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Abstract: The paper proposes an algorithm for parallelizing calculations that arise when using highly optimized
minimization functions available in many computing packages. The main idea of the proposed algorithm is based
on the fact that although the “inner workings” of the minimization function used may not be known to the user, it
inevitably uses in its work auxiliary functions that implement the calculation of the minimized functional and
its gradient, which are usually realized by the user and in many cases can be parallelized. The paper discusses
in detail both the parallelization algorithm and its software implementation using MPI parallel programming
technology, which can act as template for parallelizing a wide set of applied minimization problems. An example
of software implementation of the proposed algorithm is demonstrated using the Python programming language,

but can be easily rewritten using the C/C++/Fortran programming languages.
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MSC: 65Y05, 68W10, 65-04

1. Introduction

When solving many applied problems, there is often a need to minimize certain functional. Re-
cently, a variety of minimization software packages have become available to scientists, providing
access to highly-optimized minimization functions. For example, in one of the most popular libraries
among the scientific community, SciPy [1] of the Python programming language, multiparameter
minimization functions are available, which can be divided into two classes: local minimization
functions and global minimization functions. Local minimization functions include those that im-
plement: the Nelder-Mead algorithm [2], the modified Powell algorithm [3], the conjugate gradient
algorithm [4], the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [5-8], the Newton conjugate
gradient algorithm [9], the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) algorithm
with box constraints [10], a truncated Newton (TNC) algorithm [11], the Constrained Optimization BY
Linear Approximation (COBYLA) algorithm [12], Sequential Least Squares Programming (SLSQP) [13],
a trust-region algorithm for constrained optimization [14,15], the dog-leg trust-region algorithm [16],
the Newton conjugate gradient trust-region algorithm [17], the Newton Generalized Lanczos Trust
Region (GLTR) algorithm [18,19], a nearly exact trust-region algorithm [20]. Global minimization func-
tions include those that implement: the Basin-hopping algorithm [21], the “brute force” method [22],
the differential evolution method [23], simplicial homology global optimization [24], dual annealing
optimization [25], the DIRECT (Dividing RECTangles) algorithm [26,27].

The availability of such minimization software packages has significantly increased the efficiency
of scientific work, since it has allowed scientific groups that do not specialize in numerical minimization
methods not to waste time on software implementation of the minimization algorithms necessary in
scientific work. However, it should be noted that the most popular minimization packages involve
sequential calculations. This leads to the following problem: the computational complexity of many
modern application problems requires such large amounts of calculations that these calculations cannot
be performed on personal computers in a reasonable time.

This problem could be solved as follows. With the development of computing capabilities, parallel
computing and parallel programming technologies have become widespread, allowing computation-
ally complex problems to be solved in a reasonable time. The problem of long calculations is solved by
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parallelizing the calculations between different computing nodes of a computing system. In particular,
such an approach to minimizing functionals is used in the PETSc (Portable, Extensible Toolkit for
Scientific Computation) package [28], an implementation of which also exists for Python in the form of
the petscdpy package [29]. However, this package contains a limited set of minimization functions (see
“Tao solvers”), which may not contain the function needed by a particular scientist and solving a fairly
specific problem. And packages that contain the necessary minimization function may contain only its
sequential version. Thus, many scientists come to the following dilemma: either agree to an extremely
long calculation, or try to implement minimization algorithms independently and then parallelize
them. In both cases, the time required to solve the scientific problem can increase significantly.

It should be noted that many minimization software packages have recently begun to add parallel
computing to their implementation on computer systems with shared memory. In practice, such
systems are usually a computer with a single multi-core processor. As a result, within one computing
node (for example, a personal computer), the running time of the algorithm can be reduced, but the
maximum possible acceleration of the program is still limited by the capabilities of this computing
node. Therefore, it is still relevant to develop software implementations that have the ability to use
computing systems with distributed memory.

In connection with the above, a question arose: is it possible to parallelize the calculations that
arise when using standard minimization functions, bypassing a detailed study of the computational
algorithms that are implemented inside these functions? That is, is it possible to use the available
minimization functions “as is”? Research has shown that this can be done. The structure of any
minimization function is such (see Figure 1) that the main calculations involve calculating the functional
and, possibly, its gradient (in the case of using first-order minimization methods). It is the functions
that implement the calculations of the functional/gradient that are implemented by scientists in any
case independently and can often be parallelized. If this is possible, it is possible to use the available
minimization functions “as is”. This work is devoted to how this can be done.

Some minimization function

| The next iteration of the minimization procedure |
| criterion I
| A not met |
|
Initial J «Inner Calculation «Inner Checking | Solution
guess > workings» || of functional | workings» || stopping >| found:
for x I of the function and gradient of the function criteria | extremal x
| criterion |
| met |
| |
| |

Figure 1. Typical structure of minimization functions.

The structure of this work is as follows. Section 2 describes the structure of the proposed parallel
algorithm, formalizes the pseudo-code of this algorithm, and also describes the structure of the
corresponding Python code that implements this algorithm using the mpidpy package. The mpidpy
package for organizing the communication of various computing processes allows the use of MPI
message passing technology, which is currently the main programming tool in parallel computing
on systems with distributed memory. For convenience, the Python code is presented in the form of
pseudocode that does not contain operations and function arguments that are unimportant for the
perception of the algorithm. Section 3 describes the full version of the software implementation of the
parallel algorithm, which also uses the latest version of the MPI standard — MPI-4 [30,31]. Section 4
presents the results of test calculations demonstrating the strong scalability properties of the proposed
software implementation. Section 5 discusses possible ways to modify the proposed algorithm, taking
into account the most frequently encountered situations in practice.
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2. Parallel Algorithm

According to Figure 1, any minimization function, when executed, repeatedly calls functions that
are specified by the user and implement the calculation of the functional and its gradient. Given that
the minimization function used is sequential, it will only be called by the master process. Therefore,
functions that are specified by the user and implement the calculation of the functional and its gradient
will be split into two pairs of functions: 1) functions that are called by the master process only within
the minimization function, and 2) auxiliary functions that are called by all processes.

Functions that are called only by the master process must first implement the distribution of a
“flag” to all other processes, based on which the remaining processes can conclude what needs to be
done next: 1) calculate their part of the functional, or 2) calculate their part of the gradient. The data
needed for calculations is then distributed across all processes. After this, the master process launches
an auxiliary function, through which part of the functional or part of its gradient is calculated, for
which the master process is responsible for calculating. Then, data from intermediate calculations
performed in parallel is collected from all processes, and the final result of calculating the functional
and its gradient is aggregated.

After the minimization function completes its work on the master process, the master process
sends a “flag” to all other processes, based on the value of which the other processes can conclude that
it is necessary to stop working.

The other processes run an endless “while” loop, inside which each process waits to receive a
“flag”, based on the value of which it concludes what needs to be done next: 1) calculate its part of
the functional, 2) calculate its part of the gradient, 3) finish the job. Further, in the case of the first
two options, data for calculations is expected and after receiving it, an auxiliary function is launched,
through which the calculation of its part of the functional or its gradient is implemented. Next, the
results obtained are sent to the master process.

This algorithm is illustrated in Figure 2 and formalized in the form of the following pseudocode
(see algorithm 1), in which the master process has rank = 0.

Some minimization function
master |— ——————————————————————————— 1

process | The next iteration of the minimization procedure |
(rank=0) | criterion |
| A notmet |
|
Initial J "Inner Calculation «Inner Checking | Solution
guess > workings" | of functional workings" || stopping >| found:
for x I of the function and gradient of the function criteria | extremal x
| N criterion |
| o met |
I < | S |
e N & |
A Calculation
-~ of part
& e of the functional| | ¥
other Waiting if «flag»=0 Completion
processes for the «flag» | . of work
Ir “fa
N> .
\K Calculation
of part |
of the gradient |

i
)

Figure 2. Block diagram of a parallel algorithm.
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if rank=0 then
X < Xinit

some minimization function

while stopping criterion not met do
...some “inner workings” ...

if functional_calculation started then

Bcast(flag = 1) from rank=0 to all
Scatter(x — Xpgrt) from rank=0 to all
funpart < functional_part(xpa)
Reduce(funpart — fun) to rank=0 from all

end
...some “inner workings” ...

if gradient_calculation started then
Bcast(flag = 2) from rank=0 to all

Scatter(x — Xpgrt) from rank=0 to all
gradpart < gradient_part(x,.+)
Gather(gradpart — grad) to rank=0 from all

end

...some “inner workings” ...
end

end

Bcast(flag = 0) from rank=0 to all // extremal x has been found
else

while True do

Bcast(flag) from rank=0

if flag=1 then

Scatter(x — Xpart) from rank=0
funpart < functional_part(xt)
Reduce(funpars — fun) to rank=0

if flag=2 then

Scatter(x — Xpart) from rank=0
gradpart < gradient_part(xp.t)
Gather(gradpa,t — grad) to rank=0

if flaig=0 then break
end

end
Algorithm 1: Pseudocode of a universal parallel algorithm. Frames highlight pairs of blocks
that are executed in parallel. Distribution of data from MPI master process with rank=0 to other
MPI processes is carried out using the MPI routine of collective communication of processes
Scatter(), but depending on the features of the minimized functional, the distributing data can be
implemented with using one of the MPI routines Bcast (), Scatterv(), Reduce_scatter(), etc.

The Python code that implements this algorithm will be quite compact. Its structure in the form
of Python pseudocode is presented below. At the same time, for clarity: 1) some of the arguments of
the functions used are omitted, 2) the syntax is simplified.
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if rank == 0 :
Xx_init = random()
X = optimize.minimize(fun=functional_calculation,
jac=gradient_calculation,
x0=x_init) .x
flag = 0

Bcast (flag, root=0)
else:
while True
Bcast (flag, root=0)
if flag == 1

Scatterv(x, x_part, root=0)

fun_part = functional_part(x_part)
Reduce (fun_part, fun, op=MPI.SUM, root=0)
if flag == 2

Scatterv(x, x_part, root=0)

grad_part = gradient_part(x_part)

Gatherv(grad_part, grad, root=0)
if flag == 0

break

Here the functions functional_calculation() and gradient_calculation(), which are called
by the master process inside the minimization function optimize.minimize () from the SciPy package,
have the following structure:

def functional_calculation(x)
flag = 1
Bcast (flag, root=0)
Scatterv(x, x_part, root=0)
fun_part = functional_part(x_part)
Reduce (fun_part, fun, op=MPI.SUM, root=0)
return fun

def gradient_calculation(x)
flag = 2
Bcast (flag, root=0)
Scatterv(x, x_part, root=0)
grad_part = gradient_part(x_part)
Gatherv(grad_part, grad, root=0)
return grad

and the auxiliary functions functional_part() and gradient_part (), which are called by all pro-
cesses, have the following general form:

def functional_part(x_part):
fun_part = 0
for i in range(len(x_part))
fun_part +=
return fun_part
def gradient_part(x_part):
grad_part = empty(len(x_part))
for i in range(len(x_part))
grad_part[i] =
return grad_part
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Note. Here it is assumed that in order to calculate its part of the functional or its gradient, each
MPI process must know not all the components of the next approximation for the vector x, which is
contained in the array x, but only part of its components , which are contained in the array x_part.
Situations are quite common when each MPI process must know all the components of the next
approximation for the vector x. In this case, you may need to use the MPI routine Bcast () instead of
the MPI routine Scatter (v) ().

3. Description of the Full Version of the Software Implementation of the Parallel Algorithm (Using
the MPI-4 Standard)

Next, we will describe the complete Python code that implements the algorithm 1. But first, the
following remark must be made. The software implementation structure proposed in the previous
section contains collective communications between processes with the same argument list which
are repeatedly executed within the inner loop of a parallel computation. In such a situation, it may
be possible to optimize the communications by binding the list of communication arguments to a
persistent communication request once and, then, repeatedly using the request to initiate and complete
messages. The peculiarity of the MPI-4 standard (2021) is that it introduced MPI routines that allow
this to be done for operations of collective communications of processes.

For example, the result of running the MPI routine Becast () is equivalent to the sequence of
launching the MPI routines Bcast_init() “+” Start() “+” Wait(). Moreover, if the MPI rou-
tine Bcast_init () is launched multiple times with the same set of arguments, the result of calling
Bcast_init () will be the same. This makes it possible to move this action “out of brackets”, that is,
out of the loop through which it is called repeatedly.

That is, in order to use more advanced versions of the MPI routines for collective communication
of processes from the MPI-4 standard, it is necessary to perform the following sequence of changes.

1. Before the main loop while, it is necessary to generate persistent communication requests using
MPI routines of the form request[] = Bcast_init() for all routines of collective communica-
tions of processes Bcast (), Scatterv(), Reduce () and Gatherv(), which are called multiple
times with the same set of arguments.

2. Replace MPI routine calls with a sequence of function calls Start (request[]1) “+” Wait (request[]).

So, taking into account the comments made, the parallel software implementation of the algo-
rithm 1 will take the following form (in this case, the program code will be commented block by block,
but all blocks with numbered lines will form a single program code).

1 from mpid4py import MPI

2 from scipy import optimize

3 from numpy import array, empty, zeros, arange, float64, int32
4

5 comm = MPI.COMM_WORLD

6 numprocs = comm.Get_size ()

7 rank = comm.Get_rank()

Lines 1-3 import the necessary functions. When importing MPI (line 1), the MPI part of the
program is initialized. Based on the results of lines 5-7, each MPI process, on which this program code
is executed, knows 1) the total number numprocs of processes participating in the calculations, and 2)
its identifier rank in the communicator comm, which contains all the processes on which the program
runs.

8 N = 1000

9

10 if ramnk == 0 :

11 ave, res = divmod (N, numprocs)
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12 counts = array([ave + 1 if p < res else ave

13 for p in range (numprocs)], dtype=int32)
14 displs = array([counts[:i].sum()

15 for i in range (numprocs)], dtype=int32)
16 else:

17 counts, displs = None, None

18

19 N_part = array(0, dtype=int32)
20 comm.Scatter ([counts, 1, MPI.INT], [N_part, 1, MPI.INT], root=0)

In line 8, the number of components of the model vector x is determined, and then in lines 11-15,
on the master process with rank = 0, auxiliary arrays counts and displs, necessary for MPI routines
Scatterv() and Gatherv() (which will be used to distribute components of the vector x among
processes or to collect intermediate calculation data from all processes), are prepared. Thus, the array
counts contains information about the number of elements sending to each process (or received from
each process). Those, array element counts [k] contains the value Ny " — number of components
of part xpa of vector x, for which MPI process with rank = k is responsible for processing. The
algorithm for determining the elements of counts is such that the maximum difference between any
two elements of this array is 1, but the sum of all elements of this array is equal to N:

numprocs—1 numprocs—1
Y countslkl= )| Npart gy = N.
k=0 k=0

It should be noted that the values of the array elements counts and displs will be needed further
only on the process with rank = 0 (master process). These values will not be used by other processes.
But taking into account the fact that the arrays counts and displs will be arguments to the functions
Scatterv() and Gatherv (), which are called on all processes, then the corresponding Python objects
formally must be initialized. This is done on line 17 for processes with rank >= 1.

Line 19 allocates memory space for the array N_part, which will contain only one value — the
number of elements of the vector part x4, for which the MPI process, on which this program code
is running, is responsible. It is necessary to recall that formally this number must be a numpy-array;,
since the MPI routines used only work with numpy-arrays. In line 20, using the MPI routine Scatter (),
this array is filled with the corresponding value from the array counts, contained only in the process
with rank = 0. Now the MPI process with ramk = k knows its value Nyt (k) contained on this MPI
process in the array N_part.

Next, an array x_model is formed, which contains the values of the model vector xmodel yvith
which the solution to the minimization problem will be compared.

21 if ramnk == 0

22 x_model = arange(N, dtype=float64)
23 else:

24 x_model = None

25

26 x_model_part = empty(N_part, dtype=float64)
27 comm.Scatterv ([x_model, counts, displs, MPI.DOUBLE],
28 [x_model_part, N_part, MPI.DOUBLE], root=0)

In lines 21-24 this array is formed only on the master process with rank = 0 (line 22), and then in
lines 27-28, using the MPI routine Scatterv(), it is distributed in parts from the process with rank =
0 across all processes where the corresponding parts are stored in the array x_model_part. To do this,
in line 26, memory space is preliminarily allocated for these arrays.

Now begins the consideration of the main part of the program, which directly implements the
algorithm considered in the work.
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First, it is necessary to generate persistent communication requests for all MPI routines of collective
communications of processes that will be called repeatedly.

29 requests = [MPI.Request() for i in range (4)]

30

31 flag = empty(l, dtype=int32)

32 requests[0] = comm.Bcast_init([flag, 1, MPI.INT], root=0)

33
34 if ramnk == :
35 x_temp = empty(N, dtype=float64)
36 else
37 x_temp = None
38 x_part = empty(N_part, dtype=float64)
39 requests[1] = comm.Scatterv_init(
[x_temp, counts, displs, MPI.DOUBLE],
40 [x_part, N_part, MPI.DOUBLE], root=0)
41
42 if ramnk == 0 :
43 fun = empty (1, dtype=float64)
44 else
45 fun = None

46 fun_part = empty(l, dtype=float64)
47 requests[2] = comm.Reduce_init([fun_part, 1, MPI.DOUBLE],

48 [fun, 1, MPI.DOUBLE], op=MPI.SUM, root=0)
49
50 if ramk == 0 :
51 grad = empty (N, dtype=float64)
52 else
53 grad = None
54 grad_part = empty(N_part, dtype=float64)
55 requests[3] = comm.Gatherv_init(
[grad_part, N_part, MPI.DOUBLE],
56 [grad, counts, displs, MPI.DOUBLE], root=0)

Line 29 creates the array requests, which will contain the values of the returned parameters,
which, in turn, will be used to identify specific persistent communication requests for collective
communications. Next, persistent communication requests are generated for the MPI routines Bcast ()
(lines 31-32), Scatterv() (lines 34—40), Reduce () (lines 42 —48), Gatherv () (lines 50-56).

The generation of such persistent communication requests for collective communications is the
same, so it will be explained only using the example of the formation of a persistent communication
request for collective communication for the MPI routine Scatterv() (lines 34—40). Line 35 allocates
memory space for the array x_temp only on the process with rank = 0 (this array will contain the
values of the vector x, but the meaning of the postfix _temp will be explained later when filling this
array with specific values). Its contents will not be used by other processes. But taking into account the
fact that the array x_temp is an argument of the MPI routines Scatterv_init () (lines 39—40), which
are called on all processes, the corresponding Python object must formally be initialized. This is done
on line 37 for processes with rank >= 1. Line 38 allocates memory space for the array x_part.

It is necessary to note the following important point in the formation of persistent communication
requests. The arguments of the corresponding functions are numpy-arrays (for example, in the case
considered, the arrays x_temp and x_part), namely fixed memory areas associated with these arrays.
When initializing generated communication requests using the MPI routine MPI.Prequest.Start (),
all data will be taken/written to these memory areas, which are fixed once when the corresponding
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persistent communication request is generated. Therefore, it is necessary to first allocate space in
memory for all arrays that are arguments to these functions; and during subsequent calculations,
ensure that the corresponding calculation results are stored in the correct memory areas.

Next, the auxiliary functions functional_part () and gradient_part () are defined, which are
called by all processes.

57 def functional_part(x_part)

58 fun_part [0] = O

59 for i in range(N_part)

60 for n in range (N)

61 fun_part [0] += (x_part[i] - x_model_part[i]) =% 2
62 return fun_part [0]

63

64 def gradient_part(x_part)

65 grad_part = zeros(N_part, dtype=float64)

66 for i in range(N_part)

67 for n in range (N)

68 grad_part[i] += 2x(x_part[i] - x_model_part[i])
69 return grad_part

These auxiliary functions contain calculations of the functional, which for simplicity is given as

N N

(xi =), (grad f(x)), =2 (x; —i).

i=1n=1 n=1

gk

flx) =

Next, the functions functional_calculation() and gradient_calculation() are defined, which
are called by the master process with rank = 0 inside the minimization function optimize.minimize ()

from the SciPy package.
70 def functional_calculation(x)
71 flagl0]l =1
72 MPI.Prequest.Start (requests [0])
73 MPI.Request.Wait(requests[0], status=None)
74 x_temp[:] = x
75 MPI.Prequest.Start (requests [1])
76 MPI.Request.Wait (requests[1], status=None)
77 fun_part [0] = functional_part(x_part)
78 MPI.Prequest.Start (requests [2])
79 MPI.Request.Wait (requests[2], status=None)
80 return fun [0]
81
82 def gradient_calculation(x)
83 flag[0] = 2
84 MPI.Prequest.Start (requests [0])
85 MPI.Request.Wait (requests [0], status=None)
86 x_temp[:] = x
87 MPI.Prequest.Start (requests[1])
88 MPI.Request.Wait(requests[1], status=None)
89 grad_part[:] = gradient_part(x_part)
90 MPI.Prequest.Start (requests [3])
91 MPI.Request.Wait (requests[3], status=None)

92 return grad
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The structure of these functions fully corresponds to the structure proposed at the end of the
previous section (Section 2). Therefore, it is necessary to note only the features of their software
implementation. This will be done using the function functional_calculation() as an example.

In lines 72-73, the functionality of the MPI routine Bcast () is executed, the persistent communica-
tion request for which was generated in line 32. Since the corresponding MPI routine is non-blocking,
we must wait until the end of its execution (line 73).

In lines 75-76, the functionality of the MPI routine Scatterv() is executed, the persistent com-
munication request for which was generated in lines 39-40. Since the corresponding MPI routine is
non-blocking, we must wait for its execution to complete (line 76).

In this case, it is necessary to note the role of the array x_temp (line 74). This array will contain the
values of the vector x, which could not be redefined, but directly distributed between other processes.
But due to the fact that it is often unknown how the minimization function is structured internally,
which at each iteration redefines the vector x, it may turn out that a new place in memory is allocated
for the next approximation of this vector at this iteration. Therefore, for the purpose of insurance, the
values of this array are copied to a pre-allocated fixed location in memory (line 35) in order for the
function Scatterv(), generated by a persistent communication request, to work correctly.

In lines 78-79, the functionality of the MPI routine Reduce () is executed, the persistent com-
munication request for which was generated in lines 47-48. Since the corresponding MPI routine is
non-blocking, we must wait for its execution to complete (line 79).

The following is the Python code that implements the main part of the algorithm 1.

93 if rank == 0

94 x_init = random.uniform(low=0., high=N, size=N)

95 X = optimize.minimize (fun=functional_calculation,
96 jac=gradient_calculation,

97 x0=x_init, tol=1le-9,

98 method=’L-BFGS-B’) .x

99 flag[0] = 0

100 MPI.Prequest.Start (requests [0])

101 MPI.Request.Wait (requests[0], status=None)

102 else:

103 while True

104 MPI.Prequest.Start (requests [0])

105 MPI.Request.Wait (requests[0], status=None)

106 if flag == 1

107 MPI.Prequest.Start(requests[1])

108 MPI.Request.Wait (requests[1], status=None)
109 fun_part [0] = functional_part(x_part)

110 MPI.Prequest.Start(requests[2])

111 MPI.Request.Wait (requests[2], status=None)
112 if flag == 2

113 MPI.Prequest.Start(requests[1])

114 MPI.Request.Wait (requests[1], status=None)
115 grad_part[:] = gradient_part (x_part)

116 MPI.Prequest.Start (requests [3])

117 MPI.Request.Wait (requests[3], status=None)
118 if flag == 0

119 break

The structure of this code fully corresponds to the structure proposed at the end of the previous
section (Section 2). Therefore, it is necessary to note only the features of its software implementation.


https://doi.org/10.20944/preprints202406.0571.v4

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202406.0571.v4

11 0of 17

In lines 100-101 and 104-105, the functionality of the MPI routine Bcast() is executed, the
persistent communication request for which was generated in line 32.

In lines 107-108 and 113-114, the functionality of the MPI routineScatterv() is executed, the
persistent communication request for which was generated in lines 39—-40.

In lines 110-111, the functionality of the MPI routine Reduce () is executed, the persistent commu-
nication request for which was generated in lines 47—48.

In lines 116-117, the functionality of the MPI routine Gatherv() is executed, the persistent
communication request for which was generated in lines 55-56.

4. Efficiency and Scalability of Software Implementation of the Proposed Parallel Algorithm

To test the efficiency and scalability of the proposed software implementation of the parallel
algorithm, the computing section “test” of the supercomputer “Lomonosov-2” [32] of the Research
Computing Center of Lomonosow Moscow State University was used. Each computing node in the
“test” section contains a 14-core Intel Xeon E5-2697 v3 2.60GHz processor with 64 GB of RAM (4.5 GB
per core) and a Tesla K40s video card with 11.56 GB of video memory (not used in calculations).

The parallel version of the program was launched with each MPI process bound to exactly one
core. The software packages used were 1) mpidpy version 4.0.0.dev0, 2) numpy version 1.26.4, 2) scipy
version 1.12.0, 4) mpich version 4.1.1.

The scheme of numerical experiments repeats the scheme described in the work [33]. The
program was launched on a number of processes #n = numprocs, for which the running time T}, of the
computational part of the program was recorded (see Figure 3). Using the estimated running time T;

L5

of the sequential version of the algorithm, the speedup S, was calculated using the formula S, = T
n

(see Figure 3), and then efficiency E, = Sn of software implementation (see Figure 4).

The calculations were carried out for the parameter N = 8050 (number of components in the
model vector x), for which the running time of the computational part of the serial version of the
program was ~ 752 seconds. The results shown in Figure 3 and 4 correspond to the averaged values
over a series of runs (100 runs for each value 7). At the same time, the graphs also show a corridor of
errors S, + AS,, and E,, = AE,,.
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Figure 3. Graphs of the running time and acceleration of the parallel version of the program depending
on the number of cores used for calculations (14 cores on one computing node).
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Figure 4. Graphs of parallelization efficiency depending on the number of cores used for calculations
(14 cores on one computing node) in case of using mpi4py + mpich.

Errors for the obtained average values of acceleration and efficiency were calculated using the
error formula for indirect measurements. In general, such a formula for the quantity N, depending on
direct measurements Xj, j =1, m, with known standard deviations (T(xj), has the form

S\ 9%

2
AN(xt, o tm) = 1| Y (Ma(xi)> .
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Thus, for the acceleration calculated by the formula S, = % the errors are calculated as

1 T?
AS1 =0, AS, :D\/O'Z(Tl)—l—]_,le'z(Tn), n>2,

n

where 0(T,;) — estimate of the standard deviation for each measurement T;,.
For efficiency calculated using the formula E, = 57", the errors are calculated as

A
AE; =0; AE,= 5”, n>2.

As can be seen from Figure 4 the efficiency decreases in the interval from n = 1 to n = 28 and then
remains constant. Formally, one could say that from this figure it can be concluded that the parallel
software implementation of the algorithm, within certain limits, has good efficiency and good strong
scalability over most of the range of the number of cores used for calculations. However, the indicated
period of change in efficiency raises questions. Such a result would be easy to explain only in the case
of a sharp deterioration in efficiency, starting from n = 15. When n = 1,14, only one node is used
for calculations, as a result of which there is practically no overhead for the interaction of computing
nodes (message transmission over the network is not used). Starting from n = 15, 2 nodes already take
part in the calculations, as a result of which the communication network is involved and significant
overhead may appear for receiving/transmitting messages between computing nodes. Moreover, with
an increase in the number of computing nodes used, the share of costs for receiving/transmitting
messages should only increase.

The study of this issue revealed the following feature of the combination of software packages
used for test calculations. With the current settings of the installed packages and the “Lomonosov-2”
supercomputer, when running programs using the mpirun utility from the mpich package, about 0-4
cores appear on each computing node, operating on average 2.28 times slower than the rest. A similar
effect was also reproduced on a benchmark, when we ran the same computational task on multiple
nodes/cores (without interaction between processes). The operating time of the entire parallel program
is determined by the operating time of the slowest process, and as the number of computing processes
n increases (each of which is executed on its own core of a multi-core processor), the probability of
using “slow” cores increases, which is why the efficiency decreases relatively smoothly on the first two
computing nodes, and then stops at the value ~ 0.4 (i.e., starting from three computing nodes, with a
probability close to one, “slow” cores begin to be used).

For values of the number of cores n = 2,28, a graph was constructed showing the distribution
of efficiency values over a series of runs for each value of n (100 runs for each value). The resulting
distributions (see Figure 5) are not normal, since they contain two pronounced peaks: in the presence
and absence of “slow” cores. Therefore, using the average of these values (see Figure 4) to characterize
the properties of strong scalability of a software implementation of a parallel algorithm is not entirely
correct — it is better to use values corresponding to the maximums of the distribution, since these
values correspond to the case of using cores with the same performance (and our algorithm is designed
for the same performance of cores).
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Figure 5. Graph of the efficiency distribution over a series of launches for each value of n. The red
curve displays average efficiency values (efficiency drops until there is “guaranteed” that there will be
at least one “slow” core among all cores). The green curve displays the dependence of efficiency when
taking into account only those values that correspond to the maxima of the distribution, corresponding
to “fast” cores.

The support of the Losonosov-2 supercomputer recommended that we recalculate the results
using OpenMPI (instead of mpich), since no problems with cores hanging during program operation
were found on this MPI implementation. We performed calculations using OpenMPI 5.0.5 (while UCX
support was disabled due to tcp timeout errors in the current version of the library). The results are
shown in Figure 6.
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Figure 6. Graph of parallelization efficiency in case of using mpi4py + openmpi.

5. Discussion

1. A question similar to the one discussed in this article has been raised by other authors. For
example, at work [34] general strategies for metaheuristics were classified. According to this
article, our work uses the so-called “type 1 parallelism of meta-heuristics”, as what the user
programs himself is within the optimization loop and the outer control flow is unchanged. The
papers [35,36] discuss common approaches to parallelizing existing sequential programs with
minimal effort on the part of users. We also assume that the approach we have considered is
used by many scientists as an intermediate stage of scientific work, but we are not aware of any
relevant detailed descriptions in the literature.

2. When solving many applied problems, the minimized functionals can be arranged in such a
way that when each MPI-process calculates its part of the functional /gradient, such functions
Python will be used, which use shared memory parallelism within the cores of a node (for
example, the dot() function of the package numpy). In this case, it is constructive to use not
one core of a multi-core processor as an MPI-node, but a computing node that contains such a
multi-core processor (see, for example, work [33]). This approach will reduce the overhead of
receiving /sending intermediate calculation data through a communication network using MPI
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technology. As a result, the efficiency of software implementation will increase. It is possible
to act similarly if there are GPUs on the computing nodes. In this work, we do not consider
examples of software implementation of the corresponding approaches, since the corresponding
software implementations strongly depend on the type of specific functional being minimized
and, as a consequence, on the ability to use built-in functions that use shared memory parallelism
(CPU or GPU).

3. Some minimization functions use the BLAS [37], LAPACK [38], Intel MKL etc. libraries. In
this case, they can use all the cores of a multi-core processor. As a result, the efficiency of
parallelization within a single computing node can drop. It makes sense to disable built-in
parallelism in the case when it implies shared memory parallelism within the cores of a node,
and the user has access to many computing nodes.

4. The operation of sending a “flag” can be combined with sending data for calculations. We did
not do this to avoid unnecessary complexity of the algorithm description.

5. The classes of minimization problems that can be solved are limited only by the available mini-
mization functions in the software package used. For example, in the SciPy library of the Python
programming language, there are functions for minimizing linear and nonlinear functionals,
with or without constraints, etc. The argument “method” of the function optimize.minimize()
used in the program code must be changed accordingly.

6. Conclusion

The approach to parallelization considered in the paper assumes that the computations required
to evaluate the minimized functional can be parallelized by the user. In this case, our software
implementation can be used as a template for “parallelizing” an arbitrary minimization function
available in any software package.
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