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Abstract: Previous reviews have investigated machine learning (ML) models used to predict the
risk of developing preeclampsia but have not described how the ML models are intended to be
deployed throughout pregnancy or feature performance. The aim of this study is to provide an
overview of the existing ML models and their intended deployment patterns and performance along
with identified features of high importance. This review used the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses 2020 guidelines. PubMed, Engineering Village, and the
Association for Computing Machinery were searched between January and February 2024. A total
of 86 studies were found of which 14 were included. Out of 12 studies, eight showed the intent to
use the ML model as a single-use, two intended a dual-use, and two intended multiple-use. A total
of seven studies listed the features of the highest importance. Systolic and diastolic blood pressure
were listed along with mean arterial pressure to be of high importance. Out of four studies intending
to use the ML model more than a single-use, three of them were conducted in the years 2023 and
2024, whereas the remaining study is from 2011. No ML model emerged as superior across the
subgroups of PE. Utilizing body mass index and either mean arterial pressure or diastolic blood
pressure and systolic blood pressure may benefit the performance. The deployment patterns are
mainly single use being within the gestation weeks 11+0 to 14+1.

Keywords: deployment pattern; machine learning; prediction; preeclampsia; risk assessment;
review

1. Introduction

Preeclampsia (PE) is a pregnancy-related disorder that affects 2-8% of all pregnancies
worldwide, contributing to severe morbidity of the women and the baby. Together with eclampsia,
it is responsible for 10-15% of maternal deaths in countries of low- and middle-income [1]. When
diagnosed the only cure is delivery of the baby and placenta [2]. In women with an increased risk of
PE, early administration of aspirin has shown promise in reducing preterm PE (onset before 37
gestational weeks) by up to 62% when the treatment is initiated before gestational week 16 [3].
Consequently, there is considerable interest in risk assessment of PE before week 16 of gestation, to
minimize the incidence of preterm PE and thereby the severe morbidity and mortality rates.

The Fetal Medicine Foundation (FMF) has developed a competing risk model for PE, which is
widespread as a decision support tool for first-trimester screening for PE [2,4]. The competing risk
model combines maternal factors, mean arterial pressure (MAP), pulsatility index of the blood flow
in the uterine arteries (UtA-PI), placental growth factor (PIGF), and pregnancy-associated plasma
protein A (PAPP-A) [5]. The full feature list for FMF is provided in Appendix A. While typically used
as a one-step model, FMF can also be used as a two-step model. The first step involves maternal
factors and MAP with a 50% screen-positive rate (SPR) followed by the second step involving UtA-
PI and PIGF. Completing the first-trimester screening in two steps with 50% of the pregnant
population included in the second step yielded comparable results [6]. This approach reduces the
number of women in need of UtA-PI and PIGF measurements. Given the measurements of UtA-PI
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and PIGF, there is a need for extra equipment and specially trained healthcare professionals [6].
Reducing the pregnant population in need of UtA-PI and PIGF measurements, the expenses
associated with the prediction of PE will likewise be reduced, which will be beneficial to countries of
low- and middle-income.

A further development is to investigate the use of machine learning (ML), given its increasing
utilization in healthcare, including obstetrics [7]. As highlighted in recent reviews conducted by
HackelGer et al. and Ranjbar et al., the use of ML has been investigated within the prediction of PE
risk [4,7]. Multiple models have been tested along with different feature selections, where the features
of maternal factors (ethnicity, age, obstetric history, hypertension, family history, diabetes, systemic
lupus erythematosus, antiphospholipid syndrome, conception method, and body mass index (BMI)
or weight and height), PAPP-A, PIGF, and UtA-PI are emerging as the standardized feature set, that
researchers develop upon [8]. Bertini et al.’s review identified the features with important value in
risk assessment of PE listed among their included studies, though only one study’s features were
mentioned [9].

To our knowledge, existing reviews have not explored how the existing ML models are intended
to be deployed during pregnancy. Furthermore, no reviews investigated whether the ML models are
intended to be of single-use or multiple-use. The features identified by the ML models to be of
important predictive value in the PE risk assessment have likewise not been detected in more than
one systematic review by Bertini et al.

This review aims to address these gaps by investigating the existing ML models of PE risk
assessment and their intended deployment pattern and performance. In this context, the review
wants to clarify if the ML models were intended to be deployed as single use, dual use, or multiple
use during pregnancy. Additionally, this review seeks to provide an overview of which features
included in the ML models have proven to be of high predictive importance to that exact model.

The review questions:
Which ML models have been included in the prediction of PE?
Which ML model demonstrates the highest predictive capability?
Which features are integrated into the individual ML models?
Which features did the individual ML model identify to be of high predictive value?
When are the individual ML models intended to be used during pregnancy?
How frequently are the individual ML models intended to be deployed throughout pregnancy?

S

2. Materials and Methods
2.1. Study Design

This review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) 2020 guidelines [10].

2.2. Eligibility Criteria

Inclusion criteria encompassed records written in English, with full-text accessibility, and
employing ML for predicting PE. Records unrelated to the topic, such as those focusing on pathology
or postpartum applications of ML, were excluded. Similarly, records lacking ML testing, non-
transparent feature selection for ML training, or using ML to detect the presence of PE were excluded.
Records using extensive blood tests in predicting PE were excluded from this review based on the
increased expenses associated with blood tests. Reviews were likewise excluded.

2.3. Search Strategy

A comprehensive search strategy was implemented using truncation and the Boolean operator
“OR” to identify relevant articles. The search was refined using the Boolean operator “AND” to focus
on the review’s topic. The combination of search terms was as follows:

(pregn* OR obstetrics) AND (early OR surveillance OR monitor*) AND (detect* OR program OR
predict® OR intervention OR screen*) AND (Artificial intelligence OR Al OR machine learning OR
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deep learning OR internet of things) AND (first trimester OR intelligent OR automat®) AND
(preeclampsia [Title/Abstract])

The search was conducted on three different databases: PubMed, Engineering Village, and
Association for Computing Machinery (ACM) between January 2024 and February 2024. The
selection process is documented in a PRISMA flow diagram. No restrictions were imposed regarding
the year of publication or country. Additionally, no filters or limits were used within the search
databases regarding the Eligibility criteria. The ACM database was set to search for records within
“The ACM Guide to Computing Literature” to include as many records as possible.

2.4. Selection Process

The screening of identified records was performed by two reviewers, who independently
assessed relevant records based on headline and abstract content. Subsequently, a thorough eligibility
screening was conducted, wherein the reviewers went through the full text to exclude records not
meeting the predefined eligibility criteria and scope of this review. When facing disagreements about
a record’s inclusion or exclusion, the reviewers discussed the record and its suitability for the scope
of the review to obtain consensus.

2.5. Data Collection

Data extraction was carried out by two reviewers who worked independently at two separate
organisations. Extracted data were listed using a customized form, which included the following
categories:

1. Study characteristics: Study type, year of publication, and country.

2. Participant information: Number of participants and the incidence of PE cases used for training,

validation, and test sets in the ML models.

Features: Variables used for training the ML model.

ML models employed in the study.

5. Best performance: Identifying the best-performing ML model and its prediction of PE subgroups.
For those studies, where the prediction of PE has not been specified other than predicting PE, it
has been denoted as predicting “All PE” within this review to compare across studies. The
performance is evaluated using performance metrics (AUC, ROC, accuracy, sensitivity, recall,
specificity, precision, F1-score, Brier score, screen positive rate (SPR), true positive (TP), true
positive rate (TPR), detection rate (DR), false detection rate (FDR), false negative rate (FNR), and
false positive (FP)). Among the listed terms, sensitivity, recall, and TPR refer to the same metric
value, describing the prediction of positive cases from all the positive cases within the dataset
[11].

6. Top predictive features: The top five features identified by the individual ML model to be of high
importance for predicting PE among its included features.

7. The intended use of the ML model: Is either reported or interpreted from the study. Including
the number of times the ML model is intended to be used and which gestational week within the
pregnancy, if this has been denoted by the authors.

- W

2.6. Risk of Bias

A standardized methodology for evaluating bias risk in the included studies and for addressing
missing information was not employed. Instead, two independent reviewers evaluated each study
and documented any identified bias.

3. Results

The search strategy resulted in 86 records. The total number of records was 22 included in the
full-text eligibility screening after removing duplicates and screening titles and abstracts. As
illustrated in Error! Reference source not found., a total of 14 studies met the inclusion criteria and
were included in this review.
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( Indentification of studies using the listed databases ]
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Duplicate records
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Pathophysiology (n = 8)
No PE risk assessment (n = 22)
Review (n=12)
Postpartum (n = 2)
Postdiagnosis (n = 2)
Future aspects

Multiple blood tests (n = 2)
No ML (n = 4)

Reports excluded (n = 8):
h
No PE risk assessment (n = 2)
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Eligibility eligibility (n = 22) NoML(n=1)
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Future aspects (n= 1)
Multiple blood tests (n = 2)
™
Studies incl
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_

Figure 1. Prisma flow diagram describing the data collection.

A summary of the extracted data from the included studies is presented in Error! Reference
source not found..

Table 1. Included studies in the review are listed with additional information regarding the study
type, developed machine learning (ML) models, features used and of high importance, identified bias,
and the utilization of the models. The following abbreviations were used: Random Forest (RF),
AdaBoost classification trees (AdaBoost CT), neural networks (NN), support vector machines (SVM),
stochastic gradient boosting (Stoch. GBoost), Extreme gradient Boost (XGBoost), K-nearest
neighbours (KNN), decision tree (DT), Receiver operating characteristic curve (ROC), Area under the
Receiver operating characteristic curve (AUC), false-positive rate (FPR), detection rate (DR), true-
positive rate (TPR), screen-positive rate (SPR), false detection rate (FDR), false negative rate (FNR),
positive predictive value (PPV), negative predictive value (NPV), multiples of median (MoM),
decision tree (DT), placental growth factor (PIGF), mean arterial pressure (MAP), Uterine artery
pulsatility index (UtA-PI), pregnancy-associated plasma protein A (PAPP-A), Antiphospholipid
syndrome (APS), blood pressure (BP), and body mass index (BMI). The color coding within the “Best
performing ML”-column indicates the performance level among the included studies; Green: high
performance value, Yellow: medium performance value, and Red: low performance value.
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ML MODEL DEPLOYMENT
PATTERN

NOT REPORTED
sinoLe-use I S
DUAL-USE

MULTIPLE-USE

illustrates the intended use of the ML models tested within the included studies. With
Neucleous et al. and Sufriyana et al. not specifying when the ML models were intended to be used,
these were listed as “not reported”. The remaining studies” ML models were categorized according
to their deployment patterns: single-use, dual-use, or multiple-use prediction models. This
classification was done based on the information provided within the respective studies.

ML MODEL DEPLOYMENT
PATTERN

NOT REPORTED
sincLe-use | R
DUAL-USE

MULTIPLE-USE

Figure 2. Illustration of the intended use of the prediction models as given in the studies or interpreted
by the reviewers.

3.1. Performance of Machine Learning Models

Error! Reference source not found. displays the ML models used within the included studies,
alongside those that exhibited the highest performance within them. It is observed in Error!
Reference source not found. that certain ML models excelled in predicting different subgroups of
PE, thus reflecting their best performances in Error! Reference source not found. across all included
subgroups in the studies.
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Figure 3. ML models tested within the included studies. The blue indicates how many studies
included the ML model within their study. The orange indicates the ML model with the best
performance within the included studies.

Considering AUC and recall values, which emerged across 10 out of 14 studies leading to the
most used performance metrics, Torres-Torres et al. achieved the highest AUC of 0.96 as well as a DR
of 88% at a FPR of 10% in predicting early-onset PE (<34 weeks of gestation), utilizing Elastic Net
Regression [21]. Torres-Torres et al. did not report a recall value, hence the highest recall value for
early-onset PE was achieved by Gil et al at 84%. For preterm PE (<37 weeks of gestation), Gil et al.
attained the highest AUC of 0.91 and the highest recall value of 78% at a SPR of 10% [22],
incorporating a Feed-Forward NN [23]. As Gil et al. refer to their DR to be the same as recall, this is
included in this performance comparison [22,23]. Melinte-Popescu et al. reported the highest AUC
value of 0.84 and recall value of 93% for late-onset PE (>34 weeks of gestation) using RF. Furthermore,
in predicting all cases of PE, Melinte-Popescu et al. attained the highest AUC of 0.98 using Naive
Bayes. For term PE (>37 weeks of gestation) Sandstrom et al. obtained an AUC of 0.67 at a FPR of 10%
deploying a Backward Selection model on Multivariable Logistic Regression [26].

4. Discussion
4.1. Best-Performing Machine Learning Model

REF, Logistic Regression, NN, SVM with a linear kernel, Elastic Net, Decision Tree, and XGBoost
were the most used ML models. Considering the AUC and recall values, no single type of ML model
emerged as superior across the different subgroups of PE (early-onset PE, late-onset PE, preterm PE,
term PE, and all PE). Especially concerning the same data set, Melinte-Popescu et al. achieved the
highest AUC for LO-PE and all PE using two different types of ML models. Despite RF and Logistic
Regression being the predominant models only four out of seven and one out of seven studies
identified RF and Logistic Regression as the best-performing model, respectively. XGBoost, on the
other hand, demonstrated the best performance in three out of three studies, outperforming RF in
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two of those. However, regarding achieving the highest AUC, XGBoost did not attain the highest
among any of the included studies. However, RF and Logistic Regression had the highest AUC for
LO-PE and term PE, respectively.

Based on the results of the best ML models, we could hypothesize that using multiple models
for identifying subgroups of PE could be beneficial. However, the compared models use different
features as well as different data sets of dissimilar sizes. Especially, the rate of PE cases in the different
datasets ranges from 1.3% to 50% among the included studies’ total populations. As only three of the
14 studies reported the rate of PE cases in their training set, a comparison by the training set for all
studies was not possible. Nonetheless, identifying the ML model’s performance metrics, the rate of
PE cases does not seem to influence their performance results. In fact, Melinte-Popescu et al. had the
highest incidence of PE cases of 50% in their population of 233 and achieved the highest performance
for late-onset PE and all PE. Yet, Li Y-X et al. had an incidence of 5% PE in their population of 3,759
and achieved an AUC of 0.96 and an accuracy of 92. This is 0.02 less in the AUC and 7% less in
accuracy than Melinte-Popescu et al. With seven studies having their rate of PE cases in between 5%
and 50% these studies all had AUC and accuracy values less than Li Y-X et al. Indicating, that there
is no correlation between the rate of PE cases and the performance of the ML model within the
included studies. Yet, they are all based on different features and therefore this might be the factor
influencing the performance outcome. The population size and rate of PE cases might also be
influencing the outcome, but is not visible within this review, as the studies do not use the same
features. Selecting one model that will perform with high prediction on different data sets is
challenging as there is no ML model that outperforms others on every single data set even though
the data sets are similar [27]. Making Gil et al.’s performance noteworthy, as their model was
originally developed by Ansbacher-Feldman et al. on another population employing raw input data
similar to that used in the FMF algorithm [23].

4.2. Feature Selection

Torres-Torres et al, Gil et al., and Melinte-Popescu et al. used features similar to FMF (such as
maternal age, MAP, UtA-PL, PIGF, and PAPP-A) (Appendix A). Notably, neither Melinte-Popescu
et al. nor Torres-Torres et al. included racial origin as a feature, as was done by Gil et al. where it was
rated to be the fourth highest predictive feature. Gil et al.’s ML model incorporated the use of aspirin
and raw input data instead of MoM values. While Melinte-Popescu et al. and Torres-Torres et al.
added more than one feature diverse from FMF and used BMI instead of weight and height. Torres-
Torres et al. rated BMI to be the fourth-highest predictive feature of their ML model. As BMI is
calculated based on weight and height, including all three features can potentially cause correlation.
Collinearity makes it challenging to identify the individual feature’s effect on the outcome and
impacts the development of the model [28]. Therefore, the choice of features needs to take this factor
into account.

Among the 14 included studies seven of them highlighted features of high predictive
importance. Within six of the seven studies, BP measurements were listed in the top five. Systolic BP
occurred one time more frequently than MAP and diastolic BP. MAP is calculated based on both
diastolic and systolic BP, with diastolic being the primary contributor. Regardless of whether it is
systolic BP, diastolic BP or MAP, all pressure-related parameters show significance in PE risk
assessment. However, a systematic review conducted by Bertini et al. highlighted systolic BP to be of
particularly high importance to the ML models [9]. Yet, the best-performing ML models identified
within this review all used MAP instead of systolic and diastolic BP. No study was identified to
compare the ML model’s performance regarding MAP versus systolic and diastolic BP. Therefore,
we have no basis for asserting which method of BP measurement is superior. However, such a
comparison could be beneficial in the future development of ML models.

Li Y-x et al. identified that a questionnaire involving features such as maternal age, BMI, and
medical conditions (Appendix AError! Reference source not found.) can achieve an AUC of 0.84 [18].
Utilizing a ML model based on a questionnaire is arguably more cost-efficient and less intrusive
compared to models that use several blood tests and involve healthcare professionals for ultrasound
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and blood pressure measurements. Across the seven studies listing their top five predictive features,
14 features were identified to be suitable for a questionnaire. This involves the features of BMI,
maternal abdominal circumference, insulin, chronic hypertension, racial origin, antiphospholipid
syndrome, water retention/edema, PE family history, number of babies, poverty, edema, highest
education, insurance, and renal disease. Concerning maternal abdominal circumference, the
expecting mother will be able to answer this if she is provided with a measuring tape. Yet, including
this measurement alongside BMI needs to be done with caution. The reason is that these features
might be collinear as they both depend on the person’s weight and height. With collinear features,
the model’s performance can potentially be affected. These features are not all currently included in
the FMF algorithm, nor has the combination of these features been tested within a single ML model
along with the FMF algorithm’s maternal characteristics. However, incorporating these features into
a questionnaire for the expecting mother appears relevant to clarify the potential of a ML model based
on a questionnaire in PE risk assessment as a preliminary step.

Sufriyana et al. is the only study using features from the expecting mother’s health insurance
record dated months before the development of PE. These features are based on the recorded
diagnosis within their health insurance and listed as the codes from the International Classification
of Diseases 10th Revision (Appendix AError! Reference source not found.) [19]. The proposed
approach achieved the highest AUC when using data collected 9-<12 months before developing PE.
Achieving an AUC of approximately 0.88 (geographical split) and 0.86 (temporal split) by only using
data from 9-<12 months before the development of PE. This time period is defined by Sufriyana et al.
to correspond to endometrial maturation [19]. This result indicates a potential for using patient health
record data as part of a prediction model for PE. Additionally, using available record data in a ML
model is a cost-effective approach, though the records might be diverse among hospitals leading to
potential bias.

4.3. Machine Learning Deployment Pattern

In eight out of 14 studies, ML models were utilized as a single-use application, indicating their
prevalent usage and testing. Nevertheless,

ML MODEL DEPLOYMENT
PATTERN

NOT REPORTED

sincLe-use | S
DUAL-USE

MULTIPLE-USE

suggests a growing interest in implementing ML models for multiple uses, with proposed
strategies by Eberhard et al. and Li et al., both conducted in 2023. As identified in Table 1, three out
of four studies intending to use the ML model more than once were conducted in the years 2023 and
2024, whereas the remaining study is from 2011. The included studies were conducted in the time
period of 2010 to 2024. Velikova et al. was the sole study from 2011 to 2023 investigating the multiple
use of a ML model in the PE risk assessment at different gestational weeks. Yet, they only provided
the risk prediction for week 12 and week 16 within their study. Additionally, Velikova et al. aimed
to create a model which could be used as a decision support tool for home monitoring, though this
was not tested within this study. However, three out of five studies conducted in the years 2023 to
2024 used the ML model more than once or created a model for each time point. This indicates a
potential shift in the research field of PE risk assessment using ML models. Yet, none of the included
studies have investigated the proposed adaptive ML model as mentioned in HackelGer et al.’s review,
which aims to monitor the development of PE. The BP progression along with gestations weeks was
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investigated by Lazdam et al. and Macdonald-Wallis et al. [29,30]. They identified differences in the
progression of diastolic and systolic BP within pregnant women developing PE as early as weeks 12
to 21 of gestation[29,30]. Eberhard et al. likewise indicate in their study, that BP’s importance to the
ML model increases as gestation age progresses [15]. This suggests that an adaptive and multiple-use
ML model including the BP progression will be beneficial in the PE risk assessment and PE
development from week 12 of gestation. With home-monitoring as suggested by Velikova et al.
would be a valued contribution, as the associated problems from BP changes appear only days later
[12]. This use could potentially enhance predictive accuracy by reducing the number of false positives
and lead to more personal care within obstetrics concerning PE treatment. An adaptive and multiple-
used ML model will therefore both predict the risk of developing PE before gestational week 16 as
well as help detect the development of PE at an early stage.

Three of the 14 studies do not indicate when the model is intended to be used, whereas the
remaining indicates the first time to be either “first prenatal visit”, “week 16 of gestation”, “early
second trimester”, or “first trimester”. Compared to the FMF algorithm the earliest predictive
algorithm is to be used at gestation week 11+0 to 14+1, where the first prenatal visit usually takes
place. The first trimester ends by gestation week 12, so the first prenatal visit can likewise be in the
early stages of the second trimester. Hence, the different definitions of the first intended use are
within the same time period except Maric¢ et al.’s study being utilized at week 16 of gestation. Yet,
according to Rolnik et al. and van Doorn et al. should the aspirin treatment be initiated before week
16, making the prediction at week 16 of gestation on the last time point possible for this initiation.

Concerning using the ML model later in the pregnancy, only two studies specified the exact
gestation weeks where it is intended to be used. These are week 16 of gestation in Velikova et al.’s
study, and weeks 20, 24, 28, 32, 36, 39, and on admission in Eberhard et al.’s study. Whereas the
remaining two studies either did not specify any information or used the definition of “before the
delivery admission”. Resulting in no similar frequency of use within these studies. The use of a ML
model more than once has been identified to be a new and growing part of the research area of PE
risk assessment, which reflects the lack of a common frequency of usage patterns.

4.4. Limitations

No standardized method was used in the bias assessment, which is a limitation of this study.
Using a standardized method would have clarified the included studies” different risks of bias in a
systematic manner. Additionally, discrepancies in subgroups of PE and the absence of a common
performance metric hinder a comparative analysis of performance among all the included studies.
Not all studies use the same performance metrics, which made it unable to get every study into
consideration in being the best-performing ML model across the studies. Comparing the
performances of different ML models that are all trained and tested on different data sets on diverse
populations as well as developed on different feature sets is a limitation of this review. Such a
comparison might have caused bias as different feature combinations and population groups result
in different outcomes. Furthermore, in five out of 14 studies, only one ML type was tested, biasing
this review’s findings concerning the best-performing ML model within each study. With only one
ML model listed within a study, this automatically becomes the best-performing model without any
comparison.

4.5. Future Research

The ML models within this review were trained and tested on the collected data being either
retrospective or prospective. Five out of 14 studies were prospective studies, leaving nine studies
being retrospective. Performing retrospective studies means that the data can include some missing
values, which Sandstrém et al. experienced. This could potentially have affected the development of
the ML models, as they had to use mean values for the missing elements. Similarly, retrospective
studies do not make it possible to investigate different features, which were not collected at that time.
Hindering potential feature selection. Yet, four of the studies using prospective data were not tested
on new prospectively collected data, in the sense of predicting the risk with the developed ML model
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at the time of data collection. Only Gil et al. performed the risk assessment at the time of data
collection, yet the clinicians and participants were not informed about the outcome. Prospective
validation of the models would be of high importance in the context of implementing it in practice,
as Torres-Torres et al. likewise point out. As a ML model is intended to be a decision support tool in
the PE risk assessment just as the FMF algorithm is today. Future research would benefit from testing
their ML model on prospective data with an unknown outcome at the prediction time. This will
highlight their model’s performance in the intended use in a clinical setting.

Out of 14 studies, the data sets used for their ML models were only available online for one
study, whereas five other studies reported that it could be made available if contacted. The authors
of the five studies have been contacted to attain access to their data set in order to replicate their
results. Out of these five studies none replied. Two studies reported that access could be gained by
getting approval or contacting other parts than the authors. The remaining six studies did not report
anything on the data sets’ accessibility.

5. Conclusions

In conclusion, the analysis of studies investigating the risk assessment capabilities of ML models
for PE reveals a diverse landscape of models and parameters used to evaluate them. RF, Logistic
Regression, NN, and SVM were frequently used ML models. While AUC and recall emerged as
common performance metrics No single ML model proved consistently superior across different
subgroups of PE, nor even within the same studies. Instead, using different ML models has shown
potential in the prediction of early-onset PE, preterm PE, late-onset PE, term PE, and all PE.

BP was identified as being the most predictive feature in the risk assessment of PE. Highlighting
diastolic and systolic BP measurements to be of important value for a ML model alongside MAP. The
BP parameter that will benefit the ML model’s performance the most is unknown. BMI was likewise
identified as a predictive feature, though including this together with weight and height will
potentially cause a correlation in the ML.

ML models being deployed as a dual- or multiple-use have been investigated in recent studies,
suggesting an increased interest in the multiple-use, though eight of the studies intended their ML
models to be of single-use. Furthermore, no frequency in the dual- or multiple-use is identified to be
repeated among the studies. Incorporating features such as BP progression throughout gestation may
enhance the predictive accuracy of ML models for PE risk assessment and limit the number of women
being falsely predicted to be at high risk of PE. Among the studies including when their ML models
were intended to be deployed for the first time, only one study intended on week 16 of gestation. The
remaining studies intended to use it within the timeframe of gestation week 11+0 to 14+1, making
aspirin treatment possible to be initiated on time.

Limitations of this review include comparing the studies even though they are trained and tested
on diverse data sets, population groups, and divergent feature selection schemes. Additionally, ML
model performance is listed in different subgroups of PE risk assessment and there is an absence of
a common predictive metric. Five studies only tested a single ML model which arguably affected the
results concerning which ML models had the best performance. Thus, not all studies could be
compared and taken into consideration.
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Appendix A

This appendix contains the features used to train the machine learning models in the different
studies included in this review. The features were identified within the paper of the study, or the
supplemental documents provided with the paper. The intent is to get a clear understanding of the
different features used to train machine learning models along with their performances illustrated in
Table 2.

Table 2. Features used within the Fetal Medicine Foundation (FMF) are listed together with the
features used to train the individual machine learning models within each of the included studies.
The following abbreviations were used: mean arterial pressure (MAP), placental growth factor (PIGF),
Uterine artery pulsatility index (UtA-PI), pregnancy associated plasma protein A (PAPP-A), blood
pressure (BP), and body mass index (BMI), multiples of median (MoM), and preeclampsia (PE).

Study Features used in the machine learning model

Maternal factors:
Age
Heigh
Weight
Racial origin
Conception method
Smoking
Chronic hypertension
Diabetes mellitus
Systemic lupus erythematosus
Antiphospholipid syndrome
Mother of the pregnant woman'’s history of PE
Parity
Previous had PE
Gestational age at prior birth

FMF competing risk model
(5]

Birthweight of the baby in last pregnancy
Years between birth
Estimated conception data
MAP
UtA-PI
PIGF
PAPP-A

Values taken at each of the following gestational week: 12, 16, 20, 24, 28, 32, 36, 38, 40, and 42:
Age
Smoking
Obese
Chronic hypertension
Parity-history PE
Treatment
Systolic BP
Diastolic BP
Hemoglobin
Creatinine
Protein/creatinine

A predictive Bayesian
network model for home
management of
preeclampsia [12]

Duration of completed pregnancy in weeks.

Toxemia
Machine learning approach Education (completed years of schooling)
for preeclampsia risk factors Highest completed year school or degree
association [13] Pregnancy outcome

Labor force status
Poverty
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Water retention/edema
Race
Anemia
Sex
Birth order
Birth weight
One-minute and five-minute APGAR scores
Month of pregnancy when prenatal care began
Number of prenatal visits
Weight gained during pregnancy
Medical risk factors for the pregnancy
Obstetric procedures performed
Delivery complications
Congenital anomalies and abnormalities
Mother's marital status
Number of live births now living
The parents' age
Hispanic origin
State/country of birth

Maternal age at delivery
Self-reported race
Relf-reported ethnicity (Hispanic or non-Hispanic)
Hospital (tertiary or community)
Gravidity
Parity
Gestational age at delivery
Gestational age at preeclampsia diagnosis
Last BMI before pregnancy
BMI at delivery
Maximal diastolic BP during pregnancy
Maximal systolic BP during pregnancy
Family history of chronic hypertension
Family history of preeclampsia
Interpregnancy interval
In vitro fertilization
Multiple gestation
Smoking before pregnancy
Drugs of abuse before pregnancy
Drugs of abuse during pregnancy
Alcohol use before pregnancy
High-risk pregnancy
Maximal BMI before pregnancy
Mean BMI in the period 0-14 gestational weeks
Systolic BP at first prenatal visit
Diastolic BP at first prenatal visit
History of pregestational diabetes
History of kidney disease before pregnancy
History of gestational diabetes in a prior pregnancy
History of a prior high-risk pregnancy
History of autoimmune disease
History of preeclampsia in a prior pregnancy

Preeclampsia Prediction
Using machine learning and
Polygenic Risk Scores From

Clinical and Genetic Risk

Factors in Early and Late

Pregnancies [14]

Family history of hypertension
Family history of PE
Minimal platelet count in the period 0-14 gestational weeks and in pregnancy before preeclampsia diagnosis or
delivery
Maximal uric acid in the period 0-14 gestational weeks and in pregnancy before preeclampsia diagnosis or delivery
Presence of proteinuria in the period 0-14 gestational weeks and in pregnancy before preeclampsia diagnosis or
delivery
Systolic BP polygenic risk score
Small for gestational age or intrauterine growth restriction
Last BMI during pregnancy before preeclampsia diagnosis or delivery
Maximal BMI before pregnancy
Prescription of antihypertensive medication during pregnancy
Diagnosis of gestational hypertension during pregnancy
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Maternal age
Nulliparity
Spontaneous pregnancy
Induction of ovulation
In-vitro fertilization
Gestation age at screening
Smoker
Alcohol intake
Other drugs (heroin or cocaine)
Pre-existing diabetes
Chronic hypertension

Lupus
Performance of a machine Antiphospholipid syndrome
learning approach for the Polycystic ovary syndrome
prediction of pre-eclampsia Hypothyroidism
ina Congenital heart disease
middle-income country [21] PE in a previous pregnancy

Fetal growth restriction in a previous pregnancy
Mother of the patient had PE
BMI
MAP
MAP (MoM)

UtA-PI
UtA-PI (MoM)

PIGF
PIGF (MoM)
PAPP-A
Gestational age at delivery

Maternal age
Maternal weight
Maternal height

Gestation age at screening

Racial origin

Medical history:
Chronic hypertension
Diabetes type I
Diabetes type II
Systemic lupus erythematosus/antiphospholipid syndrome
Validation of machine-learning Smoker
model for first-trimester Family history of PE
prediction of pre-eclampsia Method of conception:
using cohort from PREVAL Spontaneous
study. Based on the machine In-vitro fertilization
learning model trained by Use of ovulation drugs
Ansbacher-Feldman et al. [23] Obstetric history:
Nulliparous

Parous, no previous PE
Parous, previous PE

Interpregnancy interval

Aspirin
MAP
UtA-PI
Serum concentration of pregnancy-associated plasma protein-A (PAPP-A)
Serum concentration of PIGF

Maternal age
Self-reported race

Self-reported ethnicity (Hispanic or non-Hispanic
An interpretable longitudinal P ty (Hisp p )

preeclampsia risk prediction
using machine learning [15]

Private insurance
Public insurance
Alcohol use history
Smoking history
Illicit drugs history
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Gravidity
Parity
In vitro fertilization
Nulliparous
Interpregnancy interval
Multiple gestation
Maximal systolic BP:
0-14 weeks
0-20 weeks
0-24 weeks
0-28 weeks
0-32 weeks
0-36 weeks
0-39 weeks
0 weeks - admission
Maximal diastolic BP:
0-14 weeks
0-20 weeks
0-24 weeks
0-28 weeks
0-32 weeks
0-36 weeks
0-39 weeks
0 weeks - admission
Maximal heart rate:
0-14 weeks
0-20 weeks
0-24 weeks
0-28 weeks
0-32 weeks
0-36 weeks
0-39 weeks
0 weeks - admission
Maximal BMI:
0-14 weeks
0-20 weeks
0-24 weeks
0-28 weeks
0-32 weeks
0-36 weeks
0-39 weeks
0 weeks - admission
Maximal weight:
0-14 weeks
0-20 weeks
0-24 weeks
0-28 weeks
0-32 weeks
0-36 weeks
0-39 weeks
0 weeks - admission
Family history of chronic hypertension
Family history of preeclampsia
Family history of diabetes
Family history of heart disease
Family history of hyperlipidemia
Family history of stroke
Past history of diabetes
Past history of gestational diabetes
Past history of cesarean delivery
Past history of preterm birth
Past history of gynecologic surgery
Past history of asthma
Past history of chronic hypertension
Past history of gestational hypertension
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Past history of high-risk pregnancy
Past history of hyperemesis gravidarum
Past history of migraine
Past history of obesity
Past history of PE
Past history of pregnancy related fatigue
Past history of sexually transmitted disease
Chronic hypertension
Anemia during pregnancy
Headaches during pregnancy
Autoimmune disease
High risk pregnancy
Hyperemesis gravidarum
Pregnancy related fatigue
Oligohydramnios:

At week 39 and admission
Proteinuria:

0-14 weeks
0-20 weeks
0-24 weeks
0-28 weeks
0-32 weeks
0-36 weeks
0-39 weeks
0 weeks - admission
Maximal aspartate transferase:
0-14 weeks
0-20 weeks
0-24 weeks
0-28 weeks
0-32 weeks
0-36 weeks
0-39 weeks
0 weeks - admission
Maximal white blood count:
0-14 weeks
0-20 weeks
0-24 weeks
0-28 weeks
0-32 weeks
0-36 weeks
0-39 weeks
0 weeks - admission
Maximal alanine transaminase:
0-14 weeks
0-20 weeks
0-24 weeks
0-28 weeks
0-32 weeks
0-36 weeks
0-39 weeks
0 weeks - admission
Maximal serum calcium:
0-14 weeks
0-20 weeks
0-24 weeks
0-28 weeks
0-32 weeks
0-36 weeks
0-39 weeks
0 weeks - admission
Maximal serum creatinine:
0-14 weeks
0-20 weeks
0-24 weeks
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0-28 weeks
0-32 weeks
0-36 weeks
0-39 weeks
0 weeks - admission
Maximal eosinophils:
0-14 weeks
0-20 weeks
0-24 weeks
0-28 weeks
0-32 weeks
0-36 weeks
0-39 weeks
0 weeks - admission
Maximal serum glucose:
0-14 weeks
0-20 weeks
0-24 weeks
0-28 weeks
0-32 weeks
0-36 weeks
0-39 weeks
0 weeks - admission
Maximal hemoglobin:
0-14 weeks
0-20 weeks
0-24 weeks
0-28 weeks
0-32 weeks
0-36 weeks
0-39 weeks
0 weeks - admission
Maximal lymphocytes:
0-14 weeks
0-20 weeks
0-24 weeks
0-28 weeks
0-32 weeks
0-36 weeks
0-39 weeks
0 weeks - admission
Maximal platelets:
0-14 weeks
0-20 weeks
0-24 weeks
0-28 weeks
0-32 weeks
0-36 weeks
0-39 weeks
0 weeks - admission
Minimal red blood count:
0-14 weeks
0-20 weeks
0-24 weeks
0-28 weeks
0-32 weeks
0-36 weeks
0-39 weeks
0 weeks - admission
Antihypertensive medications:
0-14 weeks
0-20 weeks
0-24 weeks
0-28 weeks
0-32 weeks
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Predictive Performance of
machine learning-Based
Methods for the Prediction of
Preeclampsia-A Prospective
Study [24]

Dynamic gestational week
prediction model for pre-
eclampsia based on ID3
algorithm [16]

Development of a prediction
model on preeclampsia using
machine learning-based
method: a retrospective
cohort study in China [17]

0-36 weeks
0-39 weeks
0 weeks — admission

Maternal age
BMI
Medium:
Urban
Rural
Parity:
Nulliparity
Multiparity
Smoking status during pregnancy
The use of assisted reproductive technologies
Personal or family history of PE
Personal history of hypertension
Personal history of renal disease
Personal history of diabetes

Personal history of systemic lupus erythematosus/antiphospholipid syndrome

Hyperglycemia in pregnancy
Obesity
Interpregnancy interval
MAP (MoM)

UtA-PI (MoM)
PAPP-A (MoM)

PLGF (MoM)
Placental protein-13 (MoM)

Static parameters:
Multiple births
Spontaneous miscarriage history
History of hypertension in pregnancy
History of diabetes mellitus
Family history of hypertension
Preconception BMI
Dynamic parameters:
Gestational week
BMI during pregnancy
Systolic BP
Diastolic BP
Pulse pressure
MAP
Pulse waveform area parameters
Cardiac output
Cardiac index
Total peripheral resistance
Hematocrit
Mean platelet volume
Platelet count
Alanine aminotransferase
Aspartate aminotransferase
Creatinine
Uric acid
PIGF

Maternal age

Height

Weight

BMI
Parity
Method of conception
Previous diagnosis of hypertension
History of diabetes mellitus
History of gestational diabetes

History of PE
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Novel electronic health
records applied for prediction
of pre-eclampsia: Machine-
learning algorithms [18]

History of fetal growth restriction
MAP
[3-human chorionic gonadotropin
PAPP-A
Gestational age at screening

Chronic hypertension
Left uterine artery PI
Right uterine artery PI
Mean uterine artery PI

All features:
Maternal age
BMI
Mean BP
Maternal abdominal circumference
Gravidity
Parity
PE in a previous pregnancy
Prior cesarean delivery
Pregnancy interval
Nulliparity
Multifetal gestations
Assisted reproductive technology
Pre-pregnancy diabetes
Heart disease
Thyroid disease
Renal disease
Autoimmune diseases
Mental disorder
Uterine leiomyoma
Adenomyosis
Uterine malfunctions
History of seizure disorder
Family history of hypertension
Hemoglobin
White blood cell count
Platelet counts
Direct bilirubin
Total bilirubin
Alanine aminotransferase
I'-glutamyl transferase
Total protein
Albumin
Globulin
Fasting plasma glucose
Total bile acid
Creatinine
Serum urea nitrogen
Serum uric acid
Baseline risk features:
Nulliparity
Multifetal gestations
PE in a previous pregnancy
Pre-gestational diabetes
BMI
Maternal age
Assisted reproductive technology
Kidney diseases
Autoimmune diseases
Questionnaire features:
Family history of hypertension
Nulliparity
Prior cesarean delivery
Pregnancy interval
Multifetal gestations
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Assisted reproductive technology
Gravidity
Parity
Pre-gestational diabetes
Heart disease
Thyroid disease
Renal disease
Autoimmune diseases
Mental disorder
Uterine leiomyoma
Adenomyosis
Uterine malfunctions
History of seizure disorder
Maternal age
BMI

Maternal age
Height
weight

Blood pressure:
Mean systolic
Mean diastolic

Maximum systolic
Maximum diastolic
Race
Ethnicity:
Hispanic
Non-Hispanic
unknown
Gravida:
Nulliparous
Multiparous
Number of babies
Medical history:
PE
Assisted reproductive treatment
Chronic hypertension
Diabetes (type I or type II)

Obesity
Early prediction of Renal disease
preeclampsia via machine Autoimmune conditions:
learning [25] Systemic lupus erythematosus

Discoid lupus erythematosus
Systemic sclerosis
Rheumatoid arthritis
Dermatomyositis
Polymyositis
Undifferentiated connective tissue disease
Celiac disease
Antiphospholipid syndrome
Sexually transmitted diseases (human papillomavirus, chlamydia, genital herpes)
Hyperemesis gravidarum
Headache
Migraine
Poor obstetrics history
Poor obstetrics history
Medical history at 17 weeks of gestation:
Gestational diabetes
Anemia
High-risk pregnancy
Routine prenatal laboratory results:
Protein from urine
Glucose from urine
Platelet count
Red blood cells
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White blood cells
Creatinine
Hemoglobin
Hematocrit
Monocytes
Lymphocytes
Eosinophils
Neutrophils
Basophils
Blood type with Rh
Uric acid
Rubella
Varicella
Hepatitis B
Syphilis
Chlamydia
Gonorrhea
Intake of medication:
Aspirin
Nifedipine
Aldomet
Labetalol
Insulin
Glyburide
Prednisone
Azathioprine
Plaquenil
Heparin
Levothyroxine
Doxylamine
Acyclovir

Multivariable regression model:
Family history of PE
Country of birth
Method of conception
Gestational length
Maternal age
Height
Weight
Smoking in early pregnancy
Pre-existing diabetes mellitus
Chronic hypertension
Systemic lupus erythematosus
MAP
Backward selection model and RF model:

Clinical risk assessment in Gestational length first examination in weeks
early pregnancy for Maternal age
preeclampsia in nulliparous BMI
women: A population based MAP
cohort study [26] Capillary glucose

Protein in urine
Hemoglobin
Previous miscarriage
Previous ectopic pregnancy
Infertility duration
Family situation:
Single
Living together with partner
Other
Region of birth:
Sweden
Nordic countries (except Sweden)
Europe (except of Nordic countries)
Africa
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North America
South America
Asia
Oceania
Smoking 3 months before pregnancy
Smoking at registration
Snuff 3 months before pregnancy
Snuff at registration
Alcohol consumption three months before registration
Alcohol consumption at registration
Family history of PE
Family history of hypertension
Infertility:
Without treatment
Ovary simulation
In-vitro fertilization
Cardiovascular disease
Endocrine disease
Pre-existing diabetes
Thrombosis
Psychiatric disease
systemic lupus erythematosus
Epilepsy
Chronic hypertension
Morbus Chron/Ulcerous colitis
Lung disease or asthma
Chronic kidney disease
Hepatitis
Gynecological disease or operation
Recurrent urinary tract infections
Blood group

Demographic:
Age
Marriage
Family role
Member strata
Member type
International Classification of Diseases 10th Revision coded diagnoses:
A codes
B codes
C codes
D codes
E codes
F codes

Artificial intelligence-assisted G codes
prediction of preeclampsia: H codes
Development and external I codes
validation of a nationwide ] codes
health insurance dataset of K codes

the BPJS Kesehatan in L codes
Indonesia [19] M codes

N codes
Infection-related codes:
GO0, HOO, HO1, H10, H15, H16, H20, H30, H60, H65, H66, H67, H68, H70, 10, JO, J1, J2, J40, J41, J42, ]85, ]86, K12, K2, K35,
K36, K37, K5, K65, K67, K73, K80, K81, L0, M00, M01, M02, N7
Immune-related codes:
B20, D8, E10, G35, G61, G70, 10, J30, J31, J32, J35, J45, L.2, 50, M04, M05, M06, M15, M16, M17, M18, M19, M3, M65,
NO00, NO1, N03, N04
Nervous system-related codes:
A8,C7,G
Eye-related codes:
C69, HO, H1, H2, H3, H4, H5
Ear-related codes:
C30, D02, H6, H7, H8, H9
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Heat-related codes:
C38,12,13, 14, 15
Respiratory system-related codes:
Al,CO0,C3, ]

Digestive system-related codes:
A0, C0, C1, K0, K1, K3, K4, K5, K6
Skin and subcutaneous-related codes:

B0, B1, B8, C43, C44, L
Musculoskeletal system-related codes:
C40,C41, M
Urinary system-related codes:

C64, C65, C66, C67, C68, NO, N1, N2, N3
Reproduction system-related codes:

A5, A60, A61, A62, A63, A64, C51, C52, C53, C54, C55, C56, C57, C58, N7, N8
Liver and pancreas-related codes:

B15, B16, B17, B19, C22, C23, C24, C25, K7, K8
Breast-related codes:

C50, N6
Vascular-related codes:

11,17, 18

MAP
Uterine Pulsatility index
PAPP-A
Ethnicity
Weight
Height
Smoking
Ethnicity as a Factor for the Alcohol consumption
Estimation of the Risk for Previous PE
Preeclampsia: A Neural Conception:
Network Approach [20] Spontaneous
Ovulation drug
In-vitro fertilization
Medical condition of pregnant woman
Drugs taken by the pregnant woman
Gestation age
Crown rump length
Mother had PE
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