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Abstract: This paper presents the design of a robust speed controller for brushless DC motors (BLDCM) under 

field-oriented control (FOC). The proposed robust controller integrates extension theory (ET) and sliding mode 

theory (SMT) to achieve robustness. First, the speed difference between the speed command and the actual 

speed of the BLDCM, along with the rate of change of the speed difference, are divided into 20 interval 

categories. Then, the feedback speed difference and the rate of change of the speed difference are calculated for 

their extension correlation with each of the 20 interval categories. The interval category with the highest 

correlation is used to determine the appropriate control gain for the sliding mode speed controller. This gain 

adjustment tunes the parameters of the sliding surface in the SMT, thereby suppressing the overshoot of the 

motor speed. Because the sliding surface reaching law of the sliding mode controller (SMC) adopts the 

exponential approach law, the system’s speed response can quickly follow the speed command in any state 

and exhibit excellent load regulation response. The simplicity of this robust control method, which requires 

minimal training data, facilitates easy implementation. Finally, the speed control of the BLDCM is simulated 

using Matlab/Simulink software, and the results are compared with those of the SMC using the constant speed 

approach law. The simulation results demonstrate that the proposed robust controller exhibits superior speed 

command tracking and load regulation response compared to the traditional SMC. 

Keywords: extension theory; robust controller; brushless DC motor; field-oriented control; sliding 

mode controller; constant speed approach law; exponential approach law 

 

1. Introduction 

In recent years, the increasing demand for motor drive performance and efficiency in industrial 

applications has led to the widespread adoption of permanent magnet synchronous motors (PMSM) 

[1]. Within PMSMs, brushless DC motors (BLDCM) [2] are widely utilized in industry due to their 

high torque, compact size, and high efficiency. Given the stringent requirements for precision in 

speed and position control, field-oriented control (FOC) [3] is commonly employed for speed and 

position regulation. 

In the traditional FOC architecture, three proportional-integrated (P-I) controllers [4] are 

required, including a speed controller, a d-axis current controller, and a q-axis current controller. 

While these three controllers are relatively straightforward to design, significant variations in speed 

commands or load changes can adversely affect the performance of traditional P-I controllers. 

Therefore, numerous robust controllers have been introduced to improve control performance. 

However, these intelligent controllers face various challenges. For instance, sliding mode controllers 

(SMC) [5] tend to exhibit overshoot, while extension controllers [6] may face stability concerns if the 

operating point falls outside the neighborhood domain. Additionally, fuzzy controllers [7] often 

suffer from excessively long computation times. Additionally, from a practical implementation 

perspective, existing intelligent controllers are relatively difficult to realize and often fail to achieve 

the expected control performance. For example, controllers that combine fuzzy theory with sliding 

mode theory (SMT) [8] are particularly challenging to implement effectively. In contrast, the 

controller proposed in this paper requires relatively less computation, thereby reducing the 
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computational load on the digital signal processor. Additionally, due to its simple program structure, 

the controller parameters can be easily modified through programming to enhance system stability 

and robustness. This makes it well-suited for speed control of BLDCMs under varying speed 

commands and significant load changes. 

The control strategy proposed in this paper is based on ET [9] to determine the appropriate SMC 

gains, thereby altering the structure of the sliding mode function for faster and more stable sliding 

mode control response. First, the speed error between the motor’s speed command and its actual 

speed, along with the rate of change of the speed error, are used as features for ET. These features are 

divided into 20 interval categories based on their magnitude. The classical domain and neighborhood 

domain of ET are then used to establish an extension matter element model. The weights of the speed 

error and its rate of change are set according to their importance. The correlation degree between the 

speed error, its rate of change, and the interval categories are then calculated. The category with the 

highest correlation degree is selected, and the corresponding sliding mode function control gain is 

output. This gain modifies the sliding mode controller’s sliding surface function so that the original 

sliding surface function no longer has a fixed slope. Thus, by using ET to determine the gain of the 

sliding surface function and replacing the constant speed approach law of the SMC with an 

exponential approach law, rapid speed command tracking can be achieved. This approach not only 

optimizes the stability of the sliding surface but also mitigates the overshoot caused by the SMC. As 

a result, the motor’s speed response is not only faster but also more stable. 

2. BLDCM System 

The primary distinguishing feature of BLDCM compared to brushed DC motors is the absence 

of brushes for commutation. Instead, BLDCMs use electrical methods to detect the rotor position and 

control its speed. Therefore, magnetic components (Hall sensors) or optical encoders [10] must be 

integrated into the motor’s axis to provide feedback on the rotor’s position to the controller. This 

allows the controller to determine the current position of the motor rotor, serving as the basis for 

commutation control. 

2.1. Mathematical Model of BLDCM 

Establishing a mathematical model is a crucial step in the design of a controller for BLDCMs. 

Using the mathematical model of the motor as the core foundation, we can perform the analysis and 

judgment using ET and the modeling of the SMC. This mathematical model allows for the estimation 

of the controller parameter design values to determine whether the expected control performance 

can be achieved, thereby facilitating the design of the controller parameters. 

Figure 1 depicts the three-phase equivalent circuit of a BLDCM within a stationary reference 

frame. 
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Figure 1. Equivalent circuit of a three-phase BLDCM in a stationary frame. 

According to Kirchhoff’s voltage law, the relationship between the phase voltages and phase 

currents of a BLDCM can be expressed as Equation (1). 
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(1) 

Where: 

:an bn cnv v v、 、 are the phase voltages of phases a, b, and c respectively. 

:a b cR R R、 、 are the stator resistances of phases a, b, and c respectively. 

:an bn cni i i、 、 are the phase currents of phases a, b, and c respectively. 

:a b cL L L、 、 are the self-inductances of phases a, b, and c respectively. 

:ab bc acM M M、 、 are the mutual inductances between phases a, b, and c. 

:an bn cne e e、 、 are the back electromotive forces (EMF) of phases a, b, and c respectively. 

Assuming the motor is three-phase balanced, then 

a b cL L L L= = =  

ab bc acM M M M= = =  

 

(2) 
 

(3) 
By substituting Equations (2) and (3) into Equation (1), we obtain 
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(4) 

Since the motor is three-phase balanced, therefore ian+ ian+ian=0, we obtain 

an bn cnMi Mi Mi+ = −  
 

(5) 
Substituting Equation (5) into Equation (4), we obtain the state equation of the BLDCM as shown 

in Equation (6). 
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           −           

 
 

(6) 

Since the speed of the BLDCM is proportional to the back EMF, and the input current is 

proportional to the torque, the electromagnetic torque Te can be derived using the three-phase 

currents, back EMF, and rotor speed, as shown in Equation (7). 

an an bn bn cn cn

e

m

e i e i e i
T



+ +
=

 

 

(7) 

Where: 

:eT The electromagnetic torque generated by the motor. 

:m The mechanical speed of the motor. 

The mechanical equation of the BLDCM can be expressed as: 

m

e m L

d
T J B T

dt


= + +

 

 

(8) 

Where: 

:LT Represents the load torque. 

:J Represents the rotational inertia of the motor and load. 

:B Represents the coefficient of viscous friction of the motor and load. 

2.2. Dynamic Equations of the FOC System for BLDCMs 

FOC finds widespread application in motor drive systems, enabling both motor speed and 

position control with the same architecture. To implement FOC, it is necessary to detect the rotor 

position of the motor first, and then provide the switching control signals to the inverter [11] through 
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coordinate transformation. However, in the implementation process, analyzing the three-axis spatial 

coordinate system of a three-phase motor directly can be computationally challenging. Therefore, it 

is necessary to perform a coordinate transformation [12] to convert the original three-axis spatial 

coordinates into a two-axis spatial coordinate representation, making the calculations simpler and 

easier to implement. Hence, this section will focus on spatial coordinate transformation to explain the 

principles of FOC systems. 

Under ideal conditions, the voltage equation of a BLDCM in a three-phase synchronous 

stationary coordinate system is represented by Equation (9) [13]. 

0 0

0 0

0 0

an s an a

bn s bn b

cn s cn c

v R i
d

v R i
dt

v R i







       
       

= +
       
                

 

(9) 

Where: 

:sR Stator resistance of the three phases. 

:a b c  、 、 Magnetic fluxes of phases a, b, and c, respectively. 

The magnetic flux of a BLDCM is generated by the combination of the current passing through 

the stator windings and the permanent magnets on the rotor. Under ideal conditions, the magnetic 

field generated by the permanent magnets has a constant amplitude, indicating that the rotor’s 

relative position is fixed. Therefore, this magnetic field can be represented by a vector
f . The position 

of the stator is determined by the angle between the direction of the magnetic field orientation and 

the stator coordinate system. The flux is the projection of a constant flux vector f along the , ,a b c axis 

direction. The magnetic flux equation in the three-phase stationary coordinate system is represented 

as Equation (10). 
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       = + −
       
            

 +
  



 

 

(10) 

Where: 

:M is the mutual inductance between phase windings. 

:L is the self-inductance of each phase winding. 

:f is the flux produced by the permanent magnets. 

: is the angle between the rotor N pole and the axis of the a phase winding. 

:e is the synchronous speed of the motor. 

The three-phase stationary coordinate system can be transformed into a two-phase stationary 

coordinate ( , )   system through the Clarke transformation, as shown in Equation (11). 

0

0

s

s

v iR d

v iR dt

  

  





      
= +      
      

 
 

(11) 

The magnetic flux equation can be expressed as Equation (12). 

cos

sin

m

f

m

i i
L L
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   

  
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        
 

 

(12) 

By differentiating the magnetic flux Equation (12) and substituting it into Equation (11), the 

voltage equations for the two-phase stationary coordinate ( , )  system can be obtained, as shown in 

Equation (13). 

0 0

0 -0

s m

e

s m

v i iR L d

v i iR L dt

   

   






         
= + −         

         
 

 

(13) 
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After applying the Park transformation to the two-phase stationary coordinate ( , )  system, two 

dependent equations can be derived in the two-phase synchronous rotating coordinate ( , )d q system, 

as shown in Equation (14). The ( , )d q magnetic flux equations are then represented as shown in 

Equation (15). 

0d d ds e q

q q q e fe d s

v iR L d

v iL R dt



  

−        
= + +        
        

 
 

(14) 
 

 
0

0 0

d d d f

q q q

L i

L i

 



       
= +       

        

 
(15) 

From Equation (15), the torque equation for the two-phase synchronous rotating ( , )d q system 

can be derived, as shown in Equation (16). 

3 3
( ) [ ( ) ]

2 2 2 2
e d q q d f q d q d q

P P
T i i i L L i i  = − = + −   

(16) 
 

The torque equation for the two-phase synchronous rotating ( , )d q system can be formulated as 

Equation (17). 

2

m

e L

dP
T T J

dt


= +

 
 

(17) 

If the FOC method is adopted, we can set 0di = . Then, the voltage equations can be simplified to 

Equations (18) and (19). 

q

q s q e f

di
v R i L

dt
 = + +

 
 

d e qv Li= −  

 
(18) 
 
(19) 

From Equation (16), the torque equation can be expressed as Equation (20). 

3

2 2
e f q t q

P
T i K i= =  

 
 
(20) 

Where
3

2 2
t f

P
K  is the torque constant, and P is the number of poles. Using Equation (8), the motion 

equation for the BLDCM can be expressed as Equation (21) 
1m t

q m L

d K B
i T

dt J J J


= − −

 
 

(21) 

The equation derived from Equation (20) reveals that when employing FOC, controlling qi can 

regulate torque magnitude. Moreover, as shown in Equation (19), the d axis voltage is solely related 

to qi , effectively simplifying the control requirements for the BLDCM system architecture. When

0di = , it can be regarded as a separately excited DC motor, where the stator has only the quadrature 

( q axis) component, and the spatial vector of the stator magnetic flux coincides orthogonally with the 

spatial vector of the permanent magnet field. Figure 2 illustrates the block diagram of the FOC for 

the BLDCM. 
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Figure 2. FOC block diagram for the BLDCM. 

3. Proposed Intelligent Algorithm for Drive Control 

Due to the fixed parameter values of traditional P-I controllers, their control performance 

deteriorates when the speed command of the FOC system changes or when load variations occur, 

potentially leading to system divergence. 

Therefore, this paper proposes a speed controller that integrates ET with SMT, enabling the 

system to achieve faster speed response and possess self-adaptive capability [14]. The design process 

of the proposed intelligent controller that combines ET with SMC is described below. 

3.1. Extension Theory 

Extension Theory (ET) [6] was proposed by Chinese scholar Professor Cai Wen in 1983. It 

primarily explores the variability of things, examining the principles and methods for resolving 

contradictory problems from both qualitative and quantitative perspectives. The two core 

components of ET are matter element theory and extension mathematics. Matter element theory 

describes the possibilities of changes in things and the characteristics of matter element 

transformations, while extension mathematics relies on extension set and correlation function as the 

core of its calculations. 

ET represents information about things through the matter element model. It expresses the 

transformation relationships between the qualitative and quantitative aspects of things via matter 

element transformations. By utilizing correlation functions for discrimination, the theory helps 

understand the influence of qualitative and quantitative factors on things, thereby clearly presenting 

the degree of impact on the characteristics of things. 

3.1.1. Extension Matter Element Model 

In ET, the representation of information about things is achieved by expressing the things in 

terms of a matter element model, using a mathematical function as shown in Equation (22). 

( , , )R N c v=  (22) 

Where: 

:R The fundamental element describing an entity is referred to as matter element. 

:N Denotes the name of the entity. 

:c Represents the characteristics or features of the entity. 

:v The value of the feature of the entity. 
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In ET, if the feature of the matter element is not a single feature, it is represented by n features 

and their corresponding n feature values. Therefore, the feature can be expressed as
1 2[ , ,..., ]nc c c c= , 

and the feature values can be represented by
1 2[ , ,..., ]nv v v v= . Therefore, extensional function of 

matter elements can transform Equation (22) into a matrix-vector form, represented as Equation (23). 

1 1 1

2 2 2

, ,

n n n

R R c v

R c v
R

R c v

   
   
   = =
   
   
     

 

(23) 

3.1.2. Definition of Classical Domain and Neighborhood Domain in ET 

If the value range of a feature is defined as its classical domain
0 ,C a b=  , and it is contained 

within a neighborhood domain ,C d e=  , then
0C C . If point ĉ lies within an interval C , the

0 ,C a b=  corresponding matter element can be expressed as Equation (24). 

0 1 1 1

2 2 2

0 0

, , ,

, ,
( , , )

, ,

i i

n n n

C c a b

c a b
R C c v

c a b

  
 

 
 = =
 
 

     

 

(24) 

Where 
ic is the feature of

0C , and
iv is the feature value of

ic . As for C , the corresponding matter 

element
CR can be expressed as Equation (25). In this expression, jc is the characteristic value of C and 

jv  is the characteristic quantity of jc . 

1 1 1

2 2 2

, , ,

, ,
( , , )

, ,

C j j

n n n

C c d e

c d e
R C c v

c d e

  
 

 
 = =
 
 

    

 

(25) 

3.1.3. Distance and Rank Value 

In classical mathematics, the terms distance and rank value refer to the relationship between two 

points. However, in ET, these terms represent the distance relationship between a point ĉ in the real 

domain and an interval
0 ,C a b=  . Mathematically, this relationship can be expressed as Equation 

(26). 

0
ˆ ˆ( , )

2 2

a b b a
c C c

+ −
= − −

 
 

(26) 

In addition to considering the relationship between a point and an interval, it is also necessary 

to consider the relationship between a point and two intervals. Thus, assuming
0 ,C a b=  and

,C d e=  are two intervals in the real domain, and interval
0C is contained within C , the rank values 

of point ĉ , interval
0C , and interval C can be expressed as Equation (27). 

0

0

ˆ ˆ( , ) ( , )
ˆ( , , )

1

c C c C
D c C C

  −
= 

−

,

,

0

0

ˆ

ˆ

c C

c C



  

 

(27) 

3.1.4. Correlation Function 

If
0 ,C a b=  , ,C d e=  and

0C C , when the two intervals do not intersect at a common 

endpoint, their correlation function can be expressed as Equation (28). 

0

0

ˆ( , )
ˆ( )

ˆ( , , )

c C
K c

D c C C


=

 

 

(28) 
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In Equation (28), when ˆ ( ) / 2c a b= + , the function value reaches its maximum. Therefore, this 

correlation function can also be referred to as the elementary correlation function [15]. A schematic 

diagram is shown in Figure 3. Additionally, when ˆ( ) 1K c  − , it indicates that point ĉ is outside the 

interval C. Conversely, when ˆ( ) 0K c  , it signifies that point ĉ is within the interval
0C . However, if

ˆ1 ( ) 0K c−   , it implies that point ĉ is located within the extension domain. 

1

-1

d a b e

( ) / 2a b+

Extension 

domain

Extension 

domain

ĉ

ˆ( )K c

 

Figure 3. Schematic diagram of the elementary correlation function. 

3.2. Sliding Mode Controller Design 

While traditional P-I controllers can meet control performance requirements at specific 

operating points, their performance response is affected by load variations. Moreover, they are 

susceptible to changes in motor parameters and external disturbances, making them unsuitable for 

applications requiring high control performance. Furthermore, BLDCMs are nonlinear and strongly 

coupled multivariable systems. Consequently, to address the robustness [16] issues of traditional P-I 

controllers or their insufficient self-adaptive capability, several intelligent control algorithms have 

emerged. 

The variable structure control of SMCs exhibits lower dependence on motor models and 

demonstrates robustness against external load variations, system disturbances, and internal 

parameter changes. As a result, it can effectively drive the system along a predefined sliding mode 

trajectory, making it widely applicable in speed regulation and load disturbance rejection control of 

BLDCMs. 

3.2.1. State Variable Design 

In order to replace the traditional field-oriented speed control loop with a P-I controller, the 

mathematical equations for the d-q axis of the BLDCM can be derived from the matrix Equations (14) 

and (15), as shown in Equation (29). Since the BLDC motor used in this study is a surface-mounted 

(SM) rotor type, its d and q-axis inductance values are equal, denoted as
d q sL L L= = . 

d

d s d s e s q

q

q s q s e s d e f

di
v R i L L i

dt

di
v R i L L i

dt



  


= + −


 = + + +
  

 

(29) 

Due to the very small viscous friction coefficient, it can be neglected. Therefore, Equation (21) 

allows the motion equation for the SM rotor BLDCM to be simplified to Equation (30). 
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m

e L

d
J T T

dt


= −

 
 

(30) 

However, to achieve FOC, 0di = control strategy must be adopted. Therefore, Equation (31) can 

be derived from Equations (20), (29), and (30). 

1
( )

2

1 3
( )

2 2

q

s q m f q

s

m

L f q

di P
R i v

dt L

d P
T i

dt J

 





= − − +





= − +  

 

(31) 

Since the goal is to apply the SMC to speed loop control, the input signal to the controller is the 

difference between the speed command *

m and the actual feedback signal
m (i.e., the speed 

difference). The controller output is the q-axis command current *

qi aiming to achieve * 0m m − = and 

ensure that the rate of change of the speed difference 0m = . Based on this, the state variables of the 

BLDCM system can be defined as shown in Equation (32). 
*

1

2 1

m m

m

x

x x

 



 = −


= = −  

 
(32) 

By differentiating Equations (31) and (32), the rate of change of the state variables can be derived, 

as shown in Equation (33). 

1

2

1 3
( )

2 2

3

2 2

m L f q

f

m q

P
x T i

J

P
x i

J

 





= − = −


 = − = −
  

 

(33) 

Let
3

2 2

fP
D

J


= , then substituting it into Equation (33) for

2x yields Equation (34). 

2

3

2 2

f

m q q

P
x i Di

J


= − = − = −

 
 

(34) 

3.2.2. Sliding Surface Design 

In the SMC, the design objective of the controller is to ensure 
1 0x = and

2 0x = . Therefore, the 

sliding surface function [17]can be expressed in the form of Equation (35). 

 

1 2s Cx x= +  

 

(35) 

Where: 

:s sliding surface function. 
:C control gain. 

1,x  2 :x state variables. 

When 0s = , and let
2 1x x= , Equation (35) can be rewritten as Equation (36), and

1x and
2x can be 

solved, as shown in Equation (37). 

 

1 2 1 1+ 0Cx x Cx x= + =  

 

(36) 

1 1

2 1 1

(0)

(0)

ct

ct

x x e

x x cx e

−

−

 =


= = −

 (37) 

Equation (37) reveals that over time, the values of the state variables
1x and

2x decay exponentially 

to 0. Therefore, when =0s , which represents the designed sliding surface, and the sliding surface 

function
1 2s Cx x= + reaches the sliding surface 0s = , the system’s state variables will approach 0, thus 

achieving the goal of state variable control. 

3.2.3. Sliding Mode Approach Design 
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To ensure that the sliding surface function s reaches 0 at a certain time point (i.e., reaching the 

sliding surface) and remains stable, it is necessary to design an approaching law function [18]. 

From the design of the sliding surface, it is evident that to ensure 0s = , the output function u of 

the BLDCM speed controller must be designed to meet the control requirements. Hence, Equation 

(35) can be reformulated as Equation (38). 

 

1 2 2 2 2 qs Cx x Cx x Cx Di= + = + = −  

 

(38) 

Where, s represents the sliding mode approaching law function. 

Since *

qi is the output of the speed controller, the control force function is defined as qu i= , thereby 

transforming Equation (38) into Equation (39). 

According to Lyapunov’s second stability criterion [19], if there exists a continuous functionV , 

it must satisfy the following three conditions: 
(1) (0) 0

(2) ( ) 0

(3) ( ) 0

V

V s

V s

=



  

 

(40) 

Therefore, when the system is stable at the equilibrium point 0s = , it ensures that lim ( ) 0t s t→ =

. Furthermore, if we let 21

2
V s= , not only can we satisfy Conditions (1) and (2) in Equation (40), but 

we can also deduce the third condition through analysis, as shown in Equation (41). 

( )V x ss=  (41) 

Next, we design the approaching law function s such that ( ) 0V x ss=  . The common 

approaching law functions include the constant speed approaching law function and the exponential 

approaching law function, which can be respectively represented by Equations (42) and (43). 

 
sgn( ), 0s s = −   

 

sgn( ) , 0, 0s s qs q = − −    
Where, 

1, 0
sgn( )

1, 0

s
s

s


= 

− 
 

 

(42) 
 

(43) 

 

According to the two approaching law functions mentioned above, when sgn( ), 0s s = −  , 

from Equation (39), the controller’s
2 sgn( )u Cx s= − − can be obtained. This implies applying the 

control force function u to the motor model. Thus, the final response will stabilize at the origin of the 

designed sliding surface. 

3.2.4. Controller Output Design 

According to the aforementioned reaching law design, it can be inferred that the first two 

conditions of the Lyapunov function ensure lim ( ) 0t s t→ = [20]. However, if the constant speed 

approaching law function given by Equation (42) is adopted, regardless of whether 1t s= or 100t s=

0s = (reaching the sliding surface) can satisfy the requirements of the Lyapunov function. However, 

due to its consistent response speed, attempting to expedite the response would result in oscillations 

on the sliding surface. Conversely, to stabilize it on the sliding mode surface, it would take a 

significantly longer time to reach the sliding mode surface. This intricate delay in response time 

certainly diminishes its practical applicability in real-world applications. From Equation (43), it can 

be observed that the exponential approach law [21] differs from the former by the addition of an 

exponential approach term qs . When the s value of the exponential approach term is small (i.e., closer 

to the sliding surface), s qs= − is approximately 0. Therefore, it is dominated by sgn( )s− . Conversely, 

if this value is large (i.e., the approach distance is much greater than the sliding surface), the value of
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s qs= − will also be larger. In this case, it is dominated by the qs exponential approach term, thereby 

enhancing the speed response of approaching the sliding surface, enabling the system to approach 

the sliding surface more quickly. Therefore, the exponential approach law is more suitable for 

systems experiencing significant parameter disturbances or large load variations. 

In summary, compared to constant speed approach laws, the exponential approach law offers 

superior characteristics. Hence, the controller proposed in this paper adopts the exponential 

approaching law function for the sliding surface. However, it necessitates solving the exponential 

approach term ( qs− ) from Equation (43). In Equation (43), where s qs= − represents the exponential 

approach term, its solution is given by: 

 
(0) qts s e−=  

 

(44) 

In Equation (44), q represents the exponential term, thus Equation (43) is referred to as the 

exponential approaching law function. 

The exponential approaching law function is the selected approaching law function in this 

paper. From Equation (39), it can be inferred that *

qi is the output of the controller. Therefore, defining 

the controller function as qu i= , Equation (39) can be rewritten as Equation (45). 

 

2 sgn( )s Cx Du s qs= − = − −  

 

(45) 

Consequently, the expression for the control force function u can be written as shown in 

Equation (46). 

 2

1
sgn( )u Cx s qs

D
= + +

 

 
(46) 

From Equation (46), it can be inferred that the commanded current *

qi of the q axis can be 

represented as Equation (47). 

 *

2

1
sgn( )qi Cx s qs dt

D
= + +

 

 
(47) 

3.3. Feature Selection for ET Integrated SMC of the Drive System 

In order to achieve faster and more stable control response for the PNVF-90 BLDCM, ET is 

adopted in this paper for speed control. The control method involves partitioning the speed 

difference *ˆ( )r re  − between the motor’s actual speed and the commanded speed, as well as the 

rate of change of speed difference ( ( 1) ( ))e e n e n+ − , within the speed range (0 ~ 2000 )rpm into 20 

intervals (i.e., 20 states). The relationship between these intervals is illustrated in Figure 4. From 

Figure 4, it can be observed that intervals A1 to A4 exhibit larger oscillations due to the significant 

differences in speed commands, while categories A17 to A20 show smaller oscillations as the speed 

difference is smaller. For interval A1, it is observed that 0, 0e e  , and e increases continuously. 

Although e >0, its value decreases over time, and at point
1m 0e = . However, e reaches its maximum 

value at this point. This indicates that when the speed difference e is larger and the rate of change of 

speed difference e is smaller, the control effort for speed control needs to be significantly reduced. 

This trend can be observed in other intervals as well. Therefore, according to ET, the dynamic analysis 

chart in Figure 4, characterized by the speed difference and the rate of change of speed difference, is 

used to establish classical domain matter element models for 20 intervals (as shown in Table 1). The 

control gain values C corresponding to these 20 classical domain matter element models in the SMC 

are used to modify the dynamic model of the SMC. This adjustment alters the sliding surface function, 

enabling a faster transient response and suppressing the overshoot caused by the exponential 

approach law. Furthermore, the neighborhood domain is established using the maximum and 

minimum values of each feature’s classical domain, as shown in Equation (48). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 June 2024                   doi:10.20944/preprints202406.0661.v1

https://doi.org/10.20944/preprints202406.0661.v1


 12 

 

A1

+

+

A2

+

-

A3

-

-

A4

+

A5

+

+

A6

+

-

A7

-

-

A8

-

+

A9

+

+

A10

+

-

A11

-

-

A12

-

+

A13

+

+

A14

+

-

A15

-

-

A16

-

+

A17

+

+

A18

+

-

A19

-

-

A20

-

+

Category

interval

e

e

m1

e

t

-

 

Figure 4. Dynamic analysis chart of speed difference and variance rate of speed difference for 

BLDCM. 

Table 1. Extension matter element models and variation in control gain for 20 intervals of SMC. 

Interval Extension matter element model Variation of control gain
C  

A1 
1

1

0,2000

0,120480

C e
R

e

  
=  

    
0 

A2 
2

2

0,2000

120480,0

C e
R

e

  
=  

 −    
0 

A3 
3

3

2000,0

120480,0

C e
R

e

 −  
=  

 −    
0 

A4 
4

4

2000,0

0,120480

C e
R

e

 −  
=  

    
0 

A5 
5

5

0,1500

0,90360

C e
R

e

  
=  

    
15 

A6 
6

6

0,1500

90360,0

C e
R

e

  
=  

 −    
15 

A7 
7

7

1500,0

90360,0

C e
R

e

 −  
=  

 −    
15 

A8 
8

8

1500,0

0,90360

C e
R

e

 −  
=  

    
15 

A9 
9

9

0,1000

0,60240

C e
R

e

  
=  

    
30 
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A10 
10

10

0,1000

60240,0

C e
R

e

  
=  

 −    
30 

A11 
11

11

1000,0

60240,0

C e
R

e

 −  
=  

 −    
30 

A12 12

12

1000,0

0,60240

C e
R

e

 −  
=  

    
30 

A13 
13

13

0,500

0,30120

C e
R

e

  
=  

    
45 

A14 
14

14

0,500

30120,0

C e
R

e

  
=  

 −    
45 

A15 15

15

500,0

30120,0

C e
R

e

 −  
=  

 −    
45 

A16 
16

16

500,0

0,30120

C e
R

e

 −  
=  

    
45 

A17 
17

17

0,100

0,6024

C e
R

e

  
=  

    
60 

A18 
18

18

0,100

6024,0

C e
R

e

  
=  

 −    
60 

A19 
19

19

100,0

6024,0

C e
R

e

 −  
=  

 −    
60 

A20 
20

20

100,0

0,6024

C e
R

e

 −  
=  

    
60 

 

2000,2000
( , , )

120480,120480
c n n

C e
R C c v

e

 −  
=  

 −    

 
(48) 

3.4. Integration of ET and SMC for Speed Control 

To achieve both stability and fast response in motor speed control, this study utilizes ET to 

calculate the correlation between the motor speed command and the actual speed difference, as well 

as the rate of change of the speed difference. Simultaneously, it completes the calculation of the 

sliding surface function for the sliding mode controller. Initially, ET is employed to identify the 

feature with the highest correlation, categorizing it into the most appropriate feature category 

interval. This process is crucial for determining the optimal control gain function for the SMC. The 

SMC utilizes an exponential approach law to enhance the motor speed response. The control process 

involves computing the correlation using ET to classify the motor speed features, thereby 

determining the stable control gain of the sliding surface. This is crucial for suppressing overshoot 

caused by the exponential approach law of the SMC. 
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The test motor used in this study is the PNVF-90 permanent magnet BLDCM. Due to its rated 

speed of 2000rpm , the speed range is set 0 ~ 2000rpm . The state variable characteristics of the ET and 

SMC are the speed difference between the commanded speed and the actual feedback speed, and the 

rate of change of the speed difference, denoted as *ˆ
r re  = −  and /e de dt= . 

Therefore, based on the above analysis, the motor operating state is first determined using ET, 

which then decides the sliding mode controller gain C. The steps of the control process are described 

as follows. 

Step 1: Establish an extension matter element model using the interval categories of each speed 

difference and speed difference variation rate as features. 

1 1

.

2 2

( , )
( , , ) , 1,2,3,..., 20

( , )
g

C e a b
R C c v g

e a b

 
= = = 

   

 
(49) 

Step 2: Input the two features of the speed difference e and the speed difference variation rate e

to be classified, and establish a matter element model. 

1

2

new new

new

new

C e v
R

e v

 
=  
   

 
(50) 

Step 3: Calculate the correlation function gjK between the input features and each interval 

category using Equation (28) based on the speed difference e and speed difference variation rate e . 

Step 4: Set the weight values
1W and

2W for each feature to represent their importance. According 

to Equation (32), the SMC adjusts the sliding surface functions based on the speed difference variation 

rate. Therefore, the weights are set to
1W =90% and

2W =10%, with
1W +

2W =1 (i.e., 100%). 

Step 5: Calculate the correlation degree between the feature values and each interval category. 
2

1

, 1,2,3,..., 20g j gj

j

W K g
=

= =
 

 
(51) 

Step 6: Normalize the correlation degrees for each interval category using Equation (52), 

ensuring that the correlation degrees fall within the range of <-1,1>. This increases the sensitivity of 

the correlation degrees, facilitating category classification. 

max

max

, 0

, 0

g'

g g

g'

g g

if

if


 




 




= 





= 
−

  

 

(52) 

In Equation (52),
max and

max− represent the maximum and minimum correlation degrees for 

each interval category, respectively. 

Step 7: Identify the interval category to which the speed difference e and speed difference 

variation rate e belong by determining the maximum correlation degree from the calculations. Based 

on the identified category, determine the change C in the sliding mode controller’s control gain and 

output it to the SMC to adjust the sliding surface function. The new control gain
newC can be expressed 

by Equation (53). 

 

new oldC C C= +  
 

(53) 

Step 8: After determining the operating condition category using ET, the control gain C of the 

sliding surface in Equation (47) can be determined to adjust the sliding surface function s . 

Step 9: Adjusting the sliding surface function ensures that the exponential approach law does 

not result in excessive overshoot, and the system approaches the sliding surface at a rate determined 

by the exponential approach law. 

Step 10:Once the system has tracked onto the sliding surface, the final *

qi output is determined by 

Equation (47). 
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4. Simulation Results 

Figure 5 shows the speed response waveforms obtained from Matlab/Simulink simulation for 

different controllers as the speed command rises from 0 rpm to 2000 rpm. Under the same conditions 

(control gain of :C 60, exponential approach parameter of :q 2000, constant speed approach 

parameter of  : 2000), it can be observed that the sliding surface function determined using ET 

changes with the speed difference and speed difference variation rate. This enables the suppression 

of overshoot caused by the SMC adopting the exponential approach law. From the simulation results, 

it is evident that only the sliding mode controller adopting the exponential approach law exhibits 

instances of overshoot. However, by utilizing ET to calculate the gain of the SMC, it is possible to 

effectively suppress the overshoot caused by the exponential approach law. Therefore, this paper will 

compare the control performance of speed control for a BLDCM using two different controllers: one 

combining ET with the exponential approach law of the SMC and the other utilizing the constant 

speed approach law of the SMC. 

 

Figure 5. Comparison of the speed response between the proposed robust controller and the sliding 

mode controller using only the exponential approach law. 

Figures 6 to 9 illustrate the speed control response waveforms obtained from simulations under 

different speed variations and load disturbances for the SMC employing the constant speed approach 

law (simulation parameters: control gain C = 60; constant speed approach parameter  = 2,000,000) 

and the proposed robust controller combining ET with the exponential approach law of the SMC 

(simulation parameters: exponential approach parameter q = 2,000; constant speed approach 

parameter  = 2,000). 
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Figure 6. Comparison of speed control response between the proposed robust controller and the SMC 

employing the constant speed approach law (speed command 0 2000rpm→ , and at 0.25 seconds, 

load changes from 0 16→ N-m). 

 

Figure 7. Comparison of speed control responses between the proposed robust controller and the 

SMC using constant speed approach law (speed command1000rpm increases to 2000rpm after 0.15 

seconds, and at 0.25 seconds, load changes from 0 16→ N-m). 

 

Figure 8. Comparison of speed control responses between the proposed robust controller and the 

SMC using constant speed approach law (speed command 2000rpm decreases to1000rpm after 0.15 

seconds, and at 0.25 seconds, load changes from 0 16→ N-m). 
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Figure 9. Comparison of speed control response between the proposed robust controller and the SMC 

employing the constant speed approach law (speed command 2000rpm with load change from

0 16→ N-m at 0.15 seconds, and at 0.25 seconds, load change from16 4→ N-m). 

From the simulation results in Figures 6 to 9, it is observed that the robust controller proposed 

in this paper, which combines ET with SMC using exponential approach law, exhibits better dynamic 

response and steady-state response in tracking speed commands compared to the SMC with constant 

speed approach law. Additionally, under load variations, the speed recovery response of the 

proposed robust controller not only has a smaller recovery amplitude but also a shorter recovery 

time, and it reaches a steady state. Therefore, compared to the traditional SMC using constant speed 

approach law, the robust controller proposed in this paper achieves better speed control response 

due to its self-adaptive capability. 

5. Conclusion 

This paper combines ET with the exponential approach law of a SMC, replacing the traditional 

P-I speed controller used in FOC for BLDCM speed control. The proposed robust controller 

determines the control gain of the SMC by integrating ET, thereby adjusting the parameters of the 

sliding surface function. This approach suppresses the overshoot caused by the SMC using only 

exponential approach law, while also addressing the issue of slower response speed in traditional 

SMCs. Therefore, it improves performance in speed command tracking and load regulation response. 

Additionally, the proposed control method does not require extensive computation or learning data, 

making it easy to implement. 
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