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Abstract: The exponential growth of the agricultural industry in the Amazon region has brought about notable
economic advancements. However, this growth has substantially cost the region’s ecosystems, manifesting in
increased deforestation and biodiversity degradation within the Amazon forest. This article is dedicated to assess-
ing the eco-efficiency of agricultural production in Amazon biome municipalities. It places particular emphasis on
identifying critical determinants through the utilization of the classic Data Envelopment Analysis (DEA) model
for efficiency computation, super-efficiency models for distinctive characterization, bootstrap computational
techniques for robust resampling, and the Malmquist index for calculating annual eco-efficiency indices of each
Decision-Making Unit (DMU). An exploration of the correlation between efficiency and meteorological attributes
of the municipalities is conducted. The findings of this study reveal several significant points: 1) Eco-efficient
municipalities within the Amazon Biome can serve as benchmarks for other DMUs striving to attain optimal
input-output levels. 2) Most municipalities in the Amazon Biome operate closely to the productive frontier due to
the prevalent technology employed in their agricultural activities. 2) The nature of the technological frontier’s
return suggests that small and large DMUs possess eco-efficiency potential. 4) The current dataset does not yield
conclusive evidence regarding a direct correlation between the variables. Leveraging this information, strategic
pathways can be formulated to drive economic development in tandem with the sustainability of Amazon Biome
municipalities. These strategies promise to foster social, economic, and environmental benefits for the populace

while providing valuable insights to inform future research within this thematic domain.

Keywords: agricultural industry; Amazon; bootstrap; eco-efficiency; DEA

1. Introduction

The issue of sustainable development became significantly relevant after the publication of the
Club of Rome’s report, "The Limits to Growth" [1]. The report warned that the planet could not
support continued economic growth without exceeding the Earth’s carrying capacity due to the
increasing pressure on energy and natural resources, pollution, and climate change. This prompted the
United Nations to establish conferences and commissions worldwide to study and discuss sustainable
development and develop commitments and solutions.

Thus, in the Brundtland Report published by the United Nations World Commission on Environ-
ment and Development, entitled “Our Common Future” [2], the definition of sustainable development
emerged based on the concept of the “triple bottom line” of sustainability. The three dimensions are:
i) Economic dimension, which refers to the traditional search for profit and financial value creation.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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It involves assessing the organization’s ability to be financially healthy. ii) Social dimension: The
production unit must consider its impact on society and the communities in which it operates. This can
include corporate social responsibility, the quality of relations with employees, customers, suppliers,
and the contribution to social development. iii) Environment dimension: The organization assesses
its environmental impact and contribution to long-term sustainability. This involves issues such as
reducing greenhouse gas emissions, managing natural resources efficiently, minimizing waste, and
adopting sustainable practices and products, meaning that an organization’s success should not only
be measured by its financial performance but also by how it contributes to people’s well-being and the
preservation of the environment.

Since its inception, the concept of sustainable development has been adopted in the theoretical
literature. It is practiced by companies and countries seeking a balance between financial prosperity,
social responsibility, and environmental preservation. From this perspective, we can highlight the
study by [3], where the authors developed a survey with 170 companies in the agricultural industry of
small and large multinational corporations in Germany related to social and environmental dimensions.
In addition, other studies have proposed the construction of multidimensional sustainability indicators
to evaluate the performance of the agricultural industry’s production system. Some of them can be
highlighted as: [4-7].

Moving in this direction, the 26th Conference of Nations on Climate Change, which took place
in Glasgow, Scotland, referred to the conservation of forests. During this conference, according to
the United Nations website!, 110 countries that are home to 85% of the world’s forests signed a
declaration committing to halt and reverse deforestation by 2030. This declaration was an essential step
towards the preservation of the environment. However, the most challenging task lies in achieving
this regional and local commitment without compromising the sustainable development and resilience
to climate change of families who live and work in forests. They are producers with limited resources
to maintain and improve productivity and competitiveness. They are marginalized from the primary
social services and impacted by the independence of adult children who give up and migrate to the
urban environment or are fragmenting family property [8].

As a result, introducing ever stricter environmental protection regulations has caused great
concern due to its social effects. This situation is no different in the Brazilian Amazon rainforest, where
decision-makers face two challenges. This is due to the need to make communities more productive
and efficient to offer more products with higher quality and competitive prices, and thus be able to
face direct competition with agriculture on an industrial scale [9]. The second challenge arises from
the evidence that agricultural intensification and expansion in forest areas can generate irreversible
environmental damage that economic benefits may not offset [6,10].

Removing native primary vegetation cover is known to compromise the ecosystem service of
flora and fauna, which also risks degrading. In addition, deforestation causes erosion, a reduction in
soil nutrients, and an increase in greenhouse gas (GHG) emissions, which interfere with rainfall and
the planet’s temperature. This creates a vicious cycle, as changes in temperature and rainfall patterns
can harm agricultural activity itself [8,11]. There is also the fact that increased territorial expansion
and human exploitation of the environment are increasingly depleting native forests. Climate change
is known to cause direct effects, such as changes in soil moisture and temperature regimes. Climate
change also has immediate effects, such as changes in soil moisture and temperature regimes. However,
these changes also cause what [12] calls indirect effects, such as an increase in carbon dioxide (CO,) in
the atmosphere and soil dethatching (N»).

In the Amazon biome, this phenomenon is no different, making the issue of deforestation one of
the main problems facing Brazil [13]. There are several consequences of deforestation in the Amazon.
Among these consequences, we can see a decrease in rainfall (220 to 640 mm /year), evaporation (164

1 https://news.un.org/en/story/2021/11/1104642
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to 500 mm /year), a slight increase in temperature (0°C to 3°C) [6,14-18]. From these inferences, it can
be inferred that the impact on the biome is significant, as it causes changes in other regions and biomes
across the planet, such as a decrease in precipitation, an increase in temperature, and thus even a
decrease in the efficiency of local agriculture [19]. Therefore, a rapid change is needed in how these
natural resources are used and preserved [20].

Another factor causing deforestation in the Amazon is mechanized farming, which promotes
burning [21]. The typical fires that cause deforestation are called high-frequency fires. These fires have
contributed to more than 40% of the fires detected in recent years, while on the Bolivian border and
in the states of Mato Grosso, Pard, and Rondénia this figure is as high as 84% [21]. However, it is
interesting to review how the agricultural industry operates and how it would be possible to improve
the use of resources without failing to produce what is needed more efficiently. For this reason, it is
impossible to think of reducing production to protect the environment. Instead, it is necessary to think
of ways to develop production sustainably by introducing new technologies and improving planting
methods.

This means that production must be performed in a way that does not harm the environment
and consumes as lesser resources as possible. For this reason, one of the keywords in this research is
efficiency. By efficiency, we mean production that delivers the maximum output level while spending
as few resources as possible [22], thus reaching the optimum point between the ratio of input and
output within the production frontier. In this way, it is expected to produce as much food as possible,
consuming as few environmental resources and emitting as little CO; as possible. DEA will be used to
assess efficiency.

This method consists of a non-parametric mathematic that, using linear programming algorithms,
can compare entities that carry out similar processes of transforming inputs into outputs to define an
efficiency index between them, in which the most efficient entity compared receives the index with
a value equal to 1. The others receive a score below one, proportional to how less efficient it is. As
a traditional technique, DEA is being popularized and has gained a lot of relevance, especially in
research and academic circles. DEA is the only way to evaluate the efficiency of a transformation
process by considering multiple inputs and outputs without having to transform these components
into a single value, such as financial value.

In this context, this research aims to contribute to these issues by showing the possibility of
producing efficiently with less environmental impact and less use of resources in agriculture in the
municipalities that compose the Brazilian Amazon biome, using the latest approaches to computational
models such as the bootstrap method and the stochastic frontier analysis (SFA) method. The estimates
then define useful indicators for formulating and evaluating sustainability policies, such as parameters
for rewarding generators of positive environmental externalities. Another purpose is to identify
the correlation between weather and agricultural production efficiency. To this end, a technique
for comparing efficiency over time, the Malmgquist technique, will be used. This method also aims
to examine the determinants of eco-efficiency and calculate an environmental sustainability index,
meeting the Pareto optimum while simultaneously meeting economic and environmental objectives
based on the best practices in the region.

2. Theoretical Framework

Efficiency is a concept based on economics, mathematics, and operational research to reach an
optimum point between the ratio of inputs to be transformed (x) and the outputs generated (y), given a
technological set (T) so that T = {(x,y)|x can produce v}, in a concept of production possibilities (CPP),
whose properties are described by [23]. In this way, eco-efficiency represents the factors involving
economic, social, and environmental issues that will form the tripod to make up the inputs and outputs
of the production process. The inputs, x, will represent the ecological costs necessary to generate
the desirable products y [24]. In theory, there is a minimization of inputs (x) and a maximization of
outputs (y). Nonetheless, this relationship is not generalized for cases of desirable inputs, such as
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preserved areas, and undesirable outputs, such as CO;, emissions; this relationship is inverted given a
technological set T = {(x,y)|x can produce 1/y}.

The DMUs (Decision-Making Units) - inefficient DMUs are inserted within the CPP, formed by
linear segment combinations of efficient DMUs that include a convex figure. However, they do not
present an optimal performance between the ratio of inputs and outputs [25]. The upper part of the
frontier segment represents the (T?) of the CPP, formed by a negative space RP+7 and structured by the
x and y € (R7) of the DMUs. From this discussion, the concept of eco-efficiency emerges. It is achieved
when the set of n DMUs (Decision-Making Units) that form the production frontier, composed of x
and y, present the lowest possible quantity of inputs (related to the environmental cost of the process)
and the highest possible amount of outputs (related to the impact that activities can have on the
environment).

This distance between the inefficient point and the benchmarks made up of the frontier of efficient
DMUs is called the Euclidean distance. Therefore, to achieve technical efficiency, it can be input-
oriented (when inputs are minimized, without changing the level of outputs) and output-oriented
(when outputs are maximized, without changing the status of inputs) [25], where the inverse of
technical efficiency is the radial efficiency of [24]. Thus, the DEA model is a mathematical model that,
by receiving the inputs and outputs variables of a process, can define how efficient the entity carrying
it out is [26].

To do this, the model uses several entities that carry out the same transformation process to, in a
comparative analysis, find the limit of efficiency and how each of these entities (DMUs) is classified
about this limit. With enough DMUs, creating a scatter plot with all these DMUs distributed along a
Y-axis, representing the outputs that a given DMU produces, is possible. The X-axis is the axis that
quantifies the inputs that this DMU needs to consume to reach this production level. Thus, the Figure
1 is a graphic example in which DMUs A, B, C, D, and E are considered Benchmarks of excellence, i.e.,
those that have achieved Technical Efficiency [25].

12

10

Outputs
(=]

Inputs

Figure 1. Scatter plot of DMU - DEA

Still analyzing the 1 graph, it can be seen how much more the DMUEg would need to produce to
achieve technical efficiency and how much less it should consume, or even a combination of the two.
In this context, the efficiency frontier is then generated by drawing a line between the points where it
is positioned on the graph. The DEA model can calculate an efficiency index given the distance from
the end to the line, and it is up to the researcher to indicate in which direction the line size should be
measured. Next, the model can be oriented towards input, i.e., how much less a given DMU; could
consume to maintain the output production level.

In this way, all the DMUs are compared, and each is given an efficiency index with the symbol
6. This efficiency index ranges from 0 to 1, with 1 being the maximum, thus achieving technical
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efficiency. By multiplying 6 by the inputs of thisDMU;, we would have the ideal amount of inputs
for it to achieve technical efficiency. To calculate 6, it is needed a set of n observations, considering
Sy =A{x;, yi toi = {1, ...n}}. With this set, it is possible to estimate the efficiency frontier and the
estimated efficiency index @ for each DMU after solving a series of mathematical inequalities. The
model determines the technological level T by the estimator Ters and with this estimator (X, Y;) for
each DMU;, we can calculate the efficiency index by solving the mathematical problem.

0; (xi,yi)or—crs = max{0; | 6;(y; < YA, x; > XA),A € R} (1)

Where X = [Xj,..., Xy] and Y = [Y;, ..., Y] are the matrices representing the sets of inputs and
outputs of the n DMU'’s observed; X; and Y; represent the vectors of inputs consumed and outputs
produced by a given DMU, respectively; and A = [A4, ...., A,] are the combinations of inputs and
outputs that make it possible to achieve the most excellent efficiency.

On the other hand, the model can also be output-oriented. In this orientation, the focus is on
understanding how much more a given DMU; could produce. Therefore, the technical efficiency
index, in this case, ranges from 1, for greater efficiency, to infinity and is represented by the Greek letter
¢. However, if we calculate 1/¢, we also get an index from 0 to 1. The same DMU; should receive
similar efficiency indices, regardless of whether the orientation is towards inputs or outputs. As with
input-oriented DEA, product-oriented DEA also allows you to calculate how much the DMU; should
produce to be technically efficient by multiplying ¢ by the DMU’s outputs. Using the same principles
for input-oriented DEA, we would have the following formula for output-oriented DEA:

$i (xi,yi)oo—crs = min{P; | §i(y;i < YA, x; > XA),A € R} )

In addition to orientation, the DEA model can vary in analyzing DMU efficiencies. [27] developed
the first model, which did not consider the variation in efficiency that scale can provide in the study
they carried out. They then created the DEA model called CRS, for constant return to scale.

However, there are cases where the return to scale is not constant. For example, producing the
maximum batch the machinery can have in the industry is more efficient than half that batch. This
is because, simultaneously, people and machines can be used for both scenarios, while the former
produces twice as much as the latter. In this case, it is unfeasible for the industry in the second scenario
to improve its efficiency without increasing its production scale since it cannot use half a machine to
reduce its inputs.

To solve this problem, [26] created the model named after their initials, the VRS model, or VRS,
variable return to scale, calculates the maximum efficiency of each DMU; taking into account the
DMU'’s level of production scale. Hence, in the previous example, the company could be technically
efficient in both scenarios since the first and second could operate on the efficiency frontier of their
scales. The concept of allocative efficiency was created for DMUSs that are technically efficient and
on the optimal scale. Allocatively efficient DMUs are DMUSs that manage to produce more efficiently
than all the others, operating on the ideal scale for the production process. They also tend to have the
highest profit among all their peers [18,25,28-30].

Thus, eco-efficiency is revealed when a DMU obtains the highest possible level of desired outputs
with a given level of inputs and environmental impact or requires the lowest possible amount of
inputs and environmental costs to produce a given number of outputs. Its measurement results are
calculated by calculating the Euclidean distance that separates each DMU from the border formed by
the benchmarks. Thus, it is possible to define two measures of technical efficiency: i) Farrell’s technical
efficiency-oriented to maximize outputs with a given input level, (6y); ii) Farrell’s technical efficiency
aimed at minimizing the inputs with a given level of products, (6). [25] efficiencies are inverse to [24]
radial efficiency.

The evolution of the model is described in Figure 2.
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Figure 2. Framework for the evolution of the methodological theorist

2.1. Super-Efificiency and Malmquist Index

The DEA model calculates its indices based on a comparative analysis between peers. However,
it has some limitations when there is a considerable range of productive units to be analyzed, making
it necessary to use additional models to support the CRS, configuring the case of the super-efficiency
model [18,28,29]. Thus, outliers can generate super-efficient DMUSs. This means that these DMUs are far
removed from the other DMUs and cause a distortion in the efficiency frontier. This method calculates
each DMU’s impact on the model to determine whether it is an atypical case, and the greater the effect,
the more atypical the unit of measurement - DMU.

To make this calculation, the model removes a particular DMU; and recalculates the efficiency
of the other DMUs. Initially, the volume of the initial data set, created by the distribution of the
efficiencies generated by the model, is calculated. After removing DMUI;, the book is calculated and
compared with the initial volume. Therefore, the closer to 0, the more significant the impact that D MU;
will have on the total volume in the data set, which means that it was an outlier [31]. This process is
repeated for all DMUs and must be done again after removing each outlier since one outlier can mask
the existence of another.

The researcher must decide how many DMUs should be drawn from the database they are
working with. Despite that, studies such as [32] suggest that approximately 10%.

To clarify this question, the Malmquist Index was developed, named after Sten [33]. To calculate
the efficiency gain in period T compared to period T — X, the technical efficiency frontiers must first
be calculated using DEA for the DMUs in both periods. When comparing DMU efficiencies over time,
two variables can be measured: The slope of the efficiency frontier, which would mean that there is a
new technology enabling DMUs to be more efficient, this phenomenon is known as the Frontier Shift
Effect; The other change that can be measured is known as the Catch-up Effect, or pairing, which is
when a given DMU; has decreased its distance to the efficient frontier. The Malmquist index is the
multiplication of these two variables.

The two scenarios are in Figure 3. The Frontier Shift can be seen in the efficiency frontier created
by DMUs A, B, and C, representing the efficiency frontier in period T + 1 since it is closer to the Y-axis
and further away from the X-axis. The decrease can be seen in the pairing effect in the distance from
DMU), to the efficiency frontier for the period it is in. In period T, DMU); was at a distance of X from
the border, while in period T + 1, it was at a distance of 0.7.
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Figure 3. Frontier Shift - Malmquist Index

The matching effect, or Catch-up, is the result of continuous improvements in production pro-
cesses, using the same technology. Therefore, the comparison of technical efficiency between two
periods can be defined as:

0} (xir Y1) -
Glt:l (xliil' yltcfl)

Where:

0} (x}, y;.) = DMUk technical efficiency in a given t period;

0t (xi~1, yi~!) = DMU technical efficiency in a given period t+1

While the frontier shift by effect, or Frontier Shift, can be calculated through the formula:

0 T yi o (xd, yt)
oL (xtt, v 0h(x mp)

(4)

Therefore, multiplying the equation 3 by the equation 4 and passing the second term of the
expression 4 into the square root, the word is transformed into the product of the pairing by the frontier
shift. Consequently, a result less than 1 means an improvement in the DMU'’s technical efficiency index,
and an effect greater than 1 implies a worsening in the DMU's technical efficiency index. Therefore,
the same can be said for the Malmquist Index, calculated with constant returns to scale Mo:

6, (v e LD e (g v

Mo =
O (e O\ Ly Ol w)

(5)

3. Stochastic DEA Model - Confidence Intervals’ Bootstrap

A significant criticism of DEA models is their deterministic nature [18] since they consider past
events and do not account for stochastic effects. It would, therefore, be relevant to use statistical
models in conjunction with DEA to validate hypotheses, confidence intervals, and correlation analyses
[18]. With this improvement, we can have more confidence in the efficiency results and correlation
with exogenous variables.

For these two reasons, the bootstrap method is used in this research. The concept of bootstrap
arises from the studies of [34], and it is based on them that [35] applies the DEA stochastic model to a
data generation process (DMP). Bootstrap is a statistical technique for manipulating sampling to create
a probability distribution of a dependent variable from a single sample, which is necessary when the
nature of the data in the original model is not exhaustively known [36]. The data generation process is
described in four steps:
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L. The efficiency 6; of the original sample is calculated for each DMU;, where (i = 1,2,...,n)
considering (x;,y;), considering that it is a linear programming problem (LPP) as described in
the equation 1 and 2, depending on the type of orientation to be adopted.

II. A new distribution is created, generated by simulated samples x*; = [x*1, x*;, ..., x*] based on
the original sample x; = [x1, X2, ..., X, of the same size, so x*; = xi%. Then, the efficiency scores

are calculated for each DMU; generated, and each value is stored, causing a set of estimates é;; i

0;; = min{6; | 6;(y; <YA, x; > XA),A € R} (6)
III. The observations are replaced B times (for the estimate to be significant, usually B > 1000) with
simulated comments that respect the rules of the original sample with (B = 1,2,...,b) and the
calculations are redone on top of each simulation. In this way, it is possible to understand the
values that the dependent variable, or the estimator, 8%, behaves with the variation in the sample.

To estimate the standard error, the D, error of the replications is used.

Lii(6; —6%)
B—-1

IV. With that, the confidence limits are calculated, having their intervals determined by the default
mode with & = 95% for each estimate, with {é;‘b, b =1,...,B}, making the results even more
robust and reliable [35].

Dp(07) = )

3.1. Return to Scale Test

The choice of which model to use to calculate efficiency is not an arbitrary one because pre-
adopting a model without investigating the nature of the behavior of the Constant Return on Scale
or Variable Return on Scale (CRS or VRS) of the (T) technological frontier can cause the result to be
biased. This is because, in the case of a model with constant returns to scale, it is not taken into account
that certain DMUs that are close in terms of efficiency may have particularities, so total efficiency is
calculated. It is analyzed that not every DMU considered efficient in the VRS model will be regarded
asd efficient in the CRS model [37].

The null hypothesis Hy considers the model to be constant (CRS), given consistent returns to scale,
and the alternative hypothesis Hj believes the model to be variable (CRS), given variable returns to
scale. By design, the efficiency calculated by the constant model is always lower than the efficiency
calculated by the variable model, so 8; crs < 0; yrs, and therefore the estimator S is calculated by the
ratio of the sum of 0; crs and 6; yrs [18].

5 2511 0i,crs <1 ®)
Yi10ivrs

With the estimator S = 1, it is considered a Hy, although this value is hardly reached. Therefore,
when the estimator S is close to 1, the model to be considered is CRS. In H,, the estimator S is
significantly less than 1, so VRS is the model considered. To state whether it is significantly smaller,
the critical value C, is obtained with a significance level « = 5%, so S < C,. Given that the natural
distribution of the original sample is not exhaustively known, it is used bootstrap of the boot.sw98
package inside the R environment to calculate the efficiencies 6; crs e 6; yrs by the resampling method
to obtain the estimated value S [38]. In this way, it is decided between Hy and H, for the result of the

equation 8.

4. Methodology of Eco-Efficiency

The concept of eco-efficiency presupposes an understanding of the production technology sector
studied [39]. Therefore, as technology results from incorporating scientific innovations and individual
management experiences into production processes, the status at any given time is unknown. Because
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it is unknown, it is common to describe it from the set of inputs, which produce a vector of new goods
and services (outputs) in specific periods after being combined and processed.

This representation of technology often disregards the fact that some of the inputs used are
returned to nature as waste and pollution, referred to here as undesirable outputs. These undesirable
outputs are not subject to total recycling or total absorption by nature, i.e., they cause environmental
damage. This is a consequence of the second law of thermodynamics, also called the Law of Entropy,
which states that a part of the resources is always dissipated and lost with the transformation of energy
or matter. Its complete reversibility to the original permitted state is not possible. Therefore, it does
not consider undesirable outputs that pollute the environment, implying a partial representation of
technology, which underestimates the social cost of total production and induces global results.

Thus, this section describes and analyzes the data used. The sample comprises a group of 516
municipalities in the Amazon biome - Brazil, with the application focused on eco-efficiency. The
analysis is structured in stages, initially defining which variables should be considered as inputs
and outputs, then processing and balancing the database using the R language. For balancing, all
municipalities with unreliable numbers, missing or null data for inputs, and outputs, and even cities
that did not have their data available were removed. The period used was the most recent data released
by the Brazilian Institute of Geography and Statistics (IBGE) in 2017. Next, given the super-efficient
DMUs, the [31] method was applied.

The model is based on the assumption that a super-efficient DMU, considered to be an outlier,
masks an efficient DMU, so looping is applied to recalculate the efficiencies with an input orientation
and remove the super-efficient DMUSs until there are no more super-efficient DMUs. To do this, there

is a pause criterion in the process of eliminating outliers given by —f, with a value of less than 0.7,
where a DMU could produce 70% of what it has and still be considered a technically efficient DMU.
The sdea() function predefined in the "Benchmarking" package was used for the calculation. Given the
deaR model, the efficiencies of DMUs with an output and input orientation were calculated using the
processes in the RVE box.

Thus, the "make_deadata” function of the "deaR" package will allow the creation of an object
adapted for calculating data envelopment analysis using the desired inputs and undesired products,
where the undesired effect is minimized, and the selected input is maximized. In this study’s model,
the preserved hectares variable was considered a desirable input, as it is a characteristic that precedes
agricultural production in the municipalities. Thus, CO, emissions were considered an undesirable
input because they are a consequence of the agricultural industry. The "model_basic" function of the
same package is applied to the object created, and the results of the efficiency index, reference DMU s,
and the ideal quantity of inputs or products to achieve technical efficiency for each DMU are found.
The bootstrap defines the type of return to scale of the model, and the analysis results are the RCE
model. In this way; it is possible to analyze the results by calculating how much it would be possible
to optimize products and inputs.

In the second stage of this research, the Malmquist index was used. The looping removal model is
applied again each year. Each year would have a few DMUs considered super-efficient, thus creating
a list of all the super-efficient DMUs to be removed from all the years, i.e., from the entire database.
We used 0.7 for the efficiency index since 150 DMUs would be removed from the sample with this
parameter, which is no more than 30% of the [32] base. To compare the time windows, processing the
data is needed to give continuity to the efficiency gain, where the frontier shift index for the year T is
multiplied by the index for the year T — 1, and then the index for the year T + 1 by the product of the
two previous indices, in an accumulative manner. Using the efficiency index of the years, a cross base
is created with the annual meteorological information, and the multivariate linear regression of the
floor is analyzed, with the meteorological data being the independent variable and the efficiency of the
year the dependent variable.

Finally, a correlation study is carried out between the efficiency of municipalities and meteorolog-
ical characteristics by calculating the frontier shift and efficiency over the years. Using the Malmquist


https://doi.org/10.20944/preprints202406.0411.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 June 2024 d0i:10.20944/preprints202406.0411.v1

10 of 23

function, the frontier shift, pairing effect, and Malmquist index are calculated for each municipality.
To calculate the frontier effect for the year, a geometric mean of all the frontier shift indices for all
the DMUs in the corresponding year is used. The first year is discarded since the calculation is made
by comparing efficiency in years T and T — 1. To solve the problem, the data for 2006 is repeated,
simulating 2005, where 2006 has a frontier displacement index equal to 1.

4.1. Variables

To assess the agricultural eco-efficiency of the municipalities that make up the Amazon biome, a
set of variables available in the 2006 and 2016 Agricultural Census was adopted, and a time series was
generated using linear regression to fill in all the missing years. The sector’s classic inputs and outputs
were considered, plus one positive and one negative externality.

To calculate the municipal’s operational efficiencies of agricultural production, the variables
used as inputs were People engaged in agricultural work, Hectares Dedicated to rural production,
and Hectares Preserved, the latter being a desirable input. The outputs selected were the value of
agricultural production in thousands of reais and CO; emissions as an undesirable output. All these
variables were at the municipality level. As a general rule, the classic inputs and outputs used in the
modeling were:

Xj - People engaged in agricultural industry,

X5 - Hectares Dedicated to agricultural production,

X3 - Preserved Hectares,

Y] - Value of agricultural production in thousands of reais,
Y, - CO; emission with an undesirable output,

Z1 - Average temperature,

Zj5 - Precipitation.

The area variables (hectares dedicated to production and hectares preserved), as well as the
production value and people employed, come from the official Brazilian Institute of Geography and
Statistics (IBGE)2 databases, according to the Censuses carried out in 2006 and 2017. For the years in
which there is no official Census information by the municipality, a simulation was made using the
estimated growth in annual production in the state, according to CONAB?® (National Supply Company)
year-on-year, combined with an estimate of how much each municipality should have a share (in
%) within each state, made using an arithmetic progression calculation between the municipality’s
claim in 2006 and the municipality’s claim in 2017. All the consolidated data and results found by this
research have been made available and can be consulted on figshare®.

Figures 4 and 5 show the area dedicated to agricultural activities in each municipality as a
percentage of total municipal area in 2006 and 2017, respectively. The municipalities with a more
proportional area dedicated to agriculture are in the East and South borders of the Amazon Forest.
From 2006 to 2017, the increase in agricultural area occurred mostly in the municipalities already with
strong agricultural activities.

2 https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9827-censo-agropecuario.html
3 https:/ /www.conab.gov.br/
4 https://doi.org/10.6084/m9.figshare.25958827
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Figure 4. Dedicated area to agricultural production in 2006 - % of municipality area - [number of
municipalities in each group].
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Figure 5. Dedicated area to agricultural production in 2017 - % of municipality area - [number of
municipalities in each group].

Figures 6 and 7 present the protected area as a percentage of the total municipal area in 2006 and
2017, respectively. Two characteristics of these maps need attention: i) the majority of the municipalities
have a very low percentage of protected area (see the number of municipalities in each group - numbers
in brackets in the map caption); ii) the municipalities with the more protected area are the same with
the high agricultural area. These contradictory results come from the definition of protected area
variable in the Censuses, as it represents the protected area in the farms, not including Indigenous
reservation areas, (environment) Conservation Units, and other public areas (with no private owners).
Hence, the municipalities with known intact forests (in the center-west of the Amazon Forest area) are
shown with a low percentage of protected area because they have very low areas of private farms. For
this study, however, the definition of the protected area variable considering only the area in the farms
is adequate since it derives from farmers’ decisions on how much area is allocated for agriculture and
environmental protection.
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Figure 6. Protected Area in farms in 2006 - % of municipality area - [number of municipalities in each
group].
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Figure 7. Protected Area in farms in 2017 - % of municipality area - [number of municipalities in each

group].

The data regarding CO; emission was loaded from the official site of Greenhouse Gas Emission
and Removal Estimation Systems (SEEG)°. This variable is measured in tons of carbon dioxide emitted
by the agribusiness and property transformation but with an annual uninterrupted update since
2000. After that, an official database was collected from INMETRO using all the automatic measuring
agencies in each state for every hour of every day to analyze the relation between the production
efficiency index and the weather recorded. Then, the average temperature for each year in each state
was calculated, and these values were used for each municipality that composed the Brazilian biome.

5. Results

Using the final base of 516 DMUS, after removing the outliers and super efficiencies, the bootstrap
statistical testing method was used to define whether the model should be CRS or VRS. For this test,
the null hypothesis is that the model should be CRS, constant returns to scale, and it should only be
rejected if the value of the calculated S statistic is less than the estimated critical value, which is also
defined within the bootstrap tests. In the test, 10,000 simulations are carried out, resulting in a critical
value of C, = 0.3854. Since the estimated value for comparing the DEA models was 0.9605, it was
higher than the critical value C,. With these results, there was no statistical evidence to reject the null
hypothesis, thus accepting that the best model for this problem is the CRS, constant return to scale.

5 https:/ /plataforma.seeg.eco.br/total_emission
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The conclusion, therefore, must be that scale has no direct influence on the efficiency of agricultural
production in the municipalities of the biome included in the study.

Conceptually, it can be concluded that these results make sense with what is perceived today.
When analyzing the productivity of an agricultural unit, the main determining variables are soil,
climate, and the technologies used. Whether the production unit is larger or smaller is no different
regarding soil and climate. What determines these conditions is geography and the location of these
units. As for technology, a team with greater production power could have more resources to invest in
machinery. However, as the object of study is entire municipalities, this effect is diluted among the
various production units within each municipality and is therefore regressed to an average.

Firstly, it is essential to analyze the current scenario of the agricultural industry in the Amazon
to measure potential gains and even map out action plans to capture these gains. The results shown
in Table 1 were achieved using DEA for inputs with constant returns to scale. Thus, it is possible to
see that, on average, DMUs should produce 9.9% more than they did in 2017 to become efficient. In
addition, it is also possible to see that the worst DMU should have approximately twice as much, or
197.5% of what it produces.

These results show how current agricultural industry practice, on average, has become more
sustainable since most DMUs are close to technical efficiency, given that, in the first quartile, DMUs
would only need to produce 1.5% more to achieve efficiency, and in the third quartile, this figure
increases to 12.3%. Few municipalities would need to improve their production significantly to achieve
technical efficiency, so only 25% of municipalities would need to increase production by more than

12.3%.
Table 1. Summary of data regarding the efficiency of municipalities
Min. Ist. Q Median Mean 3rd Q Max.
1.000 1.015 1.051 1.099 1.123 1.975

Figure 8 shows the results of CRS efficiency by municipality in 2017. Some geographical concen-
trations of the most efficient DMUSs can be seen: i) one group in the South border in the state of Mato
Grosso, where highly technical soybean and corn plantations are the main agricultural activities; ii)
one group in the state of Amapa (North of the map), where farming activities are only begging; and
iii) one group in the West os the state of Amazonas (west of the map), where farming activities are
scarce. On the other hand, less efficient DMUs are in the Southeast of Par4 state, where farmers focus
on raising beef cattle; and in Ronddnia state (Southwest of the map), where agricultural activities are
spread on several crops. It already gives some insights on how to boost eco-efficiency for agriculture
in the region, which will be discussed later.
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Figure 8. CRS Efficiency by the municipality in 2017 - [number of municipalities in each group].
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Table 2 shows that the variables relating to inputs and outputs between the municipalities have
heterogeneous values, which coincides with the type of return to scale identified in the CRS model,
where small and large producers can both be considered eco-efficient, even though they have different
levels of resources and results. This is the case of Juara, which has proportionally higher values for
inputs and outputs compared to the municipality of Rosdrio, but both are considered eco-efficient.

Table 2. Variables of efficient municipalities, inputs and outputs

Input Output
Input Desirable input ~ Output Undesirable output
D Municipality Production Hectares Employed Preserved Hectares Revenue — CO, emission
103 People (10%) 102 R$ 103 ton 10%

2109601 Rosario 1 16.46 3 3 7
1300060 Amaturd 6 25.15 50 9 3
1600154 Pedra Branca do Amapari 33 20.43 289 16 6
1600279 Laranjal do Jari 30 11.99 259 14 13
5105101 Juara 1,522 54.69 8,461 226 2,016
2101350 Bacurituba 1 7.69 3 0 22
5107248 Santa Carmem 234 9.30 1,136 464 190
1301308 Codajas 70 38.78 610 22 9
1302108 Japurd 3 12.56 20 3 4
1302801 Maraa 4 26.26 15 17 5
1303205 Novo Airdo 8 17.40 65 5 3
1303700 Santo Antdnio do I¢a 3 33.29 24 6 4
1304062 Tabatinga 3 87.79 12 13 2
1304203 Tefé 21 117.49 155 65 8
1500305 Afua 134 121.28 1,201 92 37
1503002 Faro 6 3.33 43 1 30
1503101 Gurupa 57 52.83 523 27 18
1507961 Terra Alta 2 3.45 9 2 6
2106755 Miranda do Norte 20 3.04 18 1 18
5106224 Nova Mutum 766 47.29 2.630 1,957 233
5106307 Paranatinga 1,300 46.75 5.268 827 263
5107156 Reserva do Cabagal 105 6.08 657 0 34
5107925 Sorriso 828 49.37 2,011 2,812 432
5108907 Nova Maringa 612 14.74 3,966 515 297
1200708 Xapuri 494 55.20 3,758 19 435
1300409 Barcelos 8 27.47 52 23 4
1300839 Caapiranga 4 6.20 26 5 6
1303536 Presidente Figueiredo 197 76.92 1,642 64 33
1500701 Anajés 163 29.00 1,323 20 19
1504000 Limoeiro do Ajuru 37 141.21 317 51 13
2104909 Guimaraes 1 24.50 2 2 7
2111201 Sao José de Ribamar 1 27.06 2 1 4
5101407 Aripuana 1,112 55.18 7,085 33 1,012
5102702 Canarana 790 26.23 4,107 756 246
5107065 Queréncia 834 57.70 3,813 1,546 551
1300102 Anori 22 29.31 186 15 3
5105259 Lucas do Rio Verde 316 26.05 828 1,111 55

In Table 3, you can see all the municipalities considered efficient, i.e., they have an eco-efficiency
index equal to 1, resulting in 37 eco-efficient municipalities. This represents 7.17% of the initial 516
municipalities, a low figure at first. Still, considering that most of the municipalities are close to the
production frontier, it can be analyzed that the DMUs considered efficient do have an optimum level
of total efficiency.
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Table 3. Efficient municipalities
1D DEA Index ID DEA Index ID DEA Index
IBGE Municipality CRS Output IBGE Municipality =~ CRS Output IBGE Municipality CRS Output
2109601 Rosério 1 1304203 Tefé 1 1300839 Caapiranga 1
1300060 Amaturd 1 1500305 Afua 1 1303536 Presidente Figueiredo 1
1600154 Pedra Branca do Amapari 1 1503002 Faro 1 1500701 Anajas 1
1600279 Laranjal do Jari 1 1503101 Gurupd 1 1504000 Limoeiro do Ajuru 1
5105101 Juara 1 1507961 Terra Alta 1 2104909 Guimaraes 1
2101350 Bacurituba 1 2106755 Miranda do Norte 1 2111201 Sao José de Ribamar 1
5107248 Santa Carmem 1 5106224 Nova Mutum 1 5101407 Aripuana 1
1301308 Codajas 1 5106307  Paranatinga 1 5102702 Canarana 1
1302108 Japura 1 5107156 Reserva do Cabagal 1 5107065 Queréncia 1
1302801 Maraa 1 5107925 Sorriso 1 1300102 Anori 1
1303205 Novo Airdo 1 5108907 Nova Maringa 1 5105259 Lucas do Rio Verde 1
1303700 Santo Antonio do I¢a 1 1200708 Xapuri 1
1304062 Tabatinga 1 1300409 Barcelos 1

For the DMU s that achieved a score of 1 in the efficiency index to be considered efficient, the
existing outliers in the database were treated, given that the DEA’s estimated efficiency frontier is
sensitive to extreme values. The data cloud technique was used because it is robust for identifying
outliers. In summary, the volume of the combined matrix of inputs and outputs is observed, where a
significant reduction in this volume, following the removal of a DMU, would indicate that this unit
is an outlier. Another technique used was to create cut-off ranges by estimating DEA with super-
efficiency. Figure 9 shows the municipalities considered outliers and super-efficient in 2017, that were
excluded from the Malmquist index analysis below. As can be seen, most of these DMUs are in not
developed areas in Amapd and Amazonas states, and some very urbanized municipalities (but small
in total area) in Pard, Maranhdo, and Tocantins states (East of the map).

Figure 9. Municipalities considered outliers in 2017.

The Malmquist index was calculated for series from 2006 to 2017°. Figure 10 shows the aggregated
index (2006-2017). The municipalities that have improved in the period are in the state of Mato Grosso
(South of the map) where highly technical soybeans and corn plantations became the main activity.
Municipalities where the eco-efficiency has worsened are in the Southeast of Para state, a region
where beef cattle raising increased considerably, and in Rondonia state (west of Mato Grosso state),
where agriculture in several crops has increased. Although a great increase in the value of agricultural
production was observed in these DMUs, it was accompanied by a large increase in emissions. Another
important result from the Malmquist analysis is that DMUSs that are very eco-efficient but have very
small agricultural production had minimal progress in the period.

6 link:https://doi.org/10.6084/m9.figshare.25958827
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Figure 10. Malmquist Index from 2006 to 2017 - by municipality number of municipalities in each
group].

In absolute terms, as the chosen orientation is towards output, the possible impact on each variable
(Y1 and Y3) is analyzed if all the municipalities converge towards efficiency. The values are described in
the Table 4, where the CO; emission variable represents the reduction, or saving, generating ecological
gains, while the production value represents the increase needed to turn inefficient DMUs into efficient
ones. Real is Brazilian currency, US$1.00 = R$4.90 in August 2023.

Table 4. Production potential gains

Variable Value
Revenue 3,195,002,000 (R$)
CO;, emission 25,849,560,000 (ton)

Due to the way data envelopment analysis is calculated, the efficiency index is applied equally to
all variables, so if the index is 1.5, the municipality should produce 50% more of all products. Therefore,
the ranking of the cities in relative values will remain static regardless of the variable being analyzed.
However, this ranking can change in nominal values. With this in mind, you can see the minor efficient
municipalities in the Table 5.

Table 5. Worst Municipalities Analyzed by Simulation

IBGE index Municipality DEA index CRS Output IBGE index Municipality DEA index CRS Output
1504208 Maraba 1.975094 5102504 Céceres 1.626327
5105507 Vila Bela da Santissima Trindade 1.883153 1507300 Sao Félix do Xingu 1.601048
1505064 Novo Repartimento 1.781707 1506583 Santa Maria das Barreiras 1.573696
1100205 Porto Velho 1.703062 1500347 Agua Azul do Norte 1.537795
1502764 Cumaru do Norte 1.694544

Although it doesn’t have the worst efficiency index, the municipality with the most significant
potential for gains in production value is Sao Félix do Araguai, with a total of 182 million raises, and
the municipality with the most potential for savings in CO; emissions is Sdo Félix do Xingu, which
could save approximately 1.7 billion tons, as can be seen in the Table 6.

Table 6. Municipality with the Greatest Potential in Production Value and Economy in CO2 Emissions

Variables Municipalities Potential
Revenue Sao Félix do Araguai 183,353,000.00 (R$)
Co, emission Sao Félix do Xingu -1,683,912,000.00 (ton)

It is also possible to measure the impact of efficiency gains on input savings. However, it’s
important to remember that you shouldn’t look at outputs and inputs simultaneously since the profits


https://doi.org/10.20944/preprints202406.0411.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 June 2024 d0i:10.20944/preprints202406.0411.v1

17 of 23

from these two perspectives are mutually exclusive. The results for savings in production hectares and
people employed, as well as the potential for increasing the area preserved, can be found in Table 7.

Table 7. Economic potential

Variable Value
Employed people 242,438 (un)
Production area 13,916,750 (ha)
Preserved area 6,248,745 (ha)

While the municipality with the most significant potential for gain, Sdo Félix do Xingu, can be
seen in Table 8, with the values needed to improve in each variable to achieve efficiency.

Table 8. Sao Félix do Xingu’ economic opportunity

Variable Quantity

Employed people 8,455 (un)
Production area 924,292 (ha)
Preserved area 578,568 (ha)

A linear regression study was carried out for the statistical modeling part. As a dependent variable,
the efficiency index of the municipalities was chosen. The independent variables, or predictors, were
the meteorological characteristics, volume of precipitation, average temperature, average humidity,
and standard deviation of temperature over the months. The study sought to simulate the different
seasons and capture the impact of this natural phenomenon and the various crops that can be planted
depending on the season. It is also interesting to understand production and efficiency by state.

In Table 9, you can see the values achieved for each of the variables analyzed in 2017, as well as the
state’s total efficiency index, calculated by the geometric mean of the efficiencies of the municipalities
in each state.

Still analyzing Table 9, it can be seen that the state with the highest efficiency is Amap4, with
an index of 1.017, followed by Amazonas, which obtained a result of 1.02. The state with the worst
recorded efficiency was Rondonia. Despite being the state with the third highest financial value of
production, the amount of CO; emitted and the number of hectares used for production was much
higher than ideal. It is also interesting to understand production and efficiency by state. In the Table 9,
you can see the values achieved for each of the variables analyzed in 2017, as well as the state’s total
efficiency index, calculated by the geometric mean of the efficiencies of the municipalities in each state.

Table 9. States summary

Input Output
Input Desirable input Output Undesirable output

State Efficiency index Production hectares Employed Preserved hectares Revenue CO; emission

103 People (10°) 102 R$ 103 ton 103
AC 1.069 4,233 126,514 2,544 442 5,870
AM 1.023 3,733 307,201 2,150 1,294 3,102
AP 1.017 1,501 30,732 871 226 822
MA 1.041 4,652 293,574 862 865 7,794
MT 1.140 38,164 283,069 15,349 26,914 45,209
PA 1111 27,637 951,857 10,338 6,036 42,360
RO 1.203 9,220 270,812 2,319 1,582 28,552
RR 1.067 2,636 67,070 1,181 395 1,792
TO 1.059 2,867 51,596 669 211 4,170

The ideal consumption quantities per state can be consulted in Table 10. If the states reach these
values, production remains constant, with the values in the "Revenue" and "CO; emission" columns
shown in 9 table.

Therefore, Table 10 represents the ideal level of consumption while maintaining the quantity
produced. By comparing these tables, it is possible to calculate the number of inputs that could be
saved or boosted in the case of the desirable input preserved area. The state of Rondénia, for example,
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could use approximately two million hectares and fifty-four thousand fewer people to maintain its
production level and still increase the preserved area by about seventy thousand hectares.
On the other hand, the states could increase production. In this scenario, the states” consumption

would maintain the same values in the "Production Hectares", "Employed people" and "Preserved
Hectares" columns of 10 table.

Table 10. Ideal consumption by state

State Production Hectares Employed Preserved Hectares
10° people (10%) 10%
AC 3,903 117,526 2,738
AM 3,521 297,925 2,263
AP 1,467 29,940 888
MA 4,232 280,095 964
MT 32,929 241,189 17,856
PA 22,309 845,996 12,830
RO 7,313 216,768 3,007
RR 2,402 62,525 1,261
TO 2,651 48,023 725

The ideal production values, maintaining current consumption, can be found in Table 11. Rond6-
nia, which was the state with the worst eco-efficiency index in the Amazon Biome, would need to
increase the value of production by R$ 341 thousand reais and reduce approximately 6 thousand tons
of CO, to reach the production frontier given by the DMUs in the North region.

Table 11. Ideal production by state

State Revenue CO, emission
R$ 10% ton 10°
AC 470.2961 5292.594
AM 1334.37 2834.646
AP 231.9256 795.1486
MA 950.0968 7111.449
MT 28795 37305.74
PA 6792.038 32472.07
RO 1923.489 22531.48
RR 435.6717 1644.752
TO 226.3446 3834.731

In Table 12, you can analyze the number of inputs that could be saved. In the fourth quartile,
since it is the quartile with the worst DMUs, there would have to be a reduction of eleven million
hectares and one hundred and seventy-nine thousand people, as well as an increase of five hundred
and eighty-four thousand hectares preserved to reach the level of efficiency, provided that the level of
production remained constant.

Table 12. Consumption reduction potential per Quartil

Quartil Production Hectares Employed Preserved Hectares
ua 103 People (10%) 102

1 -26 -2,374 14

2 -428 -15,480 200

3 -1,584 -45,162 651

4 -11,879 -179,423 5,384

As for the Table 13, how much more could the municipalities produce to reach the maximum
possible production for each quartile? Again, quartile four would have to increase the value of
production by approximately two million reais and reduce CO, by about twenty-three thousand tons,
assuming that inputs remain constant, i.e., do not change.

Table 13. Ideal production per Quartil

Quartil Revenue CO; emission
RS 10° ton 103
1 20.00 -19.06

2 251.65 -388.72
3 627.22 -2,305.30
4 2,296.13 -23,136.49
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By summarizing the efficiency quartiles, it is also possible to measure the results divided into
efficiency groups. This summary can be found in Table 14. Between quartile one and quartiles 2 and 3,
there is no significant difference between the eco-efficiency indices determined, 1.005, 1.031, and 1.085,
respectively, at which point the hypothesis that, on average there is no considerable distance between
the eco-efficient and inefficient DMUs is once again confirmed, This can also be seen in the difference
between the first quartile and the fourth quartile, where the eco-efficiency index values are 1.005 and
1.265 respectively, where there is no considerable discrepancy between these indices.

Table 14. Quartile summary

Input Output
Input Desirable input Output  Undesirable output

Quartil  Efficiency index Production Hectares ~ Employed = Preserved Hectares Revenue CO; emission

10° People (103) 102 R$ 10° ton 103
1 1.005 12,763 463,090 6,704 13,174 8,163
2 1.031 13,374 539,044 6,133 8,420 11,606
3 1.085 19,919 578,013 7,546 7,686 27,829
4 1.265 48,586 802,278 15,900 8,684 92,074

Various combinations were made between the independent variables to find the best predictive
model for the average annual efficiency index. The most assertive model with static significance,
defined by the P-Value test, used Average dry bulb temperature, average dew point temperature,
average relative humidity, annual rainfall volume, and standard deviation of temperature over the
months.

The model calculated using these variables to predict the efficiency index achieved a P-value
of 0.0007 and an R2 of 0.9721. The figures presented by the model are encouraging. However, a
closer look at the statistics reveals that this relationship may not be one of cause and effect. Efficiency
has increased steadily over the years without showing much variation or volatility in this growth,
which tends to be explained by advancing technology for growing crops linked to the agricultural
industry. At the same time, it can be said about the climate phenomena analyzed, given that the world
is undergoing a gradual process of global warming. As such, the correlation may result from two
phenomena showing the same trend.

6. Conclusion

The main objective of this study was to measure how advanced current eco-efficiency is in the
municipalities of the Brazilian Amazon biome regarding agricultural activities, the most critical sector
of the economy in the region, and on the national stage. It aims to provide a structured view of
how much it is possible to maximize the region’s economic development without disregarding the
environmental impacts these activities can cause from 2006 to 2017, with a view to the 2030 agenda. To
this end, we mapped the municipalities that should improve their efficiency. We began an analysis
of how these municipalities could improve their eco-efficiency, stimulating improvements towards
ecological sustainability, using the data cloud method to eliminate outliers with the potential to bias
the results using bootstrap computational techniques, applying the scale return test to analyze the
significance and measurement of the scores corrected for random data bias. This allows us to test the
differences between the eco-efficiencies of the municipalities in the defined period from 2006 to 2017.

This provides a relevant and structured result for assessing the impacts of the agricultural industry
in the municipalities that make up the Brazilian Amazon biome and evaluating how eco-efficient the
industrial processes adopted in the world’s leading environmental reserves are. The results point to an
essential interpretation that most of the municipalities are already operating at a satisfactory level of
efficiency given the technological level available; around 7.17% of the 516 municipalities would already
be working on an eco-efficient scale. In addition, for the municipalities that have not yet reached the
eco-efficient frontier, there is a potential for improving agricultural revenue by approximately R$ 3.195
million and decreasing 25,849,560 thousand tons of CO, emissions, considering the same resources,
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or equivalently reduce 13,915.7 Km? of areas used and increase preserved sites by 6,248.7 Km?, with
the same level of production, depending on the type of orientation to be used. Therefore, the research
questions were answered, and the results obtained provide pertinent information for decision-making
and policy definition, allowing for optimal economic and environmental development, as well as
promoting actions to reduce inequality, improve the working conditions and development of the rural
population, in the face of climate change undergoing in Amazon biome.

Another conclusion that can be drawn from the results is the fact that the production frontier of the
municipalities results in a technological behavior of constant returns to scale (CRS), which is a relevant
result for understanding factors that involve inequality between producers in the municipalities
because, given the results of the model, both small, medium and large producers can be eco-efficient
(total efficiency) given the CRS frontier within the Amazon Biome. Hence, these differences occur
regardless of the production level, so there will be inefficient and efficient small, medium, and large
producers. This statement aligns with the results presented in Table 2, where inputs and products have
differences of up to three decimal places between the values for each efficient municipality.

Another research question to be answered is the influence of meteorological phenomena on effi-
ciency gains or losses over time. This part of the research is essential because it is increasingly possible
to see the changes that are happening to the weather around the planet, such as global warming,
increased rainfall and droughts in different regions, phenomena such as E! Nifio can affect agricultural
production and cause an under-supply of essential inputs for the world economy. Therefore, it is
understood that correlations between meteorological characteristics and production efficiency would
make it possible to develop alternative technologies to prepare producers better to cope with the
phenomena above. However, it was impossible to prove a direct correlation between the variables.
Even though the numbers were good and passed the statistical tests, it was impossible to rule out the
hypothesis that made it a coincidence. Although this hypothesis cannot be ruled out, there have been
studies that have been able to prove this relationship between eco-efficiency scores and climate factors,
providing vital information for the environmental decision-making process, such as the work by [18],
which concluded that the changes caused by the decrease in rainfall and the increase in temperature
would have a positive impact on the mountainous region of the TMCF in Mexico, specifically in an
area located in the Sierra Madre Oriental between 2016 and 2017.

Finally, it should be emphasized that given the study’s limitations related to data availability
to obtain more extended periods to determine relevant inputs and outputs and the unavailability
of open access to data for scenarios other than agriculture, such as industry and commerce. The
research has fulfilled its guidelines and achieved results pertinent to its data structure, providing social,
environmental, and economic development indicators. According to [40], this balance between the
pursuit of economic and social development, aligned with the proper use of natural resources, arouses
interest in studies focused on the area to promote a set of actions that have social and environmental
impacts due to the updates that have occurred in recent years in agribusiness, which leads the country
towards the pursuit of sustainable development.

Therefore, for future studies, it would be interesting to evaluate this correlation, and a simulation
with a larger volume of data would be necessary, considering a time series of more than a decade,
where significant variations in climate change could be verified. We also recommend redoing the
DEA modeling with different groups of municipalities, separating them by state or region rather than
comparing all the municipalities with each other. In addition, comparing the results with other areas
of the country and even other countries makes sense. Adding input or output variables to the survey
would also enrich the analysis. This would allow a larger volume of data and situations to be tested.
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