¥7r-bevacizumab PET can
visualize different
manifestations of VHL disease
but does not predict the @ [147]
behavior of a lesion, but could
predict sensitivity to
antiangiogenic treatment.

» 8Ga-DOTATATE PET/CT had
a .51gn1f1cantly hlg}.ler [148]
detection rate compared with
CT and MRI.

Clinical research on VHL disease is summarized in the next table (Table 4).
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Clinical Trial

Identifier &

Therapeutic

Agent

NCT0067381
6

Sunitinib

NCT0033056
4

Sunitinib

Clinic
al Status
Phase

Condition or

disease

Advanced
Ocular Disease
Termi
II of von Hippel-
nated )
Lindau

Syndrome

Von Hippel-
Lindau
syndrome:
Termi Renal cell
nated carcinoma and
/ or
Hemangioblast

oma

Table 4. Clinical trials in Von Hippel-Lindau disease.

Molecular

Target

Inhibition of
multiple
receptor
tyrosine
kinases

(RTK),
including the
vascular
endothelial
growth factor

(VEGF) and
platelet-
derived

growth factor
(PDGE).

Participants

5 patients receive 9 months of
sunitinib malate therapy
administered in 6 cycles. Each
cycle consisted of a daily oral dose
of 50 mg sunitinib malate for 4
weeks followed by a 2-week rest
period. (Only one completed
treatment)

Treatment with
SU011248/sunitinib malate (50 mg
daily dose for 4 weeks, then 2
weeks off) for 6 months in 15
patients with Von Hippel-Lindau
Syndrome (VHL) who have a
measurable lesion undergoing

surveillance.

Outcome

Change in Best-Correction Visual Acuity
(BCVA), Retinal Thickness, and Retinal Angioma
Leakage from Baseline to Week 36. The

: , . [149
recruitment goal was to enroll five participants;

]

however, the study was terminated after only
two participants had been enrolled due to slow

recruitment and adverse events.

Nine of the 15 patients completed all four cycles
of therapy, and the expected toxic effects were
responsible for the necessary dosage reductions
and discontinuation of treatment. Renal cell [150
carcinomas responded better to sunitinib therapy ]
than other VHL related lesions using the RECIST
measure. The study ended early due to slow
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NCT0285944
1
Ranibizuma
b
E10030

Protocol
number
CT/AE-
941/002
Neovastat
(Canadd)

Not definite.
Neovastat
(Canada)

Comp

I/11
leted

Comp
leted

Comp
leted

III

Von-Hippel-
Lindau (VHL)-
Retinal
Capillary
Hemangiomas
(RCH)

Renal Cell
Carcinoma
(RCO)

Metastatic
renal cell
carcinoma in
whom
immunotherap

y failed

E10030, a
PDGEF-B
antagonist,
and
ranibizumab,
a VEGF-A

antagonist

Inhibition of

angiogenesis

This was a single-arm open-label
phase 1/2 study, consisting of 3
adults with VHL-associated RH
associated with VHL and vision
loss. Intravitreous injections of

ranibizumab (0.5 mg) and E10030

(1.5 mg) were administered

unilaterally and each received 9

injections prior to week 52 and

were followed for 104 weeks.

22 patients with a primary
diagnosis of refractory CCR. They
were treated with Neovastat 240
ml/day (n = 14) compared to
patients receiving 60 ml/day (n =
8)

300 patients from 48 international
centers were randomized to
receive 120 ml twice daily of oral
Neovastat or placebo Neovastat.
The 300 patients who received at
least 1 dose of study medication

were included in this analysis.

One participant manifested mild episodic ocular
hypertension in the study eye. The change in
BCVA in the study eye at week 52 for the three
participants was -5, —12, and +2 letters. No
reduction in RH size was measured at 52 weeks. (151
Variable mild improvements in exudation in two
participants at week 16 were not sustained
through week 52. Intranavitreous injection with
ranibizumab and E10030 demonstrated a

reasonable preliminary safety profile, but limited

treatment effect.

The higher dose of Neovastat administered in

this trial is associated with a survival benefitin | [152
RCC. Neovastat is well tolerated by advanced ]
cancer patients at doses of 60 and 240 ml/day.

The study of metastatic CRC provides a
prognostic model that has a significant impact on
risk-adjusted survival. Although external (153
validation in an independent data set is lacking,
the results of this trial may lead to a new
paradigm for clinical trial design and risk

stratification when considering future
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EudraCT
Number:
2014-003671-
30
Propanolol

(Spain)

EudraCT
Number:
2007-002132-
29
Sorafenib
(UK)

NCT0143622
7

Pazopanib

Comp
leted

III

Termi
I
nated

Activ
e, not
I )
recrui

ting

Von Hippel-

Lindau disease

and retinal

hemangioblast

omas

Renal cancer
associated
Renal Cancer
VHL

von Hippel-

Lindau disease

genetically
confirmed or

one disease-

related lesion.

VEGF
inhibitor

Tyrosine
kinase
inhibitor

Vascular
endothelial
growth factor
receptors
(VEGEFR) -1, -
2, and -3, c-

7 patients were included. All
patients received a daily dose of
120 mg propranolol for 1 year.
Clinical variables were evaluated
at baseline, and at 1, 3, 6,9 and 12

months.

In 4 patients with VHL syndrome
who had therapy for advanced
RCC, oral received whom
sorafenib (400 mg twice a day) for

up to six months.

Thirty-one eligible patients
were treated with pazopanib 800

mg by mouth daily for 24 weeks.

investigations of patients with metastatic CRC in
whom immunotherapy has failed.

The number and size of retinal
hemangioblastomas remained stable in all
patients. The only adverse effect reported was
hypotension in one patient. The results suggest

that propranolol could be useful for the (154

]

treatment of retinal hemangioblastomas in
patients with VHL, especially when there are
retinal exudates. The results of this clinical trial
allowed propranolol designation to treat von
Hippel-Lindau disease, granted by the European
Medicines Agency (EMA).

This study concludes that over a 6-month period

of sorafenib, at the standard dose used in RCC, (155

]

there was no response effect in CNS
hemangioblastomas in this population of

patients.

To ensure timely dissemination of data, the

decision was made to close the trial after 31

evaluable patients were accrued. Pazopanib [156
induces a reduction in the burden of the disease ]
in von Hippel-Lindau disease patients. Efficacy

data indicate benefit in individuals with renal
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NCT0340178
8

Belzutifan

NCT0310806
6
PT2385

NCT0126607
0

Dovitinib

Activ
e, not
1I )
recrui

ting

Activ

e, not
II )
recrui

ting

Termi
11
nated

Von Hippel
Lindau
Disease-
Associated
Renal Cell

Carcinoma

Von Hippel
Lindau
Disease-
Associated
Renal Cell

Carcinoma

VHL-related

hemangioblast

oma

kit and
platelet-

derived

growth factor

receptor
(PDGE-R)
inhibitors
61 patients receive 120 mg of
belzutifan orally once a day until
Inhibitor of
progression, intolerable toxicity, or
HIF-200
the investigator / patient’s decision
to withdraw.
4 patients will be enrolled in each
stage of a two-stage design.
Inhibitor of & 8 &
PT2385 was administered orally at
HIF-2a
a dose of 800 mg twice daily,
follow-up of 19 weeks
A Six participants received 500
multityrosine = mg/day (5 days in / 2 days out of

kinase that
inhibits

dosing). Completed at least two
cycles of therapy.

cell carcinomas and pancreatic lesions, and some

potential efficacy signals in hemangioblastomas
as well. Pazopanib could be considered in

patients with von Hippel-Lindau disease and

growing lesions where surgical resection may be
required in the relatively near future, or in
patients with unresectable lesions where a

decrease in tumor size is desired.

Of 61 patients, 53 (86.9%) had a decrease in the
size of the target lesions. Responses were also
observed in CNS, retinal, and pancreatic lesions.
MK-6482 showed promising efficacy and
tolerability in patients with VHL-associated
ccRCC and responses in other VHL-related

lesions.

All patients had stable disease (SD) as their best
response at the latest assessment. PT2385
demonstrated stabilization of disease in VHL-
associated clear cell RCC and other tumors and

showed an acceptable safety profile.

The trial was stopped after six patients due to the
activation of the toxicity stopping rule. The lack
of response in HBs in this population treated

with dovitinib is surprising, and molecular
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NCT0008976
5

Ranibizuma

b

NCT0210800
2

Vorinostat

Angiomas
(blood vessel
tumors) in
Comp @ patients with
leted Von Hippel-
Lindau
syndrome
(VHL)

VHL-related

hemangioblast

Com

leted
oma

FGEFR,
VEGEFR, and
PDGER.
5 patients with retinal capillary
hemangioblastomas (RCH)
associated with VHL with
exudative changes and visual loss.
VEGE-
o Monthly intravitreal injections of
neutralizing
ranibizumab (0.5mg) were
agent
administered over a 6 month
course for a total of 7 injections,
with additional injections
considered until week 52.
7 germline missense VHL patients
) with symptomatic CNS
Histone
hemangioblastomas, received 400
deacetylase ) )
T mg of Vorinostat by mouth daily
inhibitor ; 4 et
or seven days prior to surger
(HDAG;i) yep 8y

and subsequently underwent

surgical resection.

profiling of HB tissue would be extremely useful
to help understand the biologic underpinnings of
this lack of efficacy.

The primary outcome was the change in best-
corrected visual acuity (BCVA). Secondary
outcomes included change in lesion size, change
in retinal thickness, and adverse event

assessments. Intravitreal ranibizumab, (160

]

administered as monotherapy every 4 weeks,
had minimal beneficial effects on most RCHs
related to VHL. Future studies are needed to
determine a combination with other therapies for
the treatment of ocular tumors associated with
VHL.
Vorinostat is well tolerated by patients with
symptomatic CNS hemangioblastomas in the
context of germline missense VHL disease and = See
shows results in mutated stabilization of the belo
pVHL protein. This suggests that Vorinostat may =~ w
be a promising treatment for patients with a

germline mutation.

e
@
g
=
=
2
g
Q@
s
<
=
=
D
©
=
=
J
g
=
Z
@)
_|
Y
m
m
-
Py
m
<
=
m
O
0
o
)
()
&
[y
~
(&
=
=
D
N
o
N
H

TA'€0TT 90¥¢0¢SIulIasia/yy60C°0T-10P



https://doi.org/10.20944/preprints202406.1103.v1

NCT0056699
5
Vandetanib

Medical
Ethics
Committee
of Peking
University
First
Hospital
(Beijing,
China)
TKIs

Comp
leted

Comp
leted

VHL-
associated
renal cell

carcinoma

Von Hippel

Lindau

Disease

Dual
VEGFR2/EGF
R inhibitor

Tyrosine
Kinase
Inhibitor
(TKT)

34 participants received 300
mg/day (starting dose) oral dose of

vandetanib once a day for 28 days.

32 patients receiving TKIs were
recruited. For sunitinib, a dosage
of 50 mg/day was administered
orally for 28 days, followed by a
14-day break per cycle for several
cycles. For sorafenib, a dose of 800
mg/day divided into two doses
was administered orally. For
axitinib, a dose of 10 mg/day
divided into two doses was
administered orally. For
pazopanib, a dose of 800 mg/day

was administered orally.

Vandetanib demonstrated antitumor activity.
However, the poor tolerability required drug
withdrawal in a significant proportion of
patients. Newer agents that selectively target
VEGEF receptors may offer a more tolerable
alternative and could optimize clinical benefits in

this population.

A partial response was observed in 11 (31%) of
36 renal cell carcinomas, 4 (27%) of 15 pancreatic
lesions, and 1 (20%) of five central nervous
system (CNS) hemangioblastomas. The mean
tumor size decreased significantly for renal cell
carcinomas (P=0.0001), renal cysts (P=0.027), and
pancreatic lesions (P=0.003) after TKI therapy.

Finally, the side effects were acceptable.
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10. Discussion

The current review provides a comprehensive overview of Von Hippel-Lindau (VHL) disease,
a rare genetic disorder characterized by multiple organ neoplastic syndrome. The disease is caused
by deletions or mutations in the VHL gene [163], resulting in the development of cysts and tumors in
various organs, including the brain, spine, eyes, kidneys, pancreas, adrenal glands, inner ears,
reproductive tract, liver, and lung [92]. The prevalence of VHL disease is estimated to be between 1
in 39,000 and 1 in 91,000 individuals in different regional populations [13,14]. The penetrance of the
disease is high, with a significant risk of developing clinical manifestations throughout life,
emphasizing the importance of thoroughly understanding the underlying genetics and
pathophysiology. Here we discuss the etiology, epidemiology, pathophysiology, genetics, clinical
manifestations, diagnosis, and current treatments, as well as the molecular aspects of the disease.
VHL is inherited in an autosomal dominant manner and is associated with mutations in the VHL
gene. It discusses the role of Von Hippel-Lindau protein (pVHL) as a tumor suppressor known for
regulating hypoxia-inducible factor (HIF) activity [8]. We provide insights into the inheritance
pattern, mutations, and animal models used to study this disease, emphasizing the need for more
comprehensive models that capture the diverse clinical manifestations of the disease. Furthermore,
this review explores the biomarkers for VHL disease (Table 3). We discuss the proposed biomarkers
for VHL disease that include monitoring plasma levels of HIF-dependent molecules, such as VEGF,
which may allow for the monitoring of disease activity in VHL patients. However, it's important to
note that elevated plasma VEGF levels are also significantly increased in tumors without VHL
alteration, suggesting the involvement of VHL-independent mechanisms in up-regulating VEGF in
clear cell renal cell carcinoma (ccRCC) [84,136,137,164]. Additionally, studies have shown that the
presence of abnormalities in VHL does not correlate with overall survival, disease-specific survival,
and progression or recurrence-free survival. Telomere length is another potential biomarker for risk
assessment in VHL patients. It is reported shorted blood telomers in VHL patients [140] . The
limitations of using blood telomere length as a biomarker for VHL disease include the relatively small
number of patients studied, which may impact the generalizability of the findings. Additionally, the
heterogeneity of the disease in terms of clinical and molecular aspects may affect the reliability of
telomere length as a predictive marker for age-related tumor risks in VHL patients. Furthermore, it
is argued that while shorter blood telomere length is associated with higher age-related risks of VHL-
associated central nervous system hemangioblastomas, renal cell carcinoma, pancreatic cysts, and
neuroendocrine tumors, the correlation may not be consistent across all patients with VHL disease.
Therefore, the use of blood telomere length as a biomarker for VHL disease may have limitations in
accurately predicting tumor risks and disease progression in all individuals with VHL.

Therefore, while these biomarkers show promise, further research is needed to establish their
reliability and clinical utility in predicting tumor risks and disease progression in VHL patients.

The identification of mutations in the VHL gene has been crucial for the diagnosis and
management of VHL [165]. Mutations in this gene have been observed to predispose affected
individuals to develop a variety of tumors. Understanding how these mutations lead to tumor
formation is critical for the development of more specific and effective therapeutic approaches.

In terms of pathophysiology, it has been demonstrated that the inactivation of the wild-type
allele of the VHL gene is an initial event in the development of the disease, followed by the loss of
function of the second allele, triggering tumorigenesis. This "two-hit" model proposed by Knudson
has been fundamental in understanding tumor progression in VHL and has led to deeper
investigations into the molecular mechanisms involved in this disease.

Furthermore, the review highlights the importance of clinical heterogeneity in VHL, with
significant variations in disease presentation even within the same family. This underscores the need
for an individualized approach in the diagnosis and management of patients with VHL, considering
both genetic and clinical aspects.

The current review discusses the various manifestations of VHL disease, such as retinal
hemangioblastomas, renal cell carcinomas, pheochromocytomas, and pancreatic cysts, and the
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corresponding diagnostic modalities and treatments. Furthermore, it sheds light on the molecular
basis of VHL disease, elucidating the role of the pVHL protein in regulating hypoxia-inducible factor-
alpha (HIF-a) protein levels through degradation under normoxic conditions. It also explores the
association between VHL loss and the activation of the mTOR pathway [104], highlighting the
significance of various pVHL substrates, such as ZNF395, ZHX2, SEMBT1, RSUME, and TBK1, in the
pathogenesis of clear-cell type renal cell carcinomas [120-122].

In conclusion, ongoing research in the genetics and pathophysiology of Von Hippel-Lindau
disease is crucial for improving early diagnosis, clinical management, and the development of more
effective therapies. Understanding the underlying molecular mechanisms of VHL will not only
expand our knowledge of this disease but also open up new opportunities for more precise and
personalized therapeutic interventions in the future.

9. Conclusions

The genetic basis of VHL disease, characterized by mutations in the VHL gene, plays a central
role in predisposing individuals to a spectrum of tumors and cysts in various organs. Further research
into the genetic mechanisms underlying VHL is essential for advancing diagnostic and therapeutic
strategies.

The pathophysiology of VHL syndrome, involving the loss of function of the VHL tumor
suppressor protein and subsequent activation of hypoxia-inducible factors, provides valuable
insights into the molecular pathways driving tumorigenesis in this condition. Understanding these
pathways is crucial for developing targeted therapies.

The clinical heterogeneity observed in VHL underscores the need for personalized approaches
to diagnosis and management. Tailoring treatment strategies to individual patients based on their
genetic and clinical profiles can optimize outcomes and quality of life.

Advances in the understanding of VHL disease at the genetic and molecular levels hold promise
for the development of more effective and personalized therapeutic interventions. Targeted therapies
that address the specific molecular alterations in VHL-associated tumors could revolutionize
treatment outcomes.

Future Directions: Continued research into the genetics, pathophysiology, and clinical
management of VHL disease is essential for improving patient outcomes and quality of life.
Collaborative efforts across disciplines, including genetics, oncology, and molecular biology, will be
crucial for advancing our understanding of VHL and translating this knowledge into innovative
therapeutic approaches.

In summary, the present review underscores the importance of a comprehensive understanding
of the genetic, molecular, and clinical aspects, biomarkers, and animal models of Von Hippel-Lindau
disease contributing to a deeper understanding of this rare genetic disorder and its clinical
implications, ultimately improving outcomes for individuals affected by this complex genetic
syndrome.
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