

Review

Not peer-reviewed version

Phase I-IV Drug Trials on Hepatocellular Carcinoma in an Asian Population: A Systematic Review of Ten Years Studies

[Alok Raghav](#) and [Goo Bo Jeong](#) *

Posted Date: 10 June 2024

doi: [10.20944/preprints202406.0517v1](https://doi.org/10.20944/preprints202406.0517v1)

Keywords: Hepatocellular carcinoma; Systematic; Asian Population; Treatment

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Phase I–IV Drug Trials on Hepatocellular Carcinoma in an Asian Population: A Systematic Review of Ten Years Studies

Alok Raghav and Goo-Bo-Jeong *

Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro Yeonsu-gu, Incheon 21999, South Korea

* Correspondence: gbjeong@gachon.ac.kr

Abstract: Background: Despite advances in the treatment of hepatocellular carcinoma (HCC) over the last few decades, treatment opportunities for patients with HCC remain limited. HCC is the most common form of liver cancer, accounting for approximately 90% of all cases worldwide. Moreover, apart from the current pharmacological interventions, hepatic resection and liver transplantation are the mainstay curative approaches for patients with HCC. **Methods:** This systematic review included phase I, II, III, and IV clinical trials (CTs) and randomized controlled trials (RCTs) on current treatments for patients with HCC in an Asian population (2013–2023). A total of 427 articles were screened, and 184 non-duplicate publications were identified. After screening titles and abstracts, 96 publications were excluded, and another 28 were excluded after full-text screening. The remaining 60 eligible RCTs/CTs were finally included. **Results:** Sixty clinical trials fulfilled our inclusion criteria and screened 36 drugs as monotherapy or combination therapy for HCC. Most studies used sorafenib alone or in combination with any of the treatment regimens. Lenvatinib or atezolizumab with bevacizumab was used for HCC after initial sorafenib treatment. Eighteen studies compared the efficacy of sorafenib with that of other drugs, including lenvatinib, cabozantinib, tepotinib, tigatuzumab, linifanib, erlotinib, resminostat, brivanib, tislelizumab, selumetinib, and refametinib. **Conclusion:** This study provides comprehensive insights into effective treatment interventions for HCC in Asian populations. The overall assessment indicated that sorafenib alone or in combination with atezolizumab and bevacizumab has been the first treatment choice in the past decade to achieve better outcomes in patients with HCC in an Asian population.

Keywords: atezolizumab; bevacizumab; hepatocellular carcinoma; sorafenib; nivolumab

1. Introduction

The increasing incidence of hepatocellular carcinoma (HCC) poses a global health challenge [1,2]. According to a recent report by GLOBOCAN 2020, Mongolia has the highest age-standardized rate for both mortality and incidence of HCC. It is also estimated that in Asia, China alone accounts for 62.4% of the cases, followed by Japan (7.0%), India (5.3%), Thailand (4.2%), and Vietnam (4%) [3]. In Asia, liver cancer is the fifth most common cancer after thyroid, stomach, colon, and lung cancers and is the second most common cause of malignancy-related deaths in Asia [4]. In Asia, HCC accounts for the highest incidence and mortality among patients with liver cancer. [4].

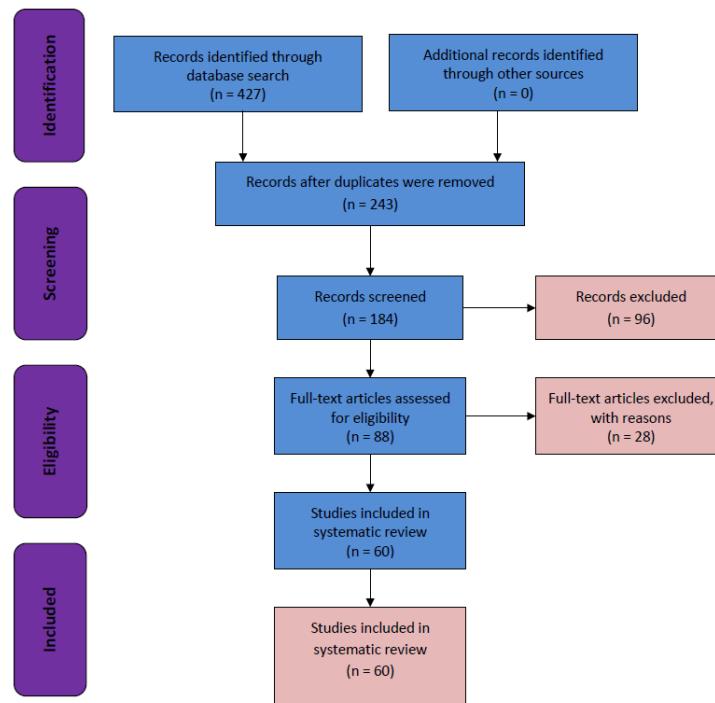
Over the last 3 decades, the annual crude mortality rate of HCC has increased in Asia. In addition to surgical intervention, several systemic therapies, including chemotherapy, immunotherapy, and molecular target-based therapies, have been proposed for advanced HCC. With technological advancements in research, molecular-targeted therapies are the mainstream approach for treating patients with HCC either alone or in combination with other drugs, especially in Asian populations.

The etiology of HCC varies according to geographical region, as reported by a recently published study [5]. In the Asia-Pacific region, hepatitis virus infection is among the major causes of HCC; 70% of the patients from these regions have chronic hepatitis B virus (HBV) infection, whereas 20% have hepatitis C viral (HCV) infection [5]. A study from the Asia-Pacific region has reported that 75% of the patients with HCC in Japan have HCV infection [6].

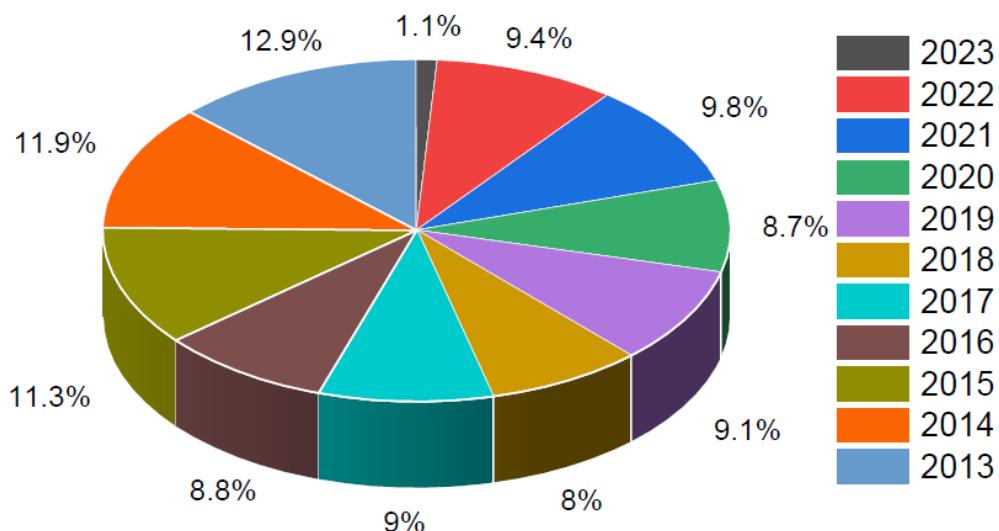
The incidence of liver cancer varies among the Asian populations. According to statistics from a recently published study, East Asian regions, including China, South Korea, and Japan, and Southeast Asian regions, including the Philippines, demonstrated a sharp decline in the incidence rate of liver cancer [7]. The same study observed a decline in the annual average percent change in the incidence rate of liver cancer in countries, including China (-1.6%), South Korea (-2.2%), and the Philippines (-1.7%), since 1978 [7]. However, a significant increase in the incidence of liver cancer has been reported in southwestern Asian countries, especially Israel [7]. HCC accounts for the majority of liver cancer cases and affects 27% of the population in Thailand alone [7]. In recent decades, the incidence of liver cancer has significantly increased in Iran, Afghanistan, Qatar, Iraq, Azerbaijan, and Nepal [3].

Among Asian countries, liver cancer in South Korea is the fourth most common cancer in men and the sixth most common in women. The decrease in the incidence of liver cancer in South Korea is mainly because of the sharp decline in HBV, which is considered a major cause of HCC. Moreover, large-scale HBV vaccination has affected the incidence of HCC in the South Korean population. Despite several pharmaceutical and technological advancements, the advanced stage of HCC at the time of diagnosis in South Korea still requires serious attention. In a previous study, the 5-year survival rate of HCC among Korean patients was relatively lower than that of other cancer types owing to several effective surveillance drives among the high-risk population in South Korea [8].

Sorafenib is among the first Food and Drug Administration (FDA)-approved interventions that are accepted worldwide for the treatment of advanced-stage HCC. It exhibits a molecularly targeted therapeutic approach by targeting and inhibiting several pathways, including vascular endothelial growth factor receptor-2 (VEGFR-2), platelet-derived growth factor receptor (PDGFR), and extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase-ERK (MEK)/ rapidly accelerated fibrosarcoma (RAF), thereby offering antiproliferative, antiangiogenic, and antiapoptotic effects [9,10]. In the Asia-Pacific phase III clinical trial (CT), sorafenib alone demonstrated a median overall survival of 6.5 months compared to placebo in patients with HCC, and thereafter, sorafenib was approved as a first-line therapeutic approach in these patients [11].


Another drug known for treating HCC is regorafenib, a multikinase inhibitor that inhibits angiogenesis and oncogenesis, thereby altering the tumor microenvironment. One phase III RESORCE trial has demonstrated regorafenib as a second-line drug for HCC treatment after sorafenib treatment [12]. Similarly, another multikinase inhibitor, lenvatinib, is considered the first-line therapy for patients with unresectable HCC [13]. Sorafenib is among the first-line therapies for advanced-stage HCC in Asia, whereas atezolizumab and bevacizumab are among the second-line therapies for progressive HCC.

Moreover, owing to the high incidence and prevalence of HCC in Asia and the Asia-Pacific region, an extensive approach to the selection of appropriate therapies against HCC is necessary. Currently, the available treatment options are limited in Asia and the Asia-Pacific region; therefore, a reliable first-line therapy should be selected to treat HCC, without any side-effects. Therefore, this study aimed to distinguish between drug therapies among the approaches available for the treatment of HCC in an Asian population.


2. Material and Methods

Search Strategy and Selection Criteria

This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis criteria (Figure 1). A systematic search for eligible studies in the EMBASE, MEDLINE (via PubMed), and CENTRAL (via the Cochrane Library) databases was conducted from 2013 to 2023 (Figure 2). A total of 427 articles were screened, and among them, 184 non-duplicate publications were identified. We excluded 96 publications after screening titles and abstracts and another 28 published papers after full-text screening. Finally, the remaining 60 eligible randomized controlled trials (RCTs)/CTs were included in this systematic review.

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart.

Figure 2. Number of publications in the last 10 years (2013 to 2023) extracted from the PubMed database on phase I-IV clinical trials related to hepatocellular carcinoma that were conducted in South Korea.

The inclusion criteria for this systematic review were CTs (phases I, II, III, and IV) and RCTs conducted on adult patients (≥ 18 years), including men and women with all stages of HCC, who received the intervention compared to those who received either placebo or active comparator in Asia or any multicentric trial wherein one study center was located in Asia.

The quality of this systematic review was assessed using the grade system. Briefly, the grade system is divided into four levels: very low, low, moderate, and high. All eligible studies included in this systematic review were screened for imprecision, inconsistency, risk of bias, and publication bias. The validity and authenticity of the included studies were assessed by two independent reviewers using kappa statistics with inter- and intrarater agreements. The outcomes of the extracted studies were noted in the form of the majority of the use of particular drugs for the treatment of HCC in Asia.

3. Results

We performed a systematic review of phases I, II, III, and IV CTs and RCTs on current treatments for patients with HCC (2013–2023). A total of 427 articles were screened, and among them, 184 non-duplicate publications were identified. We excluded 96 publications after screening titles and abstracts and another 28 published papers after full-text screening. The remaining 60 eligible RCTs/CTs were included in this systematic review (Figure 1).

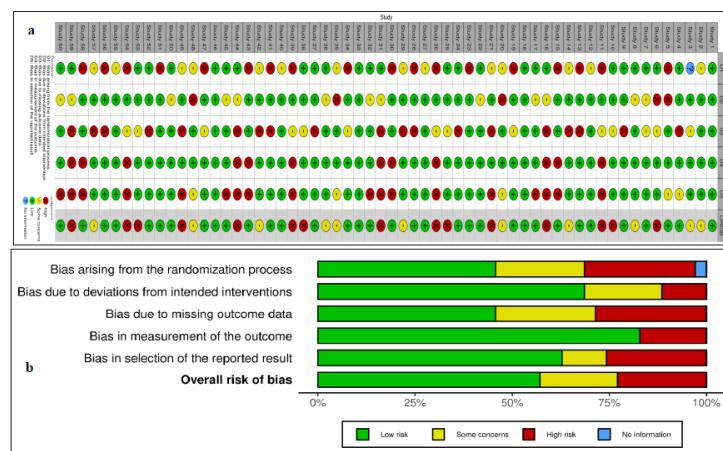
A total of 60 CTs fulfilled our inclusion criteria and screened 36 drugs for monotherapy or combination therapy for HCC. Most studies used sorafenib alone or in combination with any of the treatment regimens. Lenvatinib or atezolizumab with bevacizumab was used for HCC after initial sorafenib treatment. Eighteen studies compared the efficacy of sorafenib with that of other drugs, including lenvatinib, cabozantinib, tepotinib, tigatuzumab, linifanib, erlotinib, resminostat, brivanib, tislelizumab, selumetinib, and refametinib (Table 1). Three studies have reported on the use of a combination of lenvatinib and sorafenib (Table 1). Three studies have also reported the use of nivolumab monotherapy for the pharmacological intervention of HCC, while one study utilized a combination of ipilimumab and sorafenib (Table 1). Single-arm studies have reported each of cabozantinib, sorafenib, and immunotherapy using cytokines and enzalutamide (Table 1). Two studies have reported the treatment of HCC using ramucirumab and pembrolizumab (Table 1). This study provides comprehensive insights into effective treatment interventions for HCC in an Asian population. The overall assessment suggests that sorafenib, alone or in combination with atezolizumab and bevacizumab, has remained the first treatment choice in the past decade to provide better outcomes in patients with HCC in an Asian population. A systematic review of the published articles has reported consistency in validity appraisal among the two raters, as assessed by a kappa statistic of 0.86. The weighted bar plots of the distribution of the risk of bias judgments within each bias domain are presented in Figure 3. A network visualization of the selected articles is shown in Figure 4. Altogether, these findings suggest that sorafenib, as a combination approach with other drugs, is the first-line treatment for patients with HCC in an Asian population.

Table 1. Eligible studies included in the systematic review showing the application in treatment of hepatocellular carcinoma.

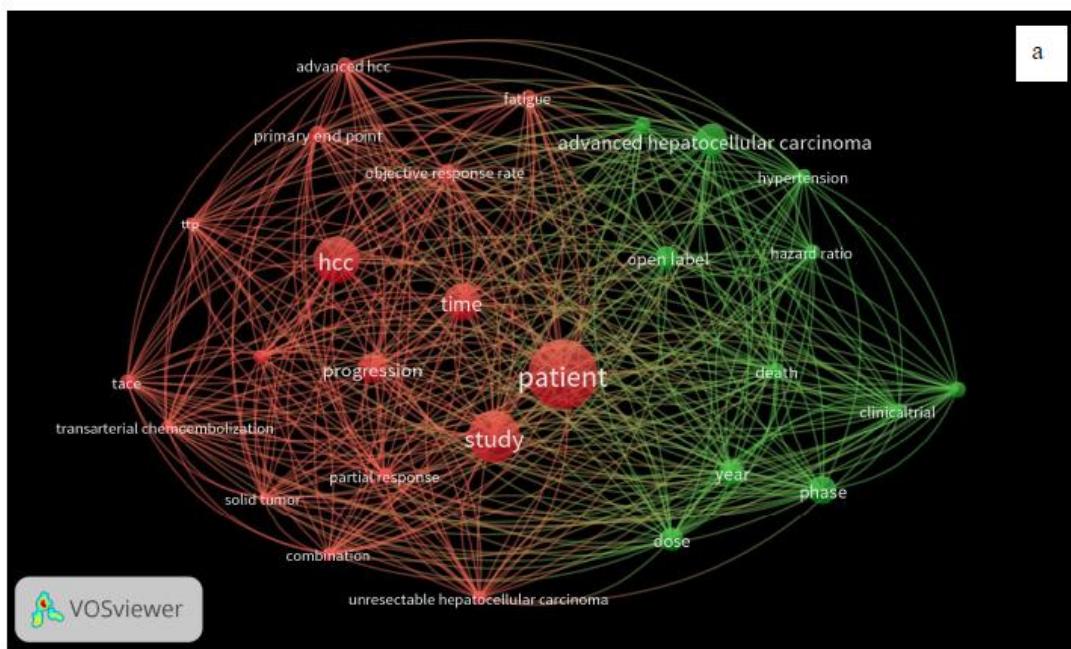
Author names	Year	Drugs used	Phase	No. of participants (n)	Design	Dosage	References
Finn <i>et al.</i>	2020	Atezolizumab + Bevacizumab v/s Sorafenib	III	501	Open-label RCT	Atezolizumab = 1200 mg Bevacizumab = 15 mg Sorafenib = 400 mg	[33]

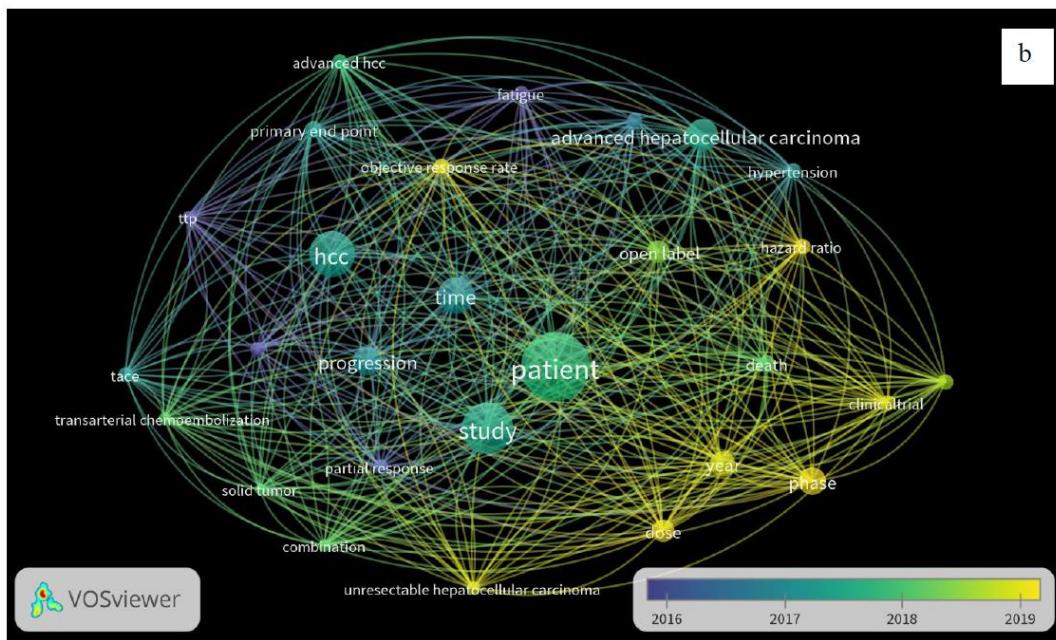
<i>Kudo M et al.</i>	2018	Lenvatinib v/s Sorafenib	III	468	Open-label RCT	Lenvatinib = 12 mg Sorafenib = 400 mg	[34]
<i>Cheng AN et al.</i>	2021	Atezolizumab + Bevacizumab v/s Sorafenib	III	501	Open-label RCT	Atezolizumab = 1200 mg Bevacizumab = 15 mg Sorafenib = 400 mg	[35]
<i>El-Khoueiry AB et al.</i>	2017	Nivolumab	I/II	262	Open-label, on-comparative, dose escalation and expansion trial	1–10 mg	[36]
<i>Abou-Alfa GK et al.</i>	2018	Cabozantinib	III	707	Double-blind, RCT	60 mg	[37]
<i>Yau T et al.</i>	2020	Nivolumab + ipilimumab	I/II	148	Open-label, Multicohort	Nivolumab = 3 mg Ipilimumab = 1 mg	[38]
<i>Kelley RK et al.</i>	2021	Tremelimumab + Durvalumab	I/II	332	Open-label RCT	Tremelimumab = 300 mg Durvalumab = 1,500 mg	[39]
<i>Lee JH et al.</i>	2015	Autologous CIK cells	III	230	Open-label RCT	6.4×10^9	[40]
<i>Bruix J et al.</i>	2015	Sorafenib	III	900	Randomized, double-blind, placebo-controlled trial	577 mg	[41]
<i>Yau T et al.</i>	2019	Nivolumab	I/II	267	Open-label RCT	3 mg	[42]
<i>Kelley RK et al.</i>	2022	Cabozantinib + atezolizumab V/S sorafenib	III	837	Open-label RCT	Cabozantinib = 40 mg Atezolizumab = 1200 mg	[43]

						Sorafenib = 400 mg	
<i>Yau T et al.</i>	2020	Nivolumab	III	743	Open-label RCT	240 mg	[44]
<i>Galle PR et al.</i>	2021	Atezolizumab + Bevacizumab v/s Sorafenib	III	501	Open-label RCT	Atezolizumab = 1200 mg Bevacizumab = 15 mg Sorafenib = 400 mg	[45]
<i>Zhu AX et al.</i>	2019	Ramucirumab	III	197	Open-label RCT	8 mg	[46]
<i>Lencioni R et al.</i>	2016	Transarterial chemoembolization with doxorubicin-eluting beads (DC Bead®; DEB-TACE) + Sorafenib	II	307	Open-label RCT	DEB-TACE = 150 mg Sorafenib = 400 mg	[47]
<i>Vogel A et al.</i>	2021	Lenvatinib v/s Sorafenib	III	954	Randomized, open-label, non-inferiority	Lenvatinib = 12 mg Sorafenib = 400 mg	[48]
<i>Finn RS et al.</i>	2019	Pembrolizumab	III	413	Randomized, double-blind	200 mg	[49]
<i>Lee MS et al.</i>	2020	Atezolizumab + Bevacizumab	Ib	104	Open-label RCT	Atezolizumab = 1200 mg Bevacizumab = 15 mg	[50]
<i>Cheon J et al.</i>	2022	Atezolizumab + Bevacizumab	III	138	Retrospective	Atezolizumab = 1200 mg Bevacizumab = 15 mg	[51]
<i>Park JW et al.</i>	2019	Sorafenib	III	339	Open-label RCT	Sorafenib = 600 mg	[52]
<i>Choi NR et al.</i>	2022	Lenvatinib+ Sorafenib		206	Open-label RCT	Lenvatinib = 12 mg Sorafenib = 400 mg	[53]
<i>Cheon J et al.</i>	2020	Lenvatinib	III	67	Retrospective	Lenvatinib = 12 mg	[54]


<i>Yoon SM et al.</i>	2018	Sorafenib	-	99	Open-label RCT	Sorafenib = 400 mg	[55]
<i>Hong JY et al.</i>	2022	Pembrolizumab	II	55	Open-label RCT	200 mg	[56]
<i>Chow PKH et al.</i>	2018	Sorafenib	III	360	Open-label RCT	800 mg	[57]
<i>Ryoo BY et al.</i>	2021	Enzalutamide	II	165	Randomized, Double-blind	160 mg	[58]
<i>Ryoo BY et al.</i>	2021	Tepotinib v/s Sorafenib	Ib/II	117	Open-label RCT	Tepotinib = 1200 mg Sorafenib = 400 mg	[59]
<i>Cheng AL et al</i>	2015	Tigatuzumab + sorafenib	II	163	Open-label RCT	Tigatuzumab = 6 mg Sorafenib = 400 mg	[60]
<i>Cainap C et al.</i>	2015	Linifanib v/s Sorafenib	III	1035	Open-label RCT	Linifanib = 17.5 mg Sorafenib = 400 mg	[61]
<i>Zhu AX et al.</i>	2015	Sorafenib + Erlotinib	III	720	Open-label RCT	Erlotinib = 150 mg Sorafenib = 400 mg	[62]
<i>Tak WY et al.</i>		Sorafenib +Resminostat v/s Sorafenib	I/II	179	Open-label RCT	Sorafenib + resminostat = 3+400 mg Sorafenib = 400 mg	[63]
<i>Johnson PJ et al.</i>	2013	Brivanib v/s Sorafenib	III	1150	Open-label RCT	Brivanib = 800 mg Sorafenib = 400 mg	[64]
<i>Zhu AX et al.</i>	2015	Ramucirumab	III	283	Randomized, double-blind	8 mg	[65]
<i>Lim HY et al.</i>	2014	Refametinib + Sorafenib	II	95	Open-label RCT	Refametinib= 50 mg Sorafenib= 600 mg	[66]
<i>Chung YH et al.</i>	2017	Ramucirumab	III	565	Open-label RCT	8 mg	[67]

<i>Qin S et al.</i>	2020	Camrelizumab	II	220	Open-label RCT	3 mg	[68]
<i>Qin S et al.</i>	2021	Apatinib	III	400	Randomized, double-blind	750 mg	[69]
<i>Llovet JM et al.</i>	2022	Lenvatinib + Pembrolizumab	III	950	Randomized, double-blind	Lenvatinib= 12 mg Pembrolizumab = 400 mg	[70]
<i>Ding X et al.</i>	2021	Lenvatinib v/s Sorafenib	III	64	Open-label RCT	Lenvatinib= 12 mg Sorafenib = 400 mg	[71]
<i>Peng Z et al.</i>	2022	Lenvatinib	III	338	Open-label RCT	Lenvatinib= 12 mg	[72]
<i>He M et al.</i>	2019	Sorafenib v/s Oxaliplatin, Fluorouracil, and Leucovorin+ Sorafenib	II	818	Open-label RCT	Sorafenib = 400 mg Oxaliplatin= 85 mg Leucovorin = 400 mg Fluorouracil = 400 mg	[73]
<i>Qin S et al.</i>	2019	Tislelizumab v/s Sorafenib	III	640	Open-label RCT	Tislelizumab = 200 mg Sorafenib = 400 mg	[74]
<i>Mei K et al.</i>	2021	Camrelizumab + Apatinib	IIb/II	28	Open-label RCT	Camrelizumab = 3 mg Apatinib = 500 mg	[75]
<i>Kia Y et al.</i>	2022	Camrelizumab + Apatinib	II	20	Open-label RCT	Camrelizumab = 200 mg Apatinib = 250 mg	[76]
<i>Xu J et al.</i>	2021	Camrelizumab + Apatinib	II	120	Open-label	Camrelizumab = 200 mg Apatinib = 250 mg	[77]
<i>Qin S et al.</i>	2021	Donafenib v/s Sorafenib	II/III	668	Open-label RCT	Donafenib = 200 mg	[78]


						Sorafenib = 400 mg	
<i>Lyu N et al.</i>	2022	Oxaliplatin+ Leucovorin +Fluorouracil v/s Sorafenib	III	262	Open-label RCT	Oxaliplatin = 130 mg Leucovorin = 200 mg Fluorouracil = 400 mg Sorafenib = 400 mg	[79]
<i>Ren Z et al.</i>	2021	Sintilimab + bevacizumab v/s Sorafenib	II/III	595	Open-label RCT	Sintilimab = 200 mg bevacizumab = 15 mg Sorafenib = 400 mg	[80]
<i>Li QJ et al.</i>	2022	Oxaliplatin + Leucovorin + Fluorouracil v/s Epirubicin + Lobaplatin	III	315	Open-label RCT	Oxaliplatin = 130 mg Leucovorin = 400 mg Fluorouracil = 400 mg Epirubicin = 50 mg Lobaplatin = 50 mg	[81]
<i>Kang YK et al.</i>	2015	Axitinib	II	202	Double-blind RCT	Axitinib = 5 mg	[82]
<i>Llovet JM et al.</i>	2013	Brivanib	III	395	Double-blind RCT	Brivanib = 800 mg	[83]
<i>Yau TCC et al.</i>	2017	Foretinib	I/II	32	Single-arm	Foretinib = 60 mg	[84]
<i>Zhu AX et al.</i>	2014	Everolimus	I	546	Open-label RCT	Everolimus = 7.5 mg	[85]
<i>Kelley RK et al.</i>	2020	Cabozantinib	II	331	Open-label RCT	Cabozantinib = 60 mg	[86]
<i>Verset G et al.</i>	2022	Pembrolizumab	II	51	Open-label RCT	Pembrolizumab = 200 mg	[87]
<i>Abou-Alfa GK et al.</i>	2018	Cabozantinib	III	707	Double-blind RCT	Cabozantinib = 60 mg	[88]
<i>Tai WM et al.</i>	2016	Selumetinib +Sorafenib	Ib	27	Open-label RCT	Selumetinib= 75 mg Sorafenib = 400 mg	[89]


Toh HC et al.	2013	Linifanib	II	44	Single-arm, open-label	Linifanib = 0.25 mg	[90]
Lim HY et al.	2018	Refametinib v/s Refametinib + Sorafenib	II	1318	Open-label RCT	Refametinib = 50 mg Sorafenib = 400 mg	[91]
Chow PK et al.	2014	Sorafenib	II	29	Open-label RCT	Sorafenib = 400 mg	[92]

RCT, randomized clinical trial.

Figure 3. Plot demonstrating risk of bias (a) Traffic light plots of domain-level judgments for each individual result. (b) Weighted bar plots of the distribution of risk of bias judgments within each bias domain.

Figure 4. Visualization of bibliometric networks of eligible articles using the VOSviewer software (n = 60): (a) network visualization and (b) overlay visualization.

4. Discussion

This review evaluated the drugs used to treat HCC in Asia over the past decade. Sorafenib is a multikinase kinase inhibitor with a molecular weight of 637 g/mol that inhibits protein pathways that act as anticancer agents. Sorafenib acts on RAF, vascular endothelial growth factor (VEGF), and Platelet-derived growth factors receptors (PDGFR), as previously demonstrated [14]. RAF is a serine/threonine kinase that initiates the activation of gene transcription responsible for tumor promotion upon activation by the ras protein present on the membrane. Moreover, VEGF is responsible for angiogenesis in both normal and cancerous tissues, which is mediated through endothelial cell division and migration. The interaction of VEGF with VEGFRs 1, 2, and 3 promotes autophosphorylation of tyrosine receptor kinase, resulting in the activation of a cascade of downstream proteins.

Additionally, sorafenib inhibits the activities of VEGFR-2/3, PDGFR- β , Flt3, and c-Kit [15,16]. The precise molecular mechanism underlying the antitumor activity of sorafenib remains unclear, although previously published studies have suggested that sorafenib acts on RAF/MEK/ERK-dependent or -independent protein kinases [17–19]. Another study demonstrated that sorafenib inhibits the expression of the β -catenin oncogene in HepG2 cells and activates the c-Jun N-terminal kinase (JNK) and p38MAPK pathways [20]. A similar study also observed that sorafenib is actively involved in the downregulation of several DNA repair and recombination genes (XRCC-2, XRCC-5, FANCA, and FANCD2), along with genes involved in cell cycle regulation (CDC45L, CDC6, and CDCA5) that further exert anticancer activities [20].

Sorafenib is associated with common adverse effects, including diarrhea and weight loss, as well as other secondary effects, such as alopecia, anorexia, and voice changes. A previously published study revealed that sorafenib has a significant survival benefit in patients with advanced HCC, although many patients demonstrated disease progression after a reduction in dosage or treatment discontinuation [21,22]. In the Study of Heart and Renal Protection (SHARP) trial, sorafenib exerted primary and acquired resistance, which hampered the survival benefit [23]. Previous studies have demonstrated the antitumor activity of sorafenib monotherapy with some limitations, such as drug resistance and adverse effects, discouraging its use as monotherapy. A combination with nivolumab can resolve the problems associated with sorafenib monotherapy. Our results also demonstrated a trend toward the increased use of sorafenib combination therapy.

Nivolumab is a human recombinant monoclonal G4 immunoglobulin with anticancer activity mediated through programmed cell death receptor-1 (PD-1). T-cell response is commonly mediated through the PD-1 mechanism. The blockade of PD-1 receptors present on T-cells inhibits the proliferation of T-cells through a programmed cell death mechanism. In a recently published study, nivolumab was associated with some grade 1–2 adverse events, including the development of colitis and pneumonitis, along with increased alanine aminotransferase and aspartate aminotransferase activities [24].

Another anticancer drug, atezolizumab, exhibits anticancer properties by targeting PD-L1 on tumor cells, thereby preventing the binding of PD-L1 to its receptors, PD-1 and B7-1. The binding of PD-L1 to its receptor PD-1 inhibits the proliferation of T-cells, along with the inhibition of cytokine production and cytolytic activity, which in turn leads to T-cell inactivation. Similarly, T-cells and antigen-presenting cells (APCs) inhibit immune responses, including T-cell activation and cytokine release, owing to the active binding of PD-L1 to B7-1 present on T cells and APCs [25,26]. Similar to other FDA-approved PD-1/PD-L1 targeted therapies, atezolizumab is also associated with adverse immune responses, including grade 1–4 immune-mediated colitis, hepatitis, and pneumonitis [27].

Bevacizumab is a recombinant humanized monoclonal immunoglobulin G that binds to the VEGF protein and prevents it from binding to its receptor, thereby exerting a neutralizing effect [28]. HCC is an extensively vascularized solid tumor with immense dense microvessels owing to angiogenesis. Hence, targeting VEGF is a crucial step in preventing tumor angiogenesis. Adverse reactions associated with bevacizumab include hypertension, fatigue, and proteinuria [28]. Bevacizumab can be used in combination with sorafenib to overcome these side-effects.

A previously published study reported portal vein tumor invasion in 30% of the Korean patients with HCC [29]. A single-center Korean RCT reported that conventional transarterial chemoembolization (cTACE) with radiation therapy had better outcomes than sorafenib monotherapy in HCC patients with portal vein invasion. However, two other RCTs conducted in the Korean population revealed that sorafenib monotherapy did not result in survival gain compared to transarterial radioembolization (TARE) [30,31]. The study concluded that TARE, sorafenib, and cTACE did not result in any survival gains [32].

Despite several drugs in the pharmaceutical market, HCC is a highly uncontrollable cancer with a tendency to metastasize to distant organs, including the lungs and stomach. Moreover, the gap between the etiology and genetic mutations contributes to poor treatment outcomes. The current boom in nanotechnology can provide new hope for the early intervention and treatment of HCC without any associated side-effects, as in the case of drugs. Nanotechnology offers alterations to several nanoparticles that have been widely implicated in biomedical research related to cancer therapeutics. Nanoparticles improve the accessibility of drugs to human cells and increase their metabolic tendency along with delayed and prolonged therapeutic action. Its modified surface area offers greater drug loading and mitigates the side-effects of drugs. Enhanced penetration and retention mechanisms, along with active targeting, exhibit highly specific targeted anticancer therapeutics. Owing to their low or negligible toxicity, enhanced biocompatibility, and biodegradability, anticancer nanoparticles have also been the focus of research. In addition to the aforementioned characteristics, such nanoparticles also exhibit antiinflammatory, antioxidant, and antiangiogenic effects, which are useful properties for use as anticancer therapeutics.

5. Conclusion

Sorafenib as a monotherapy or in combination with atezolizumab and bevacizumab has remained the first choice of drug in the past decade to provide better outcomes in patients with HCC in an Asian population. Other approaches, including cytokine-based immunotherapy, for the treatment of HCC, with minimal side-effects and significant benefits, have also been implicated in Asia. However, newer therapeutic approaches, including nanotechnology-based delivery, need to be explored further for effective treatment of patients with HCC.

Funding: None.

Acknowledgments: The authors thank the Brain Pool Program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (Grant Number 2022H1D3A2A01096346) for supporting this research. We also thank Editage (www.editage.co.kr) for English language editing.

Conflicts of Interest: The authors declare no conflict of interest, financial or otherwise.

References

1. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, Gores G. Hepatocellular carcinoma. *Nat Rev Dis Primers*. 2016 Apr 14;2:16018. doi: 10.1038/nrdp.2016.18.
2. Villanueva A. Hepatocellular Carcinoma. *N Engl J Med*. 2019 Apr 11;380(15):1450-1462. doi: 10.1056/NEJMra1713263.
3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J Clin*. 2021 May;71(3):209-249. doi: 10.3322/caac.21660.
4. Zhang CH, Cheng Y, Zhang S, Fan J, Gao Q. Changing epidemiology of hepatocellular carcinoma in Asia. *Liver Int*. 2022 Aug;42(9):2029-2041. doi: 10.1111/liv.15251.
5. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. *Lancet* 2003; 362: 1907-17.
6. Umemura T, Kiyosawa K. Epidemiology of hepatocellular carcinoma in Japan. *Hepatol Res* 2007; 37 (suppl 2): S95–100.
7. Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ MERK pathway and receptor tyrosine kinases involved in tumour progression and angiogenesis. *Cancer Res* 2004;64:7099–109.
8. Petrick JL, Florio AA, Znaor A, Ruggieri D, Laversanne M, Alvarez CS, Ferlay J, Valery PC, Bray F, McGlynn KA. International trends in hepatocellular carcinoma incidence, 1978-2012. *Int J Cancer*. 2020 Jul 15;147(2):317-330. doi: 10.1002/ijc.32723.
9. Yoon SK, Chun HG. Status of hepatocellular carcinoma in South Korea. *Chin Clin Oncol* 2013;2(4):39. doi: 10.3978/j.issn.2304-3865.2013.11.08.
10. Wilhelm SM, Adnane L, Newell P, et al. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signalling. *Mol Cancer Ther* 2008;7:3129–40.
11. Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. *Lancet Oncol* 2009;10:25-34.
12. Bruix J, Qin S, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet* 2017;389:56-66.
13. Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. *Lancet* 2018;391:1163-1173.
14. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. *Oncogene*. 2007 May 14;26(22):3291-310. doi: 10.1038/sj.onc.1210422.
15. Cervello M, McCubrey JA, Cusimano A, Lampiasi N, Azzolina A, Montalto G. Targeted therapy for hepatocellular carcinoma: novel agents on the horizon. *Oncotarget* 2012; 3:236-60; PMID:22470194.
16. Samant RS, Shevde LA. Recent advances in anti-angiogenic therapy of cancer. *Oncotarget* 2011; 2:122-34; PMID:21399234.

16. Rahmani M, Davis EM, Crabtree TR, Habibi JR, Nguyen TK, Dent P, et al. The kinase inhibitor sorafenib induces cell death through a process involving the induction of endoplasmic reticulum stress. *Mol Cell Biol* 2007; 27:5499-513; PMID:17548474; <http://dx.doi.org/10.1128/MCB.01080-06.8>.
17. Tai WT, Cheng AL, Shiao CW, Huang HP, Huang JW, Chen PJ, et al. Signal transducer and activator of transcription 3 is a major kinase-independent target of sorafenib in hepatocellular carcinoma. *J Hepatol* 2011; 55:1041-8; PMID:21354226; <http://dx.doi.org/10.1016/j.jhep.2011.01.047.9>.
18. Ulivi P, Arienti C, Amadori D, Fabbri F, Carloni S, Tesei A, et al. Role of RAF/MEK/ERK path-way, p-STAT-3 and Mcl-1 in sorafenib activity in human pancreatic cancer cell lines. *J Cell Physiol* 2009; 220:214-21; PMID:19288493; <http://dx.doi.org/10.1002/jcp.21753>.
19. Cervello M, Bachvarov D, Lampiasi N, Cusimano A, Azzolina A, McCubrey JA, Montalto G. Molecular mechanisms of sorafenib action in liver cancer cells. *Cell Cycle*. 2012 Aug 1;11(15):2843-55. doi: 10.4161/cc.21193.
20. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, Xu J, Sun Y, Liang H, Liu J, Wang J, Tak WY, Pan H, Burock K, Zou J, Voliotis D, Guan Z. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. *Lancet Oncol*. 2009 Jan;10(1):25-34. doi: 10.1016/S1470-2045(08)70285-7.
21. Iavarone M, Cabibbo G, Piscaglia F, Zavaglia C, Grieco A, Villa E, Cammà C, Colombo M; SOFIA (SOraFenib Italian Assessment) study group. Field-practice study of sorafenib therapy for hepatocellular carcinoma: a prospective multicenter study in Italy. *Hepatology*. 2011 Dec;54(6):2055-63. doi: 10.1002/hep.24644.
22. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Häussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. *N Engl J Med*. 2008 Jul 24;359(4):378-90. doi: 10.1056/NEJMoa0708857.
23. Zhao X, Gao F, Yang J, Fan H, Xie Q, Jiang K, Gong J, Gao B, Yang Q, Lei Z. Risk of Adverse Events in Cancer Patients Receiving Nivolumab With Ipilimumab: A Meta-Analysis. *Front Oncol*. 2022 Jun 23;12:877434. doi: 10.3389/fonc.2022.877434.
24. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. *Immunity*. 2007 Jul;27(1):111-22. doi: 10.1016/j.jimmuni.2007.05.016.
25. Yang J, Riella LV, Chock S, Liu T, Zhao X, Yuan X, Paterson AM, Watanabe T, Vanguri V, Yagita H, Azuma M, Blazar BR, Freeman GJ, Rodig SJ, Sharpe AH, Chandraker A, Sayegh MH. The novel costimulatory programmed death ligand 1/B7.1 pathway is functional in inhibiting alloimmune responses in vivo. *J Immunol*. 2011 Aug 1;187(3):1113-9. doi: 10.4049/jimmunol.1100056.
26. Aleem A, Shah H. Atezolizumab. [Updated 2022 May 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK567758/>.
27. Roviello G, Bachelot T, Hudis CA, Curigliano G, Reynolds AR, Petrioli R, Generali D. The role of bevacizumab in solid tumours: A literature based meta-analysis of randomised trials. *Eur J Cancer*. 2017 Apr;75:245-258. doi: 10.1016/j.ejca.2017.01.026.

28. Casak SJ, Donoghue M, Fashoyin-Aje L, Jiang X, Rodriguez L, Shen YL, Xu Y, Jiang X, Liu J, Zhao H, Pierce WF, Mehta S, Goldberg KB, Theoret MR, Kluetz PG, Pazdur R, Lemery SJ. FDA Approval Summary: Atezolizumab Plus Bevacizumab for the Treatment of Patients with Advanced Unresectable or Metastatic Hepatocellular Carcinoma. *Clin Cancer Res.* 2021 Apr 1;27(7):1836-1841. doi: 10.1158/1078-0432.CCR-20-3407.
29. Kwak HW, Park JW, Nam BH, Yu A, Woo SM, Kim TH, Kim SH, Koh YH, Kim HB, Park SJ, Lee WJ, Hong EK, Kim CM. Clinical outcomes of a cohort series of patients with hepatocellular carcinoma in a hepatitis B virus-endemic area. *J Gastroenterol Hepatol.* 2014 Apr;29(4):820-9. doi: 10.1111/jgh.12470.
30. Chow PK, Gandhi M. Phase III multicenter open-label randomized controlled trial of selective internal radiation therapy (SIRT) versus sorafenib in locally advanced hepatocellular carcinoma: the SIRveNIB study. *J Clin Oncol* 2017;35 15_Suppl:4002.
31. Vilgrain V, Pereira H, Assenat E, Guiu B, Ilonca AD, Pageaux GP, Sibert A, Bouattour M, Lebtahi R, Allaham W, Barraud H, Laurent V, Mathias E, Bronowicki JP, Tasu JP, Perdrisot R, Silvain C, Gerolami R, Mundler O, Seitz JF, Vidal V, Aubé C, Oberti F, Couturier O, Brenot-Rossi I, Raoul JL, Sarran A, Costentin C, Itti E, Luciani A, Adam R, Lewin M, Samuel D, Ronot M, Dinut A, Castera L, Chatellier G; SARAH Trial Group. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. *Lancet Oncol.* 2017 Dec;18(12):1624-1636. doi: 10.1016/S1470-2045(17)30683-6.
32. Korean Liver Cancer Association; National Cancer Center. 2018 Korean Liver Cancer Association-National Cancer Center Korea Practice Guidelines for the Management of Hepatocellular Carcinoma. *Gut Liver.* 2019 May 15;13(3):227-299. doi: 10.5009/gnl19024.
33. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, Kudo M, Breder V, Merle P, Kaseb AO, Li D, Verret W, Xu DZ, Hernandez S, Liu J, Huang C, Mulla S, Wang Y, Lim HY, Zhu AX, Cheng AL; IMbrave150 Investigators. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. *N Engl J Med.* 2020 May 14;382(20):1894-1905. doi: 10.1056/NEJMoa1915745.
34. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, Baron A, Park JW, Han G, Jassem J, Blanc JF, Vogel A, Komov D, Evans TRJ, Lopez C, Dutcus C, Guo M, Saito K, Kraljevic S, Tamai T, Ren M, Cheng AL. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. *Lancet.* 2018 Mar 24;391(10126):1163-1173. doi: 10.1016/S0140-6736(18)30207-1.
35. Cheng AL, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, Lim HY, Kudo M, Breder V, Merle P, Kaseb AO, Li D, Verret W, Ma N, Nicholas A, Wang Y, Li L, Zhu AX, Finn RS. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. *J Hepatol.* 2022 Apr;76(4):862-873. doi: 10.1016/j.jhep.2021.11.030.
36. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling TH Rd, Meyer T, Kang YK, Yeo W, Chopra A, Anderson J, Dela Cruz C, Lang L, Neely J, Tang H, Dastani HB, Melero I. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. *Lancet.* 2017 Jun 24;389(10088):2492-2502. doi: 10.1016/S0140-6736(17)31046-2.

37. Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY, Cicin I, Merle P, Chen Y, Park JW, Blanc JF, Bolondi L, Klümpen HJ, Chan SL, Zagonel V, Pressiani T, Ryu MH, Venook AP, Hessel C, Borgman-Hagey AE, Schwab G, Kelley RK. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. *N Engl J Med* 2018; 379:54-63

38. DOI: 10.1056/NEJMoa1717002.

39. Yau T, Kang YK, Kim TY, El-Khoueiry AB, Santoro A, Sangro B, Melero I, Kudo M, Hou MM, Matilla A, Tovoli F, Knox JJ, Ruth He A, El-Rayes BF, Acosta-Rivera M, Lim HY, Neely J, Shen Y, Wisniewski T, Anderson J, Hsu C. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients With Advanced Hepatocellular Carcinoma Previously Treated With Sorafenib: The CheckMate 040 Randomized Clinical Trial. *JAMA Oncol.* 2020 Nov 1;6(11):e204564. doi: 10.1001/jamaoncol.2020.4564.

40. Kelley RK, Sangro B, Harris W, Ikeda M, Okusaka T, Kang YK, Qin S, Tai DW, Lim HY, Yau T, Yong WP, Cheng AL, Gasbarrini A, Damian S, Bruix J, Borad M, Bendell J, Kim TY, Standifer N, He P, Makowsky M, Negro A, Kudo M, Abou-Alfa GK. Safety, Efficacy, and Pharmacodynamics of Tremelimumab Plus Durvalumab for Patients With Unresectable Hepatocellular Carcinoma: Randomized Expansion of a Phase I/II Study. *J Clin Oncol.* 2021 Sep 20;39(27):2991-3001. doi: 10.1200/JCO.20.03555.

41. Lee JH, Lee JH, Lim YS, Yeon JE, Song TJ, Yu SJ, Gwak GY, Kim KM, Kim YJ, Lee JW, Yoon JH. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. *Gastroenterology.* 2015 Jun;148(7):1383-91.e6. doi: 10.1053/j.gastro.2015.02.055.

42. Bruix J, Takayama T, Mazzaferro V, Chau GY, Yang J, Kudo M, Cai J, Poon RT, Han KH, Tak WY, Lee HC, Song T, Roayaie S, Bolondi L, Lee KS, Makuuchi M, Souza F, Berre MA, Meinhardt G, Llovet JM; STORM investigators. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. *Lancet Oncol.* 2015 Oct;16(13):1344-54. doi: 10.1016/S1470-2045(15)00198-9.

43. Yau T, Hsu C, Kim TY, Choo SP, Kang YK, Hou MM, Numata K, Yeo W, Chopra A, Ikeda M, Kuromatsu R, Moriguchi M, Chao Y, Zhao H, Anderson J, Cruz CD, Kudo M. Nivolumab in advanced hepatocellular carcinoma: Sorafenib-experienced Asian cohort analysis. *J Hepatol.* 2019 Sep;71(3):543-552. doi: 10.1016/j.jhep.2019.05.014.

44. Kelley RK, Rimassa L, Cheng AL, Kaseb A, Qin S, Zhu AX, Chan SL, Melkadze T, Sukeepaisarnjaroen W, Breder V, Verset G, Gane E, Borbath I, Rangel JDG, Ryoo BY, Makharadze T, Merle P, Benzaghoun F, Banerjee K, Hazra S, Fawcett J, Yau T. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial. *Lancet Oncol.* 2022 Aug;23(8):995-1008. doi: 10.1016/S1470-2045(22)00326-6.

45. Yau T, Park JW, Finn RS, Cheng AL, Mathurin P, Edeline J, Kudo M, Harding JJ, Merle P, Rosmorduc O, Wyrwicz L, Schott E, Choo SP, Kelley RK, Sieghart W, Assenat E, Zaucha R, Furuse J, Abou-Alfa GK, El-Khoueiry AB, Melero I, Begic D, Chen G, Neely J, Wisniewski T, Tschaika M, Sangro B. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. *Lancet Oncol.* 2022 Jan;23(1):77-90. doi: 10.1016/S1470-2045(21)00604-5.

46. Galle PR, Finn RS, Qin S, Ikeda M, Zhu AX, Kim TY, Kudo M, Breder V, Merle P, Kaseb A, Li D, Mulla S, Verret W, Xu DZ, Hernandez S, Ding B, Liu J, Huang C, Lim HY, Cheng AL, Ducreux M. Patient-reported outcomes with atezolizumab plus bevacizumab versus sorafenib in patients with unresectable hepatocellular carcinoma (IMbrave150): an open-label, randomised, phase 3 trial. *Lancet Oncol.* 2021 Jul;22(7):991-1001. doi: 10.1016/S1470-2045(21)00151-0.

47. Zhu AX, Kang YK, Yen CJ, Finn RS, Galle PR, Llovet JM, Assenat E, Brandi G, Pracht M, Lim HY, Rau KM, Motomura K, Ohno I, Merle P, Daniele B, Shin DB, Gerken G, Borg C, Hiriart JB, Okusaka T, Morimoto M, Hsu Y, Abada PB, Kudo M; REACH-2 study investigators. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α -fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet Oncol.* 2019 Feb;20(2):282-296. doi: 10.1016/S1470-2045(18)30937-9.

48. Lencioni R, Llovet JM, Han G, Tak WY, Yang J, Guglielmi A, Paik SW, Reig M, Kim DY, Chau GY, Luca A, Del Arbol LR, Leberre MA, Niu W, Nicholson K, Meinhardt G, Bruix J. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: The SPACE trial. *J Hepatol.* 2016 May;64(5):1090-1098. doi: 10.1016/j.jhep.2016.01.012.

49. Vogel A, Qin S, Kudo M, Su Y, Hudgens S, Yamashita T, Yoon JH, Fartoux L, Simon K, López C, Sung M, Mody K, Ohtsuka T, Tamai T, Bennett L, Meier G, Breder V. Lenvatinib versus sorafenib for first-line treatment of unresectable hepatocellular carcinoma: patient-reported outcomes from a randomised, open-label, non-inferiority, phase 3 trial. *Lancet Gastroenterol Hepatol.* 2021 Aug;6(8):649-658. doi: 10.1016/S2468-1253(21)00110-2.

50. Finn RS, Ryoo BY, Merle P, Kudo M, Bouattour M, Lim HY, Breder V, Edeline J, Chao Y, Ogasawara S, Yau T, Garrido M, Chan SL, Knox J, Daniele B, Ebbinghaus SW, Chen E, Siegel AB, Zhu AX, Cheng AL; KEYNOTE-240 investigators. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. *J Clin Oncol.* 2020 Jan 20;38(3):193-202. doi: 10.1200/JCO.19.01307.

51. Lee MS, Ryoo BY, Hsu CH, Numata K, Stein S, Verret W, Hack SP, Spahn J, Liu B, Abdullah H, Wang Y, He AR, Lee KH; GO30140 investigators. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study. *Lancet Oncol.* 2020 Jun;21(6):808-820. doi: 10.1016/S1470-2045(20)30156-X. Erratum in: *Lancet Oncol.* 2020 Jul;21(7):e341.

52. Cheon J, Yoo C, Hong JY, Kim HS, Lee DW, Lee MA, Kim JW, Kim I, Oh SB, Hwang JE, Chon HJ, Lim HY. Efficacy and safety of atezolizumab plus bevacizumab in Korean patients with advanced hepatocellular carcinoma. *Liver Int.* 2022 Mar;42(3):674-681. doi: 10.1111/liv.15102.

53. Park JW, Kim YJ, Kim DY, Bae SH, Paik SW, Lee YJ, Kim HY, Lee HC, Han SY, Cheong JY, Kwon OS, Yeon JE, Kim BH, Hwang J. Sorafenib with or without concurrent transarterial chemoembolization in patients with advanced hepatocellular carcinoma: The phase III STAH trial. *J Hepatol.* 2019 Apr;70(4):684-691. doi: 10.1016/j.jhep.2018.11.029.

54. Choi NR, Kim JY, Hong JH, Hur MH, Cho H, Park MK, Kim J, Lee YB, Cho EJ, Lee JH, Yu SJ, Yoon JH, Kim YJ. Comparison of the outcomes between sorafenib and lenvatinib as the first-line systemic treatment for HBV-associated hepatocellular carcinoma: a propensity score matching analysis. *BMC Gastroenterol.* 2022 Mar 25;22(1):135. doi: 10.1186/s12876-022-02210-3.

55. Cheon J, Chon HJ, Bang Y, Park NH, Shin JW, Kim KM, Lee HC, Lee J, Yoo C, Ryoo BY. Real-World Efficacy and Safety of Lenvatinib in Korean Patients with Advanced Hepatocellular Carcinoma: A Multicenter Retrospective Analysis. *Liver Cancer.* 2020 Sep;9(5):613-624. doi: 10.1159/000508901.

56. Yoon SM, Ryoo BY, Lee SJ, Kim JH, Shin JH, An JH, Lee HC, Lim YS. Efficacy and Safety of Transarterial Chemoembolization Plus External Beam Radiotherapy vs Sorafenib in Hepatocellular Carcinoma With Macroscopic Vascular Invasion: A Randomized Clinical Trial. *JAMA Oncol.* 2018 May 1;4(5):661-669. doi: 10.1001/jamaoncol.2017.5847.

57. Hong JY, Cho HJ, Sa JK, Liu X, Ha SY, Lee T, Kim H, Kang W, Sinn DH, Gwak GY, Choi MS, Lee JH, Koh KC, Paik SW, Park HC, Kang TW, Rhim H, Lee SJ, Cristescu R, Lee J, Paik YH, Lim HY. Hepatocellular carcinoma patients with high circulating cytotoxic T cells and intra-tumoral immune signature benefit from pembrolizumab: results from a single-arm phase 2 trial. *Genome Med.* 2022 Jan;14(1):1. doi: 10.1186/s13073-021-00995-8.

58. Chow PKH, Gandhi M, Tan SB, Khin MW, Khasbazar A, Ong J, Choo SP, Cheow PC, Chotipanich C, Lim K, Lesmana LA, Manuaba TW, Yoong BK, Raj A, Law CS, Cua IHY, Lobo RR, Teh CSC, Kim YH, Jong YW, Han HS, Bae SH, Yoon HK, Lee RC, Hung CF, Peng CY, Liang PC, Bartlett A, Kok KYY, Thng CH, Low AS, Goh ASW, Tay KH, Lo RHG, Goh BKP, Ng DCE, Lekurwale G, Liew WM, Gebski V, Mak KSW, Soo KC; Asia-Pacific Hepatocellular Carcinoma Trials Group. SIRveNIB: Selective Internal Radiation Therapy Versus Sorafenib in Asia-Pacific Patients With Hepatocellular Carcinoma. *J Clin Oncol.* 2018 Jul 1;36(19):1913-1921. doi: 10.1200/JCO.2017.76.0892.

59. Ryoo BY, Palmer DH, Park SR, Rimassa L, Debashis Sarker, Daniele B, Steinberg J, López B, Lim HY. Efficacy and Safety Results from a Phase 2, Randomized, Double-Blind Study of Enzalutamide Versus Placebo in Advanced Hepatocellular Carcinoma. *Clin Drug Investig.* 2021 Sep;41(9):795-808. doi: 10.1007/s40261-021-01063-0.

60. Cheng AL, Kang YK, He AR, Lim HY, Ryoo BY, Hung CH, Sheen IS, Izumi N, Austin T, Wang Q, Greenberg J, Shiratori S, Beckman RA, Kudo M; Investigators' Study Group. Safety and efficacy of tigatuzumab plus sorafenib as first-line therapy in subjects with advanced hepatocellular carcinoma: A phase 2 randomized study. *J Hepatol.* 2015 Oct;63(4):896-904. doi: 10.1016/j.jhep.2015.06.001.

61. Cainap C, Qin S, Huang WT, Chung IJ, Pan H, Cheng Y, Kudo M, Kang YK, Chen PJ, Toh HC, Gorbunova V, Eskens FA, Qian J, McKee MD, Ricker JL, Carlson DM, El-Nowiem S. Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. *J Clin Oncol.* 2015 Jan 10;33(2):172-9. doi: 10.1200/JCO.2013.54.3298. Epub 2014 Dec 8. Erratum in: *J Clin Oncol.* 2017 Aug 1;35(22):2590.

62. Zhu AX, Rosmorduc O, Evans TR, Ross PJ, Santoro A, Carrilho FJ, Bruix J, Qin S, Thuluvath PJ, Llovet JM, Leberre MA, Jensen M, Meinhardt G, Kang YK. SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. *J Clin Oncol.* 2015 Feb 20;33(6):559-66. doi: 10.1200/JCO.2013.53.7746.

63. Tak WY, Ryoo BY, Lim HY, Kim DY, Okusaka T, Ikeda M, Hidaka H, Yeon JE, Mizukoshi E, Morimoto M, Lee MA, Yasui K, Kawaguchi Y, Heo J, Morita S, Kim TY, Furuse J, Katayama K, Aramaki T, Hara R, Kimura T, Nakamura O, Kudo M. Phase I/II study of first-line combination therapy with sorafenib plus resminostat, an oral HDAC inhibitor, versus sorafenib monotherapy for advanced hepatocellular carcinoma in east Asian patients. *Invest New Drugs.* 2018 Dec;36(6):1072-1084. doi: 10.1007/s10637-018-0658-x.

64. Johnson PJ, Qin S, Park JW, Poon RT, Raoul JL, Philip PA, Hsu CH, Hu TH, Heo J, Xu J, Lu L, Chao Y, Boucher E, Han KH, Paik SW, Robles-Aviña J, Kudo M, Yan L, Sobhonslidsuk A, Komov D, Decaens T, Tak WY, Jeng LB, Liu D, Ezzeddine R, Walters I, Cheng AL. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. *J Clin Oncol.* 2013 Oct 1;31(28):3517-24. doi: 10.1200/JCO.2012.48.4410.

65. Zhu AX, Park JO, Ryoo BY, Yen CJ, Poon R, Pastorelli D, Blanc JF, Chung HC, Baron AD, Pfiffer TE, Okusaka T, Kubackova K, Trojan J, Sastre J, Chau I, Chang SC, Abada PB, Yang L, Schwartz JD, Kudo M; REACH Trial Investigators. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. *Lancet Oncol.* 2015 Jul;16(7):859-70. doi: 10.1016/S1470-2045(15)00050-9.
66. Lim HY, Heo J, Choi HJ, Lin CY, Yoon JH, Hsu C, Rau KM, Poon RT, Yeo W, Park JW, Tay MH, Hsieh WS, Kappeler C, Rajagopalan P, Krissel H, Jeffers M, Yen CJ, Tak WY. A phase II study of the efficacy and safety of the combination therapy of the MEK inhibitor refametinib (BAY 86-9766) plus sorafenib for Asian patients with unresectable hepatocellular carcinoma. *Clin Cancer Res.* 2014 Dec 1;20(23):5976-85. doi: 10.1158/1078-0432.CCR-13-3445.
67. Chau I, Peck-Radosavljevic M, Borg C, Malfertheiner P, Seitz JF, Park JO, Ryoo BY, Yen CJ, Kudo M, Poon R, Pastorelli D, Blanc JF, Chung HC, Baron AD, Okusaka T, Bowman L, Cui ZL, Girvan AC, Abada PB, Yang L, Zhu AX. Ramucirumab as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib: Patient-focused outcome results from the randomised phase III REACH study. *Eur J Cancer.* 2017 Aug;81:17-25. doi: 10.1016/j.ejca.2017.05.001. Epub 2017 Jun 4. Erratum in: *Eur J Cancer.* 2018 Sep;100:135-136.
68. Qin S, Ren Z, Meng Z, Chen Z, Chai X, Xiong J, Bai Y, Yang L, Zhu H, Fang W, Lin X, Chen X, Li E, Wang L, Chen C, Zou J. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: a multicentre, open-label, parallel-group, randomised, phase 2 trial. *Lancet Oncol.* 2020 Apr;21(4):571-580. doi: 10.1016/S1470-2045(20)30011-5.
69. Qin S, Li Q, Gu S, Chen X, Lin L, Wang Z, Xu A, Chen X, Zhou C, Ren Z, Yang L, Xu L, Bai Y, Chen L, Li J, Pan H, Cao B, Fang W, Wu W, Wang G, Cheng Y, Yu Z, Zhu X, Jiang D, Lu Y, Wang H, Xu J, Bai L, Liu Y, Lin H, Wu C, Zhang Y, Yan P, Jin C, Zou J. Apatinib as second-line or later therapy in patients with advanced hepatocellular carcinoma (AHELP): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. *Lancet Gastroenterol Hepatol.* 2021 Jul;6(7):559-568. doi: 10.1016/S2468-1253(21)00109-6.
70. Llovet JM, Vogel A, Madoff DC, Finn RS, Ogasawara S, Ren Z, Mody K, Li JJ, Siegel AB, Dubrovsky L, Kudo M. Randomized Phase 3 LEAP-012 Study: Transarterial Chemoembolization With or Without Lenvatinib Plus Pembrolizumab for Intermediate-Stage Hepatocellular Carcinoma Not Amenable to Curative Treatment. *Cardiovasc Intervent Radiol.* 2022 Apr;45(4):405-412. doi: 10.1007/s00270-021-03031-9.
71. Ding X, Sun W, Li W, Shen Y, Guo X, Teng Y, Liu X, Zheng L, Li W, Chen J. Transarterial chemoembolization plus lenvatinib versus transarterial chemoembolization plus sorafenib as first-line treatment for hepatocellular carcinoma with portal vein tumor thrombus: A prospective randomized study. *Cancer.* 2021 Oct 15;127(20):3782-3793. doi: 10.1002/cncr.33677.
72. Peng Z, Fan W, Zhu B, Wang G, Sun J, Xiao C, Huang F, Tang R, Cheng Y, Huang Z, Liang Y, Fan H, Qiao L, Li F, Zhuang W, Peng B, Wang J, Li J, Kuang M. Lenvatinib Combined With Transarterial Chemoembolization as First-Line Treatment for Advanced Hepatocellular Carcinoma: A Phase III, Randomized Clinical Trial (LAUNCH). *J Clin Oncol.* 2023 Jan 1;41(1):117-127. doi: 10.1200/JCO.22.00392.

73. He M, Li Q, Zou R, Shen J, Fang W, Tan G, Zhou Y, Wu X, Xu L, Wei W, Le Y, Zhou Z, Zhao M, Guo Y, Guo R, Chen M, Shi M. Sorafenib Plus Hepatic Arterial Infusion of Oxaliplatin, Fluorouracil, and Leucovorin vs Sorafenib Alone for Hepatocellular Carcinoma With Portal Vein Invasion: A Randomized Clinical Trial. *JAMA Oncol.* 2019 Jul 1;5(7):953-960. doi: 10.1001/jamaoncol.2019.0250.

74. Qin S, Finn RS, Kudo M, Meyer T, Vogel A, Ducreux M, Macarulla TM, Tomasello G, Boisserie F, Hou J, Li X, Song J, Zhu AX. RATIONALE 301 study: tislelizumab versus sorafenib as first-line treatment for unresectable hepatocellular carcinoma. *Future Oncol.* 2019 Jun;15(16):1811-1822. doi: 10.2217/fon-2019-0097.

75. Mei K, Qin S, Chen Z, Liu Y, Wang L, Zou J. Camrelizumab in combination with apatinib in second-line or above therapy for advanced primary liver cancer: cohort A report in a multicenter phase IIb/II trial. *J Immunother Cancer.* 2021 Mar;9(3):e002191. doi: 10.1136/jitc-2020-002191.

76. Xia Y, Tang W, Qian X, Li X, Cheng F, Wang K, Zhang F, Zhang C, Li D, Song J, Zhang H, Zhao J, Yao A, Wu X, Wu C, Ji G, Liu X, Zhu F, Qin L, Xiao X, Deng Z, Kong X, Li S, Yu Y, Xi W, Deng W, Qi C, Liu H, Pu L, Wang P, Wang X. Efficacy and safety of camrelizumab plus apatinib during the perioperative period in resectable hepatocellular carcinoma: a single-arm, open label, phase II clinical trial. *J Immunother Cancer.* 2022 Apr;10(4):e004656. doi: 10.1136/jitc-2022-004656.

77. Xu J, Shen J, Gu S, Zhang Y, Wu L, Wu J, Shao G, Zhang Y, Xu L, Yin T, Liu J, Ren Z, Xiong J, Mao X, Zhang L, Yang J, Li L, Chen X, Wang Z, Gu K, Chen X, Pan Z, Ma K, Zhou X, Yu Z, Li E, Yin G, Zhang X, Wang S, Wang Q. Camrelizumab in Combination with Apatinib in Patients with Advanced Hepatocellular Carcinoma (RESCUE): A Nonrandomized, Open-label, Phase II Trial. *Clin Cancer Res.* 2021 Feb 15;27(4):1003-1011. doi: 10.1158/1078-0432.CCR-20-2571.

78. Qin S, Bi F, Gu S, Bai Y, Chen Z, Wang Z, Ying J, Lu Y, Meng Z, Pan H, Yang P, Zhang H, Chen X, Xu A, Cui C, Zhu B, Wu J, Xin X, Wang J, Shan J, Chen J, Zheng Z, Xu L, Wen X, You Z, Ren Z, Liu X, Qiu M, Wu L, Chen F. Donafenib Versus Sorafenib in First-Line Treatment of Unresectable or Metastatic Hepatocellular Carcinoma: A Randomized, Open-Label, Parallel-Controlled Phase II-III Trial. *J Clin Oncol.* 2021 Sep 20;39(27):3002-3011. doi: 10.1200/JCO.21.00163.

79. Lyu N, Wang X, Li JB, Lai JF, Chen QF, Li SL, Deng HJ, He M, Mu LW, Zhao M. Arterial Chemotherapy of Oxaliplatin Plus Fluorouracil Versus Sorafenib in Advanced Hepatocellular Carcinoma: A Biomolecular Exploratory, Randomized, Phase III Trial (FOHAIC-1). *J Clin Oncol.* 2022 Feb 10;40(5):468-480. doi: 10.1200/JCO.21.01963.

80. Ren Z, Xu J, Bai Y, Xu A, Cang S, Du C, Li Q, Lu Y, Chen Y, Guo Y, Chen Z, Liu B, Jia W, Wu J, Wang J, Shao G, Zhang B, Shan Y, Meng Z, Wu J, Gu S, Yang W, Liu C, Shi X, Gao Z, Yin T, Cui J, Huang M, Xing B, Mao Y, Teng G, Qin Y, Wang J, Xia F, Yin G, Yang Y, Chen M, Wang Y, Zhou H, Fan J; ORIENT-32 study group. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2-3 study. *Lancet Oncol.* 2021 Jul;22(7):977-990. doi: 10.1016/S1470-2045(21)00252-7. Epub 2021 Jun 15. Erratum in: *Lancet Oncol.* 2021 Aug;22(8):e347.

81. Li QJ, He MK, Chen HW, Fang WQ, Zhou YM, Xu L, Wei W, Zhang YJ, Guo Y, Guo RP, Chen MS, Shi M. Hepatic Arterial Infusion of Oxaliplatin, Fluorouracil, and Leucovorin Versus Transarterial Chemoembolization for Large Hepatocellular Carcinoma: A Randomized Phase III Trial. *J Clin Oncol.* 2022 Jan 10;40(2):150-160. doi: 10.1200/JCO.21.00608.

82. Kang YK, Yau T, Park JW, Lim HY, Lee TY, Obi S, Chan SL, Qin S, Kim RD, Casey M, Chen C, Bhattacharyya H, Williams JA, Valota O, Chakrabarti D, Kudo M. Randomized phase II study of axitinib versus placebo plus best supportive care in second-line treatment of advanced hepatocellular carcinoma. *Ann Oncol.* 2015 Dec;26(12):2457-63. doi: 10.1093/annonc/mdv388.

83. Llovet JM, Decaens T, Raoul JL, Boucher E, Kudo M, Chang C, Kang YK, Assenat E, Lim HY, Boige V, Mathurin P, Fartoux L, Lin DY, Bruix J, Poon RT, Sherman M, Blanc JF, Finn RS, Tak WY, Chao Y, Ezzeddine R, Liu D, Walters I, Park JW. Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study. *J Clin Oncol.* 2013 Oct 1;31(28):3509-16. doi: 10.1200/JCO.2012.47.3009.

84. Yau TCC, Lencioni R, Sukeepaisarnjaroen W, Chao Y, Yen CJ, Lausoontornsiri W, Chen PJ, Sanpajit T, Camp A, Cox DS, Gagnon RC, Liu Y, Raffensperger KE, Kulkarni DA, Kallender H, Ottesen LH, Poon RTP, Bottaro DP. A Phase I/II Multicenter Study of Single-Agent Foretinib as First-Line Therapy in Patients with Advanced Hepatocellular Carcinoma. *Clin Cancer Res.* 2017 May 15;23(10):2405-2413. doi: 10.1158/1078-0432.CCR-16-1789.

85. Zhu AX, Kudo M, Assenat E, Cattan S, Kang YK, Lim HY, Poon RT, Blanc JF, Vogel A, Chen CL, Dorval E, Peck-Radosavljevic M, Santoro A, Daniele B, Furuse J, Jappe A, Perraud K, Anak O, Sellami DB, Chen LT. Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: the EVOLVE-1 randomized clinical trial. *JAMA.* 2014 Jul 2;312(1):57-67. doi: 10.1001/jama.2014.7189.

86. Kelley RK, Ryoo BY, Merle P, Park JW, Bolondi L, Chan SL, Lim HY, Baron AD, Parnis F, Knox J, Cattan S, Yau T, Lougheed JC, Milwee S, El-Khoueiry AB, Cheng AL, Meyer T, Abou-Alfa GK. Second-line cabozantinib after sorafenib treatment for advanced hepatocellular carcinoma: a subgroup analysis of the phase 3 CELESTIAL trial. *ESMO Open.* 2020 Aug;5(4):e000714. doi: 10.1136/esmoopen-2020-000714.

87. Verset G, Borbath I, Karwal M, Verslype C, Van Vlierberghe H, Kardosh A, Zagonel V, Stal P, Sarker D, Palmer DH, Vogel A, Edeline J, Cattan S, Kudo M, Cheng AL, Ogasawara S, Daniele B, Chan SL, Knox JJ, Qin S, Siegel AB, Chisamore M, Hatogai K, Wang A, Finn RS, Zhu AX. Pembrolizumab Monotherapy for Previously Untreated Advanced Hepatocellular Carcinoma: Data from the Open-Label, Phase II KEYNOTE-224 Trial. *Clin Cancer Res.* 2022 Jun 13;28(12):2547-2554. doi: 10.1158/1078-0432.CCR-21-3807.

88. Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY, Cicin I, Merle P, Chen Y, Park JW, Blanc JF, Bolondi L, Klümpen HJ, Chan SL, Zagonel V, Pressiani T, Ryu MH, Venook AP, Hessel C, Borgman-Hagey AE, Schwab G, Kelley RK. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. *N Engl J Med.* 2018 Jul 5;379(1):54-63. doi: 10.1056/NEJMoa1717002.

89. Tai WM, Yong WP, Lim C, Low LS, Tham CK, Koh TS, Ng QS, Wang WW, Wang LZ, Hartano S, Thng CH, Huynh H, Lim KT, Toh HC, Goh BC, Choo SP. A phase Ib study of selumetinib (AZD6244, ARRY-142886) in combination with sorafenib in advanced hepatocellular carcinoma (HCC). *Ann Oncol.* 2016 Dec;27(12):2210-2215. doi: 10.1093/annonc/mdw415.

90. Toh HC, Chen PJ, Carr BI, Knox JJ, Gill S, Ansell P, McKeegan EM, Dowell B, Pedersen M, Qin Q, Qian J, Scappaticci FA, Ricker JL, Carlson DM, Yong WP. Phase 2 trial of linifanib (ABT-869) in patients with unresectable or metastatic hepatocellular carcinoma. *Cancer.* 2013 Jan 15;119(2):380-7. doi: 10.1002/cncr.27758.

91. Lim HY, Merle P, Weiss KH, Yau T, Ross P, Mazzaferro V, Blanc JF, Ma YT, Yen CJ, Kocsis J, Choo SP, Sukeepaisarnjaroen W, Gérolami R, Dufour JF, Gane EJ, Ryoo BY, Peck-Radosavljevic M, Dao T, Yeo W, Lamlertthon W, Thongsawat S, Teufel M, Roth K, Reis D, Childs BH, Krissel H, Llovet JM. Phase II Studies with Refametinib or Refametinib plus Sorafenib in Patients with RAS-Mutated Hepatocellular Carcinoma. *Clin Cancer Res.* 2018 Oct 1;24(19):4650-4661. doi: 10.1158/1078-0432.CCR-17-3588.
92. Chow PK, Poon DY, Khin MW, Singh H, Han HS, Goh AS, Choo SP, Lai HK, Lo RH, Tay KH, Lim TG, Gandhi M, Tan SB, Soo KC; Asia-Pacific Hepatocellular Carcinoma Trials Group. Multicenter phase II study of sequential radioembolization-sorafenib therapy for inoperable hepatocellular carcinoma. *PLoS One.* 2014 Mar 10;9(3):e90909. doi: 10.1371/journal.pone.0090909.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.