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Abstract: Kawasaki disease is a febrile illness characterised by systemic inflammation of small- and 

medium-sized blood vessels which commonly occurs in young children. Although self-limiting, 

there is a risk of developing coronary artery lesions as disease progresses with delay in diagnosis 

and treatment. Unfortunately, the diagnosis of KD continues to remain a clinical dilemma. Thus, 

this article not only summarises the key research gaps associated to KD, but also evaluates the 

possibility of using circulating endothelial injury biomarkers such as, circulating endothelial cells, 

endothelial microparticles and vascular endothelial cell-free DNA, as diagnostic and prognostic tool 

of KD: a “liquid biopsy” approach. The challenges of translating liquid biopsies to use in KD, and 

the opportunities for improvement in its diagnosis and management that such translation may 

provide are discussed. The use of endothelial damage markers, which are easily obtained via blood 

collection, as diagnostics is promising and we hope this will be translated to clinical applications in 

the near future. 
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1. Introduction 

1.1. Kawasaki Disease 

Kawasaki disease (KD) is an acute systemic inflammatory syndrome of unknown aetiology, 

which predominantly affects children below six years of age [1]. It is an acute, typically self-limiting 

febrile illness that induces systemic vasculitis mainly affecting small- and medium-sized arteries 

throughout the body, and is one of the most prevalent vasculitis syndrome in childhood. Coronary 

arteries have the highest predilection to inflammation and in untreated KD, coronary artery lesions 

(CAL) such as aneurysmal dilatation can occur in 25-30% patients [1,2]. This is the dominant 

pathological change accounting for the major long-term morbidity and mortality of this disease [3]. 

It is recognised that there is a higher incidence of KD in Asians and Pacific Islanders 

(~250/100,000 children) compared to the U.S. and Europeans (~25/100,000 children) [1,4], affecting 

females and males in the ratio 1:1.5. The recurrence rate is 3.5% in Asians and Pacific Islanders, and 

1.7% in the U.S. [1]. This is of particular concern as recurrent disease increases the risk of developing 

cardiac sequelae [5]. The development of CALs could result in significant cardiovascular 

complications such as myocardial ischaemia from coronary artery thrombosis and stenosis, and even 
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fatality from acute myocardial infarction [6]. Therefore, there is much ongoing interest, and indeed 

some urgency, to improve the diagnosis and treatment of this disease. 

 The primary treatment of KD involves intravenous immunoglobulin (IVIg) with high-dose 

acetylsalicylic acid (aspirin) for their anti-inflammatory and immunomodulatory effects [1]. IVIg 

treatment reduces the occurrence of CAL in KD to a mere 5% when administered promptly [7]. As a 

result of these long-term cardiac sequelae which cannot be fully mitigated, KD is one of the leading 

cause of acquired heart disease in children globally [8].  

In the absence of a confirmatory test, the diagnosis of KD rests on the identification of principal 

clinical features (Figure 1), and the exclusion of other known conditions which may present similarly. 

A key feature of KD is fever persisting for at least five days. To establish the diagnosis of classic KD, 

fever is accompanied by at least 4 of 5 principal clinical features including (1) extremity changes 

(redness and swelling of the hands and feet), (2) oral mucosal changes redness and cracking of lips 

and tongue (“strawberry tongue”)], (3) polymorphous skin rash, (4) non-suppurative conjunctivitis 

(red eyes), and (5) cervical lymphadenopathy (lymph node swelling ≥ 1.5cm in diameter) [9]. In the 

case where patients fall short of fulfilling criteria for classic KD, other laboratory and imaging tests 

may support the diagnosis of incomplete KD [1]. It is challenging to diagnose KD as the clinical 

characteristics may not develop concurrently, symptoms are very similar to other common childhood 

illnesses such as measles and adenoviral infection, and there is no single confirmatory test to 

specifically diagnose KD [1].  

Although current research findings robustly show that the fundamental basis of KD is vascular 

inflammation, its aetiology, targeted diagnostics and effective therapeutics are yet to be discovered 

(Figure 2). Hence, the development of a sensitive and specific test to diagnose KD in its early stages 

or incomplete manifestation remains as one of the key pursuits in this field.  

1.2. Liquid Biopsy 

The recent era has witnessed an explosion of interest in the use of accessible body fluids to 

identify and track disease. As an alternative to biopsy of solid tissue / organ, liquid biopsy involves 

sampling body fluids, usually for molecular components or cells released from tissue / organ of 

interest [10]. Such body fluids include blood, plasma or serum, urine, saliva, cerebrospinal fluid and 

others (e.g. pleural effusion) [11,12]. Compared to tissue / organ biopsy, the liquid biopsy approach 

is advantageous because it is less invasive and less expensive, and it offers the convenience of serial 

biopsies for monitoring disease progression [13,14]. Liquid biopsies can sample numerous molecular 

entities in the blood, including circulating tumour cells, circulating endothelial cells (CEC), 

circulating nucleic acids (such as cell-free nuclear DNA (cfDNA), cell-free mitochondrial DNA, 

circulating tumour DNA and cell-free RNA, and extracellular vesicles (often containing nucleic acid 

components). 

Over the past few decades, there has been an exponential increase in research investigating 

liquid biopsies in a wide range of human diseases. Non-invasive prenatal testing to detect foetal 

cfDNA has been used to screen for the presence of chromosomal abnormalities as well as to determine 

foetal sex. In oncology, there have been numerous applications of liquid biopsy, [15–17] including 

the Epi proColon test that analyses methylation patterns in cfDNA for population-wide colorectal 

cancer screening [18]. In the field of solid organ transplantation, the liquid biopsy approach has also 

been used for early detection of allograft rejection [19–21].  

Here, we aim to review recent developments in the application of liquid biopsies to KD, 

summarising its role in diagnosis, prognosis and monitoring of KD. We seek to provide scientists and 

clinicians an overview of the current insights into the aetiology and pathogenesis of KD, for a better 

understanding of the basis for considering liquid biopsy as a diagnostic tool for KD. 

2. Current Concepts in the Aetiology and Pathogenesis of Kawasaki Disease 

2.1. Proposed Aetiologies of Kawasaki Disease 
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Researchers have been on an active quest in search for the potential cause(s) and mechanisms 

underlying KD for the last five decades to elucidate effective diagnostics and treatment targets. 

Current understanding suggests that the cause of KD is likely multifactorial, including genetic 

susceptibility, infectious triggers and immunological factors [22].  

2.1.1. Genetic Predisposition 

The higher incidence among East Asians (especially Japanese), and the increased incidence in 

siblings of KD patients suggest a genetic predisposition to KD susceptibility [23–28]. Family linkage 

studies and genome-wide association studies with subsequent validation studies have implicated 

single-nucleotide polymorphisms (SNP) in 6 genes or gene regions: Fc fragment of IgG receptor IIa 

(FCGR2A), caspase-3 (CASP3), human leukocyte antigen class II, B- cell lymphoid kinase (BLK), 

inositol 1,4,5-trisphosphate kinase-C (ITPKC), and CD40. 

FCGR2A and its SNP (rs1801274) are known to trigger immune response via interactions with 

IgG receptors on phagocytic cells (dendritic cells, macrophages, monocytes and neutrophils), which 

suggests a mechanistic basis for IVIg treatment [29–31]. Besides FCGR2A, other highly susceptible 

genes and their associated SNPs have been identified, but they are associated with other diseases as 

well (summarised in Table 1). There are also differences in genetic susceptibility across ethnicities. 

For example, BLK SNPs are more prevalent in Asian population while FCGR2A is prevalent in 

individuals of European descent [1,29–32]. Although SNPs for genes such as ITPKC and CASP3 seem 

to be unique to KD based on a genome-wide linkage study, it warrants extensive research across 

various diseases to confirm its exclusivity. The SNPs of ITPKC and CD40 trigger the activation of 

endothelial cells (EC), while the other SNPs (Table 1) are responsible for stimulating the activity of 

immune cells. These demonstrate the possible genetic influence on EC activation and immune cells 

in KD pathogenesis [29–32]. However, studies have not identified a specific gene to be primarily 

responsible for KD development or progression. Furthermore, genetic susceptibility as a sole 

aetiology seems unlikely owing to the low recurrence rate, as one may expect a genetically 

predisposed patient to develop the disease more often in their lifetime. 

Table 1. Examples of genes susceptibility to Kawasaki disease. 

 
Susceptibility 

gene 

Associated 

SNP 

Type of 

study 
Association with KD 

Association of SNP 

with other pathologies 

Association of 

gene with other 

pathologies 

Predisposed 

Ethnicity 
Ref 

F
am

il
y

-b
as

ed
 s

tu
d

ie
s 

Inositol1,4,5-

trisphosphate 3-

kinase C 

(ITPKC) 

rs28493229 

Case-

control 

associatio

n studies 

ITPKC negatively regulates 

signalling cascade triggered by 

inositol 1,4,5-trisphosphate 

(IP3) and nuclear factor of 

activated T-cells (NFATs) 

which activates of 

inflammatory and vascular 

ECs.  

However, its SNPs reduces 

expression of ITPKC mRNA. 

None. 

• Hydrops Of 

Gallbladder 

• Bacterial 

Conjunctivitis 

Japanese, 

Taiwanese,  

Koreans, 

Chinese, 

Euro-

American 

[29] 

Caspase-3 

(CASP3) 

rs113420705 

(formerly 

rs72689236) 

Case-

control 

associatio

n studies 

CASP3 also inhibits the activity 

of IP3 and NFATs and mediates 

cellular apoptosis.  

However, its SNP reduces 

CASP3 expression limiting 

cellular apoptosis and 

sustaining potency of immune 

cells.  

None. 

• Oropharynx 

Cancer 

• Retinal 

Ischemia 

• Monocytic 

Leukemia 

Japanese, 

Taiwanese,  

Koreans, 

Chinese, 

Euro-

American 

[29] 
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P
o

p
u

la
ti

o
n

-b
as

ed
 s

tu
d

ie
s 

Fc gamma 

receptor IIa 

(FCGR2A) 

rs1801274 

Genome-

wide 

associatio

n studies 

(GWAS) 

FCGR2A activates and triggers 

a signal when conjugated with 

immune cells.  

SNP increases affinity to IgG 

receptors enhancing phagocytic 

cell activation. This provides a 

basis, although not established, 

for IVIG treatment against KD. 

Lupus nephritis 

Malaria 

Pseudomonas 

aeruginosa (cystic 

fibrosis) 

• Cystic 

Fibrosis 

• Systemic 

Lupus 

Erythematosus 

European 

descent, 

Taiwanese, 

Koreans, Han 

Chinese 

[29–31] 

 

B lymphoid 

tyrosine kinase 

(BLK) 

rs2736340 GWAS 

The SNP reduces BLK mRNA 

expression in B-cells which may 

alter its activity to trigger the 

pathogenesis of KD. 

None. 

• Rheumatoid 

arthritis  

• Systemic 

lupus 

Erythematosus 

Japanese, 

Taiwanese,  

Koreans 

[29,32] 

CD40 rs1883832 GWAS 

SNP increases CD40 expression 

on B-cells leading to enhanced 

B cell activity, which is 

suggested to be commonly 

involved in the pathogenesis of 

KD and other adult 

autoimmune diseases. It is 

known to enhance activation of 

inflammatory and vascular 

ECs.  

-Hyper-IgM syndrome 

type 3 

• Rheumatoid 

arthritis 

• Systemic 

lupus 

Erythematosus 

• Autosomal 

recessive hyper-

IgM 

immunodeficiency 

type 3. 

Japanese, 

Taiwanese,  

Koreans 

[29] 

2.1.2. Infectious Triggers 

The clinical features (fever, rash, oral and conjunctival injection, lymphadenopathy), unique age 

distribution (between 6 months and 6 years of age), observation of community outbreaks and 

seasonal fluctuation of KD [1,33] mimic those of acute infections. Given that KD is accompanied by a 

systemic inflammatory overactivation, it is logical to propose the presence of superantigen(s) 

triggering KD. Although current findings suggest some viral and bacterial agents involved in KD 

pathogenesis, no single causative agent has been identified.  

Bacterial aetiology is proposed based on similarity in clinical presentations, such as oral 

mucositis, cervical lymphadenitis and desquamation of hands and feet, which are related to diseases 

caused by staphylococci and haemolytic streptococci [1,6]. Since the gastrointestinal tract contains 

the largest lymphoid tissue, hosting a myriad of micro-organisms and biological agents, the mucosal 

membranes were investigated which also suggested that certain antibiotic-resistant Gram-positive 

staphyl- and streptococci are involved in triggering KD [34].  

On the other hand, respiratory viruses have been detected in nasopharyngeal aspirate, in almost 

half of KD patients [35,36]. Viral aetiology is also postulated by the infiltration of immune cells such 

as CD8+ T lymphocytes, IgA plasma cells and macrophages, which occurs in any acute viral infections 

[6]. Electron microscopic studies on KD patient samples showed aggregates of RNA and viral protein 

in ciliated bronchial epithelium, suggesting that an acute viral infection of the respiratory system 

could have progressed and resulted in KD, or the causative agent enters the body through the 

respiratory system [6]. The viruses which are potentially involved are cytomegalovirus, adenovirus, 

rhinovirus, enterovirus and bocavirus [6]. On a separate note, since KD incidence is higher during 

certain seasons (i.e., winter and spring) and can occur in large numbers, it is theorised that a 

superantigen may be a trigger for KD. However, given the lower rate of incidence compared to 

seasonal flu [37], it is further theorised that the superantigen triggering KD may have other 

conditions, such as only affecting genetically susceptible persons. However, the low recurrence rate 

and rarity in adulthood casts doubt on this theory [6].    

There are also findings to show that KD could be caused by a non-microbial antigen trigger. For 

example, transcriptomics of whole-blood samples from KD patients revealed that majority of them 

are categorised under the non-viral and non-bacterial groups [38]. This suggests that KD patients 

presented with bacterial or viral profiles may be experiencing a simultaneous infection by 

superantigen(s) and a separate trigger for KD [38]. Despite their possible role in KD development, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 June 2024                   doi:10.20944/preprints202406.0945.v1

https://doi.org/10.20944/preprints202406.0945.v1


 5 

 

there is no evidence that superantigens promote CALs [35], suggesting that they may not have a 

direct role in KD pathogenesis.  

2.1.3. Immunological Factors 

The inflammatory basis of KD is not only supported by clinical manifestations but also by the 

underlying biology. This finding corroborates results from peripheral blood mononuclear single-cell 

RNA-sequencing, in which proinflammatory molecules (e.g., TNF, IL-1β, IFN-γ) are highly expressed 

together with immunoglobulin receptors [39]. Inflammatory cells were also identified in the varying 

layers of blood vessel via careful study of arterial tissues from 41 KD patients [1]. This supports that 

KD is predominantly driven by vascular inflammation [40].  

The immune system is designed to protect us from pathogens and their future infections in a 

systematic manner, via the innate and adaptive immune responses [41]. The innate immune response 

by a group of protein chemicals and phagocytic cells (e.g., macrophages and neutrophils) is the first 

line of defence against pathogens. The adaptive response provides a secondary, and more targeted, 

defence via T-lymphocytes, B-lymphocytes and antibodies [41]. However, some antibodies, known 

as autoantibodies, target self-antigens triggering pathological responses [42]. Although the stimuli 

for autoantibody production is unclear, it is observed that inflamed organs or tissues induces its 

production[42]. For example, autoimmune conditions such as systemic lupus erythematosus present 

several autoantibodies [42]. In addition, patients with vasculitis such as KD are reported to have anti-

endothelial autoantibodies (AECAs) and its amounts in the sera is associated with its severity [43]. 

The specific antigenic targets of AECAs in KD are unknown, but it is suspected to induce EC 

activation and damage [43]. It is yet to be elucidated whether AECAs play a role in KD pathogenesis 

[43,44].  

The aetiologies discussed above alluded to the involvement of immune activity on blood vessels 

as the basis of KD which could result in endothelial injury. Thus, products of endothelial injury could 

potentially emerge as diagnostics for KD.  

2.2. Pathogenesis of Kawasaki Disease 

2.2.1. Immune Response in Kawasaki Disease 

The initial immunological reactions of KD consist of trigger and acute reactive phases. Several 

studies have shown that an undiscovered stimulus could trigger inflammatory cascades, with 

activation of both the innate and adaptive immune systems [45,46]. Although early studies suggested 

an immune response triggered by a superantigen, subsequent studies favoured a canonical response 

to a conventional antigen [6,47]. 

The innate immune system plays an important role during the acute phase of KD. Activation of 

the innate immune system needs to be tightly regulated; excessive activation can lead to systemic 

inflammation and tissue injury. The acute phase of KD is driven primarily by innate immune 

hyperactivation [48]. This is evident by the increase in the absolute neutrophil and monocyte counts 

in peripheral blood, and the observation of neutrophils and monocytes / macrophages being the 

major immune cell populations in coronary arterial lesions [49]. Higher expression of toll-like 

receptor 2 on the peripheral blood monocytes also indicates that innate immunity is a vital part in 

KD pathogenesis [50]. Furthermore, studies have shown increased serum IL-1β levels as well as 

activation of IL-1β signalling pathway in acute KD [51,52]. These findings point to the role of 

inflammasome activation in the immunopathogenesis of KD. Inflammasomes are large cytosolic 

multiprotein oligomers involved in sensing danger signals in innate immunity, with NLRP3 

(nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3) activation acting as 

a key component. This inflammasome serves as intracellular machinery responsible for the 

production of important proinflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-

18 (IL-18), thereby producing inflammatory response. Indeed, upregulation of NLRP3 mRNA [53], 

and increased proinflammatory mRNA regulating the NLRP3/caspase-1-dependent and caspase-4/5-
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dependent inflammasomes [47] was observed during the acute phase of KD, demonstrating the role 

of NLRP3 inflammasome regulation in KD immunobiology.  

In addition to innate immunity, adaptive immune response has a significant role in the 

immunopathogenesis of KD. This is characterised by decreased absolute T-cell count in peripheral 

blood, T-cell unresponsiveness to activation via the T-cell antigen receptor CD3 [54], downregulation 

of T-cell receptor and B-cell receptor signalling pathways [52,55–57], and decreased regulatory T and 

B cells during the acute phase of KD [58,59]. There is an accompanying Th17-related immune 

response and a strong inhibition of most T-cell and B-cell responses during the acute phase of KD 

[60]. The role of the adaptive immune system is further supported by the expansion of the regulatory 

T-cells after IVIg administration, accompanied by cessation of fever and clinical improvement [61]. 

2.2.2. Vasculopathy Associated with Kawasaki Disease 

2.2.2.1. Histopathological Aspects of Coronary Artery Lesions in Kawasaki Disease 

The most significant complication related to KD is CAL, including coronary artery dilatation 

(ectasia) or coronary artery aneurysm, which could lead to coronary artery thrombosis and occlusion. 

It is proposed that KD-driven CALs develop due to inflammatory processes such as infiltration by 

immune cells, inflammatory molecules, MMPs and TGF-β. These particles alter all three layers of the 

vessel tunicae – tunica intima (comprised of ECs and underlying basal lamina), tunica media 

(comprised of smooth muscle cells and connective tissues consisting of collagenous and elastic fibres), 

and tunica externa (comprised of collagenous fibres). These alterations could potentially develop into 

fusiform, saccular and ectatic aneurysms along the coronary arteries of the heart [62]. A model of KD 

vasculopathy proposed that three pathological processes stemming from inflammation, namely 

necrotising arteritis, subacute/chronic vasculitis and luminal myofibroblastic proliferation, are 

involved in CAL. [63,64] Necrotising arteritis is initiated by the infiltration of neutrophils into the 

endothelium which progressively necrotise the media and adventitia (tunica externa) layers, 

resulting in large aneurysms with a thin rim of adventitia. Subacute/chronic vasculitis is triggered by 

the infiltrations of leukocytes such as lymphocytes, plasma cells and eosinophils. It can affect all 

blood vessels, although preferentially medium-sized arteries, within two weeks post-fever. The 

injury progresses from the adventitial layer towards the lumen [63]. This is usually accompanied by 

luminal myofibroblastic proliferation where the fibroblast in the medial layer proliferates and 

potentially obstruct the arterial lumen [63]. These CALs can occur in 15-25% of untreated patients 

and could lead to severe cardiovascular complications such as aneurysm rupture or acute myocardial 

infarction (AMI) from coronary thrombosis [1].  

KD autopsy studies have demonstrated that KD vasculitis is characterised by granulomatous 

inflammation with monocytes/macrophage infiltrations, whereas fibrinoid necrosis rarely occurs. No 

immune complex depositions have been detected in KD vasculitis lesions. Thus, these pathological 

findings of KD are also distinct from those of immune complex-associated vasculitis [65,66]. The 

major cell populations present in human-autopsied KD specimens within 2 weeks after the disease 

onset are monocytes/macrophages and neutrophils [49].  

2.2.2.2. The Role of Endothelial Cell in Immune Function, and Its Activation in Kawasaki Disease 

Vascular ECs have an extensive network occupying more than 1,000m2 within the body and are 

extremely important for maintaining homeostasis [67]. In addition to regulating blood flow, vascular 

tone, and haemostasis, ECs play significant roles in regulating immune responses. In fact, ECs have 

been found to have functions similar to innate immune cells, carrying out functions including 

cytokine secretion, phagocytic function, antigen presentation, pathogen-associated molecular 

patterns- and damage-associated molecular patterns-sensing, proinflammatory, immune-enhancing, 

anti-inflammatory, immunosuppression, migration, heterogeneity, and plasticity [68]. The 

endothelium serves as the interface between circulating inflammatory mediators and vascular media 

or adventitia, and therefore a prime target of inflammation during acute KD [69]. Following the 

abovementioned complex immune response, there is a significant overproduction of different 
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cytokines, elevation of glycocalyx components (indicating glycocalyx damage) and endothelial 

activation has been recognised in KD [70–76].  

Inflammation can be both a cause and a consequence of increased oxidative stress. 

Proinflammatory cellular contents including the membrane phospholipids of damaged cells, known 

as damage-associated molecular patterns (DAMPs), are oxidised by reactive oxygen species (ROS); 

DAMPs including oxidised phospholipids and low-density lipoproteins activate ECs to further 

produce proinflammatory cytokines and ROS [77]. At the active sites of inflammation, inflammatory 

cells, vascular ECs and smooth muscle cells are all capable of releasing ROS, enzymes and chemical 

mediators to result in oxidative stress. Oxidative stress also stimulates the NF-κB pathway and 

expression of cytokines and chemokines to further enhance the inflammation. Thus, inflammation 

and oxidative stress closely interact and mutually amplify the effects of each other [78,79]. These 

processes induce the activation of endothelial NLRP3 inflammasome. In addition to producing 

inflammatory response, activation of NLRP3 inflammasome also results in pyroptosis, a specific form 

of cell death that combines the characteristics of apoptotic and necrotic death pathways, of the ECs 

and monocytes [80].  

2.2.2.3. Vascular Endothelial Dysfunction in Kawasaki-Disease-Associated Vasculitis 

When ECs become dysfunctional, it could lead to serious consequences such as vascular leakage, 

atherosclerosis and stroke [81]. Endothelial injury is indeed a hallmark of many human diseases [81] 

and especially for KD, a systemic vasculitis.  Vasculitis during acute KD is likely a consequence of 

increased microvascular permeability, upregulated expression of adhesion molecules on ECs, 

infiltration by inflammatory cells, and endothelial dysfunction [82,83]. Vascular endothelial 

dysfunction involves activation of apoptotic pathways, proliferation and migration, and is central to 

KD-associated vasculitis. The molecular mechanisms of vascular EC injury and dysfunction in KD-

associated vasculitis have been well reviewed elsewhere [84,85]. These include the role of non-coding 

RNAs (micro-RNAs, long non-coding RNAs), inflammatory cell activation, cytokine production, 

reactive oxygen species accumulation and lipid oxidation.  

In response to the increased cytokines and chemokines, circulating monocytes are recruited to 

activated ECs where they subsequently differentiate into cardiac macrophages [86]. As a matter of 

fact, the major immune cell populations in the coronary arterial lesions are monocytes/macrophages 

and neutrophils [49]. These innate immune cells express high levels of effector molecules such as 

elastase and matrix metalloproteinases [87], thereby resulting in the destruction of the elastic lamina 

of the arterial wall. Neutrophils may contribute to vascular inflammation and vascular injury through 

the enhanced formation of neutrophil extracellular traps [88].  

Vascular ECs are thought to be a source of myofibroblast-like cells, which have proinflammatory 

and profibrotic properties, through endothelial-mesenchymal transition (EndoMT). EndoMT 

describes the process by which ECs differentiate into mesenchymal cells, and EndoMT was found to 

be essential for cardiac valvular development and involved in cardiovascular diseases such as 

myocardial infarction, cardiac fibrosis, endocardial fibroelastosis, valvular calcification, 

atherosclerosis, and pulmonary hypertension [89]. Under various conditions, including inflammation 

and transforming growth factor β (TGF- β) signalling, ECs may undergo EndoMT, during which the 

expression of mesenchymal lineage markers is induced and EC lineage markers decrease. These 

myofibroblast-like cells, a set of spindle-shaped cells in the vascular media with a high expression of 

alpha-smooth muscle actin (α-SMA), participate in the recruitment of proinflammatory cells and 

induce arterial wall damage by secreting IL-17, MMPs, and connective tissue growth factor. These 

myofibroblast-like cells are the presumed source for disordered collagen, which reduces the 

structural integrity of the media layer of arteries and contributes to aneurysm formation in KD [90]. 

KD autopsy studies with electron microscopy have confirmed the presence of myofibroblasts in the 

arterial wall, and these cells likely contribute to vascular fibrosis and remodelling [64].  

Since endothelial injury is consistently present in KD, it will be useful to explore the direct 

markers of endothelial injury as diagnostics for KD. Although multiple non-endothelial specific 

protein biomarkers such as VWF:antigen and C-reactive protein (CRP) have been investigated for KD 
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diagnostic application, many lacked specificity for KD and a few (e.g., VWF:antigen) need to be 

thoroughly validated prior to clinical applications [91,92]. Thus, direct markers of endothelial injury 

such as circulating endothelial cells (CECs), endothelial microparticles (EMPs) and vascular 

endothelial cell-free DNA (EC-cfDNA) could potentially be straightforward and reliable diagnostic 

markers of KD.  

3. Application of Liquid Biopsy in Vasculopathy 

Since ECs are in direct contact with circulating inflammatory mediators, it is expected that the 

products of injured vascular ECs will be released into the bloodstream. Such products include CECs, 

EMPs, EC-cfDNA, microRNA and endothelial-specific proteins or compounds. Moreover, only a 

small additional volume (3mL) of blood is required, on top of what is required for typical clinical 

blood work. Hence, liquid biopsy seems promising for clinical or research applications relating to 

vascular diseases [93]. Here, we review the potential of CECs, EMPs and EC-cfDNA obtained via 

blood collection, as diagnostics for KD (Table 2). 

Table 2. Evaluation of endothelial damage products as diagnostics for Kawasaki Disease. 

Potential Diagnostics Advantages Disadvantages 

Circulating endothelial cells 

• Can be extracted from 

peripheral blood. 

• Existing studies 

demonstrate its potential as diagnostics 

• Surface antigens describe 

EC status. 

• Exist in low amounts in blood. 

Endothelial microparticle 

• Can be extracted from peripheral 

blood. 

• Surface antigens describe 

EC status. 

• Ambiguity in its role as 

endothelial damage marker 

• Ambiguity in its sensitivity as 

diagnostics 

• Fast clearance from circulation. 

Endothelial-specific  

cell-free DNA 

• Can be extracted from peripheral 

blood. 

• Has potential to identify 

organ-specific ECs. 

• Lack of studies, especially in 

the setting of KD. 

• Fast clearance from circulation. 

3.1. Circulating Endothelial Cells 

When oxidative stress, due to infections or inflammation, is induced on the endothelium, the 

glycocalyx layer and nitric oxide balance become disrupted (Figure 3A). This increases the 

permeability of the endothelium [81,94,95]. These processes describe endothelial injury. This allows 

for immune molecules or pericellular proteases to gain access and attack the basal membrane, 

disrupting adhesion of ECs to the extracellular matrix and to the neighbouring cells through loss of 

vascular endothelial (VE)-cadherin-mediated action (Figure 3A). This eventually results in 

dislodgement of ECs from the basal membrane to enter the blood circulation, becoming CECs [96,97]. 

CECs could also emerge owing to mechanical injury and drug-induced desquamation [98]. CECs are 

nucleated with a size of approximately 10-50µm, a morphology similar to mature ECs [67,98]. They 

could adopt various phenotypes such as activated, apoptotic or necrotic cellular states [98], 

depending on their disease states. It is proposed that the surface markers differ based on their origin 

and disease state, although this has not been established. Using flow cytometry, a multicolour panel 

is used to detect CECs, irrespective of their cellular states. The established set of panels include a 

combination of CD146+, CD45-, CD31+, CD133- and Hoechst 33342, which excludes cells with 

hematopoietic (CD45-) and progenitor markers (CD133-) and includes only matured nucleated cells 

(Hoechst 33342) with endothelial markers (CD146+ and CD31+) [98]. Besides flow cytometry, 

immunomagnetic capture can be used to detect CECs [99]. 
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The utility of CECs as diagnostic and prognostic marker has been demonstrated. The number of 

CECs generally increases with cardiovascular risk factors and diseases [97]. For example, the 

accuracy in diagnosing unstable angina was significantly improved when both cardiac troponin and 

CECs were used as diagnostic markers as the increase in CECs occurs sooner and is independent of 

the changes in troponin [97,100]. In addition, CEC-enumerated onset of acute coronary syndrome 

appeared to be promising in predicting long-term outcomes such as major adverse cardiovascular 

events or even death [101]. CEC counts could also be used to assess endothelial function as they are 

inversely correlated with flow-mediated dilatation [102]. However, owing to its lack of specificity 

towards any disease, CECs can only be part of a multi-model diagnostic strategy. Nevertheless, its 

clinical application in KD has yet to be established. 

3.1.1. Circulating Endothelial Cells as Diagnostics for Kawasaki Disease 

A search of PubMed, Scopus and ScienceDirect, with terms (Kawasaki) AND (“circulating 

endothelial cells”), resulted in 74 publications between 2003 and 2023. Only 10 publications, of which 

all were original research articles, have reported on CECs in the context of KD (99,103–111). These 

articles were published from 2003 onwards and their research findings are summarized in Table 3.  

Table 3. Summary of studies on circulating endothelial cells and Kawasaki disease. 

Literatur
e 

Type of 
participants 

Age (in 
years, 

median/ 
range) 

Female, 
n, % 

Acute 
phase 

No. of 
CECs 

(acute) 

Sub-
acute 
phase 

No. of 
CECs 
(sub-
acute) 

Convales
cent 

phase 

No. of 
CECs 

(convale
scent) 

Long 
term 

outcome
s 

Healthy 
controls 

CEC 
detection 
method 

Biomarke
rs for 

detection 

Fabi et 
al. 

(2022[99] 
Active 

1.8 (0.6-
2.4 (IQR)) 

6 (66.7%) 
1st - 10th 

day of 
fever 

16.3 
(13.6-

48.8) /mL 
of blood 

11th-20th 
day after 

fever 

45.8 
(18.5-

131.0)/mL 
of blood 

- - - - 

 
Immunom

agnetic 
capture 

CD146 

Shah et 
al. (2015) 

[103] 
Survivors 

11.9 (4.3–
32.2) 

Age at 
diagnosis: 
4.9 (0.18 -

11.3) 

45 (49%) - - - - - - 

8.3 years 
post-KD 

CECs: 24 
cells/mL 

n=51 
CECs: 49 

cell/mL 

 
Immunom

agnetic 
capture 

CD146 

Zhou et 
al. (2015) 

[104] 

In vitro 
model 

- - - - - - - - -  Flow 
cytometry 

CD146+,
CD105+,
CD45-
,CD34+ 

Mostafav
i et al. 
(2014) 
[105] 

Survivors 
6.6 (4.8-

9.6) 
8 (61.5%) - - - - - - 

4-19 
years 

post-KD 
CECs: 12 

cells 

n=13 
CECs: 

2.38 cells 

Flow 
cytometry 

CD45-
,CD34+,C

D146+ 

Wang et 
al. (2014) 

[106] 
Active 0.1-5 

17 
(41.4%) 

During 
hospitalis

ation 

392 / mL 
of blood  
(unique 
formula 

was used) 

- - - - - - 
Flow 

cytometry 
CD45-

,CD146+ 

Gong et 
al. (2012) 

[107] 
Active 0.25-12.7 

37 
(41.6%) 

4-10 day 
of disease 

absolute 
count of 
CEC not 
reported 

11-21 day 
of disease 

absolute 
count of 
CEC not 
reported 

22-60 
days of 
disease 

absolute 
count of 
CEC not 
reported 

- 

n=38 
absolute 
count of 
CEC not 
reported 

Flow 
cytometry 

CD45-
,CD146+ 

Fu et al. 
(2010) 
[108] 

Active 0.25-11 
16 

(38.1%) 
4-10 day 

of disease 

absolute 
count of 
CEC not 
reported 

11-21 day 
of disease 

absolute 
count of 
CEC not 
reported 

22-60 
days of 
disease 

absolute 
count of 
CEC not 
reported 

- 

n=60 
absolute 
count of 
CEC not 
reported 

Flow 
cytometry 

CD45-
,CD146+ 

Hirono et 
al. (2006) 

[109] 
Active 0.16-7.3 

21 
(34.4%) 

At 
diagnosis 

2.5 
cells/mL 

2 weeks 
from 
onset 

20.7 
cells/mL 

- - - 
n=33 
1.0 

cells/mL 

Buffy-coat 
smears 

P1H12 
antibody 

Yu et al. 
(2004) 
[110] 

Active 0.3-7.25 
29 

(52.7%) 

Before 
IVIg 

After IVIg 

0.7 
cells/mL 

4.9 
cells/mL 

2 weeks 
from 
onset 

24.4 
cells/mL 

4 weeks 
from 
onset 

3.7 
cells/mL 

- n=15 
Buffy-coat 

smears 
P1H12 

antibody 

Nakatani 
et al. 

(2003) 
[111] 

Active 0.67-6 5 (25%) 

Before 
IVIg 

therapy 
on days 

3–7 

16.4 
cells/mL  

After IVIg 
therapy 
on days 

9–16 

21 
cells/mL 

days 22–
37 

9 cells/mL  - 
n=10 

<6 
cells/mL 

 
Immunom

agnetic 
capture 

P1H12 
antibody 
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Nakatani et al. and Fu et al. have reported that the CECs are generally higher in the acute (~3-10 

days of fever) and subacute (~10-21 days) phases of KD when compared to the convalescent phase 

(22-60 days) and healthy controls. They also reported that patients with coronary artery lesions (CAL) 

have significantly higher CECs in the acute and subacute phases as compared to those without CALs 

[108,111]. This is expected as CALs occur as a result of inflammatory cell infiltration, vascular oedema 

and eventual loss of structural integrity, encouraging displacement of ECs into the bloodstream [99]. 

Since the CEC amounts were reported in different units, there is no basis of comparison for the data 

from both studies and only data trends could be compared. For example, Nakatani et al. and others 

reported CEC counts with respect to per millilitre of blood (CECs/mL) [103,110,111], while Fu et al. 

and some others reported the number of CECs with respect to the number of mononuclear cells 

[105,108].  

The possibility of using CECs as a marker of endothelial injury was assessed in inflammatory 

diseases such as KD, multisystem inflammatory syndrome in children (MIS-C) and COVID-19 

infection [99]. CECs were higher in KD as compared to MIS-C at both acute (≤10 days of fever) and 

subacute (11-20 days after fever) phases, suggesting that KD can be differentiated from MIS-C based 

on CEC counts [99]. However, the dispersion of data for CECs in acute COVID-19 was too large to be 

conclusive, and there was no correlation between CEC counts and clinical characteristics of children 

diagnosed with COVID-19 [99]. In accordance with CEC numbers, coronary artery (CA) dimensions 

were larger in KD compared to the non-KD febrile or inflammatory diseases. Moreover in KD, 

regression of CAL was limited compared to MIS-C, suggesting that KD injures the endothelium in a 

more aggressive manner. Collectively, the significant difference in the CEC counts and CA 

dimensions of both diseases implies there are different pathways leading to the respective diseases 

[99] and that it is more favourable to use CECs for the diagnosis of KD. The next few paragraphs 

detail the mechanisms known to trigger the elevation of CECs. 

The role of S100 family proteins, a DAMP, in releasing ECs from the basal membrane under the 

conditions of KD has been well investigated. The S100 family heterodimer myeloid-related protein 

(MRP)-8 and -14, are secreted by activated granulocytes and monocytes under inflammatory 

conditions and are found in infiltrating macrophages and neutrophils [112]. MRP-8 and -14 proteins 

are known to bind to endothelial glycocalyx potentially triggering an adverse response on the ECs 

[109]. S100A12 protein, a member of S100 family, binds to the receptor for advanced glycation end-

products (RAGE) on the endothelium, inducing a NF-κB-dependent activation and hence triggering 

the release of proinflammatory cytokines such as TNF and IL-1β  [107,113]. Since inflammatory 

response could trigger EC injury, it is postulated that S100 family proteins play a role in the 

generation of CECs in KD patients. Supporting this, Hirono et al. and Wang et al. concluded that the 

levels of MRP-8/MRP-14 proteins in serum and MRP-8/MRP-14-positive CECs may be useful markers 

of KD disease severity [106,109]. Fu et al. reported that the expressions of S100A12 on the surface of 

CECs increases significantly in KD patients and remained for an extended period in patients with 

CALs [108].  

Gong et al. reported that the expression activity of RAGE on CECs increases significantly in KD 

patients and progressively increases in patients with CAL [107]. C-reactive proteins (CRP), which are 

elevated in children with KD, are known to enhance RAGE expressions on ECs and promote CECs 

[104,114]. Zhou et al. demonstrated that RAGE is necessary for CRP to trigger the release of ECs into 

the circulation although this finding is not specific to KD [104].  

Nitric oxide (NO) is crucial for vasoprotection [115]. However, NO levels need to be regulated 

as an excess or deficiency could cause endothelial dysfunction [115]. NO are synthesized by nitric 

oxide synthase (NOS) isoforms, endothelial NOS and inducible NOS (iNOS). In general, the iNOS 

expressions and CECs are higher in KD patients with CAL[110]. In addition, iNOS was detected in 

the ECs from coronary artery aneurysms on histology [110]. 

The research findings on the abovementioned proteins and inorganic compounds show that 

inflammatory molecules which are postulated to facilitate KD vasculitis is closely associated with the 

production of CECs, and potentially the development of CAL. This demonstrates the relevance and 

reliability of CECs as a diagnostic marker of KD. 
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Both Shah et al. and Mostafavi et al. concluded the presence of long-term vascular damage based 

on the amounts of CECs in patients’ blood at ten years post-KD [103,105]. Shah et al. also did an 

extensive analysis on various other markers such as EMP, soluble cell-adhesion molecule cytokines, 

cardiovascular risk factors, pulse-wave velocity and carotid intima media thickness. Besides CECs, 

CD105+EMP, soluble vascular cell adhesion molecule-1 and soluble intercellular adhesion molecule-

1 were significantly higher in KD group compared to healthy controls. It is worth noting that about 

45% of study population who had coronary aneurysms during KD had persistent dilatations of the 

coronary artery at the point of the study. Patients with persistent coronary aneurysm had the highest 

CECs, but even those with regressed coronary artery aneurysm had higher CECs than healthy 

controls. [103] The possible application of CD105+EMP will be discussed below. The study 

comprehensively featured the suitability of using CECs for long-term surveillance of vascular health 

post-KD.  

The studies collectively shows that CECs have immense potential as diagnostics and prognostics 

for KD. The ongoing efforts and future research aimed at their implementation in the clinical setting 

are discussed in section 4.1. 

3.2. Endothelial Microparticles 

Microparticles are plasma membrane-shed vesicles from activated or apoptotic cells. The 

imbalance of transmembrane enzymes results in the breakdown of cytoskeletal fibres [116], causing 

a bulge to be formed on the plasma membrane. This bulge then blebs off from the plasma membrane 

taking part of the cytoplasm with it, emerging as microparticles. The process of blebbing is facilitated 

by proinflammatory biochemicals such as TNF-α, ROS and cytokines [117]. The biomolecules on 

microparticles provides information on the type of cell from which the microparticles originated 

[118].  

It is reported that there are 103 and 105 EMPs per ml of plasma [119]. Since, EMPs are derived 

from ECs (Figure 3B), these vesicles present typical endothelial proteins as surface antigens (e.g., 

CD31, CD51, CD54, CD62, CD104, CD105, CD106, CD144, CD146) depending on the state of the ECs 

from which they emerged. These antigens distinguish the EMPs from microparticles of other cellular 

origin [118]. EMPs also carry nucleic material such as DNA and RNA which can be examined further 

to identify the organ from which these EMPs originated [118,120]. These may be employed in the 

assessment of endothelial damage in specific organs. Enzyme-linked immunosorbent assay (ELISA) 

and flow cytometry principles can be used to identify the EMPs [121]. However, since the size of 

EMPs are similar to neutrophils, platelets and cell fragments, the sensitivity and accuracy of the flow 

cytometer and hence the data must be verified [67].  

Lugo-Gavidia et al. demonstrated a positive correlation between cardiovascular diseases and 

EMPs across various publications [122]. Mizrachi et al. has shown that EMPs (CD31+ and CD51+) were 

significantly elevated in patients with coronary artery disease (CAD) compared to controls [123]. An 

increase in EMP (CD31+) was associated with impairment in endothelial-dependent vasodilation in 

patients with CAD [124]. These studies displayed the capability of EMPs as cardiovascular 

diagnostics. 

EMPs could also present proteins such as phosphatidylserines on its surface, demonstrating 

procoagulant and proinflammatory characteristics [117]. Although EMPs emerge from damaged or 

dying cells and are reputed to contribute to inflammation and the progression of vascular diseases, 

recent findings suggest that they could facilitate favourable processes such as cell survival, anti-

inflammation, anti-coagulation and even induce endothelial regeneration [118]. Thus, these 

multifaceted roles of EMPs must be clarified while exploring its clinical utility. In addition, it is 

reported that EMPs tend to be cleared from the circulation within an hour after the event of cardiac 

stress [125]. Should the rate of clearance be similar under the setting of vascular diseases, the 

application of EMPs as diagnostics will be limited [119]. However, there is a lack of information on 

this and should be explored further to draw a comprehensive conclusion on the role of EMPs as 

diagnostics. 
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3.2.1. Endothelial Microparticles as Diagnostics for Kawasaki Disease 

ECs are the main contributor of microparticles and they are significantly elevated in KD patients 

[126,127]. The shedding of the EMPs from the plasma membranes was observed in a rabbit model of 

coronary artery vasculitis [128]. The potential of EMPs as a diagnostic marker of KD is supported by 

its correlation with vascular dysfunction determined by brachial artery flow-mediated dilation [129]. 

A search in PubMed with the terms ‘Kawasaki disease and endothelial microparticle’ and 

‘“Kawasaki disease” and “endothelial microparticle”’ resulted in a total of 10 publications (between 

2004 and 2023), of which one publication was excluded as the focus was on platelet microparticles 

and not EMPs [130]. Four of the studies demonstrated the potential diagnostics for KD by reporting 

the associations between EMPs and KD [103,126,129,131]. Four other studies have described the 

direct or indirect contributions of EMPs towards KD [116,127,132,133]. The final publication, which 

was mentioned earlier, had structurally captured the development of EMPs in coronary arteritis 

using a KD rabbit model [128]. These are summarised in Table 4.   

Tan et al. reported that EMPs (CD31+ and CD146+) were increased in KD patients by 1.6 folds 

and 2.4 folds when compared to febrile and healthy controls, respectively, before IVIg treatment 

[131]. These results were corroborated by the work of Nakaoka et al. which included only CD144+ 

EMPs; they reported a statistically significant increase in KD patients prior to IVIg treatment, when 

compared to febrile and healthy controls, respectively [127]. Ding et al. showed that EMPs (CD144+, 

CD62E+ and CD105+) were elevated during acute, subacute and convalescent phases (time frame not 

reported) of KD when compared to healthy controls [129]. Similar to CECs, the EMPs peaked during 

the subacute phase [111,129,134]. However, contrary to the abovementioned studies, the EMPs in KD 

patients were not statistically different than febrile controls across the three phases of KD [129]. The 

inconsistency in the trend presents a need for a systematic approach, that is using a fixed surface 

antigen as reference biomarker, to evaluate the reliability of EMPs as diagnostics. A robust protocol 

will be necessary to standardise detection techniques and reporting standards which are now highly 

inconsistent (summarised in Table 4). 

Table 4. Summary of studies on endothelial microparticles and Kawasaki disease. 

Literatu
re 

Type of 
particip

ants 

Age 
(media
n years 
(range)

) 

Femal
e (%) 

Acute 
phase 

No. of EMPs 
(acute) 

Sub-acute 
phase 

No. of 
EMPs (sub-

acute) 

Conval
escent 
phase 

No. of 
EMPs 

(convale
scent) 

Long term 
outcomes 

Healthy 
controls 

EMP 
detectio

n 
method 

Biomar
kers for 
detecti

on 

Chen et 
al. 

(2021)[
132] 

Active ~2-3 
15 

(42%) 

Disease 
onset 

(before 
IVIg) 

CD31+,CD54
+: 

Significantly 
higher 

comared to 
healthy 
control. 

CD31+,CD10
5+: 

Significantly 
lower when 
compared to 

sub-acute 
timepoint.  

Quantitative 
values not 
reported. 

(EMPs were 
normalised to 

10000 
events) 

2 weeks 
from disease 

onset 

CD31+,CD5
4+: 

Significantly 
higher 

comared to 
healthy 
control. 

CD31+,CD1
05+: 

Significantly 
higher when 
compared to 

acute 
timepoint.  

Quantitative 
values not 
reported. 

(EMPs were 
normalised 
to 10000 
events) 

- - - 

n=18 
CD31+,CD105
+: Significantly 
higher in sub-
acute group 
compared to 

healthy 
controls. 

CD31+,CD54+
: Higher in 

acute and sub-
acute phase 
compared to 

healthy 
controls.  

Flow 
cytometr

y 

CD31+, 
CD54+ 

and 
CD31+, 
CD105+ 

Nakaok
a et al. 
(2018)[

127] 

Active 0.3-14 
20 

(40%) 

Time of 
diagnos

is 

1.31%  
(Normalised 

to total 
number of 
particles) 

- - 

2-4 
weeks 
after 

onset of 
disease 

Below 
acute 
levels 

- 

Healthy: 25 
EMP: 0.08% 
Febrile: 25 

EMP:0.09% 

Flow 
cytometr

y 

CD144+
/CD42b- 

Tian et 
al. 

(2016) 
[116] 

In vitro - - - - - - - - - - ELISA 
CD31, 
CD62 
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Shah et 
al. 

(2015) 
[103] 

Survivor 

Age at 
study: 
11.9 
(4.3-
32.2) 

Age at 
disgnosi

s: 4.9 
(0.18-
11.3) 

45 
(49%) 

- - - - - - 

In KD 
survivors, 

AnnexinV : 
970x10^3/mL 

of plasma 
CD105: 

1.60x10^3/mL 
of plasma 
(*p=0.04) 
CD62E: 

2.87x10^3/mL 
of plasma 

CD54: 
0.87x10^3/mL 

of plasma 
CD106: 0/mL 

of plasma 
CD144: 

0.32x10^3/mL 
of plasma 

CD31: 
14.18x10^3/m
L of plasma 

CD42a: 
14.04x10^3/m
L of plasma 

n=51 
AnnexinV : 

990x10^3/mL 
of plasma 

CD105: 0/mL 
of plasma 
CD62E: 

3.92x10^3/mL 
of plasma 

CD54: 
0.97x10^3/mL 

of plasma 
CD106: 0/mL 

of plasma 
CD144: 

0.2x10^3/mL 
of plasma 

CD31: 
20.59x10^3/m
L of plasma 

CD42a: 
24.93x10^3/m
L of plasma 

Flow 
cytometr

y 

Annexin 
V+ and 
CD105+
/CD62E
+/CD54
+/CD10
6+/CD1
44+/CD
31+/CD

42a- 

Ding et 
al. 

(2014) 
[129] 

Active 
1.9 

(0.3-
7.5) 

12 
(42.9%

) 

unspeci
fied 

Absolute 
values are not 

reported.  
All 3 EMPs 

are 
significantly 
elevated at 

acute phase 
when 

compared to 
healthy 

controls but 
not with 

febrile control.  

unspecified 

Absolute 
values are 

not reported.  
All 3 EMPs 

are 
significantly 
elevated at 
sub-acute 

phase when 
compared to 

healthy 
controls but 

not with 
febrile 

control.  

unspecif
ied 

Absolute 
values 
are not 

reported.  
All 3 

EMPs 
are 

significan
tly 

elevated 
at 

convales
cent 

phase 
when 

compare
d to 

healthy 
controls 
but not 

with 
febrile 

control.  

- 
Healthy: 28 
Febrile: 28 

Flow 
cytometr

y 

CD144+
/CD42b-

, 
CD62E
+ and 

CD105+ 

Tan et 
al. 

(2013) 
[131] 

Active 
<3 

years 

Not 
reporte

d 

Within 
10 days 

n=20 
28.07%  

(Normalised 
to 10000 
particles) 

- - - - - 

Healthy: 18 
EMP: 11.7% 
Disease: 18 
EMP: 17.2% 

Flow 
cytometr

y 

CD31, 
CD146 

Dou et 
al. 

(2013) 
[128] 

KD 
rabbit 
model 

- - - - - - - - - - 

Scannin
g 

electron 
microsc

ope 

- 

Guiduc
ci et al. 
(2011)  
[126] 

Active 
1.4 

(median 
age) 

11 
(37%) 

Before 
IVIg 

76x10^5/mL 
plasma 

- - 
1-month 
follow-

up 

9x10^5/m
L plasma 

- 
n=20 

45x10^5/mL 
plasma 

Flow 
cytometr

y 
CD144 

Brogan 
et al. 

(2004) 
[133] 

In vitro - - - - - - - - - - 
Flow 

cytometr
y 

CD54, 
CD106, 
CD62E, 
CD62P 

Shah et al. demonstrated the extent of endothelial damage approximately 8.3 years after the 

occurrence of KD [103]. EMPs were enumerated by targeting various surface antigens (e.g., CD105+, 

E-selectin+, ICAM-1+, VCAM-1+, CD144+, CD31+). However, only CD105+ EMP was significantly 

elevated in KD survivors who have had coronary aneurysms when compared to healthy controls 

[103] and there were no statistical differences when KD survivors with no coronary aneurysms were 

compared to healthy controls instead. This showed that CD105+ EMP may be useful as a surveillance 
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marker to assess long-term vascular health in KD survivors, especially those who had KD-related 

coronary complications. [103]. 

CD105, also known as Endoglin, is a transmembrane glycoprotein expressed on ECs which 

functions as a co-receptor for TGF-β family, and as an angiogenesis marker [135]. Interestingly, a 

significant increase in vascular endothelial growth factor (VEGF) was observed in KD patients with 

coronary aneurysms when compared to healthy controls. The significant elevation of both CD105+ 

EMP and VEGF shows that the vascular homeostasis has been disrupted for an extended period and 

vascular repair is still ongoing years after KD [103], highlighting the need for long-term 

cardiovascular surveillance in KD patients with coronary complications. Yet, before asserting any 

claims, it is imperative to elucidate the role of CD105+ EMPs, considering their potential dual function 

as markers of both vascular damage and recovery. On the other hand, when CECs were enumerated 

from the same population, CECs were significantly elevated in KD survivors, and even more so in 

KD survivors who have had coronary aneurysms [103]. This finding is important as it suggests that 

CECs may be more appropriate, in terms of sensitivity and role, than EMPs as a surveillance or even 

diagnostic marker for KD. Overall, there are conflicting data on the utility of EMPs as diagnostic 

markers. This warrants further investigation which is discussed in Section 4.2. 

3.3. Vascular Endothelial Cell Specific Cell-Free DNA 

cfDNA are short fragments of DNA released from dying cells (passive release) or specialised 

cells (active release) into the circulation (Figure 3C) [136,137].  Since its discovery about 70 years ago 

in human plasma, it has been an area of research interest for clinical applications owing to its non-

invasive nature [137]. Characteristics of cfDNA could vary in size, DNA methylation and repeating 

sequences [138]. These characteristics differ based on the type of disease, and hence may be useful in 

the detection of specific diseases. It has also been reported that cfDNA could trigger cytokine release 

and contribute to inflammation in a positive feedback manner [137]. Studies have shown that cfDNA 

is elevated under pathological conditions such as systemic lupus erythematosus, cancer, and 

myocardial infarction [137]. However, a limitation of cfDNA is that it is present is small quantity. 

Although DNA methylation pattern have been successfully detected in 1mL of plasma (~3 mL of 

blood), it also depends on the extent of cellular damage that occurs in the disease state [139]. Hence, 

in certain pathologies, a higher volume of blood may be necessary to achieve a detectable 

concentration of cfDNA. Furthermore, although it is known that cfDNA is cleared via renal excretion, 

and liver and spleen metabolism and suggested to circulate between 16 min and 2.5h, there are 

limited information on the rate of cfDNA clearance which limits the utility of cfDNA as diagnostics 

[140,141]. Should these limitations be overcome, the access to cfDNA would tremendously improve 

and emerge as a powerful non-invasive diagnostic tool.  

Recently, tissue-specific cfDNA has garnered interest in diagnostic research (Figure 4). Utilising 

DNA methylome tools like comparative methylome analysis, unmethylated DNA sequence that were 

unique to cardiomyocytes were identified [139]. This allowed for cardiomyocyte-specific cfDNA to 

be detected and used as marker of cardiomyocyte death. Zemmour et al., has demonstrated that 

patients with acute ST-elevation myocardial infarction had significantly elevated cardiomyocyte-

specific cfDNA which corresponds to the elevation of cardiac troponin levels, and hardly any 

cardiomyocyte-specific cfDNA signal were detected in the plasma of healthy individuals [139]. 

However, cardiomyocyte-specific cfDNA seems to be slightly inferior to the sensitivity of troponin-

T [139]. To overcome such limitation, multiplex detection of cardiac-specific unmethylation 

sequences can be considered. Nonetheless, although not tissue-specific, there are successful clinical 

applications of cfDNA such as Allosure® where SNPs of donor-derived cfDNA are quantified in 

renal transplant recipients to assess the possibility of allograft rejection [142].  

Moss et al. has demonstrated the possibility of establishing an atlas of tissue- or organ-specific 

methylation patterns by comprehensively describing a methodology to achieve it [143]. Although 

such a database is not established yet, it is a promising area of research to achieve quick, yet accurate 

diagnoses. For example, with known organ-specific DNA methylation pattern, cfDNA can be 

conveniently extracted from blood plasma, processed (i.e., bisulphite conversion) and quantified for 
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the organ-specific methylated sequences [144]. This allows us to assess the damage to specific organs 

due to the pathologic conditions.  

Interestingly in the plasma of healthy participants, 10% of the cfDNA originates from vascular 

ECs, being the highest non-haematopoietic contributor of cfDNA [143]. This substantial amount has 

enabled Peretz at al. to identify robust vascular EC specific cell-free DNA (EC-cfDNA) sequences. 

They have also stepped up a notch and identified organ-specific EC-cfDNA sequences, such as lung-

specific EC-cfDNA [144]. The data has shown that the quantification of lung specific EC-cfDNA is 

higher in lung-related pathologies (e.g., chronic obstructive pulmonary disease) compared to non-

lung pathologies such as myocardial infarction which showed the specificity of DNA methylation 

sequences.  

A potential challenge is contamination of EC-cfDNA signal by erythrocyte progenitor cells 

(EPCs) as they contribute to 30% of the cfDNA population and are heavily demethylated [143,144]. 

However, it has been shown that only 10% of EPC-cfDNA has similar methylation patterns as EC-

cfDNA and thus the contamination will appear as noise and is unlikely to interfere with the signal 

from EC-cfDNA [144]. Thus, although it seems that EC-cfDNA is promising as KD diagnostics, it 

needs to be thoroughly validated prior to clinical applications. 

3.3.1. EC-cfDNA in Kawasaki Disease 

Since the quantity of EC-cfDNA reflects the extent of EC damage, it is intuitive that it could play 

a role as KD diagnostics. However, this application is in its early days and there are hardly any 

findings reported in the context of KD. A search on PubMed with the terms ‘("cell free DNA") AND 

("Kawasaki disease")’ and ‘("cell-free DNA") AND ("Kawasaki disease")’, provided only one 

publication by Yoshida et al. (2020) which investigated the association between neutrophil 

extracellular traps and KD by treating HUVECs with KD patient neutrophils in vitro. cfDNA titre was 

used as a marker of cellular damage [88]. Thus far, there are no reports on the use of cfDNA or EC-

cfDNA as diagnostics for KD. Hence, at present, it is not possible to compare and evaluate the utility 

of EC-cfDNA against other markers of endothelial injury for KD diagnosis. 

4. Future Directions 

4.1. Circulating Endothelial Cells 

Since it is established that the number of CECs is elevated in KD patients and even more so in 

patients with coronary complications, it will be useful to establish CEC threshold counts as part of a 

multi-marker model to diagnose KD and for early detection of coronary abnormalities. To establish 

suitable thresholds, a multi-centre enumeration of CECs must be conducted for a large cohort of KD 

patients of diverse demographics to discern KD from other febrile illnesses. These threshold values 

must be validated against disease cohorts before using it in the clinical setting. It is postulated that it 

takes about seven days for CECs to return to baseline after angioplasty, although a comprehensive 

investigation has not been performed [145]. Should this rate be applicable to all cardiovascular 

diseases, the delayed clearance will provide a longer timeframe to use CECs as diagnostics. However, 

a limitation of CECs is its minute amount in peripheral blood circulation. For example, an average of 

12.9 CECs were detected per milliliter of blood in healthy patients, although the numbers increase at 

onset of cardiovascular diseases [146]. Thus, a sensitive and robust technique is required to report 

reliable data, which is necessary to implement CECs as a multi-diagnostic marker. In efforts towards 

it, Lanuti et al. conducted a multicentre investigation to standardise a robust flow cytometry 

approach [146]. Such standardised protocols will help to overcome the variability in reporting 

standards as shown in Table 3. These would allow for establishing a reliable threshold for KD 

diagnosis, prognosis of KD-related vascular complications and long-term cardiovascular surveillance 

in KD survivors. The workflow of flow cytometry (i.e., from isolating blood mononuclear cells to cell 

staining) takes about 2.5 hours. While this duration does not significantly delay the ideal treatment 

window (i.e., >5 days of persistent fever) [147], reducing the workflow time would still be beneficial.  
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In terms of biomedical research applications, it is intuitive to culture the isolated CECs for in 

vitro investigations. However, CECs have poor proliferative potential. Nevertheless, CECs can be 

used for molecular profiling to gain mechanistic insights underpinning disease progression. 

Pathogens could be identified in CECs making it useful to elucidate disease-causing agents [67].  

4.2. Endothelial Microparticles 

The use of various endothelial-specific surface antigens has brought about conflicting opinions 

on its role as a diagnostic marker. Hence, thorough and systematic investigation could harness the 

usefulness of the individual surface markers for diagnosis, as specific surface markers could inform 

the function and disease status of ECs which is useful for uncovering mechanisms underlying KD 

(116,127,133). For instance, CD62E+ EMP reveals that the ECs are in the activated state [129] Other 

research has shown that proteomics on EMPs from diseased states could reveal mechanisms 

underlying disease progression [148,149]. 

Furthermore, establishing a baseline physiological level proves challenging due to varied 

reporting standards across studies [119,150]. On a technical front, robust protocols must be 

established for the detection of EMPs despite their rapid clearance. These efforts are crucial for 

identifying suitable surface antigens to diagnose Kawasaki Disease (KD) and prognosticate 

associated coronary complications effectively. 

4.3. Vascular Endothelial Cell Specific Cell-Free DNA 

There is a lack of research on EC-cfDNA, especially so in the context of KD, owing to its novelty. 

Thus, the first step is to validate the suitability of EC-cfDNA sequences by evaluating the sensitivity 

in assessing KD progression. Then, robust protocols must be established for the detection of EC-

cfDNA despite their rapid clearance prior to establishing threshold values for diagnostics. From the 

biomedical research perspective, the type of release of cfDNA could be studied to uncover 

mechanisms underlying disease progression. Although the majority of cfDNA is released via passive 

action such as apoptosis, cfDNA released actively, such as cell secretion via exosomes, can be 

differentiated by their genomic size [141].  

5. Conclusions and Perspectives 

It is a challenge to diagnose KD due to the lack of specific diagnostic test. Delay in diagnosis and 

treatment, predisposes the patient to the development of coronary complications, which is the 

leading cause of acquired heart disease in children [1]. Thus, this review reiterates the research gaps 

associated to KD and evaluates the potential of endothelial damage markers obtained from blood 

biopsies as diagnostics of KD. Although strong correlations have been reported between CEC counts 

and disease severity, there is a need to standardise reporting standards and establish threshold cell 

counts to translate this into clinical application. The delay in clearance of CECs from the circulation 

could enhance signal to noise ratio, making it an attractive diagnostic tool. With these establishments, 

CECs could even be used for long-term surveillance of cardiovascular health post-KD.  

While there is evidence of EMPs indicating endothelial damage, there is variability in the role of 

the different surface antigens which needs clarification. Also, it has been demonstrated that EMPs are 

cleared from the circulation within a couple of hours, suggesting that EMPs may only be useful within 

a narrow window of time.  

EC-cfDNA were identified very recently and their capability in diagnosing KD has not been 

demonstrated yet. Like EMPs, they have a rapid clearance rate and hence must be strategically 

employed as diagnostics.  

Currently, echocardiography is performed to identify complications in the proximal artery 

segments. However, subtle coronary dilations in the early stages of the disease are commonly 

undetected on echocardiogram, which could eventually develop CALs by the sub-acute phase. Thus, 

it will also be useful to explore the capability of the abovementioned endothelial damage markers in 

prognosticating coronary complications at early stages in KD patients.  
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In conclusion, the use of circulating endothelial damage products as diagnostics of KD is a fresh, 

yet promising idea and warrants further investigation and verification before its implementation in 

clinical settings. 
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