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Abstract: Cloud data centers play a vital role in modern computing infrastructure, offering scalable resources for
diverse applications. However, managing costs and resources efficiently in these centers has become a crucial
concern due to the exponential growth of cloud computing. User applications exhibit complex behavior, leading
to fluctuations in system performance and increased power usage. To tackle these obstacles, we propose the
consolidation of virtual machines (VMs) to optimize resource utilization and reduce operational costs. This
paper introduces a novel algorithm, leveraging the Modified Artificial Feeding Birds Algorithm (ModAFBA), to
manage cost optimally in cloud data centers by reducing power usage while meeting service level agreements
(SLAs). The ModAFBA algorithm, inspired by bird foraging behavior, dynamically adjusts solutions based on
environmental changes. Comprehensive experimental evaluation demonstrates the superiority of the proposed
algorithm in terms of power usage, migration count, and SLA compliance. Through this research, we aim to
advance cost management and resource optimization in cloud data centers, providing a valuable tool for cloud

service providers to enhance infrastructure efficiency and achieve cost savings.

Keywords: cloud data centers; virtual machine consolidation; power efficiency; artificial feeding birds algorithm;

cost management

1. Introduction

Cloud data centers are the backbone of modern computing infrastructure, providing scalable and
on-demand resources to support a myriad of applications and services [1,2]. The rapid expansion of
cloud computing utilization across diverse sectors has underscored the vital importance of effectively
managing expenses and resource utilization within data centers for cloud service providers. User
applications and workloads in cloud environments exhibit highly non-linear behavior, leading to
fluctuations in overall system performance, increased power usage, and degradation in QoS [1,3,4]. For
instance, across various cloud platforms such as Azure, Alibaba, IBM, Google Cloud Platform (GCP),
and Amazon Web Services (AWS), CPU and memory utilization vary significantly [5,6]. However,
it is noteworthy that the utilization of CPU and memory in the majority of cloud service providers
remains below 60%, suggesting a significant underutilization of available resources [5]. In response,
cloud service providers (CSPs) are committed to upholding QoS standards and providing effective
services to end-users, thereby emphasizing the importance of avoiding any violations of performance
requirements [7,8].

Costly, high-performance computers designed to satisfy demand-driven service requirements
are housed in cloud computing data centers [9,10]. Despite this, their power consumption, alongside
that of their cooling systems, remains substantial, even during periods of low workload activity [11].
Conversely, in settings characterized by a scarcity of servers but high workloads, physical machines
might experience over-utilization due to the demand for VMs. Addressing these challenges involves
VM consolidation, a method that dynamically reallocates VMs to optimize resource utilization and
curtail operational expenses.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Numerous investigations have proposed that effective resource management could alleviate the
overall energy consumption of data centers [1,12]. Various efforts have been undertaken to curtail
energy usage by employing efficient resource utilization through techniques such as VM consolidation
and placement [13]. The objective of these methods is to consolidate active VMs onto the fewest
possible physical machines.

Traditional VM consolidation methods often face challenges in achieving optimal resource alloca-
tion due to the dynamic and heterogeneous nature of cloud environments. VM consolidation entails
the dynamic relocation of VMs from one physical machine to another, ideally to optimize resource
allocation [13]. By enabling inactive physical machines to enter sleep mode, this approach conserves
energy. Effective VM consolidation techniques must consider resource utilization, energy consumption,
QoS requirements, and strive to optimise VM migration frequency [11].

Conversely, VM placement strategies prioritize dispersing VMs from different applications among
a collection of physical machines. Effective VM placement (VMP) strategies aim to minimize energy
usage, reduce resource waste in physical machines, and maximize Quality of Service (QoS) for cloud
users [14]. To address the limitations of conventional methods, this study proposes a novel hybrid
algorithm for VM consolidation that incorporates a modified Artificial Feeding Birds Algorithm
(ModAFBA). Inspired by the foraging behavior of birds, the ModAFBA algorithm has demonstrated
potential in optimization tasks due to its adaptability to environmental changes. The main objective
of the hybrid algorithm is to enhance cost efficiency in cloud data centers by reducing energy usage,
ensuring compliance with service level agreements (SLAs), and upholding robust system performance.
The ModAFBA approach is designed to enhance the efficiency and effectiveness of VM consolidation
processes.

In this paper, we provide a comprehensive description of the proposed ModAFBA algorithm,
including its formulation, implementation details, and experimental evaluation. We demonstrate
the effectiveness of our approach through extensive simulations conducted in a cloud data center
environment. Our experimental findings demonstrate the superior efficacy of the hybrid algorithm
when compared to existing VM consolidation methods across various metrics including energy
consumption, migration count, and compliance with SLAs within energy usage constraints. This
research endeavors to advance cost management and resource optimization in cloud data centers.
By presenting the ModAFBA algorithm for VM consolidation, we offer cloud service providers a
valuable tool to enhance the efficiency and effectiveness of their infrastructure deployments, ultimately
resulting in improved performance and cost savings.

The main contributions of this paper can be distilled as follows:

* Proposal of an energy efficient algorithm for VM consolidation in cloud data centers, leveraging
the Modified Artificial Feeding Birds Algorithm (ModAFBA).

* Addressing key challenges faced by traditional VM consolidation techniques, such as achieving
optimal resource allocation in dynamic and heterogeneous cloud environments.

¢ Comprehensive experimental evaluation of the Mod AFBA algorithm, including formulation, im-
plementation details, and performance assessment in a simulated cloud data center environment.

¢ Advancement in cost management and resource optimization in cloud data centers, contributing
to enhanced performance and cost savings for cloud service providers.

e " Potential for practical implementation and adoption by cloud service providers, offering a
scalable and efficient solution to VM consolidation challenges.

The subsequent sections of this paper are organized as follows: Section 2 provides an extensive
review of relevant literature, identifying areas requiring further exploration. Subsequently, Section 3
outlines the problem formulation and the foundational models utilized in our study. In Section 4,
we provide a detailed exposition of the customized ModAFBA algorithm developed to optimize
VM consolidation, aiming to achieve energy efficiency while upholding SLA standards in computing
environments. Following that, Section 5 elaborates on the experimental methodology and configuration.
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Section 6 presents the results obtained from the experiments and offers a thorough analysis of the
findings. Finally, Section 7 summarizes the key insights derived from this research endeavor.

2. Related Work

Several investigations have delved into strategies for effective resource administration aimed at
diminishing the collective energy usage of cloud data centers. Diverse methodologies rooted in VM
consolidation and placement have emerged to curtail power consumption through the optimization of
resource utilization.

A sophisticated Levy-based Multi-Objective Gray Wolf Optimization (LMOGWO) algorithm was
presented by Fatima et al. [15] and specifically designed to tackle the problem of virtual machine
placement. Their method combines a grid mechanism to improve the non-dominated virtual machines
(VMs) within the archive with an archive for storing and retrieving the real Pareto front. The archive
also has a maintenance mechanism included into it. Motivated by the hunting and leadership styles
of gray wolves, the suggested algorithm skillfully traverses the multi-objective search space. The
algorithm is evaluated on nine popular bi-objective and tri-objective benchmark functions to verify its
effectiveness. Comparisons are made with Multi-Objective Particle Swarm Optimization (MOPSO)
and Simple Multi-Objective Gray Wolf Optimization (MOGWO). To assess adaptivity, two scenarios
are simulated. For the UF1, UF5, UF7, and UF8 benchmarks, LMOGWO in Scenario 1 performs better
than MOGWO and MOPSO, but worse than both for UF2. In the second case, MOGWO performs
well for UF2 and UF4, whereas LMOGWO performs better for the UF5, UF8, and UF9 benchmarks.
Moreover, the suggested algorithm lowers the PM usage rate by 30%, outperforming MOPSO (10%)
and MOGWO (11%) in this regard.

Zhou et al. [16] introduced a novel algorithm named the Energy-Efficient VM Cluster (EVCT)
algorithm, with the aim of enhancing Quality of Service (QoS) and reducing energy consumption
in software-defined data centers, particularly catering to IoT applications like Connected and Au-
tonomous Vehicles (CAVs). Their method involved conceptualizing the VM placement challenge by
leveraging VM similarity and principles from maximum flow and minimum cut theory, resulting in the
construction of a weighted directed graph. Additionally, factors such as SLA violations and communi-
cation bandwidth are also taken into account to ensure energy efficiency and QoS requirements. The
research findings illustrated the efficacy of the EVCT algorithm in decreasing energy usage, expenses,
and SLA breaches within the software-defined data center context.

A strategy for improving virtual resource consolidation using a tailored particle swarm optimiza-
tion algorithm to improve QoS and energy efficiency in cloud data centers was provided by Li et
al. [17]. In order to effectively distribute resources within cloud data centers, their approach sought
to reduce power usage per QoS value. However, as their approach relied on randomly generated
workloads that came simultaneously at the start of the simulation, a major flaw in it was the absence
of a prediction mechanism to guarantee QoS for subsequent requests. However, a noteworthy feature
of their work was how they included a user’s degree of satisfaction as a parameter in the QoS model,
providing a more accurate depiction of user perception and expectations.

Likewise, Guo et al. [18] presented a shadow routing methodology aimed at optimizing resource
allocation within cloud environments. Through intelligent VM-to-PM packing, their approach effi-
ciently mitigates resource wastage, with a particular emphasis on energy and cost reductions. In order
to meet the needs of dynamic applications and users, the study also tackles VM placement by imple-
menting VM auto-scaling methodologies. Interestingly, the proposed technique is adaptive, meaning
that it doesn’t require starting from scratch to solve the optimization problem. The effectiveness of the
suggested strategy is shown by the experimental findings. But it’s important to understand that VM
placement is an NP-hard problem, and given the complexity of cloud data centers, more improvements
are required to effectively tackle this difficulty.

A multi-objective genetic algorithm (GA) was presented by Riahi et al. [19] in order to tackle the
virtual machine placement problem and lower the physical server utilization rate in cloud environ-
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ments. Furthermore, they utilized Bernoulli simulations to evaluate the adaptability of their proposed
approach. The primary goal of their work was to mitigate resource wastage within cloud infrastruc-
tures, and they proposed a framework to achieve this objective. Through real-time experiments, they
successfully optimized the VM placement problem within a targeted company, resulting in reduced
operational costs. However, their approach lacked a mechanism to efficiently handle big data, which
presents a significant challenge due to its rapid growth rate. Addressing this issue is crucial to ensuring
the scalability and effectiveness of cloud-based solutions.

In order to address the VM consolidation problem, the study described in [20] introduces EE-
HVMC, a heuristic-based technique. This technique seeks to lessen SLA violations and cut down on
power usage in cloud systems. Using a configurable utilization threshold, the EEHVMC technique
first divides hosts into three primary groups: Under-Loaded (HUL), Medium-Loaded (HML), and
Over-Loaded (HOL) machines. To save energy, virtual machines are then moved from one physical
host to another.

Moreover, Zhang et al. [21]have addressed the VM consolidation challenge on cloud platforms.
Their study presents a method that uses constraint programming to control the distribution of virtual
resources while accounting for the price of virtual cloud resources and the quality of service require-
ments of users. Nevertheless, results from experiments indicate that the suggested model-which
relies on constraint and linear programming-becomes less effective as the number of variables-like the
number of VMs and PMs-increases.

The study outlined in [22] introduces an innovative adaptive heuristic-based algorithm designed
to uphold SLA requirements while minimizing energy consumption in data centers. This method lever-
ages historical data to analyze VM resource utilization, thereby establishing a dynamic consolidation
model. By employing various statistical methods on collected historical data, the approach identifies
overloaded and underloaded hosts. In addition, it suggests three policies to manage the placement and
selection of virtual machines: Minimum Migration Time, Random Choice, and Maximum Correlation.
Finally, it uses a modified version of the Best Fit Decreasing (BFD) algorithm called Power Aware Best
Fit Decreasing (PABFD) to allocate hosts with the lowest necessary energy consumption.

In a recent study outlined in [23], an innovative methodology called normalization-based VM
consolidation (NVMC) is introduced, with the aim of enhancing the VM consolidation process in
cloud platforms. This approach places emphasis on reducing energy consumption, meeting SLA
requirements, and minimizing VM migrations. Using a variety of resource metrics from both hosts and
virtual machines, NVMC finds overused hosts and determines the best location for virtual machines
based on the total available-to-total ratio. Additionally, threshold values are incorporated into the
NVMC framework to efficiently detect over-utilized hosts and streamline the consolidation process.

The Hybrid VM Allocation and Placement Policy (HVMAP), created for VM consolidation in
cloud data centers, is presented by the research described in [24]. To identify overloaded hosts, this
method combines migration control with an improved host overload detection algorithm. In addition,
it uses the PEBFD placement algorithm to identify appropriate destination hosts for virtual machine
migration. Throughout the consolidation process, lowering energy use while keeping SLA compliance
is the major goal. A novel method called utilization-aware VM placement (UAVMP) is proposed in
the paper by [25] to improve VM placement in cloud platforms throughout the consolidation process.
In summary, the dynamic and varied nature of cloud systems makes it difficult for standard VM
consolidation techniques to achieve effective resource allocation. These methods typically involve
dynamically migrating VMs between physical machines to achieve efficient resource utilization while
ensuring quality of service (QoS) requirements. Conversely, VM placement techniques focus on
assigning VMs from different applications to a set of physical machines, aiming to minimize energy
consumption and maximize QoS for cloud users. However, existing techniques may not fully address
the complex optimization requirements of modern cloud data centers. To overcome these limitations,
this paper proposes a modified AFBA algorithm for VM consolidation, inspired by the foraging
behavior of birds. This innovative strategy aims to enhance cost management in cloud data centers by
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decreasing energy consumption, guaranteeing adherence to SLAs, and maintaining optimal system
performance.

Table 1 provides an overview of the discussed studies, outlining their approach, optimization
objectives, focus area, performance metrics, strengths, and limitations.

Table 1. Comparative Analysis of VM Consolidation Approaches in Cloud Computing Environments.

Study Approach Optimization = Focus Area Performance Met-  Strengths Limitations
Objectives rics
Fatimaet LMOGWO VM  place- Optimization of = Comparative analy-  Effective archive  Limited scalability
al. [15] algorithm ment  opti- energy efficiency  sis against MOGWO  mechanism, adaptive  due to PM utilization
mization and QoS and MOPSO, PM uti-  algorithm based on  rate minimization
lization rate mini- gray wolf behavior
mization
Zhou et EVCT algo- QoS and  Software- Reduction of energy ~ Utilization of simi- Complexity in con-
al. [16] rithm energy con-  defined data  consumption, costs, larity modeling and  structing weighted
sumption centers, IoT  and SLA violations graph theory, effec-  directed graphs
optimization applications tive consideration of
communication band-
width
Li et al. MPSO algo- Energy effi- Cloud data cen- Minimization of Integration of user  Absence of predic-
[17] rithm ciency and ters power consumption  satisfaction degreein  tion mechanism for
QoS enhance- per QoS value QoS model future requests
ment
Guoetal. Shadow Resource Cloud environ- Mitigation of re- Adaptive algorithm, Complexity due to
[18] routing ap-  allocation ments source wastage,  incorporation of  NP-hard VM place-
proach optimization energy, and cost VM auto-scaling ~ ment problem
savings strategies
Riahi et  Multi- Resource uti- Cloud environ- Reduction of physi- Real-time optimiza- Inefficiency in han-
al. [19] objective lization opti- ments cal server utilization  tion in targeted com-  dling big data
GA mization rate pany
Karmakar EEHVMC Power con- Cloud environ- Utilization-based Effective resource uti- ~ Lack of consideration
etal. [20]  mechanism sumption ments host  classification  lization for dynamic work-
minimization for VM reallocation load changes
and SLA
compliance
Zhang et Constraint Virtual Cloud platforms  Consideration of  Utilization of con- Ineffectiveness with
al. [21] program- resource QoS requirements  straint programming  increasing number of
ming ap-  allocation and cost concepts variables
proach optimization
Beloglazov Adaptive SLA com-  Data centers Dynamic consolida-  Effective VM place-  Lack of consideration
etal. [22]  heuristic- pliance and tion model based on  ment policies for dynamic work-
based algo- energy con- historical data load changes
rithm sumption
optimization
Wu et al. VM consoli- Energy con- Heterogeneous Incorporation ~ of  Effective energy con-  Limited scalability
[23] dation strat- sumptionand  cloud settings score function and  sumption reduction due to score function
egy migration enhanced  genetic complexity
cost mini- algorithm
mization
Wu et al. DCGA VM  place- Cloud environ- Ensuring the in- Effective solution Complexity in solv-
[24], Son- ment  opti- ments tegrity of solution  quality maintenance ing NP-hard VM
Kklin et al. mization quality while placement problem
[25] simultaneously
decreasing the
problem’s scale and
the number of VM
migrations
Ye et al. EEKnEA VM  place- Cloud platforms  Optimization of en-  Effective energy con- Lack of considera-
[26] ment  opti- ergy efficiency sumption reduction tion for communica-
mization tion network energy
consumption
Javadi et NVMC strat- VM con-  Cloud platforms  Energy consump- Utilization of re- Dependency on accu-
al. [6] egy solidation tion reduction, SLA  source parameters  rate resource parame-
optimization compliance, and  and threshold values  ter estimation
VM migration mini-
mization
Radietal. ~HVMAP VM con- Cloud data cen- Energy consump- Enhanced host over- Complexity in VM
[8] solidation ters tion minimization load detection algo- migration decision-
optimization and SLA compliance  rithm making
Saif et al.  UAVMP VM  place- Cloud platforms  Optimization of VM Effective resource uti-  Limited scalability
[7] technique ment  opti- placement based on  lization due to resource uti-
mization resource utilization lization optimization

3. Underlying Models and Problem Formulation

In this section, we present the foundational models and problem formulation concerning VM
consolidation within cloud data centers. The efficient allocation of resources in cloud environments
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is crucial for optimizing performance and minimizing operational costs. To address this challenge,
we delineate the key components of VM consolidation, including resource utilization models, migra-
tion policies, and QoS requirements. Additionally, we formulate the VM consolidation problem as
an optimization task, aiming to dynamically allocate VMs to physical machines while considering
factors such as energy consumption, SLA compliance, and workload fluctuations. By establishing a
comprehensive understanding of the underlying models and problem formulation, we pave the way
for the development of effective consolidation algorithms and strategies in subsequent sections.

3.1. System Model

In this section, we provide a detailed description of the system model used in our study. The
system model encompasses the architecture and components of the cloud data center environment
under consideration, including physical hosts, VMs (VMs), and the management software responsible
for orchestrating resource allocation, as depicted in in Figure 1.

LU P

LUser
2. Find Suitable Resource
1.Request
Resource 3. Feedback
g to users
chedule Cent
5. Update/Optimize 4, Schedule Task
J I
s [s NSNS " R
=k s = s s =k s

VMs and PMs in a Data Center

Figure 1. Cloud Computing Model Architecture.

3.1.1. Physical Hosts

The cloud data center comprises a set of physical hosts, which are the underlying hardware
resources responsible for hosting VMs. Each physical host is equipped with computational resources
such as CPU cores, memory, storage, and network bandwidth. These resources collectively form the
basis for virtualization and consolidation activities within the data center.

3.1.2. VMs

VMs represent the virtualized instances of computational resources provisioned to users or
applications within the cloud data center. Each VM encapsulates a subset of the physical hostfls
resources, including CPU, memory, disk space, and network connectivity. VMs are instantiated,
managed, and terminated dynamically based on workload demands and resource availability. On a
single physical host, many virtual machines (VMs) can coexist, allowing for effective resource usage
through consolidation.
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3.1.3. Management Software

The management software layer of the cloud data center system is responsible for coordinating
the allocation and provisioning of resources to VMs. This software encompasses various components,
including hypervisors, resource schedulers, and monitoring tools. Hypervisors, such as VMware
vSphere or KVM (Kernel-based VM), facilitate the creation and management of VMs on physical hosts.
Resource schedulers optimize resource allocation decisions based on factors such as workload charac-
teristics, resource constraints, and service-level agreements (SLAs). Monitoring tools continuously
collect data on resource utilization, performance metrics, and workload patterns, providing insights
for decision-making processes related to VM consolidation and resource optimization.

3.1.4. Interaction and Communication

Communication and interaction among components within the cloud data center ecosystem are
facilitated through various protocols and interfaces. Hypervisors communicate with physical hosts to
manage VM lifecycle operations, such as creation, migration, and termination. Resource schedulers
interact with hypervisors and monitoring tools to gather information on resource availability and
workload demands, enabling dynamic resource allocation decisions. Additionally, communication
channels exist between VMs for inter-VM communication within the same host or across different
hosts in the data center network.

3.1.5. Scalability and Flexibility

The system model is designed to be scalable and flexible, capable of accommodating varying
workloads and resource demands over time. New physical hosts can be added to the data center
infrastructure to increase capacity, while VMs can be dynamically provisioned or decommissioned
based on changing requirements. The management software layer is designed to adapt to fluctua-
tions in workload demand, optimizing resource utilization and cost management objectives through
techniques such as load balancing, VM consolidation, and auto-scaling.

Overall, the system model provides a comprehensive framework for understanding the architec-
ture and operation of cloud data centers, laying the foundation for the development and evaluation
of cost-effective resource management strategies, such as the hybrid algorithm for VM consolidation
proposed in this paper.

3.2. Energy Consumption Model

3.2.1. Energy Consumption of Physical Hosts

Let Ej o5t represent the energy consumption of a single physical host over a given time period. The
energy consumption can be modeled as a function of the host’s utilization, Uy, which is typically
calculated as the ratio of the total utilized resources to the total available resources on the host. We can
use a linear model to represent this relationship:

Ehost = Pidle + (Pmax - Pidle) X uhost

where, Pnax denotes the maximum power consumption of the host when fully utilized, and P,q.
represents the idle power consumption of the host.

3.2.2. Energy Consumption of VMs

The energy consumption of a VM is contingent upon the resources it utilizes on the physical
host. Let EVM denote the energy consumption of a single VM over the equivalent time period as the
physical hosts. We can model this energy consumption as a function of the VMfls resource allocation,
including CPU, memory, and disk usage. For simplicity, we can assume that the energy consumption
of a VM is proportional to its resource utilization:
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EvMm = ccpu X Ucpy + tmem X Umem + Cgisk X Ugisk
where:

* Ucpu, Umem, and Ug;sx are the CPU, memory, and disk utilization of the VM, respectively.
® CCPU, Cmem, and cgigk are the coefficients representing the energy consumption per unit of resource
utilization for CPU, memory, and disk, respectively.

3.2.3. Total Energy Consumption

The total energy consumption of the cloud data center system can be calculated by summing the
energy consumption of all physical hosts and VMs:

Nhosts Mvyms
Etotal = Z Ehosti + 2 EVMj
i=1 j=1

where:

® Nposts 15 the total number of physical hosts in the data center.
* My is the total number of VMs in the data center.

3.3. Workload Modeling

Modeling workloads is essential for comprehending the resource requirements imposed on the
cloud data center system. In this section, we present a detailed description of the workload model
used in our study.

3.3.1. Types of Workloads

Workloads in a cloud data center can be categorized into various types based on their characteris-
tics and resource requirements. Common workload types include:

¢ CPU-bound Workloads: These workloads primarily utilize CPU resources and involve intensive

computational tasks such as data processing, mathematical computations, and simulations.

* Memory-bound Workloads: Workloads that predominantly require memory resources, such as
in-memory databases, caching applications, and large-scale data analytics.

¢ I/O-bound Workloads: Workloads characterized by high I/O (input/output) operations, includ-
ing database transactions, file processing, and network communication.

* Mixed Workloads: Workloads that exhibit a combination of CPU, memory, and I/O resource

utilization, representing diverse application scenarios and usage patterns.

3.3.2. Workload Generation Model

We model the workload generation process using a stochastic approach, where the arrival of
new workloads and their resource demands follow probabilistic distributions. Let W; represent a
workload instance, and t; denote the arrival time of the i-th workload. The workload arrival process
can be modeled as a Poisson process with rate parameter A, representing the average arrival rate of
workloads.

The resource demands of individual workloads are modeled using probability density functions
(PDFs) or probability mass functions (PMFs) depending on the workload type. For instance, for a
CPU-bound workload, the CPU resource demand Dcpy of workload W; can be modeled using a
normal distribution:

D(C?’U ~ N (pcru, U(Z:PU)

where pcpy and ocpy are the mean and standard deviation of CPU resource demands, respec-
tively.
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Similarly, for memory-bound and I/O-bound workloads, appropriate probability distributions
(e.g., exponential, log-normal) can be used to model the resource demands of memory (Dmem) and
1/0 (Dy/0), respectively.

3.3.3. Total Workload Resource Demand

The total resource demand of the cloud data center system at any given time is the cumulative
resource demand of all active workloads. Let Nyctive(t) denote the number of active workloads at time
t, and Dyga1 (1) represent the total resource demand vector at time ¢. Then, the total workload resource
demand can be calculated as:

Nactive(t)
Diotal (t) = Z D;
i=1

where D; is the resource demand vector of the i-th workload.

3.4. SLA and VM Placement Constraints

SLAs define the quality of service parameters guaranteed by the cloud provider to its customers.
These SLAs often include requirements related to performance, availability, and resource allocation. In
this subsection, we discuss the formulation of SLAs and VM placement constraints within the cloud
data center environment.

3.4.1. SLA Formulation
Let S denote the set of SLAs specified by the customers of the cloud data center. Each SLA s € S

can be represented as a tuple (Ts, Us, Rs), where:

o T represents the maximum acceptable response time for requests associated with SLA s.

¢ U denotes the minimum acceptable level of resource utilization for the VMs allocated under
SLA s.

* R; specifies the reliability requirement, such as the minimum uptime or availability percentage.

These SLAs impose constraints on the resource allocation and placement of VMs within the cloud
data center to ensure compliance with the specified service requirements.

3.4.2. VM Placement Constraint

To satisfy the SLAs and ensure optimal resource utilization, VM placement decisions must adhere
to certain constraints. Let P denote the set of physical hosts in the data center, and M represent the set
of VMs to be placed. The VM placement constraint can be formulated as follows:

Z Xjj = 1 VieM
jeP
where:

* x;j is a binary decision variable indicating whether VM i is placed on physical host j.

This constraint ensures that each VM is assigned to exactly one physical host, thereby meeting the
resource allocation requirements specified by the SLAs.

3.5. Problem Formulation

In this section, we formally define the optimization problem aimed at minimizing costs through
VM consolidation while satisfying SLAs and VM placement constraints within the cloud data center
environment.


https://doi.org/10.20944/preprints202406.0500.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 June 2024 d0i:10.20944/preprints202406.0500.v1

10 of 19

3.5.1. Objective Function

The aim is to reduce the overall operational expenses of the cloud data center, encompassing
energy usage and penalties incurred due to SLA breaches. Let Cop, represent the total operational cost.
The objective function can be formulated as follows:

M N
min Cop = Yy Z(Ehostj + Evm,;) + )_ Penalty,
ij i=1j=1 ses

where:

* M is the total number of VMs.

N is the total number of physical hosts.

. Ehostj represents host j’s energy consumption.

Eyyy, is the energy consumption of VM i.

Penalty, represents the penalty cost incurred for SLA violation of SLA s.

3.5.2. Constraints

The optimization problem is subject to the following constraints:

* Resource Allocation Constraint: The resource demand of each VM should not exceed the capacity
of the physical host it is placed on. Let D; denote the resource demand vector of VM i, and uhostj
represent the utilization level of physical host j. This constraint can be expressed as:

M
ZDi < uhost/- V]
i=1
¢ VM Placement Constraint: Each VM must be assigned to exactly one physical host. This constraint
ensures that VMs are placed optimally to utilize the available resources effectively. It can be
represented as:

N
Z xl-j =1 Vi
j=1

where x;; is a binary decision variable indicating whether VM i is placed on physical host j.
* SLA Compliance Constraint:

The resource allocation and VM placement decisions must adhere to the SLAs defined by the
customers. Let Us represent the minimum acceptable level of resource utilization specified in
SLA s. This constraint ensures that the resource utilization meets the SLA requirements:

Unos, > Us  Yj,¥s €

4. The Proposed ModAFBA Algorithm

The modified Artificial Feeding Birds Algorithm (ModAFBA) is a nature-inspired metaheuristic
optimization algorithm based on the feeding behavior of birds. It simulates the interactions between
birds searching for food to find optimal solutions to optimization problems. In this work, we employ
the AFBA technique to tackle the VM consolidation issue within cloud data centers, with the objective
of reducing operational expenditures while adhering to SLAs and VM placement criteria. The proposed
ModAFBA algorithm is presented in Algorithm 1 and described as below.

¢ Initialization: We initialize the population of artificial birds representing potential solutions to
the optimization problem. Each bird corresponds to a potential solution, which consists of a
placement configuration for the VMs on the physical hosts.
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¢ Feeding Behavior: The feeding behavior of birds is simulated using the concept of food source
exploitation. In the context of the optimization problem, food sources represent potential
solutions, and their quality is determined by the objective function value.

1. Exploration Phase: During the exploration phase, birds search for new food sources by
exploring the solution space. This is achieved through random perturbations or local search
operators applied to the current solutions. In our problem, this corresponds to exploring

neighboring VM placement configurations.
2. Exploitation Phase: During the exploitation phase, birds exploit the best food sources

found so far by intensifying the search around promising regions of the solution space.
This involves refining and improving the quality of the solutions through local search or
optimization techniques.

* Update Rules: The update rules in AFBA govern how birds adjust their behaviors based on the
quality of the food sources encountered. In our problem, the update rules determine how birds
adapt their VM placement configurations based on the objective function value and constraints.

1. Movement: The movement of birds is guided by the quality of the food sources. Birds tend
to move towards better food sources while avoiding poor-quality ones. This movement is

represented by adjustments to the VM placement configurations.
2. Selection: During the selection process, birds choose which food sources to exploit based on

their quality. High-quality food sources are prioritized for exploitation, while low-quality
ones may be abandoned or subject to further exploration.

¢ Termination Criteria: The optimization process continues iteratively until a termination crite-
rion is met. Common termination criteria include reaching a maximum number of iterations,
convergence of the objective function value, or a predefined computational budget.

¢ Mathematical Formulation: The application of AFBA to the VM consolidation problem involves
translating the feeding behavior of birds into mathematical operations. Let X represent the
population of bird solutions, f(X) denote the objective function value, and C(X) represent the
constraints.

The update rules in AFBA can be expressed as follows:

X(t+1)=X(t) +AX(t)

where AX(t) represents the adjustment to the VM placement configurations based on the explo-
ration and exploitation phases.

The termination criterion can be formulated as:

—

L o , if criterion is satisfied
Termination_Ceriteria(t) =
0, otherwise

where f is the current iteration.
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Algorithm 1 The proposed ModAFBA for VM Consolidation

1: Initialize population of bird solutions X randomly
2: Evaluate objective function f(X) and constraints C(X) for each bird
3: while termination criterion not met do
for each bird x; in population X do
Explore neighboring solutions to x; to find Ax;
Update x; with Ax;
Evaluate objective function f(x;) and constraints C(x;)
end for
9: Select best-performing birds for exploitation
10: Exploit best-performing birds to refine solutions
11: end while

In the Mod AFBA algorithm, there are distinct bird sizes, namely small and big, each with its set
of movements, which include walk, fly, revise, and join. These movements enable birds to navigate
and search for optimal solutions in different ways. Specifically:

* A bird has the ability to perform a local search by moving to a different location nearby, which is
referred to as a “walk.”

* For random exploration, a bird can execute the fly movement, wherein it lies and lands at a
semi-random location.

* Another action, termed as “revise,” entails the bird pausing and returning to the best location it
remembers, allowing it to revise its course based on past experiences.

¢ The join movement, exclusive to big birds, allows them to join another bird by lying to its location
and potentially copying its optimal solution.

Big birds have the capability to perform move 4, enabling them to join another bird, regardless of its
size, through the join movement [27].

Two main inputs are required by the VM placement algorithm: (1) a list of virtual machines
(VMs) that are marked for relocation, and (2) a pool of PMs that are willing to host the specified
VMs. The hosting PM is indicated by each element of a vector that is the same length as the input
virtual machines (VMs) that represents each bird. The activities of walk and fly are affected by the
optimization problem, whereas the actions of revise and join function without it. Usually, the fly
function yields random placements. But we’ve improved the random placement procedure in our
updated strategy to lower the overall count of active PMs. In particular, the input parameter with a
probability of prb directs the random distribution of the input VMs across a selection of randomly
created PMs. As an alternative, a probability of 1 - prb is used to randomly assign the input VMs to
the set of input PMs. By giving virtual machines (VMs) the opportunity to be located on a subset of
PMs with a specific probability prb, as opposed to all PMs, this modification seeks to diversity the
investigated options.

However, to prevent the possibility of overlooking superior solutions beyond the subset, the
algorithm doesn’t always utilize the subset of PMs. As a result, the algorithm uses the probability prb
to randomly decide whether to use the subset. If the subset is used, each virtual machine (VM) is then
placed on a host that is not part of the excluded subset after a subset of the available physical machines
is randomly chosen to be excluded for placement. Every virtual machine is assigned at random to
any host that is accessible if the subset is not used. The placement step, where nVMs is the number of
virtual machines and mp); is the number of accessible physical machines, is the main cause of the fly
algorithm’s O(ny s X mppgs) time complexity. Every bird in the population and every iteration of the
AFBA algorithm is subjected to this algorithm.

Stochastic modifications to the VM location of a bird are introduced via the walk operation in the
ModAFBA method. Its goal is to make little changes to the existing solution and see if that raises the
fitness value. From the input bird, the algorithm chooses a host at random and then allocates each
virtual machine (VM) to either the chosen host or another one that is available. Through the use of
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this method, the algorithm is able to investigate the immediate area around the existing answer and
maybe pinpoint improvements. Like the fly method, the walk algorithm’s time complexity may be
traced mostly to the placement step, with an O(ny s % mppgs)time complexity. This algorithm is used
for every iteration of the AFBA algorithm and for a subset of the population of birds.

Fly, walk, revise, and join are the four primary phases of the ModAFBA algorithm. The temporal
complexity of the fly and walk steps, for a single bird in a single loop, is O(ny s X mpps). Every bird
in the population goes through the fly phase, while only a portion of the population goes through the
walk step. Therefore, O(pop X nyps X mpys X itr) and O(bgerected X NvMms X Mpps X itr)is the worst-
case time complexity of the fly and walk steps, respectively. In this case, pop stands for population
size, Dgpiecteq fOr number of selected birds, ny s for number of virtual machines, mpps for number of
physical machines, and itr for maximum number of iterations.

In the rewrite step, the bird copies values from memory to obtain the best spot it has identified
so far. This is a straightforward value assignment that takes O(n1y5) of time for a single bird in a
single iteration. The revision process is applied to a portion of the population’s birds. As a result,
O(byevised X nyms X itr)is the worst-case time complexity of the revision step, where b,,is0q is the
number of revised birds.

In the join phase, a large bird can fly to the location of another bird, no matter how big or small,
and mimic its positioning. This is a straightforward value assignment that takes O(ny 5)of time for
a single bird in a single iteration. A subset of the population’s large birds are used for the join step.
Consequently, O(bjoined X nvms X itr), is the worst-case time complexity of the join step, where bjyjy;¢q
is the number of birds joined.

Hence, the upper bound of the time complexity of the modified AFBA can be represented as
depicted in Equation 1.

Complexity = O(pop X nypys X Mppgs X itr 1)

Fbselected X My Ms X Mppgs X itr
errevised X nypms X itr
+bjoined X nyps X itr)

5. Experimental Methodology

In this section, we describe the experimental methodology utilized to assess the effectiveness of
the proposed ModAFBA algorithm for VM consolidation in cloud data centers. The experimental
setup encompasses the configuration of the simulated cloud data center environment, including the
specifications of PMs and VMs, as well as the deployment of benchmark algorithms for comparative
analysis. Furthermore, the process of selecting and defining performance metrics, which include
energy consumption, SLA adherence, and VM migration count, is elaborated to evaluate the efficacy
of the ModAFBA approach. Furthermore, other experimental configurations, such as the duration of
experiments and the number of repetitions, are specified to ensure robustness and reliability in the
evaluation process.

5.1. Experimental Setup

In this study, we conducted simulations to evaluate the performance of our proposed hybrid
system in comparison to state-of-the-art methods within the field. These simulations were performed
using several benchmark datasets. The identified methods for comparison included the studies in
TOPSIS [28], PVMP [22], and SVMP [29].

While all reference methods utilize the MMT policy for VM selection, their approaches vary
regarding VM placement and underload detection algorithms. Notably, PVMP utilizes a straightfor-
ward technique for identifying underloaded PMs, while the TOPSIS method implements the TACND
approach, and SVMP relies on stochastic process-based methodologies for underloaded PM detection.
To establish a robust data usage model, the initial training phase spans 35 time steps, during which
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optimization is halted. Following this initial training phase, the consolidation process begins in the ex-
periments. The Mod AFBA method is then employed with three distinct QoS targets (8 = 0.15,0.25,0.35)
to assess its impact on performance metrics.

For the sake of experiment reproducibility, we employed the CloudSim toolkit [30] extension to
establish a uniform experimental environment. The performance assessment of our proposed system
occurs within a data center comprising 800 heterogeneous servers. These servers are classified into
two configurations, as illustrated in Table 2.

Table 2. Server Configurations.

Server Type Number of Servers  Specifications
HP ProLiant ML110 G5 400 2 cores at 2660 MHz
HP ProLiant ML110 G4 400 2 cores at 1860 MHz

The workload data utilized in our experiments was obtained from a dataset exhibiting Markov
properties, as provided in [22], which forms a component of the CoMon project [31]. To ensure
compatibility with the CloudSim toolkit, we processed the dataset beforehand. Out of the pool
containing 100 various sets of VMs available in the dataset, we randomly chose 10 unique sets for our
experimentation.

5.2. Metrics

Performance metrics are essential tools for evaluating the effectiveness and efficiency of VM place-
ment algorithms in cloud data centers. These metrics provide quantitative measures of various aspects
such as resource utilization, energy consumption, SLA compliance, migration overhead, and scalability
[15,29]. Resource utilization metrics assess the effective allocation of physical machine resources to VMs,
while energy consumption metrics quantify the total energy consumed by the data center infrastructure.
SLA compliance metrics measure the extent to which VMs meet their specified SLAs, while migration
overhead metrics assess the cost of VM migration. Scalability metrics evaluate the ability of VM placement
algorithms to handle larger data centers and workloads. Together, these metrics enable stakeholders to
assess and compare the performance of VM placement algorithms, identify areas for improvement, and
make informed decisions to optimize cloud data center operations [1].

The metrics used in this work can be defined as below.

1. SLAV_TPM (SLA violation Time Per active PM) is utilized as a metric to assess the degree of SLA
violation, adhering to the definition of overload time fraction (OTFr). It is calculated by dividing
the total time that the value of OTFr on a specific PM surpasses the agreed-upon threshold by
the total active time of that PM. The formula for SLAV_TPM is represented according to Eq. 2.

MpMs 7.
=1 1

SLA_TPM =
Torrr,

)
where mpy; denotes the count of PMs, T; is the cumulative time the OTFr value on PM j exceeds
the agreed threshold, and TorF,, represents the total active time of PM j.

2. SLAV_EC (Energy Constrained SLA Violation) serves as a comprehensive metric to evaluate
both energy efficiency and adherence to SLA requirements. It combines the SLAV_TPM metric
with energy usage, represented as per following Eq. 3. This metric provides a holistic view of
system performance, considering both SLA compliance and energy usage simultaneously.

SLAV_EC = SLAV_TPM x E_Usage 3)
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3. SLAV_EC_M (Energy-Constrained SLA Violation and Migration) serves to simultaneously mini-
mize SLA violations, energy usage, and VM migration count (MC). It is represented as per Eq. 4.

SLAV_EC_M = SLAV_EC x MC 4)

6. Results and Analysis

Experimental results were obtained by conducting each set of experiments 10 times, and the
averaged outcomes are detailed in this section, adhering to the experimental setup delineated in
Section 5.1. The performance assessment of the proposed Mod AFBA method was executed under three
scenarios, denoted as ModAFBA 1, ModAFBA 2, and ModAFBA 3, corresponding to 6 = 0.15,0.25,
and 0.35, respectively. These were juxtaposed against established methods including TOPSIS, SVMP,
and PVMP, in accordance with the identified performance metrics described in Section 5.2.

As illustrated in Figure 2, the ModAFBA 3 method has exhibited an enhancement in energy
usage by 96.69%, 126.05%, and 186.79% compared to TOPSIS, SVMP, and PVMP methods, respectively.
This indicates that the proposed ModAFBA 3 surpasses competing approaches in minimizing energy
consumption. By permitting specific VM placements that other methods might consider overloads,
the QoS-aware VM placement technique proposed in this research can optimize VM allocations more
effectively in relation to energy consumption. Moreover, the ModAFBA 3 method contributes to the
enhancement in energy usage by reducing the number of active PMs.
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Figure 2. Comparison of energy usage by ModAFBA method against TOPSIS, SVMP, and PVMP
methods.

The SLA_TPM metric was employed to assess SLA violations within the system. As illustrated in
Figure 3, the SLA_TPM value decreases with the implementation of the proposed Mod AFBA policy
as the desired level of QoS is lowered, yielding values below those of benchmark approaches when
f = 0.35. This is likely attributed to the decreased occurrence of SLA violations over an extended
duration after a PM becomes overloaded.
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Figure 3. Comparison of SLAV_TPM by ModAFBA method against TOPSIS, SVMP, and PVMP
methods.

As shown in the simulation results depicted in Figure 4, the ModAFBA approach exhibited a
decrease in the number of VM migrations compared to the performance evaluation methods, including
TOPSIS, SVMP, and PVMP. The reduction was particularly pronounced, approximately 517.24%,
29.29%, and 882.08% compared to TOPSIS, SVMP, and PVMP methods, respectively, when the 6 value
was set to 0.35.
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Figure 4. Comparison of migration count by ModAFBA method against TOPSIS, SVMP, and PVYMP
methods.

In this conclusion, it is stated that a thorough comparison was made between the proposed
ModAFBA method and other identified methods using two metrics: SLAV_EC and SLAV_EC_M. The
conclusion affirms that the developed system outperformed the identified methods across all values of
the QoS objective, as evidenced by the results depicted in Figures 5 and 6.

Further elaboration is provided based on the observation from Figure 5, where it is highlighted
that the ModAFBA method achieved significant improvements over TOPSIS, SVMP, and PVMP
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methods by 242.78%, 72.13%, and 182.04%, respectively, in terms of the SLAV_EC metric. Similarly,
the conclusion emphasizes the improvements demonstrated by the ModAFBA method over the same
benchmark methods by 221.03%, 64.47%, and 167.81%, respectively, in terms of the SLAV_EC_M
metric, as depicted in Figure 6.
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Figure 5. Comparison of SLA_EC by ModAFBA method against TOPSIS, SVMP, and PVMP methods.
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Figure 6. Comparison of SLA_EC_M by ModAFBA method against TOPSIS, SVMP, and PVMP
methods.

o

7. Conclusion

In summary, this paper presented the Modified Artificial Feeding Birds Algorithm (ModAFBA)
as a novel approach for VM consolidation. The Mod AFBA algorithm was designed to optimize cost
management by minimizing energy consumption while meeting SLAs and maintaining high system
performance. Through comprehensive experimental evaluation, the effectiveness of the Mod AFBA
approach was demonstrated, showcasing superior performance compared to existing VM consolidation
techniques. The experimental findings demonstrated substantial improvements in key performance
metrics. Specifically, the ModAFBA method exhibited significant enhancements in energy usage, SLA
compliance, and the number of VM migrations compared to benchmark algorithms such as TOPSIS,
SVMP, and PVMP methods. Notably, the ModAFBA 3 method achieved a reduction in energy usage by
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49.16%, 55.76%, and 65.13% compared to TOPSIS, SVMP, and PVMP methods, respectively. Moreover,
the ModAFBA method resulted in decreases of around 83.80%, 22.65%, and 89.82% in the quantity of
VM migrations in contrast to the aforementioned benchmark techniques.

These results underscore the effectiveness of the Mod AFBA algorithm in enhancing VM consolida-
tion processes and optimizing resource utilization within cloud data centers. Through the reduction of
mitigation of SLA violations, energy consumption, and optimization of VM placements, the Mod AFBA
approach presents a scalable and efficient solution to the challenges encountered by cloud service
providers. In future research endeavors, further improvements and extensions to the ModAFBA
method can be explored. One potential avenue is the incorporation of machine learning techniques to
enhance adaptability and scalability. Additionally, conducting experiments in real-world cloud data
center environments would provide valuable insights into the practical applicability of the ModAFBA
approach and its performance under diverse operational conditions.
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