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Article 

Linked Links. A Research Project: The Multiple 
Superimposed Soft Networks as Network Profiles 
Gianfranco Minati 

Italian Systems Society, 20161 Milan, Italy; gianfranco.minati@airs.it 

Abstract: This article, based on network science, aims to contribute to overcoming its geometric and 
technological phases. The novelty consists in considering links of networks as linked by 
superimposed networks, termed here multiple superimposed soft networks (MSSN), which is 
introduced as a research issue. Such links of links (termed here as passive links) concern, for 
instance, correspondences, incompatibilities, and temporal synchronizations between the 
occurrences of pairs of active links of effective networks, such as those based on electrical and 
telecommunication. A possible constitutive mechanism of such passive linkage consists of linkage 
representations for practices and histories of use expressed by their validating statistical 
reoccurrences. We consider the possible emergent nature of the passive linkage. The reason for 
introducing the design and usage of MSSN properties as a research issue involves making new 
approaches to profile and manage networks available. Correspondence between active linkage and 
MSSN properties should be a matter for an experiential, machine-learning approach. Research 
issues relate their possible usage on the active linkage such as for classification, comparations, 
detection of criticalities, diagnosis, performance evaluation, and regulatory as weak forces. 
Furthermore, the possible identification of standard corresponding configurations of passive and 
active linkage are finalized to avoid their establishment or, conversely, in facilitating their 
establishment and keeping their replication in different contexts (or partially and in combinations) 
and identifying related standardized approaches (also for classes of configurations having 
significant levels of equivalence). This research project has methodological generalizing aspects of 
trans-disciplinarity. We conclude by mentioning related research issues. 

Keywords: coherence; constitutive mechanism; domain; ergodic; incompleteness; linkage; profile; 
quasi; weakness 

 

1. Introduction 

This contribution is addressed to researchers in interdisciplinary areas of network science, and 
its background is given by the extensive literature related to it. This article is part of the contributions 
aimed at overcoming the geometric and technological phases of network science, allowing the 
introduction of research approaches not only for the already consolidated network modeling of 
complex systems but also for their control, criticality diagnostics, and performance evaluation based 
on network representations of usage histories, phenomenological properties, and experience, which 
are quantified, for instance, in statistical values. 

The purpose of this article is to introduce a research issue based on the consideration of the 
possibly multiple, hierarchical, and variable linkages among links of the networks under study. We 
explore the possible nature of these superimposed linkages, i.e., links between links, even at a level 
greater than one (i.e., links between links between links and so on) and the feedback on the network 
in which they are constituted. They may even possibly emerge in the same way as emergent 
properties that have effects on the systems from which they emerge. 

We consider the phenomenological inevitability of the self-definition of such linkage, considered 
here as the profile of the network under study, and termed as multiple superimposed soft networks 
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(MSSN) to distinguish it from other numerous terminologies already in use. This is all the more 
important when considering that network science is considered essentially the science of systems. 
However, the science of networks may specify the science of systems in the sense that it can be a 
specification of the interaction mechanisms allowing for a system and its properties to emerge from 
a collection of interacting entities, avoiding, for instance, simple Brownian motion versions. 

Such specification performed by using the network representation can help overcome the 
difficulty in intervening in the processes of emergence, whose explicit analytical description is 
inadequate or intractable for actions such as: 
• induce or deactivate the emergence of collective behaviors in populations of elements 

collectively interacting; 
• act on collective emergent phenomena with the purpose of changing, maintaining, and 

regulating acquired properties; 
• merge different collective emergent phenomena. 

In Section 2, we consider the classic network nodes and links (termed here active) with the 
addition of nodes representing underlying links and links between them (termed passive, expressing 
existing or emerging relationships). In Section 3, we introduce the multiple superimposed soft 
networks as linked links.  

In Section 4, we present two examples of MSSN on the active road and social networks. 
In Section 5, we elaborate on the constitutive mechanisms of the MSSN linkage. In particular, on 

its self-definition as based on statistical properties (see Section 5.1) and its possible emergent nature 
(see Section 5.2). In Section 5.3, we consider aspects of the relationship between such linkage levels. 

In Section 6, we introduce possible usages of the MSSN properties and profiles that allow for 
possible reverse effects on the active linkage, such as considering and applying MSSN-based 
classifications, driven modifying actions (see Section 6.1), and self-regulatory (see Section 6.2) based 
on machine learning in case of adaptive, autonomous networking. 

In Section 7, we introduce the possibility of considering the passive linkage of the MSSN as weak 
forces, i.e., forces having low value, for instance, less than the minimum of all forces involved at the 
moment and local ranges of influence. In the case of collective behaviors, for instance, the weak forces 
relate to the breaking of the agents’ instantaneous equivalent conditions, the breaking of equilibria, 
and the setting of critical initial conditions in chaotic behaviors. 

In Section 8, we list possible research issues on MSSN that are considered to have, among other 
issues, methodological and philosophical generalizing aspects of transdisciplinary (see Section 8.1). 
In Section 9, we conclude by mentioning specific research directions and how the study of the MSSN, 
their properties, and their relationships with the network of active linkage may introduce new 
research approaches, also indicating currently undefined limits of network science.  

This research project may act as a step forward for network science, for instance, in reference to 
the consideration that “… network science is not yet mature enough to be separated from its 
technological roots” ([1], p. 9).  

2. Nodes and Links for a New Perspective 

For the purposes of this article, with reference to graph theory and network theory, we will 
distinguish between the usual kinds of nodes and the ones consisting of the links themselves. We also 
distinguish between the usual kinds of links and the ones consisting of links between links. 

2.1. Nodes 

The term “node” is widely elaborated in the network science literature. In this article, we limit 
ourselves to consider the usual two kinds of nodes, and nodes as links of a network: 
(a) Nodes as input-output devices, whose activity ranges from performing connection activities; 

summative of the input received through N input links, according to various possible ways, for 
example, non-linear, time-dependent, dependent on previous conditions, and weighs; until 
performing processing activities, for example, composing by using fixed or time-context-
dependent rules, and selected input received. In the simplest case, it is a matter of passive, i.e., 
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switching, conductive, connective nodes. In the latter case, such nodes may be intended just as 
extensions of the links, i.e., a networked configuration of the same material, for instance, 
networks made of the same electric conductive material. The nodes can be in an active or inactive 
state, in ways that vary over time in regular or random ways, where the role of the node is 
reduced, for instance, to an electric resistor or diode. Examples include electricity, road, 
telecommunications, and water networks. 

(b) Nodes as generic units, for instance, containers in a port warehouse, people in a community, 
vehicles in the traffic, and words of a text relationally connected. For instance, containers may 
relate to each other by weight and arrival time; people by their nationality or level of friendship 
in social networks; vehicles by their speed or by their registration period; and words by the fact 
that their meaning is semantically close or by the fact that they often both appear in single 
sentences (see Figure 1). Examples include air, bus, citation, naval, rail, and social networks. The 
difference with the situation considered in the previous point is not actually so precise, as the 
roles could even be partially or temporally interchangeable or even simultaneous. 

(c) Nodes consisting of pairs of linked nodes of the network under study, as highlighted in Figure 
2 Due to the undefined nature of the generic nodes, the case of nodes consisting of links, i.e., 
linked links (see Figures 3–5 and Section 3), seems to be just a particular case of usual networks. 
However, the non-triviality of the case consists of the properties (in the case of self-definitory, 
see Section 5.1, and emergent, see Section 5.2) of such possibly multilayered linkages, i.e., the 
multiple superimposed soft networks (MSSN), considerable to profile and manage (see Section 
6.1) networks. This term differentiates from others already in use for specific cases, such as dual 
networks, meta-networks, multiple networks, multiplex networks, networks of networks, and 
overlay networks (see Section 3.1). 

 

Figure 1. A simplified example case of a network of black active links, for instance, conveying matter 
or energy for road networks (see Table 1 left column), where:  A black dot denotes a generic node, 
for instance, an airport, a neuron, or a traffic intersection in a road network, which are linked through 
active black links.  A thick black solid line is an active link, as in telecommunications 
and neural networks in the nervous system, where synapses are formed from axons to dendrites; it 
conveys, in this case, in terms of electrical signals (see Table 1 left column). 
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Figure 2. A simplified example case of properties of active links (see Table 1 right column/Table 2 left 

column) represented by red nodes, where:  A red dot symbolizes a generic node indicator of the 
property of an active black link, e.g., temporary practicability or not; simultaneous two-ways 
availability; traffic values; being active-inactive (see Table 1 right column/Table 2 left column). This 
generic red node may, in turn, possibly link to another red node through the red passive linkage as 
in Figure 3.  A fine solid red line indicates the correspondence of a generic red node 
with a black active link. 
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(a) 

 
(b) 

Figure 3. (a) A simplified example case of a network of red passive links between red nodes 
representing properties of active links (see Table 2 right column), where:  A thick red 
solid line is a passive link between pairs of active links, represented by red nodes and stating, for 
instance, (see Table 2 right column) the occurrence of multiple temporal synchronizations and 
durations, admissibility or otherwise of simultaneity, compatibility-incompatibility, or temporal 
replicability and mutual temporal constraints between pairs of properties of black links (represented 
by red nodes). (b) A simplified example case of a network of green passive links between green nodes 
representing active links. It is one of possible variations of the red case considered in Figure 3, (see 

Table 2 right column), where instead:  A green dot signifies a generic node indicator of the 
property an active black link (see Table 1 right column). This generic green node may, in turn, possibly 
link to another green node through the green passive linkage as in this figure.  A fine 
green solid line indicates the correspondence of a generic green node with a black active link. 

 A thick green solid line is a passive link between pairs of black active links, 
represented by green nodes and stating, for instance, instant incompatibility or synchronized 
occurrence between mutual active-inactive states of the pairs of black active links. 
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Figure 4. A simplified example case of superimposed, transparent for reading convenience, red and 
green passive linkages representing a first level of the MSSN. The linkage can have an indefinite 
number of levels. 

 
Figure 5. A simplified example case of a network of red and green superimposed red and green 
passive linkages represented here with transparency effects. As stated above the red and green MSSN 
may be intended to represent, respectively, the linkage among properties as in Table 2 right columns. 
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Furthermore, we consider a simplified example case of a second-level network of passive linkage in 
blue (see Table 3 right column), where:  A blue dot symbolizes a generic node indicator of the 
property of some specific passive, in this example green, links dotted in the figure to facilitate reading, 
see Table 2 right column/Table 3 left column. This generic blue node may, in turn, possibly link to 
another blue node through the blue passive linkage (see Table 3 right column).  A 
thick blue solid line is a passive link between pairs of passive links (dotted green in this example) 
represented by blue nodes, stating, for instance, related temporary shutdown, related parametrical 
variations, and the occasional validity or otherwise of contradictory states between states of passive 
links (dotted green in this example), see Table 3 right column. In addition, cases may arise in which 
nodes of one type are also part of a network of another type, e.g., a red node is linked to a green node 
through temporary equivalent red and green short linkage, where:  A fine blue dotted 
line represents the correspondence of a generic blue node with the represented specific green passive 
dotted thick link.  A thick dotted green line represents a passive green link when 
represented by a blue node. 

Table 1. Examples of properties possessed by active links (see Figure 1). 

Examples of Active Links Conveying Information, Matter, or Energy Examples of Properties of Active Links  

• Economic networks for trade 
• Electricity grids 
• Internet networks 
• Passengers and cargo airline networks 
• Passengers and cargo naval networks  
• Vehicles road networks 
• Pipe and cable networks 
• Social networks 
• Telephone networks 

• Temporary practicability or not  
• Simultaneous two-ways availability 
• Alternate or one-way availability  
• Usability in synchronized time intervals 
• Unavailability for a specific reason 
• Traffic values 
• Being active-inactive  
• Levels of coating 
• Throughput 
• Levels of generic fluidity  
• Generic contextually-sensitiveness 

Table 2. Examples of passive links as mutual intra-active links properties (see red, green links in 
Figure 4). 

Examples of Properties of Active Links Constituting 
the Nodes 

Examples of Passive Links as Mutual Intra-Active Links 
Properties 

    

• Temporary practicability or not  
• Simultaneous two-ways availability 
• Alternate or one-way availability  
• Usability in synchronized time intervals 
• Unavailability for a specific reason 
• Traffic values 
• Being active-inactive  
• Levels of coating 
• Throughput 
• Levels of generic fluidity  
• Generic contextually-sensitiveness 

• Same-opposite practicability and directions of 
the connected active links 

• Corresponding active-non active state of the 
connected active links 

• Instantaneous compatibility-incompatibility 
between the two linked active links 

• Similar levels of coating 
• Similar throughput 
• Corresponding configurations of clustered active 

links: for instance, when one is unidirectional, 
and another has high traffic, another becomes 
inactive, as in factorial decision tables (in case 
parametrized) 

• Temporal synchronization between the two linked active 
links 

• Temporal duration properties between the two linked 
active links 
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Table 3. Examples of passive links between passive links (see blue links in Figure 5). 

Examples of Passive Links as mutual Intra-Active Links 
Properties Constituting the Node 

Examples of Passive Links between Passive Green 
Dotted Links 

  
• Same-opposite practicability and directions of 

the connected active links 
• Corresponding active-non active state of the 

connected active links 
• Instantaneous compatibility-incompatibility 

between the two linked active links 
• Similar levels of coating 
• Similar throughput 
• Corresponding configurations of clustered active 

links: for instance, when one is unidirectional, 
and another has high traffic, another becomes 
inactive, as in factorial decision tables (in case 
parametrized).  

• Temporal synchronization between the two linked active 
links 

• Temporal duration properties between the two linked 
active links 

• Temporal synchronization between the two 
linked passive links 

• Temporal duration properties between the two 
linked passive links  

• Compatibility-incompatibility between the 
occurring of the two linked passive links 

• Admissibility or otherwise of 
simultaneity 

• Compatibility-incompatibility of the 
same state for the links. 

2.2. Links 

This term is also widely used and elaborated in the network science literature. In this article, we 
will distinguish between the usual kinds of links and the ones consisting of links between links: 
(a) active links (for instance, pipes and cables conveying matter or energy) include road, naval, and 

air routes for passengers and cargo. The technological understanding of the active linkages 
presupposes additional characteristics, such as link coatings (where the coatings are to avoid 
electrical short circuits between links); sensitivity to environmental perturbations; formation and 
degeneration of the lining, such as the myelin-like coatings of neurological networks whose 
damage in certain neurological diseases, e.g., multiple sclerosis, generates the production of 
pathological scars. Moreover, we should consider the possible occurrence of properties and 
phenomena such as link acquisitions, capacity, combination, fluidity (level of internal friction), 
interconnectivity, loss, temporality, and virtuality when a phenomenon operates, moreover, also 
as a link as in social and citations networks; the occurrence of stable and variable links properties 
such as unidirectionality, bidirectionality, e.g., two-way, contextually-sensitiveness, and 
weighing. Examples of active relational links include the linkage of social and citation networks. 
In this contribution we consider the effective, parametrical, statistical, weighted usage of the 
network of active links, which is not only considered for its geometrical properties, i.e., networks 
as graphs. The geometrical network linkage is coupled, for instance, with effective uses 
characterizing the nodes and links of the networks, e.g., airlines, road, social, and 
telecommunication. Uses are represented by weights and statistical values related to the 
occurrence of properties. In the second case, networks as graphs, the focus is on geometrical 
properties and effective usage is placed in the background (see Section 5.1). 

(b) active interactional links representing the interactions, e.g., through the exchange of energy or 
information, between nodes, for instance, with the occurrence of multiple interactions and roles 
for component parts, as in ecosystems and collective behaviors.  

(c) passive links expressing existing or emerging relationships between pairs of links of the active 
linkage under study and representing modes, practices of occurring and interdependences 
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between active links, for instance, being correspondingly in an active-inactive state, 
simultaneously in the same state, synchronized or not, and weights characterizing the intensities 
of the relationship. Passivity is considered given by their relational, representative rather than 
computational, connective, elaborative, and phenomenological nature. For instance, let us 
consider links of a road network that are characterized by their actual practicability or not, that 
are passable in two ways, in one-way only or in alternating directions. Passive links between 
pairs of such active links state their same or opposite levels of practicability; their being passable 
in two ways, in one-way only, and in alternating directions in combinations, e.g., when one is 
two-ways, the other is one-way, or when one is two-ways, the other is in alternating directions 
and have mutually direct or inverse proportional traffic values. The passive linkage is also 
applicable to links of the passive linkage themselves, i.e., links of links subject of this article as 
highlighted in Figure 5 (see Sections 3.2 and 4, for examples).  
In the case of point (a), i.e., active links, we have links as channels, connections to convey 

information, energy, and matter. Attention has been on phenomena such as node failures and 
weighted links, e.g., in neurological networks conveying electric signals and geometrical properties 
of such linkage, for instance, see earlier work [2]. 

In the case of point (b), i.e., active interactional links, we consider the interaction as a link when 
the linkage is given by interactions. Two elements are said to interact when the behavior of one 
element influences the behavior of another, as in a system model consisting of ordinary differential 
equations where f represents the interaction between x1 and x2, i.e., 

1 2
2 1)

dx / dt = f x
dx / dt = 

)
(x
(
f

  (1) 

The formal definition of Equation (1) may be applied to real cases, for instance, when f1 and f2 
may be real interactions such as the exchange of kinetic energy and x1 and x2 may be energetic 
measures of the state of two colliding components.  

Active interactional links play an essential role when considering systems as networks (see 
Section 6).  

However, as we will see, the active interactional links have a character of intermediality between 
active and passive linkage, introduced below as a third case. This is given by the fact that the 
interaction may not be due to material interactions only—e.g., exchange of kinetic energy in 
collisions, economic transactions with the exchange of goods or financial transactions, and field 
influences (for example, gravitational or electromagnetic)—but due to immaterial interactions also, 
e.g., cognitive processing of reciprocal spatial positions over time as in animal collective behaviors 
and information relevant for economic decisions (for example, political and financial). 

In the case of point c, i.e., passive links, we have links as edges in graph theory. However, they 
have an effective, parametrical, phenomenological, and statistical nature rather than a geometrical 
one, representing correspondences and relationships between links connecting nodes (see Figures 2–
5). 

The subject links as nodes are considered, for instance, in [3]. Such links may be of any nature, 
each of which establishes a dedicated network related to properties, as in the examples above. The 
passive linkage may also be applicable to links of the passive linkage themselves, i.e., passive links 
between passive links. One passive link may correspond to another because they are related to similar 
phenomena, as they are generated within the same time range and have the same synchronizations. 
Examples include relationships stating the mutual states of two active links, such as those that are 
active-inactive, the same or opposite direction, the same or different levels of use, e.g., throughput, 
their weighing with corresponding variations, and equipped or not with covering. 

Passive links between active links are established when the latter ones have one or more related 
properties, such as incompatible, matched, proportional, or synchronized. The same is true for 
subsequential passive links. Each property considered establishes a specific property related to 
MSSN, such as the red and green ones in Figure 4. However, we specify that the properties 
considered, and then the consequent related passive linkages, may occur in non-fixed and 
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inhomogeneous ways, in irregular, random, recurring, but, nevertheless, statistically significant 
modalities (see Section 5.3). 

3. Linked Links: The Multiple Superimposed Soft Networks 

Research approaches have been introduced in the literature, such as: 
• The study of “networks of networks”, i.e., interdependent networks or multilayer networks, 

such as in earlier papers [4,5]. 
• The study of “multiple networks”, when a multiple system [6] is considered as a set of systems 

whose components simultaneously belong to more systems, networks such as in [7]. 
• The study of “multiplex networks”, when “… a multiplex complex system can indeed exhibit 

structural and dynamical properties that cannot be represented by its individual layer’s 
properties alone, establishing the network multiplexity as an essential ingredient in the new 
physics of network of networks” such as in previous work ([8], p. 9; [9]). 

• The usage of “dual networks” in electrical engineering when, in two electrical networks, the 
mesh (the smallest loop, which is a closed one and formed by using circuit components: the mesh 
must not have any other loop inside it) equations of one network is equal to the node equation 
(nodal analysis) of the other. In short, the term “node equation” is used in electrical engineering 
to refer to a method (nodal analysis) of analyzing electrical circuits. Two electrical networks are 
dual networks if the mesh equations of one network are equal to the node equation of the other 
[10]. 

• Examples of other variants include (a) meta-networks consisting of two learning components, a 
base learner, and a meta learner, also equipped with external memory [11–13]; and (b) overlay 
networks, computer networks layered on top of each other. The overlay networking is distinct 
from the open systems interconnection (OSI) layered networks model, assuming that the 
underlay network is an internet protocol (IP) network [14]. 

3.1. Multiple Superimposed Soft Networks 

To differentiate from the previous terminologies, in the following, we use the less used name of 
“multiple superimposed soft networks”, or MSSN for short. The MSSN, on a network made of active 
linkage, is intended as a network of passive linkage, i.e., correspondences, matches, and relationships, 
between active links (and not between nodes), as in the cases considered above relating to modes, 
practices of usages, and occurring of links (see Section 2.2, point c). 

In the simpler case, the MSSN is made of a single network of relationships (see Section 5 on their 
self-establishment as statistical properties) over the active linkage. In multiple-layered MSSN, the 
layer of passive links is (on their turn) superimposed on further passive linkage on the lower passive 
linkage. 

The simplest definition of a graph G is given by considering it as defined by two sets N and L, 
so that we can write G ≡ (N, L), where: 
• the elements of N are the nodes, 
• the elements of L are pairs of nodes, called links. 

Some constraints usually considered for these two sets allow us to distinguish between different 
classes of networks. For instance, assuming that: 
• the set N has an integer cardinality, 
• the set can contain only ordered pairs of nodes (directed links), 
• each link is associated with a numerical weight. 

Usually, graph theory is the mathematical term that identifies networks as being applied in 
different areas. 

Considering the basic active network G ≡ (N, L) the MSSN related to it may be identified by 

MSSN1 ≡ (L, L1)  (2) 

where: 
• L are links of the basic effective network G; 
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• L1 are links between pairs of links L, e.g., stating the simultaneous validity or non-validity of pair 
of links L, and by possible layered n-sequences of 

MSSNn ≡ (Ln−1, Ln).  (3) 

The MSSN is superimposed to the networks of active linkages (see Figure 1), connecting 
properties of their active links (see Figures 3 and 4) and, in the example, their superimposed linkage 
(see Figure 5). The MSSN is then made of hierarchical sequences of superimposed networks of passive 
links (relation graphs) on the network of active linkages and, in this case, on underlying passive 
linkage (see Figure 5). 

Simplified examples of the different phases (see Figures 3 and 4) constituting the MSSN (see 
Figure 5) are presented, however repeatable in layers of any level and variations. 

3.2. Examples 

As introduced above, at the first level, the nodes of the MSSN are links expressing the intra-
properties (see Table 2 right column/Table 3 right column) between properties (see Table 1 right 
column/Table 2 left column) of active links (see Table 1 left column), such as electrical and 
telecommunication lines and roads. Related cases consider, for instance, a network of correlations 
[15] and a network of connections [16]. The focus is on the links themselves. Passive links consider, 
for instance, the state of activity or inactivity of pairs, as well as coupled active links. 

Interdependences between active links can then be understood as represented by networks of 
passive links, e.g., relations. This generates a network superimposed on the active dynamic linkage. 

The very first layer of the MSSN (see Table 2) consists of multiple red, green networks (one for 
each property of the active linkage) between links of the active linkage as in Figure 4. 

At the second level, the MSSN consists of multiple bleu-networks of blue passive links (see Table 
3 right column) between green-red passive links represented by blue dots (see Figure 5 and Table 3 
right column). We notice how properties of the linkages may reoccur at possible subsequent levels of 
the MSSN. 

Subsequent higher multiple, hierarchical, subsequent levels of hierarchy n are then possible. At 
first glance, passive links of subsequent levels should sequentially be all related to the same property 
repeatedly, or in different combinations even when applied to themselves, although some special 
cases are possible. 

The MSSN may be considered as self-established, representative of a phenomenological status 
quo (see Section 5). Consequently, passive links can be detected as representing ways of operating 
the network of active links. This, however, is in a scenario of global, local homogeneous or 
inhomogeneous dynamic acquisition and loss of passive links in structurally dynamic networks. 

As a consequence, the MSSN is actually a collection of equivalent or non-equivalent active 
linkages’ phenomenological photographs (or video clips of possible structurally dynamic active 
linkages), which differ only in specificity in a cloud of possibilities. This cloud may be used as it is or 
forced to collapse into a specific MSSN, given sufficient parametric choices relating to interventions 
or the representation level considered. 

4. Actual Examples of MSSN 

We consider a couple of simple examples, having only low structural dynamics, high structural 
stability, and a low and stable number of nodes. As a first example, we consider road networks. It is 
possible to represent a road network as a weighted directed graph where the nodes are the traffic 
intersections, the links are the road segments, and the weights are some attributes of the road 
segments [17,18]. 

Road networks are subjects of different studies and approaches, for instance, with the purpose 
of identifying the emergency optimized road network structure in an earthquake and disastrous 
scenarios, i.e., finding emergency road networks (ERNs). This is an important part of local disaster 
prevention systems. The identification of the ERNs structure is of great importance to promote 
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disaster prevention and allow road safety in dangerous areas [19,20] and to identify the optimal 
distribution of areas and emergency services [21]. 

We consider a road network, as in Figure 1, where the nodes are the traffic intersections. 
Moreover, the active links are the weighted links, i.e., roads, characterized, for instance, by their 
linearity or tortuosity, by climbs or slopes, by width, number of lanes, being active-inactive, and by 
being one-way, two-way, or alternating one-way. 

Let consider two nodes whose link has, for instance, the property to have simultaneous two 
ways availability. 

Let consider two different nodes whose link, for instance, has a specific carrying capacity. 
Let consider two other nodes whose link has, for instance, the property to have a specific level 

of fluidity. 
Let consider two different other different nodes whose link, for instance, has the property of 

having temporary practicability high. 
A dotted green passive link type of the MSSN between the first pair of active road links 

(simultaneous two ways availability and carrying capacity) above may establish, for instance, 
temporal synchronization (or compatibility, or mutual simultaneity, incompatibility, 
synchronization, similar temporal duration of their properties). 

Another second dotted green passive link type of the MSSN between the second pairs of active 
road links (levels of generic fluidity and temporal practicability) above may establish, for instance, 
mutual compatibility. 

Network properties. e.g., topological, of the first red level of the MSSN may state findings about 
the generic availability of the road network when considering hairpin bends, narrowings, 
unevenness, and windings. 

The higher blue level of the passive links of the MSSN may state, for instance, the necessary 
temporary duration of the validity of the first type of green link (temporal synchronization) with that 
of the second (compatibility). Other examples include the impossible, unacceptable or, on the 
contrary, the necessary simultaneity of the occurrence of pairs of such green links. 

This example situation is depicted in Figure 6. 
The blue link between two green links may state the inadmissibility of their contemporaneity 

because this would create an unacceptable lengthening of the route that the vehicles would have to 
travel, which would congest the network or part of it with consequent propagation effects. 
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Figure 6. Graphical representation of MSSN sections regarding the example concerning the road 
networks. 

With regard to MSSN-driven actions, it is possible to consider the usage of the MSSN properties 
for the purposes of traffic diagnostics, profiling as a dangerous road network, performance 
verification, and regulatory as based on experiential learning (prospectively machine learning) 
processes. It is possible to identify standard configurations, to which we can always approximatively 
reduce with appropriate variational interventions, and on which to act in standardized ways whose 
effects have been learned. The use of the MSSN may be very effective for simulations and critical 
considerations, e.g., for emergency scenarios. 

As a second example, we consider social networks, where social networking relates to using 
internet-based social media sites that allow for connection with colleagues, collaborators, customers, 
family members, and friends [22,23]. We consider a social network as in Figure 1. It is possible to 
represent a social network as a directed graph where the nodes are the users, the links are the internet 
or telephone connections. This geometrical network linkage is coupled, for instance, with its effective 
usage characterizing the nodes and links of the network established from time to time, with the link 
weights as statistical values of use and availability levels. In short, the purpose of a social network 
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analysis (SNA) is to identify how people interact with one another within a specific communication 
network. The SNA is used to identify roles, such as levels of leadership, switching, and clustering 
within the network. 

Let consider two nodes whose link has, for instance, the property to have limited connection 
periods but high traffic capacity. 

Let consider two different nodes whose link, for instance, has the property of have limited traffic 
capacity, e.g., limited combinations of text, audio, image and video. 

Let consider two other nodes whose link has, for instance, the property to have irregular 
connection. 

Let consider two other different nodes whose link has, for instance, the property to be exposed 
to line disturbances. 

A dotted green passive link type of the MSSN between the first pair of active links (limited 
connection periods but high traffic capacity and limited traffic capacity) above may establish, for 
instance, mutual incompatibility (or non-simultaneity, synchronization, and similar temporal 
durations). 

Another second dotted green passive link type of the MSSN between the second pairs of active 
links (irregular connection and exposed to line disturbances) above may establish, for instance, 
mutual cases of probable simultaneity. 

The higher blue level of the passive links of the MSSN between the two pairs of active links 
above may establish, for instance, mutual simultaneity, incompatibility, synchronization, similar 
temporal duration of their properties. 

This example situation is depicted in Figure 7. 
More generally, the first green level of the passive links of the MSSN may state the temporal 

synchronization, local unavailability of the active links due, for instance, to the unavailability of 
communications links, local internet problems, lack of telephone coverage, software incompatibility, 
local malfunctions of computers or telephones, and failures of the electricity grid. It is about finding 
alternative optimal paths. Network properties. e.g., topological, of the first red level of the MSSN 
may state findings about criticalities of the network to avoid total blocks even of malicious origin. 

The links of the higher blue level of the MSSN state about the same or different (clustered) 
instantaneous state for the MSSN links, such as being in a state of active-passive connection, involve 
particular (groups of) nodes and have a specific duration time. The emergence of the acquisition of 
properties, e.g., small-world and clustering, by the second blue level MSSN linkage on the first level 
linkage of the MSSN may state about types of relationships, of possible interest for crime and 
phishing prevention, marketing actions, police investigations, and about the most important ties that 
hold a network together, i.e., paradoxically, the ‘weak’ ties as in social networks [24,25]. The tendency 
towards disintegration of these properties may indicate the emergence of situations of fragility of the 
network and the need for interventions or to establish new alternative support paths. 
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Figure 7. Graphical representation of MSSN sections regarding the example concerning the social 
networks. 

5. Constitutive Mechanisms of the MSSN Linkage 

In the literature, emergence in networks is intended, for instance, as “… a process that results in 
a network topology that is not apparent by examination of the local algorithm, or microrule.” ([1], p. 
9) and “emergence means that a major change in global properties comes from many small changes 
at the local level.” ([1], p. 15), such as the emergence of small worlds. 

In systems science, we mention how self-organization is considered to consist of the recurrent 
acquisition of coherent sequences of variations of the same property. Examples of self-organization 
include the acquisition of properties of phenomena, such as the repetitive flying of swarms around 
light and whirlpools. We also mention the so-called Belousov-Zhabostinski reaction [26,27]. This is 
an oscillating chemical reaction that acquires emergent, periodic variation of striking color variations. 
Furthermore, we mention the formation of convective patterns of the so-called Rayleigh-Bénard cells 
in liquids evenly heated from below. The occurrence of convective patterns is predictable, however, 
only in incomplete ways, i.e., details of the patterns, such as their directions are not predictable [28]. 
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Furthermore, the usual understanding of emergence and emergent properties resides in their 
being acquired properties of the (emergent) system rather than of individual components; being the 
main property of a system, the property is to acquire properties and not only to possess properties as 
is usual for non-systems. 

Emergence is considered to consist of the recurrent acquisition of coherent sequences of 
variations of structurally different properties. Examples include flocks, swarm collective behavioral 
properties, e.g., collective intelligence [29], ecosystems, shapes acquisitions in collective behaviors, 
connectiveness, and robustness of social systems that are not reducible ([6], pp. 8, 13) to properties of 
composing entities or to their linear combinations. In summary, we may consider emergence as 
constituted through coherent sequential communities of multiple, local, and temporary self-
organization-like processes. 

The problem is dealing with phenomena consisting of large quantities of irregularity, even if 
coherent interacting elements are present. Such phenomena are intractable with explicit analytical 
approaches and are, in fact, absolutely inadequate. In statistical physics, we consider systems 
established by a large number of entities, e.g., atoms and molecules. In this case, it is impossible to 
adopt analytical approaches and to study the full microscopic dynamics. An approach is to identify, 
for instance, atoms in a specific status (such as having a particular energy) and then consider the 
distribution function. 

Another aspect to consider is suitable macroscopic indexes, such as temperature, to measure the 
global level of molecular agitation, which is describable only statistically. The temperature is just an 
index when it is understood as a result, the ongoing sum of the temperature of all the constituent 
elements. Temperature is, rather, an emergent property when it is considered established from the 
continuous interactions between all the constituent elements, i.e., exchanges of kinetic energy. 

Among an enormity of approaches [30], statistical physics-based approaches are used to model 
collective behaviors such as flocking, for instance, by the so-called ‘Vicsek Model’ [31,32]. Such 
approaches relate to the multiplicity of complex systems where emergent, self-organizing, and chaotic 
phenomena occur, which are characterized by the fact that every model adopted is, in principle, 
partial and, via the incompleteness, allows for the continuous establishment of equivalences decided 
by fluctuations (see, for instance, previous works ([33–35], pp. 98–102). 

A representation of complex systems [36,37], in terms of complex networks [38–40], is 
characterized by properties such as the occurrence of configurations of coherent values of parameters, 
such as the cluster coefficient (a measure of the network structure), degree distribution, fitness of 
nodes, idempotence, multiplicity and variability of the nodes and connectivity, power laws, 
randomness scale invariance, scale-freeness, self-similarity, and small-worlds, based on considering 
their components as nodes and interactions as edges. 

In this regard, we only mention the so-called percolation theory, which deals with the behaviors 
of networked systems when some nodes or links are not available and allows for the study of issues 
such as network criticalities and topological transitions of networks beyond pairwise interactions. 
Percolation establishes the connectivity of complex networks that demonstrates, for instance, the 
robustness of scale-free networks under random damages [41]. 

With this scenario in mind, we consider a possible constitutive mechanism of the MSSN linkage 
based on statistical properties (see Section 5.1) and its possible emergent nature (see Section 5.2). In 
Section 5.3, we consider aspects of the relationship between such linkage levels and possible reverse 
effects on the active linkage, such as considering and applying MSSN-based classifications and 
MSSN-driven modifying actions (see Section 6.2). 

5.1. Self-Definition of the Passive Linkage 

We specify, first of all, how the approach is different from considering networks with established 
interdependencies between links, constituting networks with fixed or adaptive constraints. 

We consider the property-story of active links, such as being active or inactive over time. In this 
regard, we consider passive links between property-story of pairs of active links and their possible 
properties, such as stating periodicity, regularities, randomness, interdependences, related time 
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percentages of their occurring, and even their possible ergodicity [42], establishing the first levels of 
the passive linkage (see Table 2 and Figure 4). 

Regarding ergodicity, we mention how physical entities of populations (the passive linkage in 
our case) assume ergodic relations, if they are related in such a way that when x% of the population 
(of links) is in a particular state at any moment in time, then each component (link) of the population 
spends x% of time in that state. Realistically, rather than each component (link), we consider levels of 
percentages that establish significant degrees of ergodicity. More generally, this introduces the 
possible consideration of ergodic networks intended as their evolutionary, behavioral property, in 
particular the quasi-ergodicity of the structural dynamics of the MSSN. 

The ergodic hypothesis introduced by Ludwig Boltzmann (1844–1906) consists in assuming that, 
in the long run, a system of generic microscopic components, e.g., molecules (or, in general, of 
microscopic components), will assume all possible microstates compatible with the conservation of 
energy. More generally, the ergodic hypothesis states that, sooner or later, a system of microscopic 
components will go arbitrarily close to every conceivable microstate. In other words, the ergodic 
hypothesis states that, in an infinite time duration, the trajectory of the point representing the entire 
system in the phase space will pass through every point or as arbitrarily close to every point (as in the 
quasi-ergodic hypothesis) of the phase space. 

In summary, the proportion of time spent by an ergodic system in a particular state is equivalent 
to the probability that it will be in that state at a random instant. Examples of applications of such 
hypothesis include: 
• in geomorphology, when there is interest in using different approaches to consider and 

represent time, for instance, substitute space for time; 
• in population studies, when reconstructing the past evolution of a population starting from 

actual data (the so-called inverse projection); 
• in economics when, in the long run, or over a large scale, the distribution of income classes is 

independent of the transition probabilities ruling the evolution of the system from one state 
(classes of income) to another. 
This evolutionary ergodic consistency is then attributable to networks ensuring the lack of 

acquisitions of unique, peak, unrepeatable configurations and sequences of interest to guarantee 
stability and homogeneity, even considering (in the long run) factors for particular long-lived 
networks, such as railway, submarine cable, and geo satellite communication networks. 

Following what has been introduced above, the MSSN may be intended as virtual networks 
modeled by graphs of passive links. The softness of the MSSN lies in their statistical nature and 
virtuality as representative and relational. The question now is the establishment of the MSSN, which 
involves the specification of their possible self-definition as graphs on the active linkage between 
links of networks. We consider, in the following, a possible constitutional mechanism of self-
definition. 

The links constitutive mechanism can be considered as consisting of representations of 
phenomenological properties and practices of use, and in histories of use expressed, for example, by 
a couple of statistical relational values and their properties, which establish the passive links and 
their intensity as weight. Essentially, it is a matter of detecting and considering couplings owned by 
active linkage as links. Such statistically confirmed pairings are to be considered as MSSN links. 

As stated above, such passive linkage represents periodicity and regularities, randomness, 
interdependences, related time percentages, and even the ergodicity between active links. However, 
it is more realistic to consider the quasi ([35], pp. 151–166) versions of such properties as for quasi-
systems –corresponding to the structural dynamics of complexity-, quasi-periodicity, quasicrystals 
[43], and quasi-networks [44]. Considering suitable thresholds and duration time, a passive link (see 
Table 2 right column) is considered (quasi-)activated between two properties of the active links (see 
Table 1 right column/Table 2 left column) when statistically confirmed. 

Consequently, the passive links have a related dynamic weight, dynamic since continuously 
established by their occurrence and quantified by statistical values. The activation of a passive link 
between a couple of properties of active links should require the occurrence of suitable duration time 
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and thresholds of statistical values (such as frequency and modalities of their reoccurrence), allowing 
the quasi-case. The MSSN of passive links (see Table 2) is virtual, as given by the structural active 
dynamics, since the passive links must be continuously confirmed by the acquired statistical values. 
We consider the phenomenological inevitability of such self-definition of passive links and the MSSN, 
as considered above, when sufficient thresholds are reached and maintained for a significant time. 

Furthermore, with appropriate sampling techniques [45], it is possible to identify the network of 
dominant properties of active links, such as their prevailing temporal synchronizations and 
durations. Concretely, on the basis of the detection of statistical values regarding the occurrence of 
relational properties between couples of active links, such as those considered in Sections 3.1 and 3.2, 
it is a question of carrying out the design of possible compatible MSSN operating on the basis of 
methodologies and approaches having suitable predefined standardizations (see Section 8). 

However, the virtuality of the MSSN is also given by the validity of different approaches, such 
as admitting the persistence of passive links for established or context-sensitive time periods even in 
the face of the temporary lack of validity of the appropriate statistical values. A second and 
subsequent layer of the MSSN may be established by the same mechanism identifying, for instance, 
replicated networks of passive links on previous properties as in Table 3 right column. 

The reason for making such representations lies in the fact that they are constituted by 
relationships between relational and phenomenological properties invisible from the network model 
of active links. Their usefulness, as we will see in Section 6, lies in being able to use them to profile, 
classify, diagnose, and decide on modifier approaches. We conclude this section by mentioning that, 
as stated at the end of Section 3.2, the MSSN is actually a collection of equivalent or non-equivalent 
active linkages’ representations of their actual dynamic phenomenology. 

5.2. Emergence of the Passive Linkage 

In the conceptual framework introduced above, the passive linkage constituting the MSSN is 
considered possibly emergent as constituted by continuously acquired interdependences represented 
by statistical data and properties. Since, in statistical physics, it is impractical to measure the 
exponential number parameters of complex systems, it is possible to choose random parameter 
values and study the emergent statistical properties at the system level, as for emergent statistical 
properties of a population of cells (see, for instance, previous research [46]) and emergent properties 
of ecosystems [47]. Properties of statistical values intended as passive linkage are not only virtual but 
may also be intended to have an emergent nature, since they are continuously established by the 
interactive phenomenological dynamics in the population of the active linkage. This may be the 
reason why the properties of the MSSN cannot be reduced to properties of the active linkages. 
Furthermore, properties at level n of the MSSN cannot be reduced to properties at level n–1 of the 
MSSNn–1. However, the entire approach cannot be reduced to statistical evaluations and indexing 
since the (emerging) properties of the passive linkage network constituting the MSSN are considered. 

The issue is to consider the acquisition of properties by the passive linkage(s) from lower 
linkage(s) as emergent (see Tables 2 and 3) due to the underlying interactive phenomenological 
dynamics in the population of the active linkage whose proprieties interact, arrive and leave, also in 
varying combinations (see Table 1). If it is correct to consider this acquisition of such properties as 
emergent, then the various related models and properties could be applied to the MSSN. In particular, 
the incompleteness (see Section 7.1) of the processes of emergence is due to temporary loss and the 
recovery of local properties in such a way as to keep coherence, as in collective behaviors ([35], pp. 
87–90). Furthermore, it is possible to consider and apply approaches used for the so-called reverse 
emergence (see Section 6). 

In our case, we refer to the emergence of the network’s profile continuously changing (see 
Section 6.1), but in a way that keeps its coherence. The emergence of the entire network MSSN is 
intended to be given not only by non-equivalent but also by having statistical regular -until there are 
forms of coherence- properties of the linkages. 

This approach, based on considering the MSSN and their emergent properties, may be a way to 
profile [48–51] rather than model the process of emergence that considers network properties from 
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the dynamics of networked constituents (see Section 6.1). We stress that by ‘profile’, we mean 
something different from the usual definition in telecommunications, which consists of the attributes 
for a connection to a basic service set (BSS) network. We now mention how it is possible to consider 
possibly hierarchical processes of emergence ([35], pp. 255–258) of passive links from the network of 
active linkages (or, in any case, from multiple, multidimensional, and networks of networks). 

5.3. Relation between the Linkage Levels 

We mention how temporary intra-levels are possible within the MSSN, when nodes of one type 
are also part of a network of another type, e.g., a red node in Table 2 is linked to a green node through 
temporary equivalent red and short green linkage. This point is related to the concept of multiple 
systems, a set of systems whose components simultaneously belong to more coherent, i.e., correlated, 
systems ([6], pp. 3–15). In the same way, we consider multiple networks where the same nodes belong 
to different simultaneous networks [9]. 

The research subject we consider here is the intra-relations between the active linkage and the 
first MSSN level, as well as the subsequent levels of passive (possibly multiple linkages) of the MSSN. 
Due to the multiplicity of the first MSSN, deterministic correspondences with the active linkage are 
very improbable. Similar considerations relate to the relation between subsequent hierarchical levels 
and the initial passive linkage. The more hierarchical levels the MSSN has, the less likely it is that 
deterministic correspondences can be hypothesized. Different versions of MSSN are likely to be non-
equivalent or even have aspects of partial equivalence. 

Furthermore, the dynamic statistical nature of the passive linkage makes the identification of 
properties with stability non-trivial. However, once and if detected, they may characterize and 
classify the active linkage and profile in a specific period or recurring period. Visually, we can 
imagine the active linkage as superimposed by dynamically constituted successive levels of passive 
linkages, establishing a dynamic cloud of versions of MSSN. 

Examples of possible relations are the occurrence of the same network properties, such as 
geometrical and topological, or their reoccurring possibly in dynamic combinations. Due to the 
statistical and possibly emergent nature of the passive linkages, their networks are given by links that 
arrive and leave with consequent processes of acquisition and disappearance of network geometrical 
properties, considering, for instance, the connectedness (given, for instance, by the mean of the degree 
distribution), density (ratio between the actual number of edges and the maximum possible number 
of edges in the network), scaling (for instance, scale-freeness, when the network has a high number 
of nodes with few links or a small number of nodes (hubs) with a high number of links). In scale-free 
networks, the probability that a node selected at random possesses a particular number of links 
follows a power law Y = kXα, where α is the power law exponent, and k is a constant. 

Furthermore, another class of possible relations includes the occurring and reoccurring of the 
same profiles or regular relationships between them. Examples of MSSN’s non-geometrical possible 
properties include the occurrence of properties of passive linkage paths, such as their length and 
composition, sequential variations with regularity, their quasi-stability, and quasi-repetition with 
negligible variations. Research and simulations should identify approaches suitable to detect 
correspondences not only between properties of the active linkage and the MSSN but also about 
levels of coherence, their possible multiplicity, reoccurrences, and quasi-regularities considerable, for 
instance, as signals and symptoms of processes in progress. 

It is possible to consider approaches for the comparison [52] between networks with the purpose 
of classifying the subsequent levels of the MSSN. Such a research issue relates to possible analytical 
representations of temporary, local, or global interlevel relationships. The situation conceptually 
recalls deep learning in machine learning models, which have the characteristic of being composed of 
different processing layers, each of which extracts a representation of the previous layer [53,54]. 

6. Usages of the MSSN Properties and Profiles 
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The concepts considered here are inspired by the role of acquired emergent properties reversely 
on the system from which they emerge in a process known as reverse emergence ([35], pp. 258–272; 
[55,56]). 

Examples of effects on active linkages of emergent acquired properties include the induction of 
individual behaviors in collective behaviors modeled as networks [57,58] such as flocking, effecting 
individual flying; behaviors induced by acquired cognitive properties, such as learning replacing 
linear stimulus-reaction processes as in collective intelligence; life establishing self-sustaining and 
autonomous processes, able to maintain a property such as to perform autopoietic reproduction; and 
cognitive properties deciding the usages of biological resources from which they emerge. 

The research approaches considered below, i.e., profiling (see Section 6.1), self-regulatory 
mechanisms (see Section 6.2), and the passive linkage as weak forces (see Section 7), fall into the field 
of the contributions devoted to managing and controlling [3] complex networks as complex systems 
[59], when multiple levels of representation are required as well as the expansion of models from 
statistical physics integrating the notion of feedback, extension of control theory approaches [60], and 
mesoscopic analysis and mesoscopic variables. 

In this regard, we mention how the mesoscopic description level of complex processes may be 
intended as areas of continuous negotiations between micro and macro ([35], pp. 110–113). This is 
approachable by statistical physics since it is impossible in principle -due to the intractability of the 
problem- to consider all the dynamic inter-relations between interacting elements, temporary 
systems, and environment. As mentioned below, profiling rather than modeling also requires the 
integration of machine learning and data-driven approaches. 

In a time when invisible passive links are established-detected, it is then possible to consider 
their possible reverse influence on the active network from which they emerge, when the active 
linkage is autonomous and adaptive (see Section 6.2). However, the self-acquired properties of the 
MSSN have no direct behavioral influence on the active linkage. Such properties (statistical and their 
network properties), together with their constitutive dynamic acquisition and loss of links (including 
emergence), correspondences, and regularities, are considerable for driving non-linear decisions 
based, e.g., on analogies, optimization, procedures, and protocols, actions on the active linkage 
network (see Section 6.2). 

6.1. MSSN Properties and Profiles 

We may consider the use of the MSSN properties, summarized in particular by their profiles, for 
the purposes of network performance evaluation, detection of critical configurational issues during 
the establishment phase, allowing prevention of unwanted properties and network disintegration, 
experience-based (machine-learned) diagnostics, and regulatory, MSSN-driven actions (see Section 
6.2) on the active linkage as based on experiential learning (prospectively machine learning) 
processes. 

Regarding profiling, we mention that while ideal modeling has the purpose to support 
understanding, profiling is intended as non-ideal, data-driven modeling, with their 
phenomenological, in case emergent, ongoing properties, such as the occurring of coherences and 
correlations. A related differentiation is given by the difference between understanding and 
forecasting. 

Ideal modeling supports understanding since it is aimed at conjecture, explanation, 
hypothesizing, replicating, simulating, and realizing fundamental properties of the phenomenon 
under study. For instance, the occurring of attractors, bifurcation points, chaotic properties, network 
properties, non-equivalences, power laws, scale invariance and self-similarity, and symmetry 
breaking. 

On the other hand, non-ideal modeling as profiling is data-driven, intended to represent 
ongoing properties that allow generic forecasting, comparison, and classifications based on the 
importance of the past, analogies and repetitiveness, coherences and correlations, the identification 
of standardized configurations, and consider contextual conditions (see Table 4). 
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Table 4. Examples of ideal and non-ideal modeling. 

Ideal Modeling Non-Ideal Modeling 
Field equations, such as those of Maxwell’s electromagnetic 
field 

Cellular automata 

Deterministic chaos equations Dissipative structures 
Network science (ideal scale-free networks) Agent-based models 
Ergodic systems Artificial life 
Equations of mechanics Neural networks 
Equations of thermodynamics Properties of big data 

How data profiling [48] relates to collecting data about data, i.e., metadata -see the last case of 
non-ideal modeling in Table 4 for information on big data- network profiling relates to collecting 
data, identify their properties, and relates to ongoing usages and phenomenology of networks, in our 
case data related to the structurally dynamic networks of passive links establishing the MSSN. 
Therefore, MSSN profiling arises when considering the properties of specific passive linkages of the 
MSSN. 

In the following, we will continue to use the term ‘profile’ in the singular. However, it would be 
more accurate to use the term ‘profiles’ in the plural as different profiles (equivalent, partially 
equivalent, or non-equivalent) are possible, differentiated depending on their use and purpose. With 
the use of the term ‘profile’ in the singular, we will refer to the specific profile decided by the research 
needs, keeping in mind, however, that it is a choice as for the levels of description. Furthermore, the 
term in the singular can be understood as referring to a generic profiling, suitable for considerations 
that are themselves generic (to be specified, if necessary). 

The usage of MSSN properties for the purposes of network evaluations has two aspects: 
• use of formalized, e.g., geometrical, evaluations establishing correspondences and 

measurements between active linkage and MSSN properties; 
• use of experiential, i.e., related big data and machine-learned correspondences between active 

linkage and MSSN properties. 
With reference to the first point, as is well-known, a network with N-labelled nodes is defined 

by the repertoire of N(N−1)/2 possible links. It is possible to compute, as a first example of an MSSN 
profile, the level of the actual networking, e.g., in terms of percentages of the passive linkages per 
instant. 

With reference to the second point, the subject of this article, in the following, we introduce 
simple examples of data on which to detect and calculate profile versions, i.e., network profiling. 
Profiles may be considered given by properties, e.g., distribution -linear, parabolic, and random- of 
points representing the values possessed over time by suitable vectors defined later, such as Vx(ti), 
Vy(ti), matrixes Mk(t), and properties of their temporal sequences, such as their interpolations and 
clustering. 

We now mention how interpolation is a statistical method that uses known values to 
approximate and estimate related unknown values or a set of values [61]. Several approaches to 
community detection characterized by a specific property are available. Among them are techniques 
such as the so-called self-organizing map (SOM) and top-down and bottom-up clustering. SOM is a 
machine learning technique used to produce a low-dimensional, usually two-dimensional, 
representation of a higher-dimensional dataset while preserving the topological structure, e.g., 
structured (leaf) zones, agglomerations, and shapes of the data [62–64]. 

Clustering deals with finding a structure in a collection of unlabeled data. A rough definition is 
a technique for organizing entities, e.g., numerical values, objects, patterns, and signals, into groups 
of members similar in some way. Several approaches and clustering techniques, often interpolation-
based [65], are available, such as algorithms so-called k-means, k-median, and k-medoids [66,67], 
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multivariate data analysis (MDA) such as in previous research [68], and cluster analysis [69] to 
identify classes [70]. 

As a first example of profiling data, we may consider some or all of the passive links in Table 2 
and the number of occurrences in the instant under consideration, as in the vector Vx(ti) = [x1(t), …, 
x8(t)] in Table 5. 

Table 5. Example of the Vx(ti) in a nine-dimensional space. 

Cases of Passive Links as Mutual Intra-Active Links Properties (See 
Table 2) 

Number of Occurrences 
in the Instant under 

Consideration 
1. Same-opposite practicability and directions of the connected active links x1(t) 
2. Corresponding active-non active state of the connected active links x2(t) 
3. Instantaneous compatibility-incompatibility between the two linked active links x3(t) 
4. Similar levels of coating x4(t) 
5. Similar throughput x5(t) 
6. Corresponding configurations of clustered active links: for instance, when one is 
unidirectional, and another has high traffic, another becomes inactive, as in factorial 
decision tables (in case parametrized) 

x6(t) 

7. Temporal synchronization between the two linked active links 
 x7(t) 

8. Temporal duration properties between the two linked active links x8(t) 

The punctual properties of the trajectories are, e.g., continuity, topological (for example, knotting 
in knot theory)—the study of mathematical knots [71]—of the vector Vx(ti) in its eight-dimensional 
space, and intra-properties of the xn values (for example, ratios that represent a case of profiling of 
the first level of the MSSN). 

For instance, the vector Vx(ti) = [0, 0, 0, 0, 7, 0, 0, 3, 0] represents the fact that the following are 
active at time tk: 
• seven passive links have ‘similar throughput’, 
• three passive links ‘temporal synchronization between two linked active links’. 

More appropriate evaluations may consider properties of the evolutionary trend over time of 
each or group of variables xn. Furthermore, it involves comparing the trend of the graphs representing 
the evolution of the xn variables over time, detecting, for example, correspondences and recurrences. 

As a second example, we may consider that a subsequent level of profiling is obtained by 
considering some or all the passive links between passive links (as in Table 3 right column) and, also 
in this case, the number of occurrences in the instant under consideration, as in the vector Vy(ti) = 
[y1(t), …, y7(t)] in Table 6. 

Table 6. Example of Vy(ti) in a seven-dimensional space. 

Cases of Passive Links between Passive Links (See Table 3) 
Number of Occurrences in the 
Instant under Consideration 

(a) Temporal synchronization between the two linked passive links y1(t) 
(b) Temporal duration properties between the two linked passive links  y2(t) 
(c) Compatibility-incompatibility between the two linked passive links y3(t) 
(d) Admissibility or otherwise of simultaneity y4(t) 
(e) Compatibility-incompatibility of the state on for the links y5(t) 
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For instance, the vector Vy(ti) = [0, 4, 1, 0, 5] represents the fact that the following are active at 
time th: 
• four passive links ‘temporal duration properties between two linked passive links’, 
• one passive link ‘temporal synchronization between two linked active links’, 
• five passive links ‘compatibility-incompatibility of the state on for the linked two passive links’ 

In this second case, it is possible to apply also the approaches mentioned in the first example. 
A third example of a network profile is given by considering time-dependent matrixes, which 

are generalizable and adaptable to specific research interests. For instance, in this case, an 8 × 3 matrix 
Mk(t) where (see Table 7) the lines represent the network passive links are considered and are active 
at time t (in this case, eight). The column parameters of interest are as follows (three in this example): 
(1) the number of passive links in a state among the eight considered occurring at time t; (2) the 
number of non-adjacent passive links among the eight considered occurring at time t; (3) the number 
of intermediate links among the eight considered, for instance, for routing problems [72] occurring 
at time t, where: 

Mk (t) = m,nz (t)    with m = 8, n = 3.  (4) 

Table 7. Example of Mk (t). 

Passive Links Occurring at Time t, See Table 
5 

Network Links Parameters 
Number of 

Passive Links in 
the State Active 

at Time t 

Number of 
Non-Adjacent 

Passive Links at 
Time t 

Number of 
Intermediate 

Links at Time t 

1. Same-opposite practicability and directions of the 
connected active links z1,1(t) z1,2(t) z1,3(t) 

2. Corresponding active-non active state of the 
connected active links z2,1(t) z2,2(t) z2,3(t) 

3. Instantaneous compatibility-incompatibility 
between the two linked active links z3,1(t) z3,2(t) z3,3(t) 

4. Similar levels of coating z4,1(t) z4,2(t) z4,3(t) 
5. Similar throughput z5,1(t) z5,2(t) z5,3(t) 
6. Corresponding configurations of clustered active 

links: for instance, when one is unidirectional, and 
another has high traffic, another becomes inactive, as 
in factorial decision tables (in case parametrized)  

z6,1(t) z6,2(t) z6,3(t) 

7. Temporal synchronization between the two linked 
active links z7,1(t) z7,2(t) z7,3(t) 

8. Temporal duration properties between the two 
linked active links z8,1(t) z8,2(t) z8,3(t) 

The profiling considers the occurring of temporal sequences of the matrix Mk(t) and their 
properties, such as interpolations, clustering, and their quasi-correspondences and recurrences. For 
instance, consider the matrix Mk at time th as follows: 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 June 2024                   doi:10.20944/preprints202406.0574.v1

https://doi.org/10.20944/preprints202406.0574.v1


 24 

 

Mk (th) = 
3 2 1
2 0 0

7 3 0
0 0 0
0 0 0
0 0 0
6 0 4
0 0 0

 
 
 
 
 
 
 
 
 
 
 
    

 

This matrix state signifies that: 
• Seven passive links ‘same-opposite practicability and directions of the connected active links’ 

between active links occur at time th; 
• Three passive links ‘same-opposite practicability and directions of the connected active links’ 

out of seven active links are non-adjacent at time th; 
• Six passive links ‘similar throughput’ occur at time th; 
• Six passive links ‘similar throughput’ are separated by four intermediate links at time th; 
• Three passive links ‘temporal synchronization between two linked active links’ occur at time th; 
• Two passive links ‘temporal synchronization between two linked active links’ are not adjacent 

at time th; 
• Three existing passive links ‘temporal synchronization between two linked active links’ have 

one intermediate link at time th; 
• Two passive links between active links ‘temporal duration properties between the two linked 

active links’ occur at time th. 
The profiling may consider values computed on temporal sequences of the Mk(t) detecting, for 

instance, regularities as stable reoccurrences and the occurring of possible different versions 
considering groupages of interest, generic statistical, and ergodic-like properties. 

In conclusion, beyond the occurrence of network geometric properties, network profiling should 
consider their specific temporal, relational, and behavioral properties, as well as the characteristics of 
the trajectories in the vectorial matrix space. The profile can highlight high synchronization or areas 
of high incompatibility as well as the opposite case. Moreover, the profile can highlight the state of 
activity or inactivity of the network and its occurrence in a localized or scattered manner. The profile 
can emphasize the occurrence of behavioral properties over time. The evolution of profiles (profiles 
of profiles) over time represents the dynamic phenomenology of a structurally static network having 
variable, multiple MSSN. 

We may consider the use of the MSSN profiles as property for the purposes of network 
behavioral forecasting, comparison, and classification based on formalizations or experiential 
machine learning. We can mention how this network profiling differentiates from the usual profiling 
of digital communication and social networking, which deal with personal social network profiles 
[73] and technologically considers a set of parameters that define network conditions. 

Another purpose of the use of MSSN profiles is the identification of standard configurations 
(also specific to the type of application, e.g., telecommunication, airlines, and road networks) to be 
replicated or avoided as criticalities. It is also possible to identify classes of equivalent configurations 
on which to act in standardized ways, whose effects have been (machine-) learned. This relates to 
approaches used to monitor and classify the collective behavior of cattle in order to evaluate the 
health and any problems or illnesses of the cows in the herd [74,75]. 

We can summarize by saying that MSSN properties are of interest for MSSN-driven actions, 
evaluations, and measurements, while MSSN profiles, as non-ideal models, are of interest for 
forecasting, comparison, and classification purposes and for self-regulatory processes for cases when 
the active linkage is autonomous and adaptive (see Section 6.2). Their joint use allows to establish, 
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for example, confirmatory redundancies, determine compatibility-incompatibility situations and 
configurations, and evolutionary tendencies to facilitate or avoid. 

6.2. Self-Regulatory Mechanisms 

The interest in possible self-regulatory mechanisms is based on suitable network models and 
simulations allowing for soft interventions on the active linkage having structural, diffused effects 
on the active linkage, such as solving or preventing the occurrence of inconsistencies, inefficiencies, 
deadlocks, unavailability, and unreliability. This may concretely occur when the active linkage 
consists, for instance, of autonomous networks such as adaptive networks. 

Adaptive networks are a broad class of networks that can change over time their structural 
connectivity depending on their dynamical state. The fundamental property is that their function 
depends on their structure and vice versa. Adaptive networks may be defined as feedback loops 
between the local dynamics of the individual units and the dynamical changes of the network 
structure. Furthermore, adaptive networks fall into the category termed ‘autonomous networking’, a 
research field that has the purpose of transforming static networking into dynamic, programmable 
environment driven, for instance, by adaptation, analytics, and machine learning [76,77]. Examples 
are research and models related to neuronal synaptic plasticity, biological, chemical, epidemic, and 
technological systems, as in artificial intelligence, transport, and social systems, as presented in 
previous research [78–80]. 

The relationship between the active linkage and its cloud of MSSN, in the case of machine 
learning, is a many-to-many relationship since an active linkage may correspond to different, 
multiple MSSNs, and a specific MSSN may represent different active linkage or, better yet, it cannot 
be denied in principle (for example, with a theorem). However, in the case of adaptive networks, it 
is possible to break the passive, only representative many-to-many relationship and consider suitably 
modified versions of the MSSN as regulatory prescriptive and adaptive factors for the active linkage. 

In our case, we consider the adaptation process of an autonomous network as given by 
hypothetical feedback loops between the network of active adaptive linkage and its self-established 
(in the case emergent) properly modified and prescriptive MSSN passive linkage establishing an 
interactive structural dynamic between networks levels of active and passive linkages. In this case, 
the dynamic adaptation is activated by external MSSN-driven interventions on the MSSN, e.g., 
varying the linkage weights and the linkage itself by artificially suppressing or activating links. 

The adaptation mechanism of autonomous networks is finalized to keep the coherence between 
the modified MSSN and the active linkage, re-establishing a correspondence of emergence. 
Furthermore, we stress how such perspective mechanisms of feedback loops are of great importance 
for simulations and network design. 

7. Passive Linkage of Multiple Superimposed Soft Networks as Weak Forces 

Forces may be characterized as ‘weak’ when they have, for instance: 
• low value, for instance, less than the minimum of all forces involved at the moment; 
• local ranges of influence involve very few (in reference to the totality of elements considered) 

spatially adjacent composing elements. 
Consequently, weak ([81], pp. 11–12) forces have a range of influence and values insufficient to 

force changes in the properties of the elements or of the entire system, and in the properties of the 
ongoing interactions. 

In the case of collective behaviors, the effectiveness of weakness relates to the breaking of agents’ 
instantaneous equivalent conditions, equilibria; roles of the high frequency, irregular, and 
unpredictable, weak actions replacing impossible and unsuitable strong, single actions. This has the 
advantage of flexibility, allowing for adaptation and implementation of collective properties such as 
a defensive collective strategy. This occurs in the case of flocks, swarms, e.g., invasions of locusts and 
wild herds, or ingestion of low but persistent dosages of drugs. 
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Furthermore, weak interactions may be considered at first as incomplete, tentative initial 
conditions of a self-establishing, quasi-convergent process, such as spontaneous synchronizations, e.g., 
applauses, fireflies, objects on vibrating surfaces, until a specific synchronization becomes 
predominant and quasi-identically iterated. We mention how weak forces also concern cases such as 
sub-symbolic processing, using tools such as artificial neural networks and cellular automata, where, 
respectively, networked small computations lead to an end (non-summative) result such as behavior, 
and regular grid of computed cells lead to emergent patterns in cellular automata. 

In these cases, symbolic computation causes emergent properties to be acquired [82]. This point 
may allow for considerations on various types of emergences, such as for a kind of artificial 
unconscious [83], of interest since an (artificial) intelligence seems very limited without being 
exposed to decays, deficiencies, illnesses, and unconscious effects. Realistic, intelligent artificial 
devices should intrinsically and theoretically have the capacity to make mistakes, not always just be 
rational and right [84]. This point is important when requiring artificial creative reactions and 
behaviors, e.g., proposing strategies, commenting on scenarios, finding inconsistencies and 
contradictions reductionistically simulated by randomness, by suitably varying probability of 
reactions, and by admissible variations in what has been learned. Instead, the machine-like attitude 
of artificial intelligence is preferable for repetitive applications based on reliability and repetitiveness, 
albeit contextual, e.g., driverless driving and chatbots that professionally answer questions. 

Properties of the MSSN and its profiles may be considered to have a role as weak forces: the 
higher the level in the passive linkage, the weaker the changes induced when consequently acting on 
the active linkage, but, counterintuitively, the higher their effectiveness when not replaceable by 
unsuitable, inadequate, incompatible strong forces as in ecosystems and social networks [24]. 

7.1. Weakness and Theoretical Incompleteness 

Furthermore, the concept of weakness may be considered compatible if not included in the one 
of ‘theoretical incompleteness’, considered necessary for the establishment of processes of emergence 
and quasi-systems ([35], pp. 151–166): 
• The emergence -in short, acquisition of multiple, dynamic coherences as new properties 

irreducible to the previous ones- of complex systems requires theoretical incompleteness, i.e., 
theoretically incompletable distinguished from completable incompleteness. Classic cases of 
theoretical incompleteness are Heisenberg’s Uncertainty Principle, by which accuracy in 
measuring one variable is at the expense of another; the complementarity in theoretical physics, 
e.g., between wave and particle natures; and the incompleteness in Gödel’s theorems. Here, the 
theoretical incompleteness relates to the partial acquisitions, losses, and recovery of properties 
in processes of emergence in a dynamic of equivalences, for instance, of collective behaviors in 
which the different, but essentially microscopically equivalent, states that an agent can 
subsequently acquire have minimal differences. However, states having minimal differences 
trigger crucial incomplete, irregular sequences of subsequent effects that then materialize in 
specific behaviors. Completeness can be thought of as the ‘worst enemy’ of emergence because 
it produces ruled contexts excluding equivalences, interchangeabilities, role of weak forces -such 
as fluctuations- that decide equilibrium breakdowns and initiate linked sequences, and multiple 
roles on which the processes of self-organization, emergence, and their unicity are based. These 
are weakly regulated contexts and are, therefore, full of possibilities. Emergence is based on 
exploratory properties. 

• Quasi systems that are not always systems, not only systems, and not always the same systems: 
their systemic nature, i.e., the ability to acquire properties, is present in a weaker mode, 
reoccurring but only variably predominant. 
We conclude this section by considering the correspondence between: 

• Systems science, complex systems science extended with the concepts of incompleteness and 
quasi-systems 

• Network science is extended by combining networks and their clouded MSSN. 
This helps to specify, in turn, the correspondence between systems science and network science. 
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7.2. Perspective Applications 

We may consider MSSN-driven actions on the active linkage suitable to induce, for instance, 
local or global variations in increasing-reducing: 
• compatibilities, 
• incompatibilities, 
• simultaneities, 
• synchronizations, 
• temporal constraints, 

with the purpose of keeping, for instance, forms of general or local, static, or dynamic 
homogeneity in the active network or their avoidance. 

MSSN-driven actions may be considered as indirect, soft, weak actions on complex systems 
represented as networks, where direct, strong actions that are expected to have linear effects are, in 
reality, unfit. Such actions seem to be compatible, if not suitable, to induce or deactivate processes of 
emergence, act on processes of emergence with the purpose of regulating acquired properties, and 
allow phenomena of merging between different emergencies. Examples of perspective applications 
include actions on economic, infrastructural, logistic, and sociological properties of social systems, 
such as when considering workplace safety, which cannot be reduced to theoretically incomplete 
procedures, being actually emergent [85]. 

Other examples of perspective applications include actions on biological and neurologic 
systems, as well as medicine, where actions relate to dosages of medicines of appropriate chemical 
strength. The suitability of the weakness of forces to act on complex systems is related to the fact that 
such forces are not non-binding, impositional or invasive but have the nature of suggestions and, in 
the case of environmental options, aimed at activating appropriate processing by the complex system 
which then decides between equivalences (building its specific healing attempt). These are not repairs 
or replacements, but rather appropriate, non-invasive activation of processes to be preferred to 
invasiveness according to the circumstances. 

We highlight how acting with strong forces is based on the conceptual assumption of knowing 
what is right to impose on the system, while in the case of weak forces, there is ethical respect for the 
system, for the so-called intelligence of matter ([35], pp. 150–151), while respecting its autonomy. This 
applies to Nature in general, even if the invasive approach is unfortunately dominant and generates 
non-strategic interventions and short-range actions. 

However, the two approaches are not mutually exclusive: they should be applied depending on 
the opportunity, possibly even together. In conclusion we notice how the more generic network 
reverse emergence and network properties transposition is possible by adaptivity interfaces and 
learning of autonomous networking. 

8. Research Issues on MSSN and Trans-Disciplinarity 

As mentioned above, the overall approach is based on the design of passive linkages, which 
have statistical origins in the effective phenomenological network composed of active links. It is 
necessary, first of all, the implementation of technological methodologies and tools to design 
(improved self-design) equivalent or non-equivalent MSSN on the active linkage under 
consideration. 

Subsequently, it is a question of identifying the establishment and its modalities, e.g., correlated, 
ergodic, random, recurrent, and regular properties of the passive linkages. It is then a matter of 
identifying, for instance, through experiential, machine learning, statistically significant 
correspondences with properties and their dynamics of the active linkage. A research issue relates 
the possible replacement of experiential learning with machine learning approaches suitable to 
introduce perspective self-regulatory processes. Correspondences and profiles should be the subjects 
of research to identify their possible reverse usages on the active linkage such as for diagnosis, 
comparative, classification, performance evaluation, detection of criticalities, and regulatory 
purposes. 
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Another research issue relates to the possible identification of standard corresponding 
configurations of passive and active linkage. The possible interest is, for instance, in avoiding their 
establishment as corresponding to the creation of criticalities or, conversely, in facilitating their 
establishment and keeping, in their replication in different contexts (or partially and in 
combinations), and in identifying related standardized usages extended to classes of configurations 
having significant levels of equivalence, useful in case urgent interventions are required. 

Having said this, specific research topics related to MSSN can be, for example, given below: 
(1) Implementation of methodologies and approaches to carry out software-based self-designed 

possible, equivalent or non-equivalent MSSN on an active linkage under consideration, such as 
considering network design software and tools available on the market [86]. 

(2) Identify generic and possible formal properties of the MSSN layers. 
(3) Equivalence conditions between different levels or groups of levels of the MSSN. 
(4) Tools and approaches to detect properties of MSSN to be used as profiles. 
(5) Tools to identify emergence mechanisms from the network of active linkages (see Section 5.2). 
(6) Possible combinations, applications of the passive linkages to other networks of active linkages, 

introducing possible standardizations. Ability to store, generate, and transmit different MSSN. 
(7) Elaborate on profiling techniques, MSSN properties, their usages, and interdependence. 
(8) Research on cases of possible self-regulation through machine learning-based approaches on 

adaptive networks. 
(9) Given the soft nature of interdependences represented by the MSSN, they can be related to the weak 

forces considered in the literature (see Section 7). The properties of the MSSN and its profile may be 
considered to have a role as weak forces. Furthermore, the approach is conceptually considerable 
for processes without certain or certainly identifiable beginning events, such as for some economic 
transformations and illnesses. Moreover, the latter is the case for the generic inflammatory 
processes in biology at the beginning of (and not definitively causing) several pathologies and 
neurodegenerative diseases such as multiple sclerosis. In these cases, their profile can reveal 
pathological processes in constitution (through compatibility considerations) or in progress. 

(10) In physics, fields are intended to prescribe a well-defined value to any entities at a point, such as 
electric and electromagnetic fields. 
Domains are intended as spatial regions of possible options available to entering entities, such as the 
permissible and compatible behaviors and states of an entity expected to respect the relevant 
constraints and degrees of freedom of the domain. This is the case of systemic domains, e.g., spaces 
within which collective behaviors occur, inducing (if not forcing) entering entities to behave 
systemically ([35], pp. 170–175). The entering entities may face occasional scenarios of equivalent 
options in multiple superimposed domains that are then decided, for instance, by fluctuations. 
Domains may be considered non-continuous since zones with multiple options are possible. 
A network domain, identified by a domain name, is usually intended as the administrative grouping 
of multiple private computer networks or local hosts inside the same infrastructure. Here, in 
consideration of the virtuality of the MSSN, we generalize by considering networked domains where, 
taking it to the extreme, each point is the vertex of at least one network. More realistically, it will be 
a matter of considering the area of space at an appropriate level of granularity of vertexes constituting 
networked domains. In the case of multiple domains, these are multiple networks. We believe that 
networked domains constitute an interesting generic interdisciplinary field of study focused, for 
example, on the study of implicit and potential space of network properties possibly activated and 
collapsed by appropriate events. 

8.1. Trans-Disciplinarity of the MSSN 

We conclude this section by mentioning the interdisciplinary and transdisciplinary aspects of 
this research project. Interdisciplinarity arises when approaches, models, problems, solutions, and 
network models, such as the MSSN, of one discipline are applied to another. 

This is the case of interdisciplinary properties, such as systemic properties, examples of which 
include allostasis (ability to maintain stability through continuous adaptive structural changes), 
anticipation (according to Rosen, a system is anticipatory when containing a predictive model of 
itself) [87,88], autopoiesis (ability to regenerate recursively), coherence (as the dynamic establishment 
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and maintenance of a property), development (often reduced to generic growth, when in reality it is 
about coherent growths and, in this case, partial and temporary degrowth of interrelated systems), 
dissipation (when systems keep their coherence through a constant flux of matter from outside, e.g., 
vortex in a flux of running water, in atmospheric phenomena such as hurricanes and living systems), 
emergence (recurrent acquisition of coherent sequences of variations of different properties, e.g., 
flocks, ecosystems shapes acquisitions in collective behaviors as car traffic), homeostasis (ability to 
maintain characteristics in the face of changing environmental conditions through self-regulation 
mechanisms), properties of chaotic systems [89] (for example, the double pendulum, such as the 
property to be very sensitivity to initial conditions, e.g., smoke diffusion and weather), (remote) 
synchronization [90,91], resilience (ability to adapt and self-repair in the face of disruptive events), 
and self-organization (recurrent acquisition of coherent sequences of variations of the same property, 
e.g., the Belousov-Zhabotinski reaction, the Rayleigh-Bénard cells, and swarm around a light and 
whirlpools). 

We have a case of trans-disciplinarity, see, for instance [92,93], when dealing with problems and 
approaches aimed at the representation and management of knowledge. A specific case relates to 
approaches for knowledge representation and processing, such as in artificial intelligence (see, for 
instance, previous work [94]. A case is given by cognitive science when science studies itself. Trans-
disciplinarity relates to knowledge about knowledge, for instance, meta-knowledge [95], since meta-
data relates to data about data. 

More generally, trans-disciplinarity can be understood as the study of systemic properties per se 
and of intra-systemic properties. It is a matter of the trans-disciplinarity of properties of systemic 
properties, i.e., systemic properties without disciplinary contextualization. It is a matter to consider 
for relationships between systemic properties. 

Examples of such trans-disciplinary properties include the modalities of occurring of systemic 
properties, e.g., with interdependence, regular or random reoccurrences, in temporal 
correspondences and durations, in correspondence, synchronized, in groupages, and according to 
compatibility and incompatibility. Trans-disciplinary research relates to properties of 
correspondence and analogies between approaches, models, and representations. 

Trans-disciplinarity allows for the identification of scenarios emerging from collections of 
systemic properties, which are suitable for deciding tentative approaches and establishing similarities 
of contexts on which to learn repeatable approaches. Furthermore, in turn, a transdisciplinary 
attitude consists of comparing and considering different scenarios of systemic properties in which to 
identify, for example, analogies and correspondences. This is a particularly suitable approach for 
interacting with complex systems such as medicine, ecosystems, and social systems. It is a matter of 
scenarios constituted of symptoms scenarios and profiles. 

We can consider such trans-disciplinarity representability through MSSN networks. For 
instance, we may account for disciplinary cases such as situations occurring in biology, chemistry, 
economics, electronics, engineering, informatics, medicine, physics, and psychology. Considering 
such disciplinary cases as nodes, the links between pairs of them may state that the approaches, 
models, problems, and solutions used in one disciplinary case also apply to the other one. That is an 
interdisciplinary linkage. 

The further over-linkage of passive links among inter-disciplinary links may be considered to 
have a trans-disciplinary nature. Its links may state, for instance, that a couple of interdisciplinary 
links are, in turn, related, passively linked, stating, for instance, that when an interdisciplinary 
correspondence occurs between two disciplinary cases, then another occurs for another couple of 
disciplinary cases. 

An example case is given by considering the following: 
• interdisciplinary ‘development’ link between social systems and biological systems, for which 

development processes are described by similar models; 
• interdisciplinary link ‘resilience’ between ecosystems, for which there is the ability to re-

establish balance or coherence in the face of disturbances and materials, for which there is the 
ability to resist impacts and breakages by absorbing energy through their own deformation to 
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then reorganize and return to the original shape as, for example, for rubber bands. The resilience 
processes are described by similar models. 
A transdisciplinary link between these two links could represent not only compatibility, but also 

the high probability of their occurrence in the same contexts. Such trans-disciplinarity can be 
considered adequate, for example, for linguistic contexts (text comprehension), image 
understanding, scenarios (economic, military, and social) understanding, and design. 

The possible trans-disciplinarity lies in the fact that properties of the MSSN and network profiles 
may be considered for knowledge representations such as analogy, concordance, correlation, 
correspondence, image, and reasoning relationships. Finally, we mention how the MSSN may be 
considered for the controversial so-called theory-less knowledge when theory is considered replaced 
by suitable analogy, concordance, correlation, and correspondence [96,97], such as in the case of big 
data using data-driven approaches within very large databases [98,99]. 

9. Conclusions 

This article proposes a new tentative field of research for the study, use, and management of 
networks that consider MSSN, their properties, and profiles as part of contributions aimed at 
overcoming the geometric and technological phase of network science, allowing for new 
generalizations. While the article considers and introduces topics in a general and abstract nature, 
the research could preferably focus on a few specific cases by designing appropriate specific versions 
of the MSSN, considering specific types of networks, and developing databases with their parametric 
values. To begin, cases of active linkage with low structural dynamics and stable network properties 
could probably be more easily tackled. 

Such a database will be necessary to validate the outlined approach, possibly also specifying it 
for specific uses. Furthermore, computer-based methodologies and approaches should be developed 
to design the MSSN, starting from couplings owning to active linkage validated by the suitable 
occurrence of related statistical data. 

We have listed various research subjects. However, these topics should be developed both 
disciplinarily, with reference to specific application areas, and interdisciplinary to identify 
methodologies and approaches of general use. Among the research topics, one is mentioned relating 
to networked domains that focused, for example, on the study of implicit and potential space of 
network properties. 

This research project involved methodological and generalizing aspects of transdisciplinary 
value. It can be considered hypothetically for collections of networked systemic properties and 
approaches actually in use and having specific application histories. 

Finally, we mention how the study of the MSSN, their properties, and their relationships with 
the network of active linkage may introduce new research approaches, also indicating currently 
undefined limits of network science. 
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