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Abstract: Accurately assessing forest structure and maintaining up-to-date information about forest structure
is crucial for various forest planning efforts, including the development of reliable forest plans and assessments
of the sustainable management of natural resources. Field measurements traditionally applied to acquire forest
inventory information (e.g., basal area, tree volume, and aboveground biomass) are labor-intensive and time-
consuming. To address this limitation, remote sensing technology has been widely applied in modeling efforts
to help estimate forest inventory information. Among various remotely sensed data, LIDAR can potentially
help describe forest structure. This study was conducted to estimate and map forest inventory information
across the Talladega National Forest by employing ALS-derived data and aerial photography. The quality of
predictive models was evaluated to determine whether additional remotely sensed data can help improve
forest structure estimates. Additionally, the quality of general predictive models was compared to that of
species-group models. This study confirms that quality level 2 LiDAR data was sufficient for developing
adequate predictive models (R2adj. ranging between 0.71 and 0.82) when compared to the predictive models
based on LiDAR and aerial imagery. Additionally, this study suggests that species-group predictive models
were of higher quality than general predictive models. Lastly, landscape-level maps were created from the
predictive models, and these may be helpful to planners, forest managers, and landowners in their
management efforts.

Keywords: aerial imagery; airborne laser scanning; forest inventory; LIDAR; mixed pine hardwood
forest

1. Introduction

The ability to adequately characterize and assess forest structure with a high level of accuracy is
not only important for the development of a reliable forest plan but is also informative for
assessments that demonstrate the sustainable management of natural resources [1,2]. Within this
context, an understanding of forest conditions, particularly growing stock (tree and stand volume),
aboveground biomass, and basal area, is crucial for planners, forest managers, and landowners.
These attributes directly influence the potential revenue and the potential habitat a forest can provide
and facilitate opportunities for addressing other management objectives [2,3]. Furthermore, a
regularly updated forest inventory is essential for monitoring the spatiotemporal dynamics of forest
ecosystems over the length of a planning horizon. For example, an estimate of aboveground biomass
can provide insights into the capacity of a forest to sequester carbon, which is considered a critical
factor in addressing climate change. This issue may become more important in the future as the
forestry sector faces increasing pressure to assess the ability and rate of forests to sequester carbon
[4-7]. Additionally, estimates of biomass can provide valuable information for assessing forest health
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related to the outbreak of Southern pine beetle [8] and for assessing fire risk associated with fuel
management [9].

Traditionally, an estimate of a forest inventory has heavily relied on labor-intensive and time-
consuming field measurements. Timely field measurements may be limited in spatiotemporal
coverage, may include sampling error, and may not be representative of large forested areas [10].
While measuring the diameter at breast height (dbh) of trees, identifying the tree species, and
counting trees within a sample unit (e.g., plot or prism point) are relatively straightforward methods,
estimating the height of each tree may require more effort and include more uncertainty [11],
especially in natural, mountainous forest landscapes [7]. Endeavors meant to obtain a sufficient
number of well-distributed sampling plots that properly represent an entire forest area remain
challenging due to limited resources and accessibility. To account for these limitations, traditional
field measurements have been complemented by products derived from remote sensing systems,
which may help address spatial and temporal challenges in developing a forest inventory [3,12]. This
approach is sometimes referred to as an enhanced forest inventory [13,14]. Within this framework
various remote sensing systems have been demonstrated to provide relatively accurate and cost-
effective forest information including the development of forest metrics [2,3,10,15,16] and greenhouse
gas inventories [17].

Data acquired from Light Detection and Ranging (LiDAR) devices can assist in the development
of forestry information. Unlike other remote sensing processes that only provide two-dimensional
information, LiIDAR can characterize three-dimensional forest structure to a certain extent based on
the point density of the LiDAR data [5,16,18]. LIDAR can help with deriving height estimates of an
object through the time interval between the emission of a pulse of energy by the LiDAR sensor and
the moment that the reflected signal has been returned to the device [19]. This type of active remote
sensing technology has advanced significantly in the last ten years, resulting in a diverse range of
LiDAR systems that can be installed in satellites, mounted on airplanes and unmanned aerial vehicles
(UAVs), or used as hand-held devices. Each type of system has advantages and disadvantages. For
instance, one advantage of using satellite-based laser scanning platforms such as NASA’s Global
Ecosystem Dynamics Investigation (GEDI) and Ice Cloud and Land Elevation Satellite 2 (ICESat-2) is
that they can provide multi-temporal data for the entire Earth. For instance, Potapov et al. [20] was
able to create a global canopy height model using GEDI data along with Landsat imagery.
Additionally, Dubayah et al. [21] presented the estimate of mean biomass densities for every country
covered by GEDI with 1 km resolution.

Terrestrial-based LiDAR platforms can be categorized as either static or mobile. Terrestrial laser
scanners (TLS) capture point clouds by looking upward from ground level, so they are advantageous
in capturing details of forest structure from under the canopy. Especially, static TLS platforms
(consisting of a sensor, a tripod, and a GNSS receiver) produce the highest-quality point clouds
among LiDAR systems [5,22]. Appropriately employed TLS can facilitate visualization of tree
branches and leaves; therefore, these systems have enormous potential for assisting in the
development of new allometric biomass and wood quality relationships [23]. Arseniou et al. [24], for
example, was able to estimate woody aboveground biomass for urban and rural settings using a TLS
platform to identify various tree parts other than the main stem. Nevertheless, TLS platforms have
several limitations when employed for forest inventory and operational forest management
purposes. One, an occlusion effect, is caused by features hidden or obstructed behind larger diameter
trees within the point cloud data, and it poses a challenge when a fixed-position, single-scan approach
isused [25]. In addition, the weight and size of a TLS platform can make the effort of moving between
field measurement plots challenging. These limitations, along with the cost of the platform, may
influence opinions of whether TLS is a practical alternative for collecting forest inventory [26,27].

Mobile laser scanning (MLS) platforms, which is mobile TLS platforms, capture point clouds by
looking horizontally from a height near ground level, where they are held, making them
advantageous for capturing details of forest structure from a perspective very similar to human-
collected field measurements. MLS platforms can collect information while a person traverses
sampling plots with the instrument held in the person's hand or carried in a backpack. Moreover, the
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development of point clouds that are georeferenced to a local coordinate reference system, using
Simultaneous Localization and Mapping (SLAM) algorithms, reduces the need for GNSS. While
numerous researchers have illustrated the applicability of MLS for diverse forest inventory tasks
[7,10,28,29], these studies often focus on MLS data collected at the plot-level. Among them,
Vatandaslar et al. [7] estimated several forest attributes (tree counts, dominant height, basal area, dbh,
stand volume, and relative density) within plots located in a near-natural forest landscape.
Employing a handheld MLS platform, Vatandaslar et al. [7] mapped every stem within each field
measurement plot and estimated these attributes with RMSEs ranging between 4.5% and 16.4%.
However, as with TLS platforms, the number of sampling plots employed will likely influence the
accuracy of forest or stand estimates [23]. As with any measurement system, the accuracy of forest
attribute estimations can be positively correlated with the number of plots measured [30]. For
instance, the diverse forests of the Talladega Division of the Talladega National Forest in the
southeastern US cover almost 93,694 ha [31], and thus the number of TLS or MLS plots needed to
describe forest character relatively accurately may be substantial. Therefore, an alternative solution
needs to be sought to effectively and efficiently characterize the forest inventory of large, diverse
areas such as this.

In this context, airborne laser scanning (ALS) systems have been considered a suitable choice for
helping to describe the forest character of broad areas. Notably, the ALS data acquisition process is
not constrained by the accessibility restrictions related to TLS including static and mobile platforms
[5]. The versatility of an ALS system allows the collection of information across diverse temporal and
spatial scales [32]. Recent advancements in sensor technologies have further encouraged the adoption
of ALS systems, allowing the development of regularly updated and increasingly dense point clouds.
For instance, a LIDAR-based forest inventory effort conducted in Ontario two decades ago resulted
in a point cloud dataset with about 0.5 points per m?, yet today the development of a point cloud
dataset above 40 points per m? can be obtained [33].

While forest attributes such as tree heights and canopy coverage can be directly estimated from
ALS LiDAR data, other forest characteristics such as aboveground biomass, growing stock (tree
volume), and basal area can be inferenced from LiDAR-derived metrics [5]. The development of these
estimates relies on modeling methods, which can range in complexity from regression to random
forest models and other machine learning techniques [34]. Distinct models for estimating
characteristics of different forest types (conifer, broadleaved, and mixed) might also be developed,
rather than a general model that is applicable to an entire forested area. Further research in this
domain is necessary, with a specific emphasis on investigating the nature by which additional
spectral data can enhance the predictive capability of LiDAR point clouds. Additionally, as
mathematical techniques and remotely sensed data evolve, the most effective combination of
methods and data sources needs to be assessed.

A map of forest characteristics for an extensive forest area is an ideal outcome of remote sensing
methods, yet this outcome is complicated by two underlying factors: the multitude of potential
independent variables that can be derived from remotely sensed data, and the potential correlation
amongst these which can induce a multicollinearity problem [35,36]. Furthermore, a large number of
independent variables within predictive models can challenge the application of these models for
developing broad scale GIS databases. Consequently, the selection of independent variables during
the model development process is important. Tibshirani [37] suggested a method for developing
linear models that estimate forest conditions, while enhancing prediction accuracy by reducing the
number of independent variables. Adhikari et al. [35] recommended the use of ALASSO, as it
effectively eliminated highly correlated independent variables from prediction models.

The main goal of this study is to develop models to estimate forest conditions across a broad
area from information provided by ALS and aerial imagery. This research effort seeks to: (i) evaluate
the quality of predictive models developed using the ALASSO method, (ii) evaluate whether
additional remotely sensed data (multispectral aerial imagery) can enhance the quality of predictive
models that rely on LiDAR point cloud data, and (iii) determine the suitability of general versus
species group-specific models for characterizing mixed coniferous and deciduous forests located in
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the southern United States. We use the Talladega Division of the Talladega National Forest as our
case study area because it represents typical characteristics of natural, pine-dominated forests of
southeastern USA. National forest managers do not have comprehensive inventories of the extent
under management limiting global decision space for at risk resources be it wildland fire, forest
health, endangered species habitat condition to help assess where management is needed or has
achieved desired future conditions. Therefore models, maps, and other outcomes derived from
predictive models that are based on LiDAR (and other) data may provide forest managers,
researchers, and policymakers with valuable insight to monitor and manage forests throughout the
southeastern USA.

2. Materials and Methods

2.1. Study Area

This study was conducted within the boundaries of the Talladega Division of the Talladega
National Forest, located in northwestern Alabama, USA. This 93,694-ha part of the national forest lies
within the Piedmont and Ridge and Valley ecoregions [31]. The climate in this area generally consists
of mild winters and hot summers, which are characteristic of a humid, subtropical climate. Elevation
of the lands in the Talladega Division varies between approximately 160 m to 735 m above sea level,
and annual precipitation is around 1260 mm. Historically, the forests in the study area have been
composed of coniferous species such as longleaf pine (Pinus palustris Mill.), shortleaf pine (P. echinata
Mill.), and loblolly pine (P. taeda), particularly in the uplands and on south-facing slopes. Deciduous
tree species are often found in the riparian areas and on north-facing slopes. Oak (Quercus spp.),
hickory (Carya spp.), maple (Acer spp.), and yellow-poplar (Liriodendron tulipifera) are among the
more prevalent deciduous tree species in the study area.

2.2. Data Collection

2.2.1. Field Data Collection

A set of 254 fixed area, circular plots (402.6 m? with a 11.32 m radius) were measured by U.S.
Forest Service crews between February and April 2022. These plots were pseudo-randomly located
within the operable (upland) lands of the study area. An equal number of plots were measured within
eight forest structure classes, defined by canopy density and tree height. Plot locations were limited
to the interior (rather than edges) of management units (stands), and only one plot per management
unit was allowed. Plot centers were mapped using a Trimble R1 GNSS receiver (Trimble, Colorado,
USA). The field data collection procedure followed methods described in Laes et al. [38]. Within each
plot, several characteristics of each live tree (height, dbh, tree species, tree crown status (dominant
and co-dominant), azimuth, and distance from the plot center) were recorded. A dbh larger than 7.6
cm (3 inches) and a height greater than 0.6 m (2 feet) represented the minimum sizes of measured
live trees.

2.2.2. Remote Data Collection

True color and near-infrared images of five counties that cover the study area were captured
during the leaf-off season between 2020 (December) and 2021 (February). These images were used to
create county mosaic orthophotographs with a spatial resolution of 0.3 m. The county mosaic images
were acquired from the U.S. Department of Agriculture National Agricultural Imagery Program
(NAIP) [39]. The ALS data was collected using a Leica Terrain Mapper. Within the study area, the
ALS data contained 13.92 billion points. The average point density achieved was 9.7 points per m?
and ranged from 3.5 points per m? to 20.3 points per m2. The horizontal and vertical accuracy of the
LiDAR data (0.71 m and 0.051 m, respectively) was estimated using 441 survey points spread across
the State of Alabama. These characteristics satisfy the requirements for at least topographic quality
level 2 (QL2) [40].
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2.3. Data Processing

2.3.1. Field Data Processing

From the field measurement plots we estimated a variety of forest attributes related to tree
heights (minimum, maximum, dominant, and mean merchantable height), tree dbh (minimum,
maximum, quadratic mean of dbh, arithmetic mean of dbh, and coefficient of variation of dbh),
canopy conditions (mean crown ratio), volume per unit area, and aboveground biomass per unit area.
Among these, we focus on basal area (m? ha), tree volume (m? ha'), and aboveground biomass (Mg
ha) as dependent variables for the modeling effort. Basal area was estimated based on dbh, and tree
volume and aboveground biomass were estimated using species-specific allometric equations from
the U.S. Forest Service (National Biomass Estimator Library (NBEL) and National Volume Estimator
Library (NVEL) which are Excel Add-ins developed by the Forest Management Service Center, U.S.
Forest Service). Additionally, we classified sampling plots by the dominant tree species present,
based on the total basal area for a species in a given plot exceeding 70% of the total basal area. As a
result, there were only 14 oak dominant sampling plots and 149 pine dominated sampling plots (i.e.,
pine plots). All other plots indicated no dominance towards a specific tree species (i.e., mixed plots).
Accordingly, we separately developed models based on two datasets (a) using all plots (n=254), and
(b) pine plots (n=149).

2.3.2. Remote Data Processing

From NAIP imagery we created vegetation indices (i.e., greenness, Normalized Difference
Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI)) for the study area using ArcGIS Pro
(Esri, Redlands, CA, USA). A total of 24 vegetation indices were developed and utilized as NAIP-
derived independent variables (Table 1).

Table 1. Summary of vegetation indices calculated from the NAIP images.

. . Calculated statistics and its
Vegetation Index Equation L.
abbreviation

Minimum of greenness (GmN)
Maximum of greenness (Gmax)
Range of greenness (Grance)

G Mean of greenness (GmeaN)
Greenness R+G+B Standard deviation of greenness
(Gsmp)

Sum of greenness (Gsum)

Median of greenness (Gmepian)

90 percentage of greenness (Grcroo)
Minimum of NDVI (NDVIm)
Maximum of NDVI (NDVImax)
Range of NDVI (NDVIrance)

Normalized

Difference NIR — R Mean of NDVI (NDVIumean)
. NIR +R Standard deviation of NDVI
Vegetation
Index, NDVI (NDVLeto)
’ Sum of NDVI (NDVIsum)

Median of NDVI (NDVImepian)
90 percentage of NDVI (NDVIrcro)
Minimum of EVI (EVImm)

Enhanced 25 % (NIR —R) Maximum of EVI (EVImax)

Vegetation (NIR+6XR—75%xB+1) Range of EVI (EVIrance)

Index, EVI Mean of EVI (EVImEan)

Standard deviation of EVI (EVIsrp)
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Sum of EVI (EVIsum)
Median of EVI (EVImepian)
90 percentage of EVI (EVIrcroo)

*Where R, G, B, NIR represent the raw pixel values of red, green, blue, and the near-infrared bands.

Due to the large file size of the raw LiDAR point cloud data, processing could not be completed
with a desktop personal computer. Thus, the LiDAR point cloud data was processed using RStudio
(R version 2023.06.1 Build 524) and the University of Georgia’s Georgia Advanced Computing
Resource Center’s Sapelo2 Linux (64-bit CentOS 7.9) high-performance computing cluster. To reduce
the processing time, parallel computing was used with 21 cores utilized simultaneously with a total
of 900 GB RAM. The raw LiDAR data were first utilized to create a digital terrain model using only
those points in the point cloud classified as bare ground. In creating the digital terrain model,
selecting an appropriate algorithm and spatial resolution are important because it directly affects the
result of estimated vegetation metrics [18]. Because of this, the spatial resolution was chosen based
on point spacing and the number of points in the point cloud as suggested by McCullagh [41] and
Hengl [42]. The triangular irregular network algorithm, a vector terrain model using Delaunay
triangles, was applied to create a 1 m spatial resolution digital terrain model. With the digital terrain
model representing the ground, we then generated a normalized LiDAR point cloud including only
the above ground points. The first returns in the normalized point cloud were then used to create a
canopy height model. Noise, resulting from points within the point cloud with negative values or
values greater than 95% of the height, were removed to increase the quality of regression models.
LiDAR-derived metrics were then calculated from point clouds that were clipped using the boundary
of each sampling plot using R package (‘'lidR’, version 4.0.3). We extracted 56 LiDAR-derived metrics
from the normalized LiDAR point clouds for 254 of sampling plots. Among LiDAR-derived metrics,
we excluded certain metrics with absolute values (such as maximum height and intensity, mean
intensity, area, point counts, and total intensity), assuming that the LIDAR sensor was not calibrated
for light conditions before data collection, and to avoid developing a model with variables that were
return-density dependent. Therefore, a total of 74 independent variables were developed including
50 LiDAR-derived metrics (Table 2) and 24 NAIP-derived metrics which are used as independent
variables in the modeling effort.

Table 2. Summary of the independent variables derived from LiDAR point cloud.

Metrics Descriptions Metrics Descriptions
smean Mean height zpcum X Cumullative Percentage of
(from 1st to 9th) return in the it layer
zsd Standard deviation of isd standard deviation of
height distribution intensity
zskew Skewness of height . skewness of intensity
o iskew .
distribution distribution
Jkurt K.urtf)sis .of height deurt kl.lrt(.)SiS f)f intensity
distribution distribution
t f intensit
Entropy of height . percentage o 11.1 ensity
zentropy . ipground returned by points
distribution i . "
classified as "ground
ipcumzq x Percentage of intensity
P t f ret
pzabovezmean a}f:)(f:zariee:n returns (10th, 30th, 50th, returned below the xt
70th, and 90th) percentile of height
Pzabove2 Percentage of returns P xt Percentace xth returns
above 2 m (1,2,3,4, and 5) &
xth percentile
zq X (quantile) of height round Percentage of returns
(From 5th to 95th) d & Pg classified as "ground"

distribution
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2.4. Modeling

We created 12 models to estimate three forest attributes (basal area, volume, aboveground
biomass) with two different sets of field measurement sampling plots (all plots, pine plots) and two
types of data sources (LiDAR only, LiDAR + NAIP). Depending on which field measurement
sampling plots were employed, two sets of regression models were created: General models and pine
models. Due to the high number of independent variables derived from LiDAR and NAIP data
sources, inter-correlation between independent variables and the complexity of models was
inevitable [3]. To reduce the complexity of models and to avoid multicollinearity issues, we applied
the ALASSO regression. As ALASSO regression is a regularization technique, it addresses
multicollinearity issues by shrinking regression coefficients to zero based on the lambda value which
minimizes the sum of the squared differences between predicted values and observed values. The
best lambda was obtained by applying 10-fold cross-validation. Prior to applying ALASSO
regression, the normality of data was assessed using the Box-Cox method. Given the results of the
Box-Cox method, a natural logarithmic transformation was applied to the dependent variables,
improving the linearity of the data, the homogeneity of residual variances, and the normality of
residuals. Additionally, potential outliers were investigated using Cook’s distance and studentized
residuals. The observed outliers without leverage were eliminated. The best models were selected
based on various parameters including the R%.dj, the number of independent variables, root mean
square of error (RMSE), Collin Mallow’s Cp, Akaike’s information criteria (AIC), and Bayesian
Information Criterion (BIC). The models were back transformed by exponentiating the dependent
variable and were applied to estimate the forest attributes for the broader study area. Lastly, 10-fold
cross-validation was applied to evaluate the quality of the models. While the modeling procedures
were conducted using RStudio (R version 2023.06.1 Build 524) on a desktop computer, broad scale
estimation maps were processed using the Sapelo2 Linux based high-performance computing cluster.

3. Results

3.1. Field-Based Forest Inventory

The average basal area, tree volume and aboveground biomass of the 254 field measurement
sampling plots was about 23.4 m? ha, 180.9 m? ha, and 40.1 Mg ha, respectively (Table 3). For the
pine dominated field measurement plots, the average basal area, tree volume, and aboveground
biomass were about 22.3 m? ha, 169.0 m? ha', and 34.6 Mg hal, respectively. The range of values for
the sampling plots was large since the plots were meant to be representative of all forest conditions
in the study area, from early successional to mature forest stages.

Table 3. Descriptive statistics of forest attributes based on field measurements.

Diameter at Basal area (mZha- Aboveground
breast height N Volume (m? ha') biomass (Mg
(cm) ha?)
All plots (n =254)
Average 22.39 23.43 180.85 40.13
Standard deviation 7.39 10.95 105.48 23.07
Minimum 8.65 0.33 0.77 0.13
Maximum 54.36 53.29 569.93 119.03
Pine plots (1 =149)
Average 22.42 22.28 168.97 34.62
Standard deviation 8.40 16.92 108.26 21.94
Minimum 8.66 0.33 0.77 0.13
Maximum 54.36 51.19 543.27 110.02

3.2. Regression Models
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3.2.1. Estimation of Forest Attributes Based on General Models

In nearly every case, the LiDAR + NAIP regression models included a larger number of
independent variables than the LIDAR-only models. In the basal area model based on LiDAR + NAIP,
five vegetation indices (Gvin, NDVImin, NDVImepian, EVImax, and EVIrcroo) were additionally selected
instead of the zq30 variable (30th percentile height distribution from the ground) found in the basal
area model based on LiDAR-only (Table 4). The R2.;. values for the basal area models were 0.72 (cross-
validation: 0.69) for LIDAR + NAIP and 0.71 (cross-validation: 0.71) LiDAR-only, while RMSE values
were 5.6 m? ha'! (cross-validation: 5.90 m? ha?) for LIDAR + NAIP and 5.7 m? ha! (cross-validation:
5.91 m? ha') LiDAR-only (Table 5). Other quality metrics except AIC also indicated that the model
based on LiDAR + NAIP performed slightly better than the model based on LiDAR-only. The
predicted basal area tended to be underestimated as its basal area increased regardless of data sources
(Figure 2).
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Figure 1. Locations of the field measurement sample plots within the study area (Sources: Esri.

“World Topographic Map” [basemap]. January 31, 2024).
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Figure 2. The observed forest attributes versus the predicted forest attributes of the general models
(n=254). (LIDAR+NAIP: A, C, E; LiDAR: B, D, F).
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Table 4. The best equations for the general (all plots, n=254) and the pine (pine plots, n=149) models by forest attribute and data sources.

Forest variables Data gequation
sources
General models
Basal area LiDAR+  -1.828 +0.017 * pzabove2 + 0.015 * zq25 + 0.017 * zq95 - 7.83 * e* * zpcum5 - 0.002 * zpcum6 + 2 * e * isd + 0.24 * iskew - 0.091 * ikurt + 0.024 *
NAIP ipcumzq90 + 0.043 * p2th + 0.116 * Gmin + 0.52 * NDVImin + 0.428 * NDVImepian + 3.58 * e * EVImax - 0.012 * EVIrcroo
LiDAR -1.197 + 0.018 * pzabove2 + 0.017 * zq25 + 1.13 * e * zq30 + 0.015 * zq95 - 3.79 * e* * zpcumb - 0.003 * zpcumé + 1.83 * e * isd + 0.196 * iskew -
0.105 * ikurt + 0.017 * ipcumzq90 + 0.046 * p2th
LiDAR+ -0.148 + 0.018 * pzabove2 + 0.004 * zq25 + 0.056 * zq95 - 7.91 * e** zpcumb5 - 0.00566 * zpcum6 +2.51*e5*isd +0.237 * iskew - 0.128 * ikurt -
Volume NAIP 0.018 * ipcumzq10 - 0.002 * ipcumzq30 + 0.029 * ipcumzq90 - 0.002 * p1th + 0.029 * p2th + 0.091 * Gmi~ - 0.165 * Grance + 0.522 * NDVImin +
0.229 * NDVImean +1.45 % e * NDVIsum + 0.158 * NDVImepian + 1.96 * e4* EVImax - 0.010 * EVIrcroo
LiDAR 0.380 + 0.020 * pzabove2 + 0.007 * zq25 + 0.053 * zq95 - 0.006 * zpcum6 + 3.088 * e%5 * isd + 0.209 * iskew - 0.121 * ikurt - 0.020 * ipcumzq10 - 0.004
* ipcumzq30 + 0.020 * ipcumzq90 - 4.642 * e * plth + 0.037 * p2th
Aboveground LiDAR+  0.033 +0.021 * pzabove2 + 0.062 * zq95 - 0.004 * zpcum6 + 3.93 * e * isd + 0.132 * iskew - 0.184 * ikurt - 0.011 * ipcumzq10 + 0.083 * ipcumzq90 -
biomass NAIP 0.006 * p1th + 0.031 * p2th - 1.51 * e** pground + 0.385 * Gmiv + 0.505 * NDVImiv + 0.218 * NDVImean + 9.36 * 6 * NDVIsum - 0.005 * EVIrcroo
LiDAR 0.516 + 0.022 * pzabove2 + 0.238 * zg5 + 0.002 * zq25 + 0.059 * zq95 - 0.005 * zpcum6 + 3.83 * e5 * isd + 0.103 * iskew - 0.198 * ikurt - 0.012 *
ipcumzq10 + 0.078 * ipcumzq90 - 0.006 * p1th + 0.034 * p2th
Pine models
Basal area LiDAR+  0.657 + 0.009 * pzabove2 + 3.600 * zq5 + 0.021 * zq25 + 0.001 * zq40 + 0.007 * zq95 - 0.009 * zpcum5 + 0.173 * iskew - 0.067 * ikurt + 0.057 * p2th +
NAIP 0.426 * NDVIm~ + 0.985 * NDVIwmepian - 8.6 * e * EVIpcroo
LiDAR 5.195 + 0.011 * pzabove2 + 2.873 * zq5 + 0.021 * zq25 + 1.681 * e* * zq40 + 0.003 * zq95 - 0.008 * zpcumb5 - 1.96 * e+ * zpcumé6 + 0.168 * iskew - 0.061
* ikurt - 0.004 * ipcumzq30 - 0.0475 * ipcumzq90 + 0.057 * p2th
1.593 - 0.002 * zkurt + 0.021 * pzabove2 + 8.41 * zq5 - 1.91 * zq15 + 0.019 * zq25 +0.006 * zq40 - 0.008 * zq65 + 0.016 * zq75 - 0.071 * zq80 + 0.096 *
Volume LiDAR+  zq95+0.010 * zpcum1 - 0.010 * zpcum5 - 0.005 * zpcum6 + 1.29 * e * zpcum8 + 0.002 * zpcum9 +3.04 * e5* isd + 0.241 * iskew - 0.16 * ikurt +
NAIP 0.016 * ipcumzq10 - 0.008 * ipcumzq30 + 0.042 * p2th - 0.039 * p5th + 0.486 * Gmv - 0.132 * Grance + 0.475 * NDVImiv + 1.28 * NDVImepian + 2.7 * e
4* EVImax - 0.004 * EVIstp - 0.019 * EVImepian - 0.015 * EVIrcroo
. 3.592 + 0.008 * pzabove2 + 3.401 * zg5 + 0.004 * zq25 + 0.043 * zq95 - 0.013 * zpcum5 + 0.222 * iskew - 0.094 * ikurt - 2.769 *e-* * ipcumzq10 - 0.033
LiDAR . . N
ipcumzq30 + 0.047 * p2th + 0.013 * p3th
6.466 - 0.005 * zkurt + 0.41 * zentropy + 0.025 * pzabove2 + 8.66 * zq5 - 0.037 * zq10 - 2.18 * zq15 + 0.017 * zq25 - 7.48 *e* * zq30 + 0.004 * zq40 -
Aboveground LiDAR+  0.001 * zq65 + 0.010 * zq75 - 0.079 * zq80 + 0.11 * zq95 + 0.013 * zpcum1 - 0.009 * zpcum5 -0.005* zpcum6 +0.003 * zpcum9 +4.75 * % * isd +
biomass NAIP 0.078 * iskew - 0.175 * ikurt +0.020 * ipcumzq10 - 0.008 * ipcumzq90 + 0.042 * p2th - 0.016 * p5th + 0.673 * Gm - 0.094 * Grance + 0.171 * Gstp -

0.362 * GmepiaN + 0.364 * NDVImiy - 0.327 * NDVIsto + 1.51 * NDVImMepian + 1.52 *e4 * EVImax - 0.002 * EVIstp - 0.033 * EVIrctoo
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10.699 +0.013 * pzabove2 +2.062 * zq5 + 0.052 * zq95 - 0.011 * zpcum5 + 0.010 * iskew - 0.129 * ikurt - 0.010 * ipcumzq30 - 0.024 * ipcumzq90 -

FIDAR 009 * plth +0.045 * p2th
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Table 5. Summary of statistics for the general models.

Basal area (m2 ha) Total volume (m3 ha) Total aboveground

Quality biomass (Mg ha')
metrics EE;;R T LiDAR EEII;R " LiDAR ;lzﬁjR " LiDAR
Read. 0.72 0.71 0.77 0.77 0.73 0.72
# of 15 11 21 12 16 12
variables

RMSE 5.58 5.73 4844 4934 11.68 11.84
R2 0.74 0.72 0.79 0.78 0.74 0.74
Bias -0.78 -0.80 -6.27 -6.54 1.62 -1.64
Bias (%) 333 -3.40 -3.45 361 403 -4.08
AIC 0.08 -76.05 11805  -137.76 13743 -145.17
BIC -68.19 -38.28 4795 -96.66 8313 -104.02
CP 17.21 0.08 0.11 0.12 0.12 0.13

In the volume models, a higher R2%4. value (0.77) was observed (Table 5). Although the overall
quality metrics for LiDAR + NAIP and LiDAR-only models represented a similar level of
performance, the increment in the number of independent variables in LIDAR + NAIP models was
noticeable as it increased from 12 to 21 (Table 4). Specifically, eight independent variables derived
from NAIP imagery were selected. Additionally, a LiDAR-derived metric, zpcum5 (cumulative
percentile of return in the 5th layer), was also selected as an independent variable in LIDAR + NAIP
model yet was not used in the LiDAR-only model. As observed in the basal area models, the
difference between observed volume and estimated volume tended to increase with higher volume
regardless of data sources (Figure 2).

The aboveground biomass models had R?d;. values that were 0.73 and 0.72 (cross-validation: 0.64
and 0.65) for LIDAR + NAIP and LiDAR-only models, respectively (Table 5). Similar to the basal area
models, the LIDAR + NAIP model yielded slightly more accurate RMSE values than the LiDAR-only
model (LiDAR + NAIP model: 11.7 Mg ha (cross-validation:13.05 Mg ha!); LIDAR-only model: 11.8
Mg ha’(cross-validation:13.09 Mg ha)). Nevertheless, the difference between aboveground biomass
models depending on data sources was slight. Five vegetation indices were added into the LiDAR +
NAIP model as independent variables (Table 4). Both aboveground biomass models underestimated
biomass for the sample plots having higher aboveground biomass, suggesting estimation errors
increase as forest stands mature (Figure 2).

The average R%dj. and average R? values of 10-fold cross-validation results ranged from 0.64 to
0.73 and from 0.68 to 0.75, respectively (Table 6). The difference between statistics of cross-validation
and developed models were generally smaller in LiDAR based models compared to the LiDAR +
NAIP models. Regarding the selection of independent variables, several metrics were commonly
selected regardless of data source, including: pzabove2, zq95, zpcumb®, isd, iskew, ikurt, ipcumzq90
and p2th (all from LiDAR data); and Gy, NDVImiv and EVIecroo (all from NAIP data) (Table 7).

Table 6. Analysis of 10-fold cross-validation for the general regression models.

Basal area (m2ha!)  Total volume (m3 ha) Total aboveground

Quality biomass (Mg ha)
metrics Lﬁ:ﬁ; T LiDAR Lﬁ:ﬁ) " LIDAR LiDAR+NAIP LiDAR
R, 0.69 0.71 0.67 0.73 0.64 0.65
R2 0.72 0.69 0.72 0.75 0.69 0.68
RMSE 5.90 591 55.87 53.10 13.05 13.09
Bias -0.76 075 -4.06 7,56 112 121

Bias (%) -3.20 -3.20 -2.26 -4.12 -2.63 -2.85
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Table 7. The most important independent variables of the best regression models.

LiDAR metrics NAIP metrics
General & pine model g;?}? ove2, zq95, iskew, ikurt, NDVImnw, EVIrcroo
General model zpcumo, isd, ipcumzq90 Gmv
Pine model zq5, zpcumb NDVIuepian

3.2.2. Estimation of Forest Attributes Based on Pine Models

The R24j. and RMSE values of basal area models were 0.81 and 0.80 (R2.q;. of cross-validation: 0.79
and 0.75), and 4.8 m2 ha! and 5.1 m? ha! (RMSE of cross-validation: 5.21 m? ha! and 5.71 m2 ha) for
LiDAR + NAIP and LiDAR, respectively (Table 8). Noticeable improvements in quality metrics of
LiDAR + NAIP models were not observed by supplementing independent variables using NAIP
derived metrics. Interestingly, there was no increase in the number of independent variables, but
three NAIP derived metrics (NDVIvn, NDVImepian, and EVIrcroo) were selected instead of LIDAR
derived metrics (zpcumé, ipcumzq30, ipcumzq90) (Table 4). The visual interpretation of the scatter
plots showed that basal area tended to be underestimated as basal area values increased regardless
of the data sources (Figure 3). Similar trends in scatter plots were also observed in general models,
but the distribution of points was closer to the 1:1 line.

Regarding the volume models, R%q. values of 0.84 (cross-validation: 0.78) for LIDAR + NAIP and
0.82 (cross-validation: 0.79) for LiDAR-only models achieved (Table 8). The RMSE values ranged
from 37.9 m? ha' to 43.5 m® ha! (cross-validation: from 47.44 m? ha to 48.94 m3 ha') which were
lower than comparable values of the general regression models. However, AIC and BIC of general
volume regression models were lower than those of the pine volume regression models. The
increment in number of independent variables in LIDAR + NAIP models was notable as it increased
from 11 to 30 in volume models. Specifically, eight independent variables derived from NAIP images
were added to the LIDAR + NAIP regression model (Table 4). Additionally, 12 independent variables
derived from LiDAR point clouds were added on the LiDAR + NAIP regression model.

The aboveground biomass models had R2g;. values of 0.83 (cross-validation: 0.80) for LiDAR +
NAIP and 0.82 (cross-validation: 0.78) for LiDAR-only models (Table 8). The RMSE values of
aboveground biomass models were 7.9 Mg ha! and 8.9 Mg ha! (cross-validation: 9.4 Mg ha' and 10.2
Mg ha') for LIDAR + NAIP and LiDAR-only, respectively. Regarding AIC and BIC values, our results
indicated that the quality of LIDAR-only models was better than the LIiDAR + NAIP models. The
number of independent variables also noticeably increased in LIDAR + NAIP models (LiDAR + NAIP:
34; LiDAR-only: 10). Ten NAIP derived metrics were selected in addition to 16 LiDAR derived
metrics in LiDAR + NAIP model (Table 4). Similar to the general regression models, both models
(LiDAR + NAIP and LiDAR-only) underestimated aboveground biomass for the sample plots having
higher biomass estimates, suggesting estimation errors increased as stands mature (Figure 3).

The average R2dj. values of 10-fold cross-validation results of pine models ranged from 0.75 to
0.80 regardless of forest attributes and data sources (Table 9). The average R? values of 10-fold cross-
validation results for the pine model ranged from 0.78 to 0.84. Developed models based on LiDAR +
NAIP for basal area and aboveground biomass were more robust than developed models based on
LiDAR-only. Otherwise, the developed model based on LiDAR + NAIP for the volume less robust
that developed models based on LiDAR-only. Similar to the general models, there were some LiDAR
and NAIP derived metrics which were commonly selected as independent variables in every pine
model regardless of forest attributes: pzabove2, zq5, zq95, zpcum), iskew, ikurt, and p2th (all from
LiDAR data); and NDVImn, EVIecroo, and NDVImepian (all from NAIP data) (Table 7).

Table 8. Summary of statistics for the pine regression models.

Quality

metrics

Total aboveground

Basal area (m2 ha) Total volume (m3 ha?) biomass (Mg ha-)
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LiDAR +

AP LiDAR Lgﬁl? LiDAR Lﬁg? LiDAR
Reud; 0.81 0.80 0.84 0.82 0.83 0.82
¢ of 12 12 30 11 34 10
variables
RMSE 4.80 5.10 37.86 43.45 7.89 8.93
R2 0.83 0.81 0.87 0.84 0.87 0.83
Bias -0.72 -0.75 -3.65 -6.71 -0.68 136
Bias (%) -3.23 -3.38 212 3.92 -1.93 -3.89
AIC -5.84 -54.77 -56.60 -108.83 4923 -113.69
BIC 22,09 21,01 17.08 -77.80 31.20 -85.33
cP 0.07 0.08 0.06 0.11 0.06 0.10

Table 9. Analysis of 10-fold cross-validation for the pine regression models.

Basal area (m2 ha)

Total aboveground

Quality Total volume (m? ha™) biomass (Mg ha?)
metrics Lﬁ:ﬁ " LiDAR Lﬁ:; " LiDAR LiDAR+NAIP LiDAR
R, 0.79 0.75 0.78 0.79 0.80 0.78
R2 0.82 0.78 0.82 0.81 0.84 0.81
RMSE 521 5.71 47.44 48.94 9.42 10.24
Bias -0.72 -0.99 441 843 -0.97 -0.92
Bias (%) 317 433 2248 492 221 271
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Figure 3. The observed forest attributes versus the predicted forest attributes of the pine models
(n=149). (LIDAR+NAIP: A, C, E; LiDAR: B, D, F).

4. Discussion

Estimating forest attributes such as basal area, volume, and aboveground biomass and updating
this information regularly are critical activities for forest management and planning efforts. This
study attempted to improve the performance of forest attribute estimations for large areas using
LiDAR point clouds and high-resolution, multispectral remotely sensed data. We investigated the
effect of different combinations of remotely sensed data (LiDAR-only or LiDAR + NAIP) on the
quality of regression models. Also, we evaluated the quality of regression models depending on the
classification of sampling plots according to species mixture. To avoid the overfitting issue resulting
from multicollinearity between independent variables, the ALASSO method was employed during
the modeling process as this method performance was suggested by earlier studies [35,43].
Eventually, a total of 12 models were developed for three forest attributes (basal area, volume,
aboveground biomass) based on the species mixture (all species and pine), as well as data source
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(LiDAR-only, LiDAR + NAIP). When the general models are applied to the case study landscape,
broad scale maps of these resource conditions can be visualized (Figures 4-6).
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Figure 4. Estimated basal area for a portion of the study area based on general model (Sources: Esri.
“World Topographic Map” [basemap]. January 31, 2024).
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Figure 6. Estimated aboveground biomass for a portion of the study area based on general model
(Sources: Esri. “World Topographic Map” [basemap]. January 31, 2024).

The R values of developed models ranged from 0.71 to 0.84 which were comparable to other
ALS study results [3,34,44]. While many researchers have developed regression models for
estimating forest attributes over relatively small forested areas [10,15,19,34,36], there have been few
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attempts to work in large areas such as U.S. National Forests. For instance, Leboeuf et al. [44] mapped
a merchantable wood volume of very large area (440,000 km?) using airborne LiDAR. However, this
study had a few limitations, including significant temporal differences between the field
measurements (2003-2018) and LiDAR data (2011-2020) collection periods, limited spatial resolution,
and poor representativeness of sampling plots. In our study, however, field and remote sensing
datasets were collected during a relatively similar period of time (2020-2022). The distribution of
sample plots is also important in developing robust regression models for forest attribute estimation.
To enhance the quality of regression models, we used a stratified pseudo-random sampling design
by classifying the entire operable study area with consideration of recent management activities to
improve the balance and representation of the heterogeneity of the forest in the sampling design.
Additionally, we surveyed all tree species (both merchantable and non-merchantable > 7.62 cm in
dbh) within sampling plots to enhance the accuracy of regression models, as suggested by Brown et
al. [45].

The RZdj. values and R? values of pine models were higher than those of the general models
regardless of forest attributes. The overall quality metrics also indicated pine models were higher
compared to the general models. Bouvier et al. [3] also confirmed that separate models may result in
higher accuracy when compared to general models. Regarding forest attributes, the highest RZg.
values were observed in tree volume models and the lowest R2.4;. values were observed in basal area
models regardless of data sources and sampling plots (all plots or pine plots). This trend has also
been observed in other studies using ALS systems [3,34,46,47]. Sumnall et al. [48] suggested that basal
area models have relatively lower R? values than models estimating tree height and biomass. This is
likely because, unlike tree height, dbh cannot be directly measured with ALS systems. Dbh is used to
estimate basal area, yet dbh and tree height are often needed to estimate volume and aboveground
biomass [3], therefore it may be logical to observe that the basal area estimation models would
underperform the volume and biomass models.

There have been many attempts recently to enhance the performance of regression models for
estimating forest conditions. They generally involve the development of LiDAR metrics [3,49], and
perhaps supplementary remotely sensed data [34,45]. In this study, the vegetation indices derived
from NAIP imagery were included as supplemental data. As the additional NAIP imagery had higher
spatial resolution (0.3 m), we expected the vegetation indices might improve the quality of regression
models to a considerable extent. However, it was observed that the addition of NAIP-derived
vegetation metrics was not very influential in improving the quality of prediction models. Although
LiDAR-only derived models had slightly larger RMSE values and slightly lower R2 values compared
to the LiDAR + NAIP derived models, the increase in the number of independent variables with the
addition of NAIP metrics led us to conclude that LiIDAR-only models were more appropriate for
broad-scale mapping efforts.

Of the 74 metrics derived from LiDAR and NAIP data sources, 45 were selected as independent
variables in at least one regression model. Further, five LIDAR-based metrics and two NAIP-based
metrics were selected for every regression model (Table 7). These were, specifically, the LIDAR-based
metrics pzabove2, zq95, iskew, ikurt, and p2th, and the NAIP-based metrics NDVImin and EVIrcroo.
LiDAR-based metrics pzabove2 and p2th metrics help eliminate the effect of understory vegetation
that is not measured in a typical forest inventory survey. The LiDAR-based metric zq95 is widely
used to represent forest canopy height. In addition to height related LiDAR metrics, intensity related
metrics, such as iskew and ikurt, were also crucial in developing regression models as they provide
information related to stand density. The inclusion of NAIP-based NDVImn and EVIrcroo can be
explained by the concentration of active chlorophyll in pine tree crowns. Ozkan et al. [34] also
confirmed that metrics such as these may be significantly correlated with forest attributes.

Although inclusion of NAIP-based metrics improved the accuracy of the regression models we
developed, we suggest that LiDAR-derived metrics may be sufficient for developing robust
regression models used for operational forest management purposes. Interestingly, the general trend
in the spatial pattern of basal area, volume, and aboveground biomass is due to the high correlation
among these forest attributes (Figures 4-6). Since aboveground biomass of a forest is typically a
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derivation of growing stock, volume estimates often rely on dbh measurements, and as basal area is
directly related to dbh, these relationships may help in developing simple ratios between forest
conditions without the need for additional, elaborate regression models. While this may potentially
decrease the reliability of some of the outcomes, the practicality of the overall effort may be worth
investigating further.

5. Conclusions

The objective of this study was to estimate and map key forest attributes across a wide area of
interest, utilizing ALS data and aerial imagery. To achieve this objective, we employed the ALASSO
modeling method, relying on 254 field measurement plots from a national forest in Alabama (USA),
a mostly natural ecosystem composed of coniferous and deciduous tree species. One of the main
conclusions drawn from our findings was that the LiDAR data collected by the ALS system with
topographic quality level QL2 character seems to be a sufficient input for the development of
regression models that can estimate basal area, volume, and aboveground biomass at accuracy levels
that are acceptable for operational forest inventories. A second conclusion was that the added value
of using optical data (aerial imagery) and associated vegetation indices as inputs for the development
of regression models for estimating basal area, volume, and aboveground biomass was negligible,
considering the increased model complexity and extra time required to process and analyze the
additional model inputs. A third conclusion was that the models exclusively developed for areas
dominated by pine species seem to outperform (with respect to the coefficient of determination from
cross-validation) general models that were developed for all tree species within the study area. While
we affirmed these conclusions for natural, pine-dominated forests in the study area, further research
was needed to assess the scalability of the results to other forest ecosystems of the southern USA.
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