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Abstract: Smartwatches are one of the most relevant fitness trends of the past two decades, and they collect 
increasing amounts of health and movement data. The accuracy of these data may be questionable and requires 
further investigation. Therefore, the aim of the present study is to validate smartwatches for use in triathlon 
training. Ten different smartwatches were tested for accuracy in measuring heart rate, distance (via global 
navigation satellite systems, GNSS), swim stroke rates and the number of swim laps in a 50 m Olympic-size 
pool. The optical heart rate measurement function of each smartwatch was compared to that of a chest strap. 
Thirty participants (15 females, 15 males) ran five 3-minute intervals on a motorised treadmill to evaluate the 
accuracy of the heart rate measurements. Moreover, for each smartwatch, running und cycling distance 
tracking was tested over six runs of 4,000 m on a 400 m tartan stadium track, six hilly outdoor runs over 3.4 
km, and four repetitions of a 36.8 km road bike course, respectively. Three swimming protocols ranging from 
200 m to 400 m were performed in triplicate in a 50 m Olympic-size pool, evaluating tracked distance and 
detected number of strokes. The mean absolute percentage errors (MAPEs) for the average heart rate 
measurements varied between 3.1% and 8.3%, with the coefficient of determination ranging from 0.22 to 0.79. 
MAPE results ranged from 0.8% to 12.1% for the 4,000 m run on the 400 m track, from 0.2% to 7.5% for the 3.4 
km outdoor run, and from 0.0% to 4.2% for the 36.8 km bike ride. For the swimming tests, in contrast, the 
deviations from the true distance varied greatly, starting at a 0.0% MAPE for the 400 m freestyle and reaching 
91.7% for the 200 m medley with style changes every 25 m. In summary, for some of the smartwatches, the 
measurement results deviated substantially from the true values. Measurements taken while road cycling over 
longer distances with only a few curves were in relative terms more accurate than for outdoor runs and even 
more accurate than for the 400 m track. In the swimming exercises, the accuracy of the measured distances was 
severely deteriorated by the medley changes among the majority of the smartwatches. Altogether, the results 
of this study should help in assessing the accuracy and thus suitability of smartwatches for general triathlon 
training. 

Keywords: wearables; sports watch; reliability; validity; GNSS; swimming; running; cycling 
 

1. Introduction 

Since 2016, the American College of Sports Medicine has listed wearable technology as one of 
the top three fitness trends worldwide, demonstrating the enormous impact wearables are having on 
the sports community [1–8]. Using photoplethysmography, a key sensing technology, it is possible 
to track physiological parameters such as heart rate, heart rate variability, heart rhythm, pulse wave, 
respiratory rate, oxygen saturation, and sleep quality [9]. The technical possibilities continue to 
increase, as wearables are becoming progressively smaller, and better sensors, such as 
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accelerometers, gyroscopes, or global navigation satellite system (GNSS) receiver chips, are being 
built into the watches. This increases the comfort for an athlete who wishes to track their training 
automatically with virtually no additional technical effort. On the other hand, external sensors, such 
as temperature sensors or additional acceleration sensors, are also being included in wrist, trunk or 
shoe pods to record additional data. In 2022, 492 million wearables were sold worldwide, with a 
predicted upward trend [10]. Today, wearable technology offers the advantage of balancing training 
load and monitoring health status at the same time. Athletes, coaches, and sports scientists have 
identified its potential to prevent injuries, improve performance, and prolong an athlete’s career. 
However, the validity, accuracy, and reliability of this evolving technology may be, in parts, 
controversial and uncertain. [11] In a survey of triathlon coaches, it was found that some coaches 
were concerned about athletes’ overreliance on technology and that the data it produces can impact 
their perceptions on performance [12]. The enormous potential and constant development of 
smartwatch technology regularly necessitates the review of current and new models. Various models 
have already been assessed, however not with a triathlon-specific focus in mind [13–18]. 
Notwithstanding, the accuracy of the measured parameters is crucial to achieve the desired benefits. 

Hence, the goal of the present study was to determine the measurement accuracy of ten different 
sports watches in regard to optical heart rate (i.e. pulse rate) measurements and GNSS-based distance 
tracking, as well as in the acquisition of swimming data. The following questions were addressed: 
How accurate is the optical heart rate measurement during a 3-minute run on a treadmill? How 
accurate are the GNSS measurements during a 4,000 m run on a 400-m tartan stadium track, a 3.4 km 
hilly outdoor run, and a 36.8 km profiled bike ride? Are there differences in the GNSS measurements 
among the various watches? Furthermore, do such differences in the measured distances depend on 
whether the watch is worn on the wrist facing the inside or outside of the running track/course 
curvature? Lastly, how accurate are the lap counts and arm stroke counts in a 50-m Olympic-size 
swimming pool? These questions focus on typical single-discipline triathlon training, which is 
usually divided into separate sessions of swimming, cycling, and/or running. An assessment for use 
in brick sessions or competitions was not carried out, as it would require a multisport function, which 
is not supported by all of the selected smartwatches. 

2. Materials and Methods 

2.1. Smartwatches 

Ten different smartwatches currently available on the market (as of May 2024) from nine 
manufacturers were included in this study (Table 1). The smartwatches were selected to cover a wide 
range of manufacturers with adequate market shares, ranging from entry-level products at a 
recommended retail price of 120 €, such as the Mi Watch (XIA), to an advanced triathlon-specific 
model, the Garmin Forerunner® 955 Solar (GAF), at 650 €. In an overview of global sales figures for 
wearables from 2014 to 2022, in total eight leading manufacturers were listed, seven of which are 
included in this study: Apple, Samsung, Xiaomi, Huawei, Fitbit, Garmin and Fossil (order according 
to rank) [19]. Looking at the most popular smartwatch brands in Germany in 2023, the top seven are 
represented in this study, supplemented by Fossil on rank 10. Moreover, Polar was included in this 
study, owing to the popularity of their smartwatches in Germany [19] and because Polar watches 
were analysed in previous studies [15,16,18]. 

As regards movement tracking, a multi-GNSS analysis is more accurate than a single GNSS [20]. 
For this reason, the GNSS function of the watches was set to utilise both the American GPS and the 
Russian GLONASS systems in parallel to achieve better comparability where applicable. If this was 
not available, the watch’s default settings (commonly GPS only) were used. The possible GNSS 
options are shown in Table 1, based on the information from the respective manufacturers. Notably, 
Fossil does not specify the supported GNSSs in the Fossil Gen 6 Smartwatch (FOS). However, as its 
Snapdragon Wear 4100/4100+ processor supports GPS, GLONASS, Galileo, and BeiDou (BDS), that 
smartwatch is expected to do accordingly [21]. To compensate for any variability in production, 
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GNSS data were simultaneously collected using two separate watches of the same model, worn 
unilaterally by the same individual when running or mounted to the handlebar when cycling. 

For all measurements and watches, the most suitable sport mode for the planned measurement 
was selected; for running this was either outdoor running or track running. For watches that did not 
provide a specific track running mode, the regular outdoor running mode was selected. For road 
cycling, the outdoor cycling mode was used. If the watch did not offer this mode, the outdoor running 
mode was chosen instead, which was necessary with the FOS watch. Because of the higher average 
movement speed in cycling, it can be assumed that this differing choice of mode did not significantly 
influence the cycling distance measurements. For swimming, the indoor swimming mode was 
selected for any watch, and the lap length was set to 50 m. If a software update for a device or its 
corresponding application became available during the measurement period, it was installed to 
provide the most current device software status available. 

Table 1. Overview of the ten investigated smartwatches, their manufacturers, and available GNSS 
options. 

Smartwatch 
Manufactur

er 
Abbreviatio

n 
GNSS Options  

GTS3 Amazfit AMA 
GPS, GLONASS, Galileo, BDS, 

QZSS 
[22,23] 

Watch SE Apple APP GPS, GLONASS, Galileo, QZSS [24] 
Versa 4 Fitbit FIT GPS, GLONASS [25] 
Gen 6 

Smartwatch 
Fossil FOS GPS, GLONASS, Galileo, BDS 

[21,26,2
7] 

Forerunner® 955 
Solar 

Garmin GAF 
GPS, GLONASS, Galileo, BDS, 

QZSS, IRNSS 
[28–30] 

Venu® 2 Garmin GAV GPS, GLONASS, Galileo [31,32] 

Watch GT 3 Huawei HUA 
GPS, GLONASS, Galileo, BDS, 

QZSS 
[33,34] 

Ignite 2 Polar POL GPS, GLONASS, Galileo, QZSS [35,36] 
Galaxy Watch 4 Samsung SAM GPS, GLONASS, Galileo, BDS [37,38] 

Mi Watch Xiaomi XIA GPS, GLONASS, Galileo, BDS [39] 
GNSS: Global Navigation Satellite System; GPS: Global Positioning System (USA); GLONASS: Globalnaya 
Navigazionnaya Sputnikovaya Sistema (Russia); BDS: BeiDou Navigation Satellite System (China); QZSS: 
Quasi-Zenith Satellite System (Japan); IRNSS: Indian Regional Navigation Satellite System (India). 

2.2. Participants 

A total of 30 individuals (15 males/15 females) with various training backgrounds, ranging from 
recreational athletes to trained long-distance triathletes (age: 29.4±7.4 years; height: 175.6±8.8 cm; 
body mass: 70.2±8.2 kg), participated in the heart rate measurement part of the study (Table 2). For 
the running, cycling and swimming parts, nine trained athletes of this cohort were recruited because 
the study design allowed for multiple measurements to be completed by the same individual without 
loss of statistical power. The measurements were conducted in and around Leipzig, Germany, and 
Magdeburg, Germany, from April to June 2023. 

2.3. Heart Rate Measurements 

The arterial blood pressure in rest was measured manually and bilaterally with a 
sphygmomanometer (boso med 1, Bosch + Sohn GmbH & Co. KG, Jungingen, Germany) by a 
physician. The resting heart rate was determined by electrocardiography (ECG), which was also used 
to rule out any deviations in the cardiac currents that could have led to an incorrect measurement. 
Except for two extrasystoles for one subject, which did not lead to exclusion due to their statistical 
insignificance, no abnormalities were detected that could have contributed false measurements. In 
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particular, heart rate and pulse rate could be treated as equivalents for all subjects. In addition, the 
resting ECG and blood pressure measurements were examined to detect any pathologies that would 
have contraindicated a stress test. If the ECG results were normal and the systolic blood pressure was 
 160 mmHg, the treadmill test was started. 

For this purpose, the participants completed 5 x 3 min intervals at a self-selected running speed 
(min.: 8 km/h) on a motorised treadmill (h/p/cosmos saturn®, 250/100, h/p/cosmos sports & medical 
GmbH, 83365 Nußdorf–Traunstein, Germany or Star Trac 10 FreeRunner™, MERCOR 
Fitnesskonzepte GmbH Leipzig, Germany, respectively). An 1.5% incline was set to compensate for 
the absence of air resistance. While running, optical heart rate data (i.e. pulse rate data) were collected 
continuously by two different smartwatch models in parallel using their photoplethysmography 
sensors, with one watch being worn on each wrist. As reference, true heart rate was measured 
electronically using a chest strap heart rate monitor (Garmin HRM-PRO, Garmin AG, Schaffhausen, 
Switzerland). The validity of the chest strap measurement has been confirmed in previous studies 
[40–43]. The measurements using the smartwatches and the chest strap started simultaneously and 
ended after 3 minutes of running at the target speed. All heart rate measurements were conducted 
with a data rate of at least 1 Hz.  

Table 2. General characteristics of the participants undergoing heart rate measurement before the 
treadmill exercise (n=30). 

Parameter Mean ± SD 
Age (years) 29.43 ± 7.35 

Sex 15 males/15 females 
Body mass (kg) 70.16 ± 8.17 

Body height (cm) 175.60 ± 8.77 
BMI (kg/m2) 22.75 ± 2.09 

Net weekly training time (h) 7.16 ± 3.75 
RR MAP (mmHg) 91.78 ± 9.07 
RR sys (mmHg) 125.33 ± 15.69 
RR dia (mmHg) 74.42 ± 7.23 

HR (12-channel ECG) (1/min) 61.53 ± 11.34 
Selected speed (km/h) 10.62 ± 2.09 

mmHg: millimetre of mercury (≈Torr); RR: Riva Rocci blood pressure; MAP: mean arterial pressure; sys: 
systolic; dia: diastolic; SD: standard deviation. 

2.4. Tracking of Running and Cycling Distances 

To evaluate the accuracy of the distance tracking measurements, the smartwatches were tested 
on reference routes for running and cycling. To avoid environmental influence [44], the same location 
and the same date and time were used under a clear sky. Before the GNSS measurements were 
performed, a bike computer (Sigma BC 8.12, SIGMA-ELEKTRO GmbH, Neustadt, Germany) was 
calibrated with the tyre size. The rolling length of one tyre’s circumference was measured by marks 
on the ground while the rider was sitting on the bike (tyre size: 25x700c at 7,5 bar/109 PSI). This 
calibration was crosschecked and confirmed by measuring the length of a five-laps course on a 400 
m stadium track on lane 1 as described below. With this calibration, all running and cycling distances 
were measured as reference values by riding the same course at least twice on the bike (with the tyre 
pressure kept at its calibration time value given above). Additionally, the true lengths of the running 
and cycling routes were crosschecked using OpenStreetMap and Google Maps. These three distance 
results per course, i.e. by bike ride, OpenStreetMap and Google Maps, differed only marginally in 
the second decimal place (3.41 km vs. 3.4(0) km and 36.84 km vs. 36.8(0) km). Notably, this small 
difference was inevitable as the bike computer’s display provided two decimal places, whereas the 
map material yielded only one. 

For each run, 4 smartwatches were worn simultaneously to reduce the number of runs: two on 
the left forearm and two on the right forearm. The positions were numbered—(T1) proximal forearm, 
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left; (T2) distal forearm, left; (T3) distal forearm, right; and (T4) proximal forearm, right—and noted 
for each watch and trial. Five runners (3 males, 2 females) ran 4,000 m on a 400 m standard tartan 
stadium track. The runners were instructed to stay in lane one, which is exactly 400 m in length, at a 
distance of 30 cm from the inner line [45]; running was maintained in this lane (with the exception of 
at maximum 6 quick overtaking manoeuvres per 4,000 m). Additionally, an outdoor run of 3.41 km 
on an asphalt road in profiled terrain was performed. The tests on the stadium track and the asphalt 
road were performed in triplicate by five runners, each with 4 smartwatches in positions T1–T4, 
resulting in 5 ⋅ 3 ⋅ 4 / 10 = 6 separate measurements per watch. The watches were rotated among the 
runners, as well as the forearm position, after each run. For the cycling measurements, four cyclists 
(3 males, 1 female) completed a fixed road bike course of 36.84 km on asphalt roads in both directions 
with five smartwatches attached the handlebars of each bike or to the cyclist’s forearms (the latter if 
a non-zero pulse rate was required for correct operation), resulting in 4 ⋅ 5 ⋅ 2 / 10 = 4 separate 
measurements per smartwatch model. 

2.5. Tracking of Pool Swimming Activities 

Three different swimming protocols were performed with the smartwatches in a 50 m Olympic-
size pool to determine the accuracy of swimming lap counts and stroke rates. The following 
measurement protocols were carried out three times per watch, divided among six swimmers (3 
males, 3 female), with a different watch worn on each forearm: (1) 200 m individual medley 
(butterfly–backstroke–breaststroke–front crawl) with stroke transitions every 50 m, (2) 400 m 
freestyle (performed as front crawl), (3) 200 m individual medley with stroke transitions every 25 m. 
During the freestyle sequences, the swimmers were filmed by a moving camera to provide a video-
based independent validation of the number of strokes detected by the smartwatches.  

2.6. Data Analysis and Statistics 

The data collected from all smartwatches was transferred to the mobile phone apps of the 
respective manufacturers via Bluetooth. The following apps were used: Fitbit, Fossil Smartwatch, 
Garmin Connect, Apple Health, Huawei Health, Mi Fitness, Polar Flow, Samsung Health, and Zepp. 
Afterwards, the data were transferred manually to Microsoft® Excel® for Microsoft 365 (Microsoft 
Corporation, Redmond, USA). All mathematical analyses and statistical tests were performed with 
Microsoft® Excel® for Microsoft 365 (Microsoft Corporation, Redmond, USA), MATLAB R2023a 
(MathWorks Inc., Natick, USA), and JASP (JASP Team (2023), Version 0.17.1, Amsterdam University, 
Amsterdam, Netherlands) 

To evaluate the accuracy of the heart rate measurement, the mean heart rate and the maximum 
heart rate were each determined for 3-minute intervals and then compared to the heart rate values 
from the chest strap reference measurements. The 3-minute interval per stage was chosen because of 
its commonality and significance in performance diagnostics. Derived descriptive statistical 
parameters comprised minimum deviation (from reference), maximum deviation, mean absolute 
error, mean absolute percentage error, median, and interquartile range. Pearson and Spearman 
correlation coefficients were calculated between measured and reference heart rates, along with their 
coefficients of determination (R2) and levels of significance.  

To verify the accuracy of the GNSS-based distance measurements, the distances measured by 
the smartwatches were compared to the true reference distance. In particular, descriptive statistics 
included the arithmetic mean, minimum, maximum, mean absolute error, mean absolute percentage 
error, standard deviation, and interquartile range. To test for statistical significance of possible 
deviations between measured distances and the reference value, t-tests were carried out with effect 
sizes characterised by Cohen’s d. To compare the accuracy of the watches among each other, a one-
way repeated-measures ANOVA was conducted with the smartwatch model being the independent 
variable. In addition, a t-test was conducted for the 4,000-m stadium runs to investigate if wearing 
the watch on the left or right forearm (i.e. inside or outside the lane) had an impact on the measured 
distance. 
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For the swimming tests, the number of metres swum by the participants, the number of strokes 
used, and the SWOLF index were evaluated. The SWOLF value is the time in seconds plus the 
number of strokes required to swim a given distance, i.e. SWOLF = time in seconds/lap + strokes/lap. 
Descriptive statistics comprised: arithmetic mean, minimum, maximum, mean absolute error, mean 
absolute percentage error, standard deviation, and interquartile range. 

For all statistical tests, the level of significance was set to p<0.05. If not stated otherwise, results 
are given in terms of mean ± standard deviation (SD). 

3. Results 

3.1. Heart rate 

The mean absolute errors (MAEs) of the average heart rate measurements, as measured for all 
of the smartwatches, were between 4.2 and 11.8 beats per minute (bpm). This corresponded to mean 
absolute percentage errors (MAPEs) of 3.1% to 8.3%. The coefficient of determination of the average 
heart rate was between 0.220 and 0.705. The Spearman correlation coefficients ranged from 0.436 to 
0.841 (p<0.001), indicating medium to large associations. In detail, the model-specific results can be 
found in Table 3, and the respective box plots are shown in Figure 1, with the regression analysis in 
Figure 2. All regression lines have a lower gradient than the reference lines. Reviewing the data for 
all 30 runners, the MAEs for each runner and all 10 watches combined ranged between 1.1 and 19.1 
bpm, which corresponds to MAPEs of 0.8%–17.0%. 

Table 3. Heart rate measurements: Mean heart rates and their deviations from the chest strap 
reference. 

Watch δMin δMax MAE MAPE 
Media

n 
IQR R2 rP pP rS pS 

 bpm bpm bpm % bpm bpm      
AMA 0 38 9.37 6.66 -5.5 13.25 0.582 0.763 <0.001 0.793 <0.001 
APP 0 38 4.23 3.12 0.0 2.25 0.705 0.840 <0.001 0.854 <0.001 
FIT 0 27 9.67 6.68 -5.0 16.00 0.686 0.828 <0.001 0.796 <0.001 
FOS 0 56 10.97 7.32 -3.0 8.75 0.225 0.475 0.008 0.493 <0.001 
GAF 0 50 7.27 5.02 -1.0 5.75 0.499 0.706 <0.001 0.712 <0.001 
GAV 0 50 8.17 5.59 -3.5 7.00 0.573 0.757 <0.001 0.733 <0.001 
HUA 1 30 4.30 3.34 -1.5 2.00 0.788 0.887 <0.001 0.841 <0.001 
POL 0 40 11.83 8.30 -3.0 15.00 0.220 0.470 0.009 0.436 <0.001 
SAM 0 44 8.80 6.35 -1.0 7.75 0.374 0.612 <0.001 0.618 <0.001 
XIA 0 40 10.20 7.13 -4.5 12.5 0.479 0.692 <0.001 0.726 <0.001 

* δMin, δMax, MAE, Median and IQR are in beats per minute (bpm; absolute values). δMin: minimum 
deviation; δMax: maximum deviation; MAE: mean absolute error; MAPE: mean absolute percentage error; 
IQR: interquartile range; R2: coefficient of determination; rP: Pearson’s correlation coefficient; pP: type I error 

probability of Pearson’s correlation coefficient; rS: Spearman’s correlation coefficient; pS: type I error probability 
of Spearman’s correlation coefficient. 

 
The maximum heart rate measurements showed similar MAE values compared to the average 

heart rate, i.e., between 4.4 and 10.9 bpm, resulting in MAPEs between 3.1% and 7.3%. The coefficients 
of determination for the maximum heart rates were also in a similar range as the average heart rate, 
i.e., between 0.179 and 0.743. The Spearman correlation coefficients equally showed only small 
differences, ranging between 0.482 and 0.851 (p<0.001). The results are presented in Table 4, the box-
and-whisker plots in Figure 3, and the regression analysis in Figure 4. All regression lines had a lower 
gradient than that measured by the heart rate monitor. Based on the analysis of the data for all 30 
runners, the MAEs for each runner and all 10 watches combined ranged between 0.9 and 29.1 bpm, 
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which is equivalent to MAPEs of 0.6%–24.7%. In summary, the maximum heart rate measured by the 
smartwatches showed greater variation than the average heart rate. 

The most accurate smartwatches in terms of both the average and the maximum heart rates were 
the APP and the HUA with MAPEs of 3.1%/3.1% and 3.3%/3.4%, respectively. 

 
Figure 1. Heart rate measurements: Deviation of the optically measured average heart rates (by 
photoplethysmography) from the electronic chest strap reference for the ten smartwatches 
investigated. All values are given in terms of beats per minute (bpm). The box plots depict the lowest 
measured value (bottom dot), the highest measured value (top dot), the median (line inside the box), 
the first quartile (bottom edge of the box), the third quartile (top edge of the box), and the interquartile 
range (IQR), where the whiskers are 1.5 times the IQR. Red dots outside the whiskers therefore 
represent outliers. 

 

Figure 2. Heart rate measurements: Subjects’ mean heart rates as measured by the ten smartwatches 
(ordinate) versus the chest strap reference (abscissa). The blue crosses represent each subject’s mean 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 June 2024                   doi:10.20944/preprints202406.0861.v1

https://doi.org/10.20944/preprints202406.0861.v1


 8 

 

heartrates (chest strap vs. smartwatch), while the red lines show the linear regression results and and 
the black lines visualize the – always unreached – ideal of perfect agreement. Symbol meaning are: 
R2: coefficient of determination; rP: Pearson’s correlation coefficient; rS: Spearman’s correlation 
coefficient; bpm: beats per minute; CI: confidence interval (95%, red stitched lines). 

Table 4. Heart rate measurements: Maximum heart rates and their deviations from the chest strap 
reference. 

Watch δMin δMax. MAE MAPE Media
n 

IQR R2 rP pP rS pS 

 bpm bpm bpm % bpm bpm      
AMA 0 35 8.00 5.31 -1.0 6.75 0.554 0.744 <0.001 0.758 <0.001 
APP 0 49 4.37 3.07 0.0 1.25 0.668 0.818 <0.001 0.668 <0.001 
FIT 0 34 7.77 5.51 0.0 12.25 0.618 0.756 <0.001 0.774 <0.001 
FOS 0 53 10.37 6.81 0.0 7.25 0.231 0.481 0.007 0.547 <0.001 
GAF 0 59 6.77 4.34 0.0 2.0 0.458 0.677 <0.001 0.692 <0.001 
GAV 0 61 5.67 3.60 0.0 2.0 0.494 0.703 <0.001 0.710 <0.001 
HUA 0 34 4.87 3.41 -1.5 1.0 0.743 0.862 <0.001 0.851 <0.001 
POL 0 43 10.70 7.28 -1.0 5.5 0.179 0.423 0.02 0.482 <0.001 
SAM 0 68 10.93 7.30 0.5 8 0.280 0.530 0.003 0.601 <0.001 
XIA 0 65 9.47 6.47 -1.0 7.25 0.310 0.557 <0.001 0.594 <0.001 

* Abbreviations are as defined in Table 3. 

 

 

Figure 3. Heart rate measurements: Deviation of the optically measured maximum heart rates (by 
photoplethysmography) from the electronic chest strap reference for the ten smartwatches 
investigated. Box plot settings and symbol meanings are the same as in Figure 1. 
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Figure 4. Heart rate measurements: Subjects’ maximum heart rates as measured by the ten 
smartwatches (ordinate) versus the chest strap reference (abscissa). Symbol meanings are the same as 
in Figure 1. 

3.2. GNSS-Based Distance 

3.2.1. Stadium Track Running Tests 

The results of the 4,000 m track running tests are summarised in Table 5 and Figure 5. Altogether, 
seven smartwatches varied, on average, by less than 80 m (<2%) from the true distance. The mean 
MAPEs were between 0.8% and 12.1%. The FIT severely underestimated the true distance in every 
measurement (3,515 ± 381.20 m, p = 0.026, t(5) =  
-3.12, Cohen’s d  = -1.272), whereas the FOS (4,284 ± 150 m, p = 0.006, t(5) = 4.66, d = 1.903) and XIA 
(4,140 ± 123 m, p=0.038, t(5) = 2.79, d = 1.139) returned significantly too high values. For all three 
watches, the effect sizes in terms of Cohen’s d indicate large mean deviations from the true value. 
Overall, a strong effect of the smartwatch model on the measured distance was confirmed by the 
ANOVA (p<0.007, η2 = 0.509). The post-hoc comparisons showed that 9 (out of 45) deviations from 
the true distance were significant among the individual smartwatch models (p<0.001–0.013), all of 
which were for the FIT compared to the other models. Regarding body side dependence, the mean 
distance measured by all smartwatches when worn on the inner wrist (T1 and T2), was 3,946±272 m 
(n=30), as compared to 4,052±249 m (n=30) when worn on the outer wrist (T3 and T4). Comparing 
these values, the difference of 106 m (2,7%) was not significant (p=0.094). 
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Figure 5. Running tests on 4,000 m stadium track: (a) Distances as tracked by ten smartwatches 
studied, (b) Full area overview with sample tracks by six smartwatch models (only a small fraction 
shown for clarity), (c) MAPEs of tracked distances, (d) Close up of sample tracks. Note: For the panels 
(b) and (d) publicly available map data from Google Maps (Google LLC, Mountain View, CA, USA) 
as of 03 June 2022 were used. 

Table 5. Running tests on 4,000 m track: Deviations of the tracked distances from the true distance for 
the ten smartwatches investigated. 

Watch Mean Min. Max. SD MAE MAPE Median IQR p d 
 m m m m m % m m   

AMA 3970 3840 4120 102.76 90.00 2.25 3945 182.5 0.507 -0.292 
APP 3963 3820 4120 72.02 43.33 1.08 3985 77.5 0.268 -0.509 
FIT 3515 2980 3960 381.20 485.00 12.13 3565 755 0.026* -1.272 
FOS 4284 4103 4473 149.06 283.67 7.09 4268 295 0.006** 1.903 

GAF § 4032 4000 4120 47.08 31.67 0.79 4010 67.5 0.160 0.637 
GAV 4072 3970 4210 90.42 81.67 2.04 4045 165.0 0.110 0.793 
HUA 4013 3620 4160 201.56 140.00 3.50 4075 247.5 0.878 0.066 
POL 3957 3280 4300 361.37 233.33 5.83 4035 487.5 0.781 -0.120 
SAM 4047 3880 4280 152.27 126.67 3.17 4065 272.5 0.487 0.306 
XIA 4140 3950 4280 122.96 156.67 3.92 4180 210.0 0.038* 1.139 
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Min: minimum; Max: maximum; MAE: mean absolute error; MAPE: mean absolute percentage error; SD: 
standard deviation; IQR: interquartile range; d: Cohen’s d. Levels of significance: *p<0.05, significant; **p<0.01, 

very significant; ***p<0.001, extremely significant. § The GAF was used in the track running mode. 

3.2.2. Hilly Outdoor Running Test On Asphalt 

The results of the outdoor running test on a hilly asphalt course with a true length of 3,410 m are 
summarised in Table 6 and Figure 6. In general, these measurements were more accurate than those 
for the 4,000 m track test, with the MAPEs ranging from 0.2% to 7.5%. The most accurate smartwatch, 
in this respect, was the GAF, which had an MAPE of 0.2%. Three smartwatches had SDs less than 10 
m: APP, GAF, and GAV. Four significant deviations (p<0.001–0.049, t(5) = -11.62–4,66,) were found, 
as well as large effect sizes in terms of Cohen’s d of 1.90 to -4.74, for AMA, APP, FOS, and SAM. The 
ANOVA confirmed that smartwatch model had a large effect on the measurement accuracy (p<0.001, 
η2 = 0.263). The post-hoc analysis showed 5 (out of 45) significant differences when comparing the 10 
models among each other (p<0.001–0.021), affecting the FIT and POL. Comparing the measurements 
taken on the inside wrist (i.e., the right wrist in the clockwise direction along the loop) with those on 
the outside wrist (i.e., the left wrist), the difference of 33 m (1,0%) between 3,384±181 m (n=24) and 
3,417±112 m (n=24) was smaller than that for the 400 m track and not significant either (p = 0.195).  

Table 6. Running tests on hilly outdoor asphalt course: Deviations of the tracked distances from the 
true distance of 3.41 km for the ten smartwatches investigated. 

Watch Mean Min Max SD MAE MAPE Median IQR p d 
 m m m m m % m m   

AMA 3380 3350 3390 15.49 30.00 0.88 3385 17.50 0.005** -1.936 

APP 3380 3370 3390 6.32 30.00 0.88 3380 5.00 
<0.001**

* 
-4.743 

FIT 3240 2600 3590 382.94 256.67 7.53 3405 652.50 0.326 -0.444 
FOS 3515 3427 3572 54.91 104.50 3.06 3512 96.25 0.006** 1.903 
GAF 3408 3390 3420 9.83 5.00 0.15 3410 7.50 0.695 -0.170 
GAV 3417 3410 3430 8.16 6.67 0.20 3415 12.50 0.102 0.816 
HUA 3410 3380 3440 21.91 16.67 0.49 3405 37.50 1.000 0.000 
POL 3450 3420 3530 43.36 40.00 1.17 3430 65.00 0.073 0.923 
SAM 3338 3220 3420 67.95 75.00 2.20 3355 95.00 0.049* -1.055 
XIA 3430 3400 3490 34.06 23.33 0.68 3415 52.50 0.210 0.587 

Symbol meanings are the same as in Table 5. 

Regarding the tracked elevation profile, all watches that offered this analysis readily via an 
online platform (i.e. AMA, FIT, GAF, GAV, HUA and POL) tracked the relative elevation changes 
adequately throughout the course (Figure 6 (d)). However, AMA und HUA returned strongly 
imprecise absolute elevations (error of approximately 60 to 120 m). 
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Figure 6. Running tests on hilly 3.41 km outdoor asphalt course: (a) Tracked distances of all ten 
smartwatches, (b) Sample tracks in full area with six different sample tracks, (c) MAPEs of tracked 
distances, (d) Sample tracks in close-up. (e) Elevation profiles of sample tracks shown in (b) and (d) 
vs. true profile. Notes: The reference profile was obtained from publicly available high-resolution 
LIDAR elevation data for Western Europe based on GeoBasis-DE/BKG using the software tool GPS 
Visualizer [46]. For the panels (b) and (d) publicly available map data from Google Maps (Google 
LLC, Mountain View, CA, USA) as of 09 September 2021 were used. 

3.2.3 Road Cycling Course 

The results for the road cycling course with a true length of 36.84 km are shown in Table 6. The 
route and elevation profile are shown in Figure 7. All ten smartwatches underestimated the reference 
distance cycled by participants but were still more accurate than the GNSS measurements recorded 
while running, with nine watches exhibiting MAPEs below 1%. The most accurate watch was the 
POL, with an MAPE of only 0.03%.  

Seven significant deviations were observed for the ten watches (p <0.001–0.023, t(2–3) = -44.33– -
4.29,), with a large effect sizes in terms of Cohen’s d of -22.167 to -2.144. The three watches that had 
larger standard deviations, or fewer measurement values that could be analysed (POL, FOS, and FIT) 
due to self-aborted measurements by the watch were not significant. The ANOVA confirmed that 
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smartwatch model had a large effect on the measurement accuracy (p<0.001, η2 = 0.775). The 
performed post-hoc analysis showed 12 (out of 45) significant differences among the 10 models when 
compared to each other (p=<0.001–0.049). Similar to the hilly outdoor running test, absolute elevations 
and cumulative vertical metres climbed were substantially inaccurate for AMA and HUA (Figure 7 
(e)), apparently due to an altitude offset of approximately -84 m and -156 m, respectively, and because 
of highly noisy or smoothed elevation profiles.  

 

Figure 7. Road cycling course: (a) Tracked distance of all ten smartwatches, (b) Sample tracks in full 
area with six different sample tracks (one-way), (c) MAPEs of tracked distances (d) Sample tracks in 
close-up. (e) Elevation profiles of sample tracks shown in (b) and (d) vs. true profile. Notes: The 
reference profile was obtained from publicly available high-resolution LIDAR elevation data for 
Western Europe based on GeoBasis-DE/BKG using the software tool GPS Visualizer [46]. For the 
panels (b) and (d) publicly available map data from Google Maps (Google LLC, Mountain View, CA, 
USA) as of 21 April 2023 were used. 

Table 7. Road cycling course: Deviations of the tracked distances from the true distance of 36.84 km 
for the ten smartwatches investigated (n=4). 

Watch Mean Min. Max. SD MAE MAPE Median IQR p d 
 m m m m m % m m   
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AMA 36508 36490 36520 15.00 332.50 0.90 36510 27.50 
<0.001**

* 
-22.167 

APP 36703 36660 36780 54.39 137.50 0.37 36685 97.50 0.015* -2.528 
FIT § 35290 35290 35290 - 1550 4.21 35290 -   
FOS § 36786 36637 36890 132.20 87.67 0.24 36830 253.00 0.550 -0.411 
GAF 36690 36650 36720 31.62 150.00 0.41 36695 60.00 0.002** -4.743 
GAV 36765 36750 36780 12.91 75.00 0.20 36765 25.00 0.001** -5.809 

HUA 36695 36680 36710 12.91 145.00 0.39 36695 25.00 
<0.001**

* 
-11.232 

POL 36628 36480 36690 99.12 12.50 0.03 36670 162.50 0.080 -1.306 
SAM 36708 36680 36730 20.62 132.50 0.36 36710 37.50 0.001** -6.427 
XIA 36828 36820 36840 9.57 212.50 0.58 36825 17.50 0.023* -2.144 

Symbol meanings are the same as in Table 5. § FIT, n=1; FOS, n=3. 

3.3 Pool Swimming 

Altogether, the smartwatches offer various swimming modes which are compared in Table A1. The 
FOS, however, lacks a swimming mode; therefore, only nine watches were included in the analysis 
of the distances tracked during the swimming tests. An evaluation of the 400 m front crawl trial, as 
presented in Table A2, shows that seven smartwatches recorded correct measurements. Two watches 
had MAPEs of 4.2% (Fit and POL), as, in each case, one of the three recorded 450 m instead of 400 m. 

The results of the 200 m individual medley trial with stroke transitions every 50 m show that the 
distance tracked had a higher propensity for error when the swimming stroke changed than during 
a continuous front crawl stroke. Six smartwatches measured the distances correctly, and the three 
watches that recorded incorrect distance had the following MAPE values: AMA, 8.3%; FIT, 16.7%; 
POL, 141.7% (Table A3). 

For the 200 m individual medley with stroke transitions every 25 m (in the middle and at the 
end of the lap in the 50 m Olympic-size pool), none of the watches were able to measure the distance 
correctly (Table A4). The MAPE was between 41.7% and 91.7%. 

Five watches provided a functionality to analyse the SWOLF index, i.e., were able to also detect 
the number of strokes per lap. These values were collected during the 400 m front crawl trial. The 
evaluation of the number of strokes at 50 m as part of the SWOLF index is shown in Table 8. The 
MAPE was between 0.4% and 29.5%.  

Table 8. Deviations in the number of strokes calculated for one 50 m lap during a 400 m front crawl 
swimming test (n = 5). 

Watch δMin δMax MAE MAPE Median IQR 
    %   

GAF 1.0 2.0 1.5 6.32 1.5 1.0 
GAV 1.0 3.0 2.1 8.81 2.5 1.5 
HUA 0.0 1.5 0.5 2.14 0.5 1.0 
POL 0.5 28 8.5 29.45 2.5 18 
SAM 0.0 0.5 0.1 0.43 0.0 0.25 

δMin., δMax., MAE, Median and IQR are in metres (absolute values). δMin: minimum deviation, δMax: 
maximum deviation, MAE: mean absolute error, MAPE: mean absolute percentage error, IQR: interquartile 

range. 

4. Discussion 

The aim of this study was to compare the accuracy of 10 different smartwatches when measuring 
the heart rate during running exercises; the distance during running, cycling, and swimming tests; 
and the stroke rate during the swimming trials.  
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The results of the heart rate measurements were divided into two parts: the average heart rate 
measurement and the maximum heart rate measurement. The average heart rates had MAPEs 
between 3.1% and 8.3% while the MAPEs of the maximum heart rates ranged from 3.1% to 7.3%. The 
heart rate readings, therefore, were more accurate for the maximum values. A factor that could 
contribute to differences here is the time range, and hence number of data points over which the 
various parameters were calculated. For the maximum heart rate, a single maximum spike value was 
used, while for the average heart rate, values constantly recorded over a 3-minute interval were 
averaged. Another contributing factor could be that the measurement intervals between the watches 
and the chest strap reference were a few seconds apart in some cases. All regression lines had a 
gradient lower than the reference for all watches. High values tended to be underestimated, and low 
values tended to be overestimated. The accuracy of the heart rate measurements performed at the 
wrist fell short of those achieved with the chest strap. Similar average heart rate MAPEs were 
recorded compared to values in a study by Chow et al., in which the MAPE deviations in the heart 
rate measurements during a treadmill exercise were 2.5%–8.3%, although that study analysed the 
heart rate second by second [47]. Interestingly, some runners exhibited only slight deviations from 
the reference values, and this was consistent for all tested smartwatches. For other runners, all or 
nearly all of the 10 smartwatches showed substantial deviations. This can be seen in the MAPE values 
calculated for each athlete, with values of 0.8%–17.0% for the average heart rate and 0.6%–24.7% for 
the maximum heart rate. If these values for the average heart rate measurements are divided into 
three ranges—below, within, and above the MAPE values—for the individual smartwatches, the 
following distribution emerges: nine runners had MAPEs between 0.8% and 3.1%, sixteen runners 
had MAPEs between 3.2% and 7.7%, and five runners had MAPEs from 10.1% to 17.0%. This indicates 
that it is not only the accuracy of the smartwatch that influences the result but also the individuality 
of the runner wearing it. A possible reason could be due to an interference of the 
photoplethysmography-based measurement concept, whereby an external movement alters the 
signal strength of the light reflected by the tissue instead of solely the blood flow. In this case, false 
external frequencies might be measured, such as the step frequency. Future studies could, thus, 
investigate whether there are non-physiological associations between the supposed measured heart 
rate and the step frequency. 

Three significant deviations for the 4,000 m run on the 400 m track were observed. The most 
accurate watch (GAF) recorded a maximum deviation of 120 m, whereas the least accurate watch 
(FIT) displayed a deviation of 1,020 m. The GAF has a track running mode, and it showed the least 
deviation, with an MAPE of 0.8%. Overall, the MAPEs were between 0.8% and 12.1%. The showed 
results that fell within the range of MAPEs that were recorded in a study by Budig et al., with an 
MAPE of 1.8% for one smartwatch model [13] and MAPEs of 1.4%–1.9% for two models [18], as well 
as another study by Gilgen-Ammann, with MAPEs of 0.9%–4.1% for eight watch models [15]. In 
addition, the difference between all measurements taken on the inside curve of the wrist (3,946 m) 
and on the outside (4,052 m) was 106 m. Considering the geometry of the 400 m track, the theoretical 
difference would be 7.04 m per lap for a runner using the second lane and not the first. For the 10 
laps comprising 400 m each, this difference would be 70.4 m with a track width of 1.22 m [45]. The 
distance between a runner’s two wrists measured at rest is certainly smaller; however, in motion, 
distance between wrists may result in values that differ by up to one lane span as the upper limit. 
The measured difference of 106 m between the inside-facing watch and the outside-facing watch is, 
therefore, greater than the difference between lane 1 and lane 2 as 70.4 m over 10 laps. Smartwatch 
models are available that can differentiate wrist sides, and this could be advantageous for more 
accurate measurements of distance at curves. Presently, the various manufacturers do not reveal 
whether they use this information for a more accurate measurement. Future research is indicated to 
calculate this effect more precisely, even though its practical importance seems limited within the 
framework of triathlon training. 

For the results of the 3410 m hilly running course on asphalt, which showed four significant 
differences, the mean MAPEs were between 0.2% and 7.5%. Results in a similar range were found for 
the MAPEs in the study by Budig et al., with 2.8% for one smartwatch [13] and 0.7%–4.8% for two 
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models [18], and Gilgen-Ammann reported MAPEs of 3.5%–8.5% based on eight watches [15]. 
However, the measured values varied greatly among some of the watches. With different routes 
taken in a variety of environments, the MAPEs could not be properly compared because of 
disturbance variables (e.g., forest, urban canyons, and mountains), but they were in a similar range. 
The difference in the results between the watches attached facing the inside of the curve and those 
attached facing outward was 33 m, which is less than that of the 400 m stadium track. However, the 
outdoor running track had fewer curves than the stadium track. 

During cycling, MAPEs between 0.03% and 4.2% were calculated. Nine models had an MAPE 
<1.0% (the exception was the FIT, with only one result). This corresponds to a deviation of fewer than 
10 metres per kilometre. This level of accuracy required that the tyre circumference and air pressure, 
combined with the weight of the rider, be set very precisely using a classic bicycle odometer to 
achieve a greater accuracy than some of the GNSS measurements. Nevertheless, seven out of nine 
measurements showed a significant deviation from the true reference distance. This can be explained 
by the fact that all of the watches, without exception, measured the reference distance as too short on 
average and, additionally in almost all of the individual measurements. This can likely be explained 
by the fact that GNSS distance measurement consists of many individual points. On a curved surface, 
this means that the measurement consists of many short straight lines as the lower boundary of the 
actual pathlength of the curved trajectory. At higher speeds (e.g., when cycling), this measurement 
inaccuracy increases as the short straight lines become longer. Comparing the MAPE values with 
those in Budig’s studies (MAPE of 0.5% for one smartwatch model and MAPEs of 0.3% for two 
model) [13,18], nine of the ten watches in this study were in similar ranges. Although they had similar 
route lengths of 31.5 and 36.7 km, they differed in their locations and, possibly, in the elevation 
profiles. 

According to the findings of the swimming trials, the distance of 400 metres was measured 
correctly by seven out of nine of the watches. The MAPEs were between 0.0% and 4.2%, with only 
two watches measuring one excess lap (FIT and POL). These MAPEs were lower than those recorded 
in Lee’s study, in which the MAPEs were between 0.0% and 20.6%, split among the different speeds 
[48]. Two different watches were used in that study. However, similar results were obtained in 
Budig’s study, reporting MAPEs of 0.4% and 4.6% for two models in the 500 m breaststroke [18]. In 
the 200 m medley swim, six out of nine watches recorded this distance without error. This 
corresponds to MAPEs of 0.0%–141.7%. Upon the addition of a stroke transition after 25 m in the 
centre of the lane, no smartwatch recorded the lap count correctly. The stroke transition in the middle 
of the lap was usually counted as the start of a new lap. This resulted in MAPEs between 41.7% and 
91.7%. In another study by Brunner et al., swimming stroke changes performed in the centre of the 
lap were described as a mixed style, and greater accuracies were also reported [49]. This could not be 
confirmed with the models in the present study. When measuring the number of strokes, as a main 
contributor to the SWOLF index, the MAPEs were between 0.4% and 29.5%. These values per lap 
were recorded for five watches. The range of values are comparable to those in a study by Lee et al., 
in which the MAPE values were 6.2%–17.6% [48]. 

5. Limitations 

There are some limitations to the present study that need to be named. First, the heart rate 
measurements were carried out under controlled laboratory conditions on a motorised treadmill at a 
constant speed, with no external disturbance factors or changes in the running speed. The heart rate 
readings were, thus, as expected, mostly constant over time. Moreover, heart rates were evaluated 
only in terms of the means and maximum values and not by continuous comparison. However, 
before further field studies can be carried out, tests under laboratory conditions are required. 

Second, regarding the GNSS measurements, the number of runs and bike rides per watch was 
limited due to the availability of athletes at the same time, bearing in mind that the measurements 
had to be carried out at the same day and roughly the same daytime to ensure identical GNSS satellite 
conditions for all bouts. Future research should try to increase the number of parallel measurements 
by increasing the number of identical smartwatch models and athletes available. Furthermore, it 
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could not be determined for all watches which of the global satellite systems—GLONASS, Galileo, 
or BDS—were used in addition to GPS to determine the position. Despite that, conclusion can still be 
drawn as to whether the measured distances are valid. 

Third, this study investigated only the accuracy and thus practicability for the three triathlon 
disciplines during training in a separate manner. A multisport functionality for brick sessions or 
triathlon competitions could not be evaluated across the smartwatches as it was available only for a 
small minority of the models tested. 

6. Conclusions 

The results of this study show that the tested smartwatches differed substantially in their 
accuracies. In particular, optically measured heart rates can deviate considerably from the true 
values. Comparison with an ECG or a chest strap may be helpful before relying on such wrist-based 
measurements. As regards distance tracking in running, a conventional GNSS approach still cannot 
be recommended for measuring the distance run on a 400 m stadium track. Despite all the technical 
improvements over the last years, manually or automatically counting the number of laps appears to 
be still the more accurate approach. However, a smartwatch with specific track mode functionality 
(as provided by GAF) can overcome this issue and provide sufficiently accurate results for most 
practical purposes in triathlon and long-distance running exercise. Depending on the smartwatch 
model, using GNSS for outdoor measurements of distances run or cycled is sufficiently accurate in 
the context of long-distance running and triathlon exercise control. Not only when measuring 
personal bests, errors can also occur, and the results should always be critically scrutinised. As for 
swimming, most of the tested smartwatches were able to record the distance swum in the front crawl 
400-m pool swimming trial with sufficient accuracy and were also able to correctly count stroke 
transitions when performed at the end of a lap. However, our results indicate that current 
smartwatches are not suitable for the demands of frequent stroke transitions in swim trials. In 
addition, the stroke rate was reproduced accurately by only a small subset of the watches (HUA and 
SAM). In essence, all non-temporal values measured by current sports smartwatches should be 
critically assessed for validity before being used in exercise control, but once their accuracy is 
confirmed, they can be a useful tool in training management for triathletes and coaches. 
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Appendix A 

Table A1. Smartwatch overview with the options for swimming. 
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Watch 
Count swimming 

lanes 
Stroke type SWOLF 

AMA yes only first lane no 
APP yes not per lane only average 
FIT yes no no 
FOS no swimming modus no no 
GAF yes evaluable evaluable 
GAV yes no evaluable 
HUA yes evaluable evaluable 
POL yes evaluable evaluable 
SAM yes evaluable evaluable 

XIA yes evaluable 
only average and 

graphic 
SWOLF (Swim-golf) The SWOLF value is the time in seconds plus the number of strokes required to swim one 

pool length. 

Table A2. Distance deviations in the 400 m front crawl swimming test (n = 3). 

Watch Mean Min Max SD MAE MAPE Median IQR 
 m m m m m % m m 

AMA 400.00 400.00 400.00 0.00 0.00 0.00 400.00 0.00 
APP 400.00 400.00 400.00 0.00 0.00 0.00 400.00 0.00 
FIT 416.67 400.00 450.00 28.87 16.67 4.17 400.00 50.00 

GAF 400.00 400.00 400.00 0.00 0.00 0.00 400.00 0.00 
GAV 400.00 400.00 400.00 0.00 0.00 0.00 400.00 0.00 
HUA 400.00 400.00 400.00 0.00 0.00 0.00 400.00 0.00 
POL 416.67 400.00 450.00 28.87 16.67 4.17 400.00 50.00 
SAM 400.00 400.00 400.00 0.00 0.00 0.00 400.00 0.00 
XIA 400.00 400.00 400.00 0.00 0.00 0.00 400.00 0.00 

Mean, Min, Max, SD, MAE, Median, IQR in meters (absolute values). Min: minimum; Max: maximum; MAE: 
mean absolute error; MAPE: mean absolute percentage error; SD: standard deviation; IQR: interquartile range. 

Table A3. Distance deviations in the 200 m individual medley swimming test with stroke transitions 
every 50 m (n = 3). 

Watch Mean Min Max. SD +/- MAE MAPE % Median IQR 
 m m m m m % m m 

AMA 183.33 150.00 200.00 28.87 16.67 8.33 200.00 50.00 
APP 200.00 200.00 200.00 0.00 0.00 0.00 200.00 0.00 
FIT 233.33 200.00 300.00 57.74 33.33 16.67 200.00 100.00 

GAF 200.00 200.00 200.00 0.00 0.00 0.00 200.00 0.00 
GAV § 200.00 200.00 200.00 0.00 0.00 0.00 200.00 - 
HUA 200.00 200.00 200.00 0.00 0.00 0.00 200.00 0.00 
POL 483.33 250.00 750.00 251.66 283.33 141.67 450.00 500.00 
SAM 200.00 200.00 200.00 0.00 0.00 0.00 200.00 0.00 
XIA 200.00 200.00 200.00 0.00 0.00 0.00 200.00 0.00 

Mean, Min, Max, SD, MAE, Median, IQR in meters (absolute values). Min: minimum; Max: maximum; MAE: 
mean absolute error; MAPE: mean absolute percentage error; SD: standard deviation; IQR: interquartile range. 

§ n=2 because of a technically incorrectly performed butterfly segment 
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Table A4. Distance deviations in the 200 m individual medley swimming test with stroke transitions 
every 50 m (n = 3). 

Watch Mean Min Max. SD +/- MAE MAPE % Median IQR 
 m m m m m % m m 

AMA 283.33 200.00 400.00 104.08 83.33 41.67 250.00 200.00 
APP 300.00 300.00 300.00 0.00 100.00 50.00 300.00 0.00 
FIT 366.67 350.00 400.00 28.87 166.67 83.33 350.00 50.00 

GAF 383.33 350.00 400.00 28.87 183.33 91.67 400.00 50.00 
GAV 383.33 350.00 400.00 28.87 183.33 91.67 400.00 50.00 
HUA 300.00 300.00 300.00 0.00 100.00 50.00 300.00 0.00 
POL 383.33 350.00 400.00 28.87 183.33 91.67 400.00 50.00 
SAM 300.00 300.00 300.00 0.00 100.00 50.00 300.00 0.00 
XIA 366.67 300.00 400.00 57.74 166.67 83.33 400.00 100.00 

Mean, Min, Max, SD, MAE, Median, IQR in meters (absolute values). Min: minimum; Max: maximum; MAE: 
mean absolute error; MAPE: mean absolute percentage error; SD: standard deviation; IQR: interquartile range. 
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