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Abstract: This paper introduces innovative sensitivity indices based on Cliff's Delta for global sensitivity
analysis of structural reliability. These indices build on Sobol's method, using binary outcomes (success or
failure), but avoid the need to calculate failure probability Prand the associated distributional assumptions of
resistance R and load F. Cliff's Delta, originally for ordinal data, evaluates the dominance of resistance over
load without specific assumptions. The mathematical formulations for computing Cliff's Delta between R and
F quantify structural reliability by assessing the random realizations of R > F using a double-nested-loop
approach. The derived sensitivity indices, based on the squared value of Cliff's Delta (3%, exhibit properties
analogous to those in Sobol's sensitivity analysis, including first-order, second-order, and higher-order indices.
This provides a comprehensive framework for evaluating the contributions of input variables and their
interactions on structural reliability. This method is particularly significant for FEM applications, where
repeated simulations of R or F are computationally intensive. The double-nested-loop algorithm of Cliff's Delta
maximizes the extraction of information about structural reliability from these simulations. However, the high
computational demand of Cliff's Delta is a disadvantage. Future research should optimize computational
demands, especially for small Py, where the inner loop may often be unnecessary.
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uncertainty
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1. Introduction

Global sensitivity analysis (GSA) focuses on attributing the uncertainties of model outputs, or
related performance indicators, to their inputs, thereby assessing the impact of input uncertainties on
outputs or performance indicators [1,2]. Various GSA methods have been developed for this purpose
[3,4]. These methods include the screening method [5,6], variance-based methods [7,8], moment-
independent methods [9,10], and derivative-based methods [11,12]. Among these, variance-based
sensitivity indices, also known as Sobol” indices [7,8], are particularly notable for their mathematical
elegance in measuring the individual, interaction, and total contributions of each input to the model
output uncertainty, see, e.g. [13,14].

In the limit state method, probabilistic reliability analysis is based on the estimation of the failure
probability [15]. Sobol' indices have been widely used in structural reliability analysis to pinpoint
variables that significantly influence failure probability [16,17]. These sensitivity indices, which focus
on failure probability P; are derived from the variance decomposition of a binary function
representing failure and success [16,17]. Fort et al. [18] expanded on Sobol's sensitivity indices by
introducing a contrast function in place of variance, allowing the indices to be oriented towards
variance, probability, and quantile. This approach maintains the non-negative property of the indices
and ensures that their sum equals one, as in traditional Sobol sensitivity analysis. Extending GSA to
Prand design quantile represented a significant advancement in civil engineering, as these quantities
are crucial in structural reliability assessments [19,20].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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The development of GSA methods focused on reliability demands precise estimation of Pr[21].
However, the complexity of mathematical models and the difficulty of uncertainty propagation using
sampling-based methods such as Monte Carlo (MC) simulations, due to the large number of runs
required, present significant challenges [22]. Nonlinear finite element models are particularly
demanding on CPU time [23], which further complicates the process of structural reliability
estimation, see, e.g., [24,25]. To ensure the most accurate estimate of Py, it is essential to develop
methods that provide precise Prestimates while minimizing the computational costs associated with
repeated calls to the computational model [26,27].

The computational burden can be reduced by using metamodels, also known as surrogate
models, which approximate the behavior of complex models with simpler ones [28,29]. Methods such
as polynomial response surface [30,31], response surface based multi-fidelity model [32], polynomial
chaos expansion (PCE) [33,34], Gaussian process [35,36], Kriging [37,38], and neural network
[39,40,41] are used to the creation of such metamodels. While the use of metamodels significantly
reduces computational burden by approximating complex models with simpler ones, there are some
critical drawbacks to this approach [42,43,44]. Despite the efficiency of new meta-models in sampling
[45,46], traditional (quasi-) Monte Carlo methods remain the primary choice for practical sensitivity
analysis [3,4].

Existing research frequently explores the rate of advancements across various Monte Carlo
based reliability applications [47,48], but there is a notable lack of studies focusing on the implications
of these advancements for enhancing the efficiency of reliability-oriented global sensitivity analyses
(GSAs). Ensuring the accurate estimation of failure probability Pr with the available number of
simulations is critical because it directly influences reliability assessments and decision-making
processes. More accurate Prestimation is advantageous when using both the original model and the
metamodel, depending on the available computational resources.

The solution proposed in this article involves adopting an alternative measure of structural
reliability based on Cliff's Delta [48], which can be calculated using double-nested-loop simulations.
This approach enhances the precision of Pr estimation without requiring additional computational
effort, offering a robust alternative to traditional metamodel-based GSA. By maximizing the utility
of existing simulations, this method ensures that reliability analyses are both more accurate and
computationally efficient.

2. Cliff Delta

Cliff delta, denoted as Oc, was initially devised by Norman Cliff, primarily for handling ordinal
data [49]. It serves as a metric to assess the frequency with which values from one distribution exceed
those in another distribution. A key feature of Oc is that it does not necessitate any specific
assumptions regarding the distributions’ form or variability.

The formula for computing the sample estimate of Oc is expressed as:

_ f’i127=1[1/i >y,-]— [yi <3/j]

nm-n

¢ , where 6c € [-1,1]. 1)

In this equation, the two distributions are characterized by sizes n and m, with respective
elements yi and yj. Here, the notation [-][-] refers to the Iverson bracket notation, resulting 1 if the
condition within the brackets holds true, and 0 otherwise. This statistical approach allows for an
intuitive comparison of two distributions by quantifying the dominance of one distribution over the
other.

Building upon the foundational description of 0c, this measure is specifically applied to assess
the relationship between resistance R and load force F within a framework of structural reliability. In
the limit state, a structure is reliable if R > F, otherwise failure occurs [19]. Let the difference between
R and F be denoted as

Z=R-F, @)
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where R and F are statistically independent random variables. In the Monte Carlo simulations,
these variables are represented as arrays R and F, corresponding to resistance and force, respectively.
Cliff's delta, 0Oc, is utilized to quantitatively evaluate the extent to which values of resistance exceed
or fall below those of force, thereby providing fundamental insights into system reliability.
Assuming arrays R and F are of equal size, with n entries each, the formula for calculating 6c is
simplified to:
Se = 12 %> di IR < i ] where ¢ e [-1,1]. )

1’[2

In this expression, Ri and Fj represent the i-th and j-th entries in the R and F arrays, respectively,
denoting random realizations of resistance and force. The Iverson brackets, [-][-], return 1 when the
enclosed condition is true and 0 otherwise. This formulation facilitates a direct comparison between
resistance and force across all sampled scenarios.

The estimation of 0c between the measurements of resistance and force provides a metric
quantifying the frequency with which resistance values surpass those of force. Employed as a
statistical tool, this measure assesses how frequently resistance can withstand or exceed applied
forces.

3. Sensitivity Measures of Cliff's Delta

Although Cliff's delta has been applied in numerous studies, see e.g. [50,51,52,53,54], its
utilization in global sensitivity analysis of reliability is absent. This chapter demonstrates that the
sensitivity measures based on the squared value of Cliff's delta, 6%, exhibit properties similar to
variance in Sobol's sensitivity analysis [7,8], oriented to reliability [16,17].

3.1. Approximation of Failure Probability with Cliff’s Delta in Sensitivity Analysis

In the limit state, a structure is considered reliable if R > F; otherwise, failure occurs. The
probability of failure Prcan be defined as the overload probability that F > R (i.e., Z < 0). The failure
probability can be expressed as the mean value of the binary reliability function of the Bernoulli
distribution, where 1 occurs if Z <0, and 0 otherwise:

szp(z<0)=E(1z<o)/ 4)
where:
_4d-z
1Z<O - 2|Z| : (5)

The conventional measure of reliability is 1-Py. The variance of the Bernoulli distribution of the
random variable 1z < 0 can be written as:

V(ize)=Pil1-P). (©)

The second moment is a function of Ps, which is useful for the formulation of Sobol sensitivity
indices, computable through the estimation of the conditional realizations of Pr[21]. If the variance
V(12<0) is used in the decomposition within Sobol sensitivity analysis, the first-order sensitivity index
of the variance function 12<0 can be expressed as:

CVI(EQL X)) V) EV(LX:)) _ b (1- Pf)_ E(Pflxi (1- Py|X; »

: V(12<0) V(lz<o) Pf (1 - Pf) (7)

The concept of sensitivity analysis based on Cliff's Delta is predicated on the assumption that
Cliff's Delta can be expressed as

dc =P(Z>0)-P(Z<0)=(1-P)-P; =1-2P,. @®)

The failure probability Prcan be calculated using Cliff's Delta as follows:


https://doi.org/10.20944/preprints202406.0583.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2024 d0i:10.20944/preprints202406.0583.v1

P == ©)

Similarly, the second moment can be approximated and written as a function of Cliff's Delta as:

Vi) B fi-p )= (12 1120 ) - 1 (10)

Substituting this into the Equation (7), the Sobol sensitivity index can be expressed using oc as:

1-08  1-9;
4 4 E(s2|x,)- 82
S, = _ Bloelxi)-oc 11)
l 1- 62 1-62
- YCc C
4

This formulation provides an alternative method for calculating the sensitivity index, which
carries all the advantages and disadvantages associated with the estimation of Cliff's Delta compared
to failure probability.

3.2. Sensitivity Indices Based on Cliff Delta

In the development of sensitivity indices for the evaluation of structural reliability, the use of the
squared measure of Cliff's delta, &, has been proposed. This chapter delineates the formal definitions
of these indices, categorized from first to higher orders. The sensitivity indices are computed as ratios
of differences normalized by a constant, 1-C, where Co is defined as square of Cliff's delta, O

Co =52, (12)

where 6‘2 represents the measure calculated when all input random variables, Xi, Xz,..Xm, of R
and F are random.

The first-order sensitivity index, S;, is defined to quantify the effect of a single variable Xi on the
change observed in the squared Cliff's delta, &. It is calculated as follows:

o _ Hotl)-cy |

13
e (13)

In Equation (13), having frozen one potential source of variation (Xi), the resulting E(5§|Xi) will
be higher than the corresponding total or unconditional Cliff's delta, where Co=5¢. For example, if X
were the sole source of change in the distance between R and F, fixing it to x: would result in
(62[x; =% )=1.

The second-order sensitivity index, Si, extends the analysis to pairs of variables, evaluating the
joint effect of Xi and X; on the change of &. This index is expressed as:

E(62]x,, X, )-Cy
i = 1—C; -5 -5;. (14)

Similarly, the third-order index, Sik, considers the combined influence of three variables Xi, Xj,
and Xk. It is calculated by:

E(62x,, X, x,)-C

0
Six = e ~5;~5;~S, S

ii = Sik = Sjk (15)

Other Cliff's sensitivity indices, which quantify higher-order interaction effects, are defined
analogously. The sensitivity index of the last order can be expressed as follows:
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)-c
0 M-1 _ M-1
- szl zl§i1<..A<ipSM Sil,iz,...,il7 =1- szl zl£i1<A..<ipsM Sil,iz,...,i

(16)

L

where E(é’é | X1, Xz,...,Xm)=1 is ensured due to the nature of Cliff's delta, which assumes a value
of either 1 or -1 when all input random variables are fixed. Consequently, each element in the array
R adopts a consistent identical value denoted as v1, and similarly, every element in the array F
maintains another consistent identical value, denoted as v2. It should be noted that these constants v1
and v2 are generally different.

The sum of all indices equals one. This characteristic is guaranteed by the computation of the
last order sensitivity index, as shown in Equation (16), which is derived from the difference between
1 and the sum of all lower order sensitivity indices.

25 +X 25+ XXX S+ + Sz m =1 (17)
i ij>i i j>ik>j

The non-negativity of sensitivity indices is proven due to their association with variance, see
Equation (10), and the Sobol decomposition of variance. The fixing multiple input variables typically
leads to a higher value of & (with a limit of one in the last order sensitivity index) compared to a
constant Co. The properties of sensitivity indices based on Cliff's delta and their comparison with
classical Sobol sensitivity analysis will be further explored in later chapters.

3.3. Sensitivity Indices Based on Failure Probability

The impact of input variables on the failure probability Pr can be analyzed using sensitivity
analysis based on contrast functions [18]. Unlike Sobol's sensitivity analysis, contrast-oriented
sensitivity analysis employs a contrast function, whose minimizer is of primary interest [55,56]. Fort
[18] demonstrates that employing the quadratic contrast function, which calculates the mean of the
squared deviations from the average, results in the well-known Sobol sensitivity indices [7,8]. In
reliability-oriented sensitivity analysis, the mean value is considered as the failure probability Pras
the first moment of the binary reliability function Pr= E(1z«), while the variance, upon which Sobol's
sensitivity analysis is based, is considered as the second moment of the binary reliability function
V(1z<0) = P (1- Py).

The first-order sensitivity index, Ci, quantifies the main effect of a single variable Xi on the
variance of the binary reliability function:

C - VIE(L X)) _ Py )~ EP X (1P|,

l V(lz<o) Pf(l_Pf)

In this equation, the freezing of the source of variation Xi affects Pr. The sensitivity index Ci
indicates by how much one could reduce, on average, the output variance of the binary function 1z«

. (18)

if Xi could be fixed. Hence, it is a measure of the main effect.
The second-order sensitivity index, Ci, measure the pair effects of Xi and X; on the variance of
binary function 1z« . This index can be write as:

B V(E(,[x:, X))
T V) oSS (19)

Similarly, the third-order index, Cix, considers the combined influence of three variables X, Xj,
and X, calculated by:

VIEQ, X, X, X, ) o s o g
i = T T Tk T
! V(1lz4) !

Higher-order contrast sensitivity indices, which quantify higher-order interaction effects, are
defined analogously. The sum of all sensitivity indices equals one.

C ii —Sik =Sk - (20)
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2CHEYC+EE Y G+ +Cipz =1, 1)
i i j>i i j>ik>j

The non-negativity of sensitivity indices is guaranteed by their derivation from Sobol's
sensitivity analysis [6,7,8], see also [19,21].

4. The case study

In the case study, the new sensitivity indices are compared with the results of Sobol sensitivity
analysis using a simple example. In Equation (2), the resistance can be considered as:

R= X1-Xo+X2X5tK, (22)
where K is constant. The load force is considered as
F=X4Xs. (23)

All input random variables, X1, Xz,...,Xs, follow a Gaussian probability density function with a
mean value of zero and a standard deviation of one.

Table 1 presents the estimated values of Co =&, where & is obtained using 1 = 12,000 runs of
the Latin Hypercube Sampling (LHS) method [57,58]. The conditional values of J; are estimated
using double-nested-loop computation of LHS method. When a single input variable, X;, is fixed, it
is sampled using #=12,000 runs, and for each realization, o is calculated again using #=12,000 runs
of the LHS method. This numerical procedure is analogous to Sobol [7,8], but the sensitivity
measurement is not based on variance but on Cliff's delta. In computing of S, the computational
complexity of E(J¢ | Xi) is 12=144,000,000.

Table 1. Average values of & for sequentially fixed input variables.

Conditional Mean of & K=0 K=1 K=2 K=3 K=4
Co=6% 0 0.3150 0.6504 0.8323 0.9221
E(821X1) 0 0.3223 0.6556 0.8355 0.9240
E(81X2) 0 0.3508 0.6745 0.8430 0.9266
E(821X3) 0 0.3223 0.6556 0.8355 0.9240
E(8%1X4) 0 0.3284 0.6576 0.8371 0.9239
E(821Xs) 0 0.3284 0.6576 0.8371 0.9239
E(521X3, X2) 0.1803 0.4633 0.7270 0.8664 0.9367
E(8%1X1, X3) 0 0.3509 0.6746 0.8432 0.9267
E(821X1, X4) 0 0.3362 0.6628 0.8413 0.9265
E(521X1, X5) 0 0.3362 0.6628 0.8413 0.9265
E(821X>, X3) 0.1803 0.4633 0.7270 0.8664 0.9367
E(621Xa, X4) 0 0.3704 0.6825 0.8478 0.9286
E(621X>, X5) 0 0.3704 0.6825 0.8478 0.9286
E(821X5, X4) 0 0.3370 0.6628 0.8392 0.9252
E(621X5, X5) 0 0.3370 0.6628 0.8392 0.9252
E(821Xs, X5) 0.2581 0.4820 0.7238 0.8616 0.9326
E(821X1, X2, X3) 0.4145 0.6274 0.8169 0.9133 0.9604
E(821X1, X2, Xa) 0.1918 0.4852 0.7357 0.8713 0.9385
E(821X1, X2, X5) 0.1918 0.4852 0.7357 0.8713 0.9385
E(8%1X1, X3, X4) 0 0.3702 0.6827 0.8481 0.9287
E(821X1, X3, Xs) 0 0.3702 0.6827 0.8481 0.9287
E(821X1, Xa, Xs) 0.2644 0.4923 0.7303 0.8664 0.9356
E(821X>, X3, Xa) 0.1925 0.4844 0.7363 0.8722 0.9395
E(621Xa, X3, Xs) 0.1925 0.4844 0.7363 0.8722 0.9395
E(8%1Xa, Xa, Xs) 0.3151 0.5425 0.7561 0.8760 0.9393
E(8%1X5, Xa, X5) 0.2649 0.4928 0.7298 0.8644 0.9343
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E(821X1, Xz, X3, Xs) 0.4630 0.6677 0.8346 0.9231 0.9648
E(& 1X1, Xz, X3, X5) 0.4630 0.6677 0.8346 0.9231 0.9648
E(821X1, X2, Xs, X5) 0.5361 0.6802 0.8236 0.9083 0.9539
E(821X1, X3, X4, X5) 0.3123 0.5449 0.7569 0.8768 0.9397
E(S21Xz, X3, Xs, X5) 0.5361 0.6802 0.8236 0.9083 0.9539
E(8L1 X1, Xo, X3, Xs, X5) 1 1 1 1 1

1 Table 1 presents the average values of & for various fixed input variables, computed using the LHS method
with 7=12,000 runs. The conditional values of & are estimated using a double-nested-loop computation.

In the Table 1, the data in the last column represent a set of values that are highly consistent,
with low variance. Most values range between 0.924 and 0.940, with a last exceptions approaching
1.000. In Table 1, the value 1 is always present on the last row, ensuring that the sum of all indices
equals one.

The column with K=0 exhibits values close to zero, indicating the absence of dominance of R
over F in the observations of &. Conversely, values far from zero suggest a dominance of R over F
in the observation of &.

In general, the strong influence of an input variable or variables occurs when the mean value of
the fixed realizations of & is significantly different from Cy, see Equations (13), (14), and (15). It can
be noted that the accuracy of estimation of sensitivity indices is lowest for K=4, where the conditioned
realizations of 5?; in the last column of Table 1 are very consistent, with low variance, and are
minimally different from Co.

The influences of input variables and their groups, as expressed by sensitivity indices, are
displayed in Figures 1, 2 and 3.

S m Sy mS; oSy | S5

m512 ®mS;3; mSyy  mS5;5 ESxy
mS5;; WSy @53 BS53 OS5
OS;23 BS5ppq BS5p5 BS;3p BS3s
WS5y45 BS54 WS35 WSyus B 5us

O5123¢ OS1235 OS1245 BS1345 O Sn3g5
B S35

B First-order indices
O Higher-order indices

Figure 1. Cliff's Delta sensitivity indices for K=0.

In the Figure 1, all first-order sensitivity indices are zero. The second-order sensitivity indices
512=0.18 and 525=0.18 have the same value, which is due to the nature of Equation 10 and the same
characteristics of the input random variables. The dominant influence is the interaction effect of
variables X4 and X5, as indicated by the value S45=0.26.

m First-order indices
K=1 O Higher-order indices K=2

Figure 2. Cliff's Delta sensitivity indices for K=0 and K=0.

Increasing the value of the constant K distances the random realizations of resistance R from
load action F and enhances the value of Cliff's Delta. The interaction effects indicated by sensitivity
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indices S12, 523, and Ss5 decrease with increasing K, while the proportion of third, fourth, and fifth-
order sensitivity indices increases, see Figure 2 and 3.

1
0.16 0.09

B First-order indices
K=3 O Higher-order indices K

I
[1=N

Figure 3. Cliff's Delta sensitivity indices for K=3 and K=4.

In sensitivity analysis based on Cliff's Delta, the impact of input variables on the observed
changes in & is quantified using sensitivity indices of the first order and higher orders. To derive
meaningful conclusions and categorize input variables into influential, less influential, and non-
influential groups, it is essential to assign the effects of each input variable without the complexity of
interpreting numerous sensitivity indices.

To achieve this, the concept of the total effect index is employed. This index captures the
comprehensive contribution of a factor, X, to the changes observed in &. Specifically, it encompasses
both the first-order effects and all higher-order effects resulting from interactions. The total effect
index provides a robust measure of the impact that each input variable has on the &, accounting for
all potential interactions.

For instance, in a five-factor model, the total effect of the factor X is calculated by summing all
terms in Equation (17) where the factor X is included.

Sr1 =5 +513+ 513+ 514+ 515+ S123 + 154 + S1o5 + S134 + 135 + S1a5 + S1234 + S1235  S1045 + 1345 + Siozas (24)

This sum accounts for Xi direct influence on & as well as its synergistic effects with other
factors. The total effect measure provides the educated answer to the question, Which factor can be
fixed anywhere over its range of variability without affecting the &. The total effect index reflects
both the main and the interaction influences of X1 on the outcome, providing a comprehensive view
of its relative importance in the system's reliability, measured by the distance from F to R. Total effects
for the case study are displayed in Figure 4.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
02
0.1

0

mS ES [Ss 0S5, MWSs

K=0 K=1 K=2 K=3 K

]
=

Figure 4. Cliff's Delta total sensitivity indices for all K.

The sensitivity analysis results show the Total Sensitivity Indices for each input variable (X1, X2,
X3, X4, Xs) across five distinct constant values (K=0, 1, 2, 3, 4), using Cliff's delta as the sensitivity
measure.
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As K increases from 0 to 4, a general trend of increasing total sensitivity indices is observed for
X1, X2, as depicted in Figure 4. For X3, the total sensitivity indices exhibit a slightly convex pattern.
An increasing trend for Xs is observed from K=1 to K=4. This suggests that these variables become
more influential with higher values of K, as measured by Cliff's delta. Conversely, the sensitivity
indices for X4 and Xs decrease with increasing K.

The variable X2 consistently exhibits the highest total sensitivity index across all tested values of
K, indicating its dominant influence on Cliff's delta. This effect is attributable to X2's involvement in
both additive terms of the resistance function, as shown in Equation (22). The variables X1 and Xs also
demonstrate an increasing influence, although they remain slightly less dominant than X but are
notably more influential than X4 and Xs as K increases. The influence of X4 and Xs, which are involved
in the load force equation, decreases especially as K surpasses 1, highlighting their reduced
significance in affecting Cliff's delta.

The sensitivity analysis outcomes reflect a decreasing probability P(R<F), which diminishes as K
increases. The Cliff delta-based sensitivity analysis exhibits characteristics of reliability-oriented
sensitivity analysis [19], describing the change in the influence of each variable on Cliff's delta due to
K. The influence of the results of the sensitivity indices by the value of the deterministic quantity K is
the main difference compared to Sobol sensitivity analysis.

The results of the classical Sobol sensitivity analysis can be calculated analytically. Non-zero
values of Sobol's sensitivity indices were obtained only for second-order sensitivity indices S{9”=1/3
, S39P=1/3, S§¢P=1/3 , other Sobol indices are zero. The total effect Sobol sensitivity indices are S79”
=1/3, S§9P=2/3, SF$P=1/3, S73P=1/3, S72=1/3. The dominant influence of the input variable X»
confirms the most important conclusions of the newly introduced sensitivity analysis based on Cliff's
Delta, however, there are differences. The results of Sobol's sensitivity analysis are independent of
the value of the constant K, because Sobol's indices are based on the decomposition of variance, which
the deterministic variable K does not affect.

Although classic Sobol's sensitivity analysis of model output is empathetic to the results of
reliability-oriented types of sensitivity analyses, it is not directly oriented towards reliability, as Sobol
sensitivity indices do not reflect changes in Pr[19].

® First-order indices
K=0 O Higher-order indices K=4
(P=0.5) {Py=0.019)

Figure 5. The results of sensitivity analysis based on failure probability from Equation (21).

The sensitivity indices results based on Cliff's Delta closely resemble those obtained from the
sensitivity analysis based on Pr. The pie chart on the left side of Figure 4 is practically identical to the
chart in Figure 1. Moreover, the pie chart on the right side of Figure 4 is very similar to the chart on
the right side of Figure 5. The results of the sensitivity analysis are the same, but the sensitivity scale
is different. Overall, this demonstrates a high degree of similarity between Cliff's Delta and Py, from
which useful conclusions can be drawn.

The sensitivity indices based on Cliff's Delta are derived from the calculation of Prusing Cliff's
Delta. While it may seem that estimating Cliff's Delta is more demanding compared to Py, using
double-loop simulations to estimate Cliff's Delta leads to a more accurate numerical estimate of Py
and extracts more information from the available simulations. It can be noted that a similar double-
loop simulation is used for estimating Pr based on the numerical integration of the distributions of
the random variables R and F, see e.g. [59].
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The advantage of estimating Cliff's Delta is that it does not require knowledge of the
distributions or approximation approaches of the random variables R and F. This flexibility allows
for a more robust analysis in practical scenarios where precise distribution functions may not be
available or easily determined.

5. Comparative Analysis of PrEstimations Using Cliff's Delta and Basic Definition

It can be showed that the estimation of Praccording to Equation (9) is more accurate compared
to the basic definition in Equation (4) when Cliff's delta is calculated using a double nested-loop
simulation according to Equation (3).

Let Pr denote the failure probability estimated from a binomial distribution, and let 1 represent
the number of simulations or experiments.

1n
Pr==Ylz. 25
r = Elzo (25)

The standard error SE for the failure probability estimation is provided by the binomial

distribution
P{i-P
SE, (P, )= L [nf] : (26)

The estimate of the failure probability Prusing Cliff’s Delta in Equation (9) is more accurate
because it utilizes an increased number of simulations through a double-nested-loop process.
However, the standard error SE2(Py) for this estimate cannot be straightforwardly determined using
an analytical formula similar to SEi(Py). Instead, empirical observations indicate that the standard
error for Pr estimated with Cliff's Delta is smaller. This improved accuracy is attributed to the
increased statistical information gained from the double-nested-loop simulations. The accuracy of
both estimates can be demonstrated in the following case study using the Monte Carlo method.

The limit state of a rod made of elastic material, subjected to axial tension, is being studied. Let
resistance R have a Gaussian probability density function with a mean value x=9 kN and standard
deviation or=0.9 kN, and let F have a Gaussian probability density function with a mean value ur=4
kN and standard deviation or=1.218887 kN. Under these assumptions, Z is a random variable with a
Gaussian probability density function with a mean value 1z=9-4=5 kN and standard deviation oz
=(0.92+1.2188872)05=1.515 kN. The failure probability Pr =0.000483477 is evaluated by numerical
integration of the Gaussian probability density function of Z from negative infinity to zero. According
to EN1990 [15], a structure designed with this failure probability is classified in reliability class RC1
for reference periods of 1 and 50 years.

The aim of the case study is to compare the accuracy of Pr estimation according to the basic
definition in Equation (4) and the alternative formula in Equation (9). The procedure is as follows: In
the first step, the random variables R and F are simulated for 10,000 runs using the Monte Carlo (MC)
method. The estimation of Psfrom Equation (4) is plotted in Figure 6 as the first blue point from the
left. The estimation of Pr from Equation (9) is plotted in Figure 7 as the first blue point from the left.
Next, another 10,000 runs of MC are generated, and the procedure is repeated. In total, 100 estimates
of Praccording to Equation (4) are plotted in the left quarter of Figure 6, and 100 estimates of P
according to Equation (9) are plotted in the left quarter of Figure 7. This procedure is further repeated
for 100,000, 1 million, and 10 million runs of the Monte Carlo (MC) method, as shown in the
subsequent quarters in Figures 6 and 7.
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Failure Probability Pr= E(17.q)
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Figure 6. Convergence of Prestimation using basic definition with varying MC run counts.

Failure Probability Py = (1-8¢)/2
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Figure 7. Convergence of Prestimation using Cliff's Delta with varying MC run counts.

The numerical study revealed that the failure probability Prestimation using Cliff's Delta 6c, see
Equation (9), is more accurate compared to the basic definition, see Equation (4). As illustrated in
Figures 6 and 7, the alternative method resulted in noticeably lower standard deviations oz
(approximately three times smaller) across varying Monte Carlo run counts, indicating improved
consistency and precision. In contrast, the basic definition exhibited higher variability, especially with
fewer Monte Carlo runs. These findings underscore the efficacy of the alternative formula for more
reliable Prestimation in structural reliability assessments.

6. Discussion

In civil engineering, estimating the resistance R using nonlinear FEM calculations is very time-
consuming, and studies are limited by the number of computationally expensive Monte Carlo or LHS
method runs required to accurately simulate real structural behavior, see e.g., [60,61,62,63]. In recent
years, the role of mathematical models that offer quick analytical solutions has become increasingly
significant due to their efficiency in providing rapid responses [64,65]. For each model, it is useful to
utilize all realized simulations to estimate failure probability as efficiently as possible.

Equation (9) offers an efficient alternative for estimating Pr with high utilization of information
from the realized runs of the computational model. Although estimating Cliff's Delta is more
numerically demand than direct estimation of failure probability using Equation (4), the same
number of model runs (the same number of random realizations of R and F) ensures a more accurate
estimation of failure probability Ps, see Figure 6 compared to Figure 7. These advantages highlight
the utility of Cliff's Delta in both reliability and sensitivity analysis, making it an innovative tool for
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engineers and researchers to gain deeper insights into the reliability and performance of structural
systems.

The computational complexity of estimating Cliff's Delta can be effectively reduced by
optimizing computer algorithms. The following function formulates the algorithm for calculating
Cliff's Delta using ten thousand random realizations of R and F in arrays AR and AF. In the Delphi
programming language, the function to calculate Cliff's Delta can be written as follows:

“pascal

const max=10000;

var

AR, AF: array[1l..max] of Single;
AB  :array[l..max] of Boolean;

Function Cliffd:extended;

var il,i2 iinteger;
Dominant, Dominated : Int64;
begin

Dominant:=0;
Dominated:=0;
for i1:=1 to max do
begin
if ABJ[i1] then Dominant:=Dominant+max
else
for i2:=1 to max do
begin
if (AR[i2]>AF[il]) then Inc(Dominant) else
if (AR[i2]<AF[i1]) then Inc(Dominated);
end;
end;
Cliffd:=(Dominant-Dominated)/(max*max);
end;

Before calling the function, the array AB is populated with random realizations for which the
inner loop runs are unnecessary.

“pascal
for il :=1 to max do if AF[i1] <5.49836 then AB[il] = true else AB[il] := false;

The constant 5.49836 is the smallest value of the random variable R generated by the Monte
Carlo method. If a random realization of F is less than 5.49836, then all random realizations of R are
less than 5.49836, and the inner loop does not need to be executed; it is sufficient to assign
Dominant:=Dominant+max. In the case study, using max=10000, the estimation of Cliff's Delta was
accelerated by approximately two times.

The algorithm efficiently reduces the double-loop computational burden especially for Cliff's
Delta estimates close to one (very small Prvalues), where the vast majority of random realizations of
R are much higher than F. According to the EN1990 [15] standard, common building structures are
designed with a Praround 7.2 -10°. For estimating the standard error of the P using Equation (25),
one needs to perform 1,388,889 Monte Carlo simulation runs to achieve a coefficient of variation of
0.1. This results in a standard error of SE1=7.2-10-6. In practice, this requires conducting Monte Carlo
runs until 100 failure events are observed, i.e., 100 runs where Z < 0. Subsequently, using Equation
(9) instead of Equation (4) will improve the accuracy of the Prestimate.
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Conducting sensitivity analysis based on Cliff's Delta offers functionalities that are identical to
sensitivity analysis based on failure probability focused on reliability. Cliff's Delta provides a robust
measure for evaluating the extent to which one distribution dominates another without making
specific assumptions about the distributions' form or variability. This flexibility is particularly
valuable in reliability studies where input variables may not follow normal distributions or exhibit
significant variability. By focusing on the frequency with which resistance values exceed load values,
Cliff's Delta directly aligns with the fundamental concepts of reliability engineering. The ability to
estimate failure probabilities using Cliff's Delta enhances the robustness of reliability and sensitivity
analysis, especially in cases where performing additional resistance or load simulations is
numerically difficult or impossible.

7. Conclusions

In this article, an alternative measure of structural reliability based on Cliff's Delta has been
adopted to ensure more accurate estimation of failure probability Pr with the available number of
simulations. Using Cliff's Delta increases the accuracy of the Pf estimate by making better use of the
statistical information from the data. This approach replaces the traditional failure probability
calculations and provides enhanced flexibility and robustness in applications of structural reliability.

The adaptation of Cliff's Delta, initially developed for ordinal data, has been successfully applied
to evaluate the sensitivity of structural reliability. This adaptation allows for the evaluation of the
dominance of resistance over load without specific distributional assumptions, making it particularly
suitable for structural reliability analysis. The mathematical formulations for computing Cliff's Delta
between resistance R and load action F have been presented. This formulation effectively quantifies
the reliability of a structure by evaluating the probability that resistance exceeds load.

Sensitivity indices based on the squared value of Cliff's Delta & have been derived,
demonstrating properties analogous to those used in Sobol's sensitivity analysis. This includes first-
order, second-order, and higher-order sensitivity indices, which offer a comprehensive framework
for evaluating the contributions of individual variables and their interactions to the overall reliability
of the system. These indices provide a nuanced understanding of the factors influencing structural
reliability.

The application of Cliff's Delta in reliability-oriented sensitivity analysis allows for a more
computationally efficient evaluation of structural reliability. This is particularly beneficial in
engineering applications where finite element method (FEM) calculations and repeated simulations
of R or F are computationally expensive.

While the current study provides a foundation, future work could focus on optimizing the
computational algorithms for estimating Cliff's Delta, particularly for global sensitivity analysis of
reliability.
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