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Using Cliff Delta 
Zdeněk Kala 

Institute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, 602 00 Brno, 
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Abstract: This paper introduces innovative sensitivity indices based on Cliff's Delta for global sensitivity 
analysis of structural reliability. These indices build on Sobol's method, using binary outcomes (success or 
failure), but avoid the need to calculate failure probability Pf and the associated distributional assumptions of 
resistance R and load F. Cliff's Delta, originally for ordinal data, evaluates the dominance of resistance over 
load without specific assumptions. The mathematical formulations for computing Cliff's Delta between R and 
F quantify structural reliability by assessing the random realizations of R > F using a double-nested-loop 
approach. The derived sensitivity indices, based on the squared value of Cliff's Delta δ𝐶𝐶

2 , exhibit properties 
analogous to those in Sobol's sensitivity analysis, including first-order, second-order, and higher-order indices. 
This provides a comprehensive framework for evaluating the contributions of input variables and their 
interactions on structural reliability. This method is particularly significant for FEM applications, where 
repeated simulations of R or F are computationally intensive. The double-nested-loop algorithm of Cliff's Delta 
maximizes the extraction of information about structural reliability from these simulations. However, the high 
computational demand of Cliff's Delta is a disadvantage. Future research should optimize computational 
demands, especially for small Pf, where the inner loop may often be unnecessary. 

Keywords: Sensitivity analysis; Cliff delta; reliability analysis; importance measure; failure probability; 
uncertainty 
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1. Introduction 

Global sensitivity analysis (GSA) focuses on attributing the uncertainties of model outputs, or 
related performance indicators, to their inputs, thereby assessing the impact of input uncertainties on 
outputs or performance indicators [1,2]. Various GSA methods have been developed for this purpose 
[3,4]. These methods include the screening method [5,6], variance-based methods [7,8], moment-
independent methods [9,10], and derivative-based methods [11,12]. Among these, variance-based 
sensitivity indices, also known as Sobol’ indices [7,8], are particularly notable for their mathematical 
elegance in measuring the individual, interaction, and total contributions of each input to the model 
output uncertainty, see, e.g. [13,14]. 

In the limit state method, probabilistic reliability analysis is based on the estimation of the failure 
probability [15]. Sobol' indices have been widely used in structural reliability analysis to pinpoint 
variables that significantly influence failure probability [16,17]. These sensitivity indices, which focus 
on failure probability Pf, are derived from the variance decomposition of a binary function 
representing failure and success [16,17]. Fort et al. [18] expanded on Sobol's sensitivity indices by 
introducing a contrast function in place of variance, allowing the indices to be oriented towards 
variance, probability, and quantile. This approach maintains the non-negative property of the indices 
and ensures that their sum equals one, as in traditional Sobol sensitivity analysis. Extending GSA to 
Pf and design quantile represented a significant advancement in civil engineering, as these quantities 
are crucial in structural reliability assessments [19,20]. 
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The development of GSA methods focused on reliability demands precise estimation of Pf [21]. 
However, the complexity of mathematical models and the difficulty of uncertainty propagation using 
sampling-based methods such as Monte Carlo (MC) simulations, due to the large number of runs 
required, present significant challenges [22]. Nonlinear finite element models are particularly 
demanding on CPU time [23], which further complicates the process of structural reliability 
estimation, see, e.g., [24,25]. To ensure the most accurate estimate of Pf, it is essential to develop 
methods that provide precise Pf estimates while minimizing the computational costs associated with 
repeated calls to the computational model [26,27]. 

The computational burden can be reduced by using metamodels, also known as surrogate 
models, which approximate the behavior of complex models with simpler ones [28,29]. Methods such 
as polynomial response surface [30,31], response surface based multi-fidelity model [32], polynomial 
chaos expansion (PCE) [33,34], Gaussian process [35,36], Kriging [37,38], and neural network 
[39,40,41] are used to the creation of such metamodels. While the use of metamodels significantly 
reduces computational burden by approximating complex models with simpler ones, there are some 
critical drawbacks to this approach [42,43,44]. Despite the efficiency of new meta-models in sampling 
[45,46], traditional (quasi-) Monte Carlo methods remain the primary choice for practical sensitivity 
analysis [3,4]. 

Existing research frequently explores the rate of advancements across various Monte Carlo 
based reliability applications [47,48], but there is a notable lack of studies focusing on the implications 
of these advancements for enhancing the efficiency of reliability-oriented global sensitivity analyses 
(GSAs). Ensuring the accurate estimation of failure probability Pf with the available number of 
simulations is critical because it directly influences reliability assessments and decision-making 
processes. More accurate Pf estimation is advantageous when using both the original model and the 
metamodel, depending on the available computational resources. 

The solution proposed in this article involves adopting an alternative measure of structural 
reliability based on Cliff's Delta [48], which can be calculated using double-nested-loop simulations. 
This approach enhances the precision of Pf estimation without requiring additional computational 
effort, offering a robust alternative to traditional metamodel-based GSA. By maximizing the utility 
of existing simulations, this method ensures that reliability analyses are both more accurate and 
computationally efficient. 

2. Cliff Delta 

Cliff delta, denoted as δC, was initially devised by Norman Cliff, primarily for handling ordinal 
data [49]. It serves as a metric to assess the frequency with which values from one distribution exceed 
those in another distribution. A key feature of δC is that it does not necessitate any specific 
assumptions regarding the distributions’ form or variability. 

The formula for computing the sample estimate of δC is expressed as:  

[ ] [ ]
nm

yyyym
i

n
j jiji

C ⋅

∑ ∑ <−>
= = =1 1δ , where δC ∈ [–1,1].  (1) 

In this equation, the two distributions are characterized by sizes n and m, with respective 
elements yi and yj. Here, the notation [⋅][⋅] refers to the Iverson bracket notation, resulting 1 if the 
condition within the brackets holds true, and 0 otherwise. This statistical approach allows for an 
intuitive comparison of two distributions by quantifying the dominance of one distribution over the 
other. 

Building upon the foundational description of δC, this measure is specifically applied to assess 
the relationship between resistance R and load force F within a framework of structural reliability. In 
the limit state, a structure is reliable if R ≥ F, otherwise failure occurs [19]. Let the difference between 
R and F be denoted as 

Z = R – F, (2) 
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where R and F are statistically independent random variables. In the Monte Carlo simulations, 
these variables are represented as arrays R and F, corresponding to resistance and force, respectively. 
Cliff's delta, δC, is utilized to quantitatively evaluate the extent to which values of resistance exceed 
or fall below those of force, thereby providing fundamental insights into system reliability. 

Assuming arrays R and F are of equal size, with n entries each, the formula for calculating δC is 
simplified to: 

[ ] [ ]
2

1 1

n

FRFRn
i

n
j jiji

C
∑ ∑ <−>

= = =δ , where δC ∈ [–1,1]. (3) 

In this expression, Ri and Fj represent the i-th and j-th entries in the R and F arrays, respectively, 
denoting random realizations of resistance and force. The Iverson brackets, [⋅][⋅], return 1 when the 
enclosed condition is true and 0 otherwise. This formulation facilitates a direct comparison between 
resistance and force across all sampled scenarios. 

The estimation of δC between the measurements of resistance and force provides a metric 
quantifying the frequency with which resistance values surpass those of force. Employed as a 
statistical tool, this measure assesses how frequently resistance can withstand or exceed applied 
forces. 

3. Sensitivity Measures of Cliff's Delta  

Although Cliff's delta has been applied in numerous studies, see e.g. [50,51,52,53,54], its 
utilization in global sensitivity analysis of reliability is absent. This chapter demonstrates that the 
sensitivity measures based on the squared value of Cliff's delta, δ𝐶𝐶

2 , exhibit properties similar to 
variance in Sobol's sensitivity analysis [7,8], oriented to reliability [16,17]. 

3.1. Approximation of Failure Probability with Cliff's Delta in Sensitivity Analysis 

In the limit state, a structure is considered reliable if R ≥ F; otherwise, failure occurs. The 
probability of failure Pf can be defined as the overload probability that F > R (i.e., Z < 0). The failure 
probability can be expressed as the mean value of the binary reliability function of the Bernoulli 
distribution, where 1 occurs if Z < 0, and 0 otherwise: 

( ) ( )010 <=<= Zf EZPP , (4) 

where: 

Z
ZZ

Z 2
1 0

−
=< . (5) 

The conventional measure of reliability is 1−Pf. The variance of the Bernoulli distribution of the 
random variable 1Z < 0 can be written as: 

( ) ( )ffZ PPV −=< 11 0 . (6) 

The second moment is a function of Pf, which is useful for the formulation of Sobol sensitivity 
indices, computable through the estimation of the conditional realizations of Pf [21]. If the variance 
V(1Z<0) is used in the decomposition within Sobol sensitivity analysis, the first-order sensitivity index 
of the variance function 1Z<0 can be expressed as: 
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The concept of sensitivity analysis based on Cliff's Delta is predicated on the assumption that 
Cliff's Delta can be expressed as 

( ) ( ) ( ) fffC PPPZPZP 21100 −=−−=<−>=δ . (8) 

The failure probability Pf can be calculated using Cliff's Delta as follows: 
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Similarly, the second moment can be approximated and written as a function of Cliff's Delta as: 
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Substituting this into the Equation (7), the Sobol sensitivity index can be expressed using δC as: 
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This formulation provides an alternative method for calculating the sensitivity index, which 
carries all the advantages and disadvantages associated with the estimation of Cliff's Delta compared 
to failure probability. 

3.2. Sensitivity Indices Based on Cliff Delta 

In the development of sensitivity indices for the evaluation of structural reliability, the use of the 
squared measure of Cliff's delta, δ𝐶𝐶

2 , has been proposed. This chapter delineates the formal definitions 
of these indices, categorized from first to higher orders. The sensitivity indices are computed as ratios 
of differences normalized by a constant, 1-C, where C0 is defined as square of Cliff's delta, δ𝐶𝐶

2 . 

2
0 CC δ= , (12) 

where δ𝐶𝐶
2  represents the measure calculated when all input random variables, X1, X2,..XM, of R 

and F are random. 
The first-order sensitivity index, Si, is defined to quantify the effect of a single variable Xi on the 

change observed in the squared Cliff's delta, δ𝐶𝐶
2 . It is calculated as follows: 

( )
0

0
2

1 C
CXE

S iC
i −

−
=

δ
. (13) 

In Equation (13), having frozen one potential source of variation (Xi), the resulting ( )iC XE 2δ  will 
be higher than the corresponding total or unconditional Cliff's delta, where C0=δ𝐶𝐶

2 . For example, if Xi 
were the sole source of change in the distance between R and F, fixing it to *

ix would result in

( )*2
iiC xX =δ =1. 

The second-order sensitivity index, Sij, extends the analysis to pairs of variables, evaluating the 
joint effect of Xi and Xj on the change of δ𝐶𝐶

2 . This index is expressed as: 

( )
ji
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ij SS
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. (14) 

Similarly, the third-order index, Sijk, considers the combined influence of three variables Xi, Xj, 
and Xk. It is calculated by: 

( )
jkikijkji

kjiC
ijk SSSSSS

C
CXXXE

S −−−−−−
−

−
=

0

0
2

1
,,δ . (15) 

Other Cliff's sensitivity indices, which quantify higher-order interaction effects, are defined 
analogously. The sensitivity index of the last order can be expressed as follows: 
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where E(δ𝐶𝐶
2|X1, X2,…,XM)=1 is ensured due to the nature of Cliff's delta, which assumes a value 

of either 1 or -1 when all input random variables are fixed. Consequently, each element in the array 
R adopts a consistent identical value denoted as v1, and similarly, every element in the array F 
maintains another consistent identical value, denoted as v2. It should be noted that these constants v1 
and v2 are generally different. 

The sum of all indices equals one. This characteristic is guaranteed by the computation of the 
last order sensitivity index, as shown in Equation (16), which is derived from the difference between 
1 and the sum of all lower order sensitivity indices. 

1... ...123 =++∑ ∑ ∑+∑ ∑+∑
> >>

M
i ij jk

ijk
i ij

ij
i

i SSSS . (17) 

The non-negativity of sensitivity indices is proven due to their association with variance, see 
Equation (10), and the Sobol decomposition of variance. The fixing multiple input variables typically 
leads to a higher value of δ𝐶𝐶

2  (with a limit of one in the last order sensitivity index) compared to a 
constant C0. The properties of sensitivity indices based on Cliff's delta and their comparison with 
classical Sobol sensitivity analysis will be further explored in later chapters. 

3.3. Sensitivity Indices Based on Failure Probability 

The impact of input variables on the failure probability Pf can be analyzed using sensitivity 
analysis based on contrast functions [18]. Unlike Sobol's sensitivity analysis, contrast-oriented 
sensitivity analysis employs a contrast function, whose minimizer is of primary interest [55,56]. Fort 
[18] demonstrates that employing the quadratic contrast function, which calculates the mean of the 
squared deviations from the average, results in the well-known Sobol sensitivity indices [7,8]. In 
reliability-oriented sensitivity analysis, the mean value is considered as the failure probability Pf as 
the first moment of the binary reliability function Pf = E(1Z<0), while the variance, upon which Sobol's 
sensitivity analysis is based, is considered as the second moment of the binary reliability function 
V(1Z<0) = Pf (1- Pf). 

The first-order sensitivity index, Ci, quantifies the main effect of a single variable Xi on the 
variance of the binary reliability function: 

( )( )
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In this equation, the freezing of the source of variation Xi affects Pf. The sensitivity index Ci 
indicates by how much one could reduce, on average, the output variance of the binary function 1Z<0 
if Xi could be fixed. Hence, it is a measure of the main effect. 

The second-order sensitivity index, Cij, measure the pair effects of Xi and Xj on the variance of 
binary function 1Z<0 . This index can be write as: 

( )( )
( ) ji

Z

jiZ
ij SS

V
XXEV

C −−=
<

<

0

0

1
 ,1 . (19) 

Similarly, the third-order index, Cijk, considers the combined influence of three variables Xi, Xj, 
and Xk, calculated by: 

( )( )
( ) jkikijkji

Z

kjiZ
ij SSSSSS

V
XXXEV

C −−−−−−=
<

<

0

0

1
 ,,1 . (20) 

Higher-order contrast sensitivity indices, which quantify higher-order interaction effects, are 
defined analogously. The sum of all sensitivity indices equals one.  
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The non-negativity of sensitivity indices is guaranteed by their derivation from Sobol's 
sensitivity analysis [6,7,8], see also [19,21]. 

4. The case study 

In the case study, the new sensitivity indices are compared with the results of Sobol sensitivity 
analysis using a simple example. In Equation (2), the resistance can be considered as:  

R =  X1·X2+X2·X3+K, (22) 

where K is constant. The load force is considered as 

F = X4·X5. (23) 

All input random variables, X1, X2,…,X5, follow a Gaussian probability density function with a 
mean value of zero and a standard deviation of one. 

Table 1 presents the estimated values of C0 =δ𝐶𝐶
2 , where δ𝐶𝐶  is obtained using n = 12,000 runs of 

the Latin Hypercube Sampling (LHS) method [57,58]. The conditional values of δ𝐶𝐶  are estimated 
using double-nested-loop computation of LHS method. When a single input variable, Xi, is fixed, it 
is sampled using n=12,000 runs, and for each realization, δ𝐶𝐶  is calculated again using n=12,000 runs 
of the LHS method. This numerical procedure is analogous to Sobol [7,8], but the sensitivity 
measurement is not based on variance but on Cliff's delta. In computing of Si, the computational 
complexity of E(δ𝐶𝐶

2|Xi) is n2=144,000,000. 

Table 1. Average values of δ𝐶𝐶
2  for sequentially fixed input variables. 

Conditional Mean of δ𝐶𝐶
2  K=0 K=1 K=2 K=3 K=4 

C0 =δ𝐶𝐶
2  0 0.3150 0.6504 0.8323 0.9221 

E(δ𝐶𝐶
2|X1) 0 0.3223 0.6556 0.8355 0.9240 

E(δ𝐶𝐶
2|X2) 0 0.3508 0.6745 0.8430 0.9266 

E(δ𝐶𝐶
2|X3) 0 0.3223 0.6556 0.8355 0.9240 

E(δ𝐶𝐶
2|X4) 0 0.3284 0.6576 0.8371 0.9239 

E(δ𝐶𝐶
2|X5) 0 0.3284 0.6576 0.8371 0.9239 

E(δ𝐶𝐶
2|X1, X2) 0.1803 0.4633 0.7270 0.8664 0.9367 

E(δ𝐶𝐶
2|X1, X3) 0 0.3509 0.6746 0.8432 0.9267 

E(δ𝐶𝐶
2|X1, X4) 0 0.3362 0.6628 0.8413 0.9265 

E(δ𝐶𝐶
2|X1, X5) 0 0.3362 0.6628 0.8413 0.9265 

E(δ𝐶𝐶
2|X2, X3) 0.1803 0.4633 0.7270 0.8664 0.9367 

E(δ𝐶𝐶
2|X2, X4) 0 0.3704 0.6825 0.8478 0.9286 

E(δ𝐶𝐶
2|X2, X5) 0 0.3704 0.6825 0.8478 0.9286 

E(δ𝐶𝐶
2|X3, X4) 0 0.3370 0.6628 0.8392 0.9252 

E(δ𝐶𝐶
2|X3, X5) 0 0.3370 0.6628 0.8392 0.9252 

E(δ𝐶𝐶
2|X4, X5) 0.2581 0.4820 0.7238 0.8616 0.9326 

E(δ𝐶𝐶
2|X1, X2, X3) 0.4145 0.6274 0.8169 0.9133 0.9604 

E(δ𝐶𝐶
2|X1, X2, X4) 0.1918 0.4852 0.7357 0.8713 0.9385 

E(δ𝐶𝐶
2|X1, X2, X5) 0.1918 0.4852 0.7357 0.8713 0.9385 

E(δ𝐶𝐶
2|X1, X3, X4) 0 0.3702 0.6827 0.8481 0.9287 

E(δ𝐶𝐶
2|X1, X3, X5) 0 0.3702 0.6827 0.8481 0.9287 

E(δ𝐶𝐶
2|X1, X4, X5) 0.2644 0.4923 0.7303 0.8664 0.9356 

E(δ𝐶𝐶
2|X2, X3, X4) 0.1925 0.4844 0.7363 0.8722 0.9395 

E(δ𝐶𝐶
2|X2, X3, X5) 0.1925 0.4844 0.7363 0.8722 0.9395 

E(δ𝐶𝐶
2|X2, X4, X5) 0.3151 0.5425 0.7561 0.8760 0.9393 

E(δ𝐶𝐶
2|X3, X4, X5) 0.2649 0.4928 0.7298 0.8644 0.9343 
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E(δ𝐶𝐶
2|X1, X2, X3, X4) 0.4630 0.6677 0.8346 0.9231 0.9648 

E(δ𝐶𝐶
2|X1, X2, X3, X5) 0.4630 0.6677 0.8346 0.9231 0.9648 

E(δ𝐶𝐶
2|X1, X2, X4, X5) 0.5361 0.6802 0.8236 0.9083 0.9539 

E(δ𝐶𝐶
2|X1, X3, X4, X5) 0.3123 0.5449 0.7569 0.8768 0.9397 

E(δ𝐶𝐶
2|X2, X3, X4, X5) 0.5361 0.6802 0.8236 0.9083 0.9539 

E(δ𝐶𝐶
2| X1, X2, X3, X4, X5) 1 1 1 1 1 
1 Table 1 presents the average values of δ𝐶𝐶

2  for various fixed input variables, computed using the LHS method 
with n=12,000 runs. The conditional values of δ𝐶𝐶

2  are estimated using a double-nested-loop computation. 

In the Table 1, the data in the last column represent a set of values that are highly consistent, 
with low variance. Most values range between 0.924 and 0.940, with a last exceptions approaching 
1.000. In Table 1, the value 1 is always present on the last row, ensuring that the sum of all indices 
equals one. 

The column with K=0 exhibits values close to zero, indicating the absence of dominance of R 
over F in the observations of δ𝐶𝐶

2 . Conversely, values far from zero suggest a dominance of R over F 
in the observation of δ𝐶𝐶

2 .  
In general, the strong influence of an input variable or variables occurs when the mean value of 

the fixed realizations of δ𝐶𝐶
2  is significantly different from C0, see Equations (13), (14), and (15). It can 

be noted that the accuracy of estimation of sensitivity indices is lowest for K=4, where the conditioned 
realizations of δ𝐶𝐶

2  in the last column of Table 1 are very consistent, with low variance, and are 
minimally different from C0. 

The influences of input variables and their groups, as expressed by sensitivity indices, are 
displayed in Figures 1, 2 and 3. 

. 

Figure 1. Cliff's Delta sensitivity indices for K=0. 

In the Figure 1, all first-order sensitivity indices are zero. The second-order sensitivity indices 
S12=0.18 and S23=0.18 have the same value, which is due to the nature of Equation 10 and the same 
characteristics of the input random variables. The dominant influence is the interaction effect of 
variables X4 and X5, as indicated by the value S45=0.26. 

. 

Figure 2. Cliff's Delta sensitivity indices for K=0 and K=0. 

Increasing the value of the constant K distances the random realizations of resistance R from 
load action F and enhances the value of Cliff's Delta. The interaction effects indicated by sensitivity 
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indices S12, S23, and S45 decrease with increasing K, while the proportion of third, fourth, and fifth-
order sensitivity indices increases, see Figure 2 and 3. 

. 

Figure 3. Cliff's Delta sensitivity indices for K=3 and K=4. 

In sensitivity analysis based on Cliff's Delta, the impact of input variables on the observed 
changes in δ𝐶𝐶

2  is quantified using sensitivity indices of the first order and higher orders. To derive 
meaningful conclusions and categorize input variables into influential, less influential, and non-
influential groups, it is essential to assign the effects of each input variable without the complexity of 
interpreting numerous sensitivity indices. 

To achieve this, the concept of the total effect index is employed. This index captures the 
comprehensive contribution of a factor, Xi, to the changes observed in δ𝐶𝐶

2 . Specifically, it encompasses 
both the first-order effects and all higher-order effects resulting from interactions. The total effect 
index provides a robust measure of the impact that each input variable has on the δ𝐶𝐶

2 , accounting for 
all potential interactions. 

For instance, in a five-factor model, the total effect of the factor X1 is calculated by summing all 
terms in Equation (17) where the factor X1 is included. 

1234513451245123512341451351341251241231514131211 SSSSSSSSSSSSSSSSST +++++++++++++++= . (24) 

This sum accounts for X1 direct influence on δ𝐶𝐶
2  as well as its synergistic effects with other 

factors. The total effect measure provides the educated answer to the question, Which factor can be 
fixed anywhere over its range of variability without affecting the δ𝐶𝐶

2 . The total effect index reflects 
both the main and the interaction influences of X1 on the outcome, providing a comprehensive view 
of its relative importance in the system's reliability, measured by the distance from F to R. Total effects 
for the case study are displayed in Figure 4. 

. 

Figure 4. Cliff's Delta total sensitivity indices for all K. 

The sensitivity analysis results show the Total Sensitivity Indices for each input variable (X1, X2, 
X3, X4, X5) across five distinct constant values (K=0, 1, 2, 3, 4), using Cliff's delta as the sensitivity 
measure. 
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As K increases from 0 to 4, a general trend of increasing total sensitivity indices is observed for 
X1, X2, as depicted in Figure 4. For X3, the total sensitivity indices exhibit a slightly convex pattern. 
An increasing trend for X3 is observed from K=1 to K=4. This suggests that these variables become 
more influential with higher values of K, as measured by Cliff's delta. Conversely, the sensitivity 
indices for X4 and X5 decrease with increasing K. 

The variable X2 consistently exhibits the highest total sensitivity index across all tested values of 
K, indicating its dominant influence on Cliff's delta. This effect is attributable to X2's involvement in 
both additive terms of the resistance function, as shown in Equation (22). The variables X1 and X3 also 
demonstrate an increasing influence, although they remain slightly less dominant than X2 but are 
notably more influential than X4 and X5 as K increases. The influence of X4 and X5, which are involved 
in the load force equation, decreases especially as K surpasses 1, highlighting their reduced 
significance in affecting Cliff's delta. 

The sensitivity analysis outcomes reflect a decreasing probability P(R<F), which diminishes as K 
increases. The Cliff delta-based sensitivity analysis exhibits characteristics of reliability-oriented 
sensitivity analysis [19], describing the change in the influence of each variable on Cliff's delta due to 
K. The influence of the results of the sensitivity indices by the value of the deterministic quantity K is 
the main difference compared to Sobol sensitivity analysis. 

The results of the classical Sobol sensitivity analysis can be calculated analytically. Non-zero 
values of Sobol's sensitivity indices were obtained only for second-order sensitivity indices 𝑆𝑆12𝑆𝑆𝑆𝑆𝑆𝑆=1/3
, 𝑆𝑆23𝑆𝑆𝑆𝑆𝑆𝑆=1/3, 𝑆𝑆45𝑆𝑆𝑆𝑆𝑆𝑆=1/3 , other Sobol indices are zero. The total effect Sobol sensitivity indices are 𝑆𝑆𝑇𝑇1𝑆𝑆𝑆𝑆𝑆𝑆

=1/3, 𝑆𝑆𝑇𝑇2𝑆𝑆𝑆𝑆𝑆𝑆=2/3, 𝑆𝑆𝑇𝑇3𝑆𝑆𝑆𝑆𝑆𝑆=1/3, 𝑆𝑆𝑇𝑇4𝑆𝑆𝑆𝑆𝑆𝑆=1/3, 𝑆𝑆𝑇𝑇5𝑆𝑆𝑆𝑆𝑆𝑆=1/3. The dominant influence of the input variable X2 
confirms the most important conclusions of the newly introduced sensitivity analysis based on Cliff's 
Delta, however, there are differences. The results of Sobol's sensitivity analysis are independent of 
the value of the constant K, because Sobol's indices are based on the decomposition of variance, which 
the deterministic variable K does not affect.  

Although classic Sobol's sensitivity analysis of model output is empathetic to the results of 
reliability-oriented types of sensitivity analyses, it is not directly oriented towards reliability, as Sobol 
sensitivity indices do not reflect changes in Pf [19]. 

. 

Figure 5. The results of sensitivity analysis based on failure probability from Equation (21). 

The sensitivity indices results based on Cliff's Delta closely resemble those obtained from the 
sensitivity analysis based on Pf . The pie chart on the left side of Figure 4 is practically identical to the 
chart in Figure 1. Moreover, the pie chart on the right side of Figure 4 is very similar to the chart on 
the right side of Figure 5. The results of the sensitivity analysis are the same, but the sensitivity scale 
is different. Overall, this demonstrates a high degree of similarity between Cliff's Delta and Pf, from 
which useful conclusions can be drawn. 

The sensitivity indices based on Cliff's Delta are derived from the calculation of Pf using Cliff's 
Delta. While it may seem that estimating Cliff's Delta is more demanding compared to Pf, using 
double-loop simulations to estimate Cliff's Delta leads to a more accurate numerical estimate of Pf 
and extracts more information from the available simulations. It can be noted that a similar double-
loop simulation is used for estimating Pf based on the numerical integration of the distributions of 
the random variables R and F , see e.g. [59]. 
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The advantage of estimating Cliff's Delta is that it does not require knowledge of the 
distributions or approximation approaches of the random variables R and F. This flexibility allows 
for a more robust analysis in practical scenarios where precise distribution functions may not be 
available or easily determined. 

5. Comparative Analysis of Pf Estimations Using Cliff's Delta and Basic Definition 

It can be showed that the estimation of Pf according to Equation (9) is more accurate compared 
to the basic definition in Equation (4) when Cliff's delta is calculated using a double nested-loop 
simulation according to Equation (3).  

Let Pf denote the failure probability estimated from a binomial distribution, and let n represent 
the number of simulations or experiments. 

∑=
=

<

n

i
Zf n

P
1

011
. (25) 

The standard error SE for the failure probability estimation is provided by the binomial 
distribution 

( ) ( )
n

PP
PSE ff

f
−

=
1

1 . (26) 

The estimate of the failure probability Pf using Cliff’s Delta in Equation (9) is more accurate 
because it utilizes an increased number of simulations through a double-nested-loop process. 
However, the standard error SE2(Pf) for this estimate cannot be straightforwardly determined using 
an analytical formula similar to SE1(Pf). Instead, empirical observations indicate that the standard 
error for Pf estimated with Cliff’s Delta is smaller. This improved accuracy is attributed to the 
increased statistical information gained from the double-nested-loop simulations. The accuracy of 
both estimates can be demonstrated in the following case study using the Monte Carlo method. 

The limit state of a rod made of elastic material, subjected to axial tension, is being studied. Let 
resistance R have a Gaussian probability density function with a mean value µR=9 kN and standard 
deviation σR=0.9 kN, and let F have a Gaussian probability density function with a mean value µF=4 
kN and standard deviation σF=1.218887 kN. Under these assumptions, Z is a random variable with a 
Gaussian probability density function with a mean value µZ=9−4=5 kN and standard deviation σZ 
=(0.92+1.2188872)0.5=1.515 kN. The failure probability Pf =0.000483477 is evaluated by numerical 
integration of the Gaussian probability density function of Z from negative infinity to zero. According 
to EN1990 [15], a structure designed with this failure probability is classified in reliability class RC1 
for reference periods of 1 and 50 years. 

The aim of the case study is to compare the accuracy of Pf estimation according to the basic 
definition in Equation (4) and the alternative formula in Equation (9). The procedure is as follows: In 
the first step, the random variables R and F are simulated for 10,000 runs using the Monte Carlo (MC) 
method. The estimation of Pf from Equation (4) is plotted in Figure 6 as the first blue point from the 
left. The estimation of Pf from Equation (9) is plotted in Figure 7 as the first blue point from the left. 
Next, another 10,000 runs of MC are generated, and the procedure is repeated. In total, 100 estimates 
of Pf according to Equation (4) are plotted in the left quarter of Figure 6, and 100 estimates of Pf 
according to Equation (9) are plotted in the left quarter of Figure 7. This procedure is further repeated 
for 100,000, 1 million, and 10 million runs of the Monte Carlo (MC) method, as shown in the 
subsequent quarters in Figures 6 and 7. 
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. 

Figure 6. Convergence of Pf estimation using basic definition with varying MC run counts. 

. 

Figure 7. Convergence of Pf estimation using Cliff's Delta with varying MC run counts. 

The numerical study revealed that the failure probability Pf estimation using Cliff's Delta δC, see 
Equation (9), is more accurate compared to the basic definition, see Equation (4). As illustrated in 
Figures 6 and 7, the alternative method resulted in noticeably lower standard deviations σPf 
(approximately three times smaller) across varying Monte Carlo run counts, indicating improved 
consistency and precision. In contrast, the basic definition exhibited higher variability, especially with 
fewer Monte Carlo runs. These findings underscore the efficacy of the alternative formula for more 
reliable Pf estimation in structural reliability assessments. 

6. Discussion 

In civil engineering, estimating the resistance R using nonlinear FEM calculations is very time-
consuming, and studies are limited by the number of computationally expensive Monte Carlo or LHS 
method runs required to accurately simulate real structural behavior, see e.g., [60,61,62,63]. In recent 
years, the role of mathematical models that offer quick analytical solutions has become increasingly 
significant due to their efficiency in providing rapid responses [64,65]. For each model, it is useful to 
utilize all realized simulations to estimate failure probability as efficiently as possible. 

Equation (9) offers an efficient alternative for estimating Pf with high utilization of information 
from the realized runs of the computational model. Although estimating Cliff's Delta is more 
numerically demand than direct estimation of failure probability using Equation (4), the same 
number of model runs (the same number of random realizations of R and F) ensures a more accurate 
estimation of failure probability Pf, see Figure 6 compared to Figure 7. These advantages highlight 
the utility of Cliff's Delta in both reliability and sensitivity analysis, making it an innovative tool for 
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engineers and researchers to gain deeper insights into the reliability and performance of structural 
systems. 

The computational complexity of estimating Cliff's Delta can be effectively reduced by 
optimizing computer algorithms. The following function formulates the algorithm for calculating 
Cliff's Delta using ten thousand random realizations of R and F in arrays AR and AF. In the Delphi 
programming language, the function to calculate Cliff's Delta can be written as follows: 

`pascal 
const max=10000; 
var 
  AR,AF: array[1..max] of Single; 
  AB   : array[1..max] of Boolean; 
 
Function Cliffd:extended; 
var i1,i2                 :integer; 
    Dominant, Dominated : Int64; 
begin 
  Dominant:=0; 
  Dominated:=0; 
  for i1:=1 to max do 
  begin 
  if AB[i1] then Dominant:=Dominant+max 
          else 
   for i2:=1 to max do 
   begin 
    if (AR[i2]>AF[i1]) then Inc(Dominant) else 
    if (AR[i2]<AF[i1]) then Inc(Dominated); 
   end; 
  end; 
  Cliffd:=(Dominant-Dominated)/(max*max); 
end; 
` 
 
Before calling the function, the array AB is populated with random realizations for which the 

inner loop runs are unnecessary.  
 
`pascal  
for i1 := 1 to max do if AF[i1] < 5.49836 then AB[i1] := true else AB[i1] := false;  
` 
The constant 5.49836 is the smallest value of the random variable R generated by the Monte 

Carlo method. If a random realization of F is less than 5.49836, then all random realizations of R are 
less than 5.49836, and the inner loop does not need to be executed; it is sufficient to assign 
Dominant:=Dominant+max. In the case study, using max=10000, the estimation of Cliff's Delta was 
accelerated by approximately two times.  

The algorithm efficiently reduces the double-loop computational burden especially for Cliff's 
Delta estimates close to one (very small Pf values), where the vast majority of random realizations of 
R are much higher than F. According to the EN1990 [15] standard, common building structures are 
designed with a Pf around 7.2 ·10-5. For estimating the standard error of the Pf using Equation (25), 
one needs to perform 1,388,889 Monte Carlo simulation runs to achieve a coefficient of variation of 
0.1. This results in a standard error of SE1=7.2⋅10−6. In practice, this requires conducting Monte Carlo 
runs until 100 failure events are observed, i.e., 100 runs where Z < 0. Subsequently, using Equation 
(9) instead of Equation (4) will improve the accuracy of the Pf estimate. 
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Conducting sensitivity analysis based on Cliff's Delta offers functionalities that are identical to 
sensitivity analysis based on failure probability focused on reliability. Cliff's Delta provides a robust 
measure for evaluating the extent to which one distribution dominates another without making 
specific assumptions about the distributions' form or variability. This flexibility is particularly 
valuable in reliability studies where input variables may not follow normal distributions or exhibit 
significant variability. By focusing on the frequency with which resistance values exceed load values, 
Cliff's Delta directly aligns with the fundamental concepts of reliability engineering. The ability to 
estimate failure probabilities using Cliff's Delta enhances the robustness of reliability and sensitivity 
analysis, especially in cases where performing additional resistance or load simulations is 
numerically difficult or impossible. 

7. Conclusions 

In this article, an alternative measure of structural reliability based on Cliff's Delta has been 
adopted to ensure more accurate estimation of failure probability Pf with the available number of 
simulations. Using Cliff's Delta increases the accuracy of the Pf estimate by making better use of the 
statistical information from the data. This approach replaces the traditional failure probability 
calculations and provides enhanced flexibility and robustness in applications of structural reliability. 

The adaptation of Cliff's Delta, initially developed for ordinal data, has been successfully applied 
to evaluate the sensitivity of structural reliability. This adaptation allows for the evaluation of the 
dominance of resistance over load without specific distributional assumptions, making it particularly 
suitable for structural reliability analysis. The mathematical formulations for computing Cliff's Delta 
between resistance R and load action F have been presented. This formulation effectively quantifies 
the reliability of a structure by evaluating the probability that resistance exceeds load. 

Sensitivity indices based on the squared value of Cliff's Delta δ𝐶𝐶
2  have been derived, 

demonstrating properties analogous to those used in Sobol's sensitivity analysis. This includes first-
order, second-order, and higher-order sensitivity indices, which offer a comprehensive framework 
for evaluating the contributions of individual variables and their interactions to the overall reliability 
of the system. These indices provide a nuanced understanding of the factors influencing structural 
reliability. 

The application of Cliff's Delta in reliability-oriented sensitivity analysis allows for a more 
computationally efficient evaluation of structural reliability. This is particularly beneficial in 
engineering applications where finite element method (FEM) calculations and repeated simulations 
of R or F are computationally expensive.  

While the current study provides a foundation, future work could focus on optimizing the 
computational algorithms for estimating Cliff's Delta, particularly for global sensitivity analysis of 
reliability. 
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