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Article

Location Problem in Relativistic Positioning: Relative
Formulation
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Abstract: A relativistic positioning system is a set of four emitters broadcasting their proper times by means

of light signals. The four emitter times received at an event constitute the emission coordinates of the event.

Covariant quantities associated with relativistic positioning systems are analysed relatively to an observer in

Minkowski space-time by splitting them in their relative space-like and time-like components. The location of a

user in inertial coordinates from a standard set of emission data (emitted times and satellite trajectories) is solved

in the underlying 3+1 formalism. The analytical location solution obtained by Kleusberg for the GPS system is

recovered and interpreted in a Minkowskian context.

Keywords: relativistic positioning systems; pseudorange navigation equations; Kleusberg’s solution

1. Introduction

The central question in positioning theories is to determine the location of the user without
ambiguity after solving the navigation equations.

For users of Global Navigation Satellite Systems (GNSS), such as GPS and Galileo, these navigation
equations are usually formulated in terms of pseudoranges, which are the apparent distances to the
user from each of the emitters as inferred from the travel time of the signal (see Section 4 for more
detail).

In general, the procedures used in GNSS to solve the equations analytically can be divided in
two classes, depending on whether they use pseudoranges (Bancroft’s algorithm, [1]) or pseudorange
differences (Kleusberg’s method, [2,3]), thus eliminating the user clock bias (see Section 4). In line
with [1], Abel and Chaffee stated the problem using the Lorentz scalar product [4] and analyzed the
existence and non-unicity of the solutions [5] (bifurcation), which was also considered in [6].

A fully relativistic formulation of the problem in Minkowski space-time was given in the context
of the theory of Relativistic Positioning Systems (RPS) [7,8]. For the foundations, genesis, objectives and
perspectives of the RPS theory, refer to [9–12] and references therein. Recently, Bancroft’s solution [1]
was interpreted in the language of RPS [13,14], but the corresponding RPS interpretation of Kleusberg’s
solution remained to be done. This complementary task is achieved in this paper.

Recall that a RPS is a set of four ordered clocks A (A = 1, 2, 3, 4), of world-lines γA(τ
A), broad-

casting their times τA by means of light signals. For simplicity, and as it will be the case in the present
work, the time considered is the proper time. The four times {τA} received by an event x constitute
the emission coordinates of the event [15]. Again for simplicity, the emission and reception processes are
assumed continuous. For the theory and classification of RPS based on a discrete set of data, see [16].

Current GNSS do not broadcast the proper time of their clocks, but the system’s own time (the GPS
or the Galileo time), a time which, roughly speaking, coincides up to a fixed shift with the International
Atomic Time.

In any case, for every set of four satellites in a given constellation (that could include both GPS and
Galileo satellites) the four broadcast times essentially share the algebraic and differential properties
characterizing an emission coordinate system. These properties have been analyzed elsewhere [7,15],
and they do not need to be exhaustively remembered here. Only a property needs to be highlighted
now, that concerns the very unusual character of the emission coordinates: all the gradients dτA are
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light-like. This means that {τA} is a set of four null gradient coordinates, an outstanding property that
wholly determines the causal class of every relativistic emission coordinate system [17].

Suppose there is a specific coordinate system {xα} covering the whole region of emission co-
ordinates, let γA(τ

A) be the world-lines of the clocks A with respect to this particular coordinate
system and let {τA} be the values of the emission coordinates received by a user. The data set E ≡
{γA(τ

A), {τA}} is called the standard data set.
The location problem with respect to E, also called the standard location problem or the E-location

problem for short, is the problem of finding the coordinates {xα} of the user from the sole data E,
by solving the following algebraic system of four non-linear equations (called the null propagation
equations):

(x− γA)
2 = 0, A = 1, 2, 3, 4. (1)

The covariant solution to the standard location problem in Minkowski space-time has been already
discussed [7,8]. Nevertheless, it remains to be formulated in the framework of an arbitrary inertial
coordinate system associated with an inertial observer u (u2 = −1), that is, by describing space-time
from its relative splitting in space plus time with respect to u. Then, the unknown space-time position x
of the user can be split, relatively to u, in inertial components {x0, x⃗} as:

x = x0u + x⃗, x0 = −x · u, x⃗ · u = 0. (2)

From now on, we will take the speed of light in vacuum c = 1 and t ≡ x0 (see Appendix A for the
notation used in this article).

The matter is then how to determine, with respect to u, the solution of the standard location
problem, that is, the coordinate transformation from emission to inertial coordinates, x0(τA) and
x⃗(τA), when the motions of the emitters are known (received data) in the inertial coordinate system.
For this purpose, the tensor quantities that are intrinsically related to the configuration of the emitters
at x have to be split in time-like and space-like components. Once the splitting is accomplished, we
can recover Kleusberg’s analytical solution [3] used in GPS navigation [18].

The covariant solution [7,8] has been used in the construction of numerical algorithms for po-
sitioning in flat and curved space-times [19–22]. The statement of the location problem in exact
Schwarzschild metric and its perturbative treatment has been modelled in [23–25].

The paper is organized as follows. In section 2, the geometric objects (vector and bivectors)
associated with the configuration of the emitters for the reception event are decomposed in time-like
and space-like components, relatively to an inertial observer. Section 3 is devoted to split, relatively to
an inertial observer, the covariant formula giving the location of a user in relativistic positioning. In
Section 4 we use the preceding splittings to express Kleusberg’s procedure in a relativistic formalism
and to recover Kleusberg’s solution from the covariant solution. In Section 5 an alternative expression
of the covariant solution in terms of the principal directions of the configuration bivector is provided.
The principal directions are split relatively to an inertial observer and Kleusberg’s solution is again
recovered. The results are summarized and discussed in Section 6. Appendix A is devoted to
summarise the notation and conventions used.

Some preliminary results of this work were communicated without proof at the ESA-Advanced
Concepts Team Workshop “Relativistic Positioning Systems and their Scientific Applications” (see Ref.
[26]).

2. Configuration of the Emitters Underlying Geometry

In relativistic positioning terminology, the configuration of the emitters for an event P is the set of
four events {γA(τ

A)} of the emitters at the emission times {τA} received at P. The covariant solution
[7] to the standard location problem depends on the configuration of the emitters through different
scalars, vectors and bivectors, all of which computable from the standard data set {γA(τ

A), {τA}}.
These quantities are analyzed in this section.
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The setR of events which are reached by the broadcast signals will be called the emission region
of the RPS. Then, if P ∈ R, let us denote by x ≡ OP the position vector with respect the origin O of a
given inertial system. If a user at P receives the broadcast times {τA}, γA denote the position vectors
of the emitters at the emission times, γA ≡ OγA(τ

A). The trajectories followed by the light signals
from the emitters γA(τ

A) to the reception event P are described by the vectors mA ≡ x− γA. Let us
choose a reference emitter (say A = 4) and refer to it the other emitters (referred emitters). Then, the
position vector of the a-th emitter with respect to the reference emitter is written as (see Figure 1a)

ea = γa − γ4 = m4 −ma (a = 1, 2, 3). (3)

The world function [27,28] of the end point of ea is the scalar

Ωa =
1
2
(ea)

2. (4)

As discussed in [7], the emission/reception conditions imply Ωa > 0.
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(a) (b)
Figure 1. Configuration vectors in Minkowski space-time and in the 3-space orthogonal to u, E⊥.
(a) The fourth emitter γ4 is taken as the reference emitter. Then, the position vector of the event P is m4.
The relative positions ea of the referred emitters γa are given by ea = γa − γ4 (a = 1, 2, 3). This figure
has been taken from [7,8,26]. (b) In the 3-space orthogonal to u, E⊥, taking the fourth emitter as the
reference emitter, y⃗ = m⃗4 is the position vector of the user’s location X. The relative positions e⃗a of the
referred emitters are given by e⃗a = γ⃗a − γ⃗4 = m⃗4 − m⃗a (a = 1, 2, 3).

2.1. Splitting of γA, mA and ea

The position vectors γA can be decomposed, relatively to u, as:

γA = tAu + γ⃗A (A = 1, 2, 3, 4), (5)

where tA ≡ γ0
A is the coordinate inertial time of the event γA(τ

A) as measured by the inertial observer
u. The vectors mA are decomposed as follows:

mA = (t− tA)u + x⃗− γ⃗A = m0
Au + m⃗A (A = 1, 2, 3, 4), (6)

being null and future pointing,

(t− tA)
2 = (x⃗− γ⃗A)

2, t > tA. (7)
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For later convenience we define

y ≡ x− γ4 = m4 = y0u + y⃗. (8)

The position vector ea of the a-th emitter with respect to the reference emitter is decomposed as
(see Figure 1b)

ea = σau + e⃗a, σa = ta − t4, e⃗a = γ⃗a − γ⃗4 (a = 1, 2, 3). (9)

With the inertial components of ea, {σa, e⃗a}, we can express the world function (4) as:

Ωa =
1
2
((⃗ea)

2 − σ2
a ) =

1
2
[(γ⃗a − γ⃗4)

2 − (ta − t4)
2]. (10)

2.2. Splitting of the Configuration Vector χ

Here we always consider that, for the reception event P, the emitter configuration is regular, that
is, the four emission events {γA(τ

A)} determine a hyperplane named the configuration hyperplane for
P. Or equivalently, we assume that the configuration vector χ, defined as:

χ ≡ ∗(e1 ∧ e2 ∧ e3) (11)

is nonzero, χ ̸= 0. The star ∗ stands for the Hodge dual operator associated with the metric volume
element η = (ηαβµν). One has χα = ηαβµνeβ

1 eµ
2 eν

3 ̸= 0. Non-regular emitter configurations (with χ = 0)
can sporadically occur in current global navigation systems as it was stressed and considered in [4,5].

Substituting (3) in (11) and taking into account (A3) and (A4) we have

χ = σ1 ∗ (u ∧ e⃗2 ∧ e⃗3) + σ2 ∗ (⃗e1 ∧ u ∧ e⃗3) + σ3 ∗ (⃗e1 ∧ e⃗2 ∧ u) + ∗(⃗e1 ∧ e⃗2 ∧ e⃗3)

= (⃗e1, e⃗2, e⃗3) u + σ1 e⃗2 × e⃗3 + σ2 e⃗3 × e⃗1 + σ3 e⃗1 × e⃗2,

where × denotes the cross product between vectors in the 3-space orthogonal to u, E⊥ (see Appendix
A). The following result concerning the decomposition of χ in time-like and space-like components
holds.

Proposition 1. Relatively to an inertial observer u, the configuration vector is expressed as χ = χ0u + χ⃗, with

χ0 = (⃗e1, e⃗2, e⃗3), χ⃗ =
1
2

ϵabcσa e⃗b × e⃗c , (12)

where {σa, e⃗a} are the components of the position vectors of the referred emitters.

Then, we see that |χ0| is the volume of the parallelepiped defined by the relative positions e⃗a of
the referred emitters. On the other hand, χ⃗ represents a weighted vector-area. The area Abc of the face
generated by e⃗b and e⃗c is weighted with a complementary σa factor. Then

|σa⃗eb × e⃗c| = c|tc − t4|Abc (13)

is the volume of the time-like parallelepiped generated by {σau, e⃗b, e⃗c}.

2.3. Splitting of the Bivectors Ea

The positions of the referred emitters, ea, generate the bivectors Ea which are defined as

E1 = ∗(e2 ∧ e3), E2 = ∗(e3 ∧ e1), E3 = ∗(e1 ∧ e2), (14)
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that is, Ea = ∗(ea+1 ∧ ea+2), where the notation is understood modulo 3. By using index notation, one
can write, for example,

(ea ∧ eb)
µν = eµ

a eν
b − eµ

b eν
a , (15)

[∗(ea ∧ eb)]αβ =
1
2

ηαβµν(ea ∧ eb)
µν = ηαβµνeµ

a eν
b . (16)

Then, according to (A3), one obtains

i(u) ∗ (ea ∧ eb) = −e⃗a × e⃗b (17)

with i() the interior product (defined in Appendix A) and where we have taken into account (9).
For an observer u, the electric and magnetic parts of a bivector Ea are vectors in the 3-space

orthogonal to u, which are defined as

S⃗a = −i(u)Ea, B⃗a = −i(u) ∗ Ea, (18)

respectively. Then, from (17) and taking into account the identity ∗(∗Ea) = −Ea and (9), we have

S⃗a = −i(u) ∗ (ea+1 ∧ ea+2) = e⃗a+1 × e⃗a+2, (19)

B⃗a = i(u)(ea+1 ∧ ea+2) = −σa+1 e⃗a+2 + σa+2 e⃗a+1, (20)

where these equalities are understood modulo 3.
Thus, the following result is established.

Proposition 2. Relatively to an inertial observer u, the configuration 2-forms are expressed as

Ea = u ∧ S⃗a − ∗(u ∧ B⃗a), (21)

S⃗a ≡ e⃗a+1 × e⃗a+2, B⃗a ≡ ϵabcσc e⃗b, (22)

where {σa, e⃗a} are the components of the position vectors of the referred emitters.

2.4. Splitting of the Configuration Bivector H

For each emitter γA we can define a configuration bivector H(A) with respect to that emitter. In
the present work, we will define H ≡ H(4) as the configuration bivector with respect to the reference
emitter γ4:

H = ΩaEa = Ω1E1 + Ω2E2 + Ω3E3. (23)

Relatively to an inertial observer u, this bivector can be written as

H = u ∧ S⃗− ∗(u ∧ B⃗), (24)

where S⃗ = −i(u)H and B⃗ = −i(u) ∗ H are, respectively, the electric and magnetic parts of H relative
to u. Taking into account (21)-(23), S⃗ and B⃗ are given according to the following:

Proposition 3. Relatively to an inertial observer u, the electric and magnetic parts, S⃗ and B⃗, into which the
configuration bivector H is split, can be expressed as:

S⃗ = ΩaS⃗a = Ω1 (⃗e2 × e⃗3) + Ω2 (⃗e3 × e⃗1) + Ω3 (⃗e1 × e⃗2), (25)

B⃗ = Ωa B⃗a = (Ω3σ2 −Ω2σ3 )⃗e1 + (Ω1σ3 −Ω3σ1 )⃗e2 + (Ω2σ1 −Ω1σ2 )⃗e3. (26)

As was noted in [8], since the invariant Hµν(∗H)µν identically vanishes, it always occurs that
S⃗ · B⃗ = 0, which also results from (25) and (26).
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We can now express the splitting of the configuration vector χ (12) in terms of S⃗ and B⃗, which
follows from (25) and (26) by the scalar and cross product with e⃗a.

Proposition 4. Relatively to an inertial observer u, the configuration vector is expressed as χ = χ0u + χ⃗, with

χ0 =
S⃗ · e⃗a

Ωa
, χ⃗ =

σaS⃗ + e⃗a × B⃗
Ωa

, (27)

for any a = 1, 2, 3, where {σa, e⃗a} are the components of the position vectors of the referred emitters.

3. The Location Problem

The E-location problem in flat space-time has been analyzed in [7,8], especifically considering an
inertial coordinate system {xα}. The result may be expressed in a closed formula that we explain below.
The goal of this section is to separate this formula in time-like and space-like components by splitting,
relatively to an inertial observer, the quantities involved in the covariant solution to the E-location
problem.

The transformation from emission to inertial coordinates is expressed in closed form according to
the following proposition (see [7,8]):

Proposition 5. Let γA(τ
A) be the world-lines of four arbitrary emitters of a RPS with respect to an inertial

coordinate system {xα}, and let {τA} be their emission coordinates. The coordinate transformation x = K(τA)

between emission and inertial coordinates is given by

x = γ4 + y∗ + λχ, (28)

y∗ =
1

ξ · χ i(ξ)H, λ = − y2
∗

(y∗ · χ) + ϵ̂
√

∆
, ∆ = (y∗ · χ)2 − y2

∗χ
2, (29)

where ξ is any vector satisfying the transversality condition ξ · χ ̸= 0, ϵ̂ the orientation of the positioning system
at x, which is given by ϵ̂ = sgn[∗(m1 ∧m2 ∧m3 ∧m4)], χ the configuration vector and H the configuration
bivector.

As set out in [7], the null propagation equations (1) can be expressed with respect to the reference
emitter and be separated into a quadratic equation

y2 = 0, (30)

and a system of three linear equations

ea · y = Ωa, a = 1, 2, 3. (31)

The quantity y∗ is the particular solution to the system (31). Note that ξ · y∗ = 0 and that y∗ is directly
computable from the sole standard emission data, since χ and H are determined by the vectors ea

given by Eq. (3).
Further, the consistence of the above definition of λ is assured. Since the vectors {y∗, χ} and

{m4, χ} generate the same 2-plane, one has that sgn (∆) = sgn [(χ ·m4)
2], and then ∆ ⩾ 0.

As was noticed in [8], ∆ is the scalar invariant of H defined by f ≡ 1
2 trH2,

∆ = f = −1
2

HµνHµν, (32)

and may be directly computed from H.
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3.1. Splitting of the Particular Solution y∗
In this subsection, we carry out the relative decomposition of the particular solution y∗ appearing

in Eq. (28). From Eq. (29), the splitting of y∗ is obtained by splitting the vector i(ξ)H. To begin with,
notice that the transversal vector ξ can be always chosen so that its time-like component, ξ0, is equal to
one, ξ0 = −ξ · u = 1, that is

ξ = u + ξ⃗. (33)

Thus, the transversality condition says that χ0 ̸= ξ⃗ · χ⃗ and from Proposition 1 this other result follows.

Proposition 6. Relatively to an inertial observer u, the transversality condition, ξ · χ ̸= 0, is expressed as

(⃗e1, e⃗2, e⃗3) ̸=
1
2

ϵabcσa (ξ⃗, e⃗b, e⃗c). (34)

Then, from (33) and (24), we have

i(ξ)H = −S⃗− (ξ⃗ · S⃗)u + ∗(ξ ∧ u ∧ B⃗) = −(ξ⃗ · S⃗)u− S⃗− ξ⃗ × B⃗

and the following statement holds.

Proposition 7. Relatively to an inertial observer u, the particular solution y∗ orthogonal to ξ = u + ξ⃗ is
expressed as

y∗ = y0
∗ u + y⃗∗, (35)

where

y0
∗ = −

ξ⃗ · S⃗
D

, y⃗∗ = −
S⃗ + ξ⃗ × B⃗

D
, (36)

with the transversality condition expressed as

D ≡ ξ · χ = ξ⃗ · χ⃗− (⃗e1, e⃗2, e⃗3) ̸= 0. (37)

The vectors χ⃗, S⃗ and B⃗ are obtained from the positioning data using Eqs. (12), (25) and (26).

3.2. Splitting of the Covariant Solution x

Eq. (28) gives the solution x for the E-location problem provided that y∗ and ϵ̂ are obtained from
a standard set of data E ≡ {γA(τ

A), {τA}}. Relatively to an inertial observer u, the solution x is split
as x = tu + x⃗, with:

t = t4 + y0
∗ + λχ0, x⃗ = γ⃗4 + y⃗∗ + λχ⃗. (38)

In fact, according to Eq. (28), the determination of the scalar λ involves both y∗ (given by (29)) and ϵ̂.
Propositions 1 and 3 provide, respectively, the inertial components of χ and H in terms of the data.
Proposition 7 allows to determine y∗ = {y0

∗, y⃗∗}. The invariant ∆ can be computed from (24) and (32)
to see that it has a clear geometric meaning according to the following:

Proposition 8. Relatively to an inertial observer u, H splits in electric ( S⃗ ) and magnetic ( B⃗ ) parts, so that
the invariant ∆ is expressed as

∆ = S⃗2 − B⃗2. (39)

According to this proposition, the user knows when it is crossing the region where ∆ = 0 (44),
namely, when S⃗ and B⃗ are equimodular. In this region, the user can still locate itself using Proposition
5.
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Then, we can obtain λ,

λ = − −(y0
∗)

2 + y⃗ 2
∗

(−y0∗χ0 + y⃗∗ · χ⃗) + ϵ̂
√

S⃗2 − B⃗2
. (40)

Notice that to make this expression for λ operative one needs to determine the orientation ϵ̂,
whose very definition (see Proposition 5) involves the unknown x. Therefore, the covariant solution of
the standard location problem, given by (28), has to be accompanied with a method for obtaining ϵ̂

which does not involve the previous calculation of x.
This question was discussed in [7] showing that in the central region of the positioning system

(the space-time region of all x ∈ R such that χ2 ≤ 0, see section 3.3 below) the orientation ϵ̂ is constant
and can be obtained as ϵ̂ = sgn(u · χ) for any future pointing time-like vector u. In particular, if u is an
inertial observer,

ϵ̂ = −sgn(χ0) = −sgn[(⃗e1, e⃗2, e⃗3)]. (41)

Note that from (12) and (27):

(⃗e1, e⃗2, e⃗3) =
S⃗ · e⃗a

Ωa
, for any a = 1, 2, 3, (42)

and therefore, since Ωa > 0,
ϵ̂ = −sgn(S⃗ · e⃗a). (43)

Thus, we arrive at the following result.

Proposition 9. On the central region of a RPS, the orientation ϵ̂ is +1 or −1 if S⃗ · e⃗a (a = 1, 2, 3) is,
respectively, negative or positive.

The determination of ϵ̂ from a set of observational data as well as its connection with the solution
to the bifurcation problem (outside the central region) have been analyzed elsewhere [7,8], showing
that the applicability of Proposition 5 has no strings attached. A brief account of the bifurcation
problem follows.

3.3. Emission Coordinate Domains and Bifurcation Problem

Equation (28) is the coordinate transformation from emission to inertial coordinates, xα = Kα(τA).
The inverse transformation Θ, mapping to every x its emission coordinates, τA = ΘA(x), is known as
the characteristic emission function. As shown in [8], if jΘ(x) is the jacobian determinant of Θ,

jΘ(x) = 0 iff ∆ = 0. (44)

This property defines two different emission coordinate systems: the front emission coordinate system and
the back emission coordinate system. As far as we remain in space-time regions where light signals do not
bifurcate, the way emission coordinates are created by the relativistic positioning system imposes that
the coordinate domains in space-time, of the front and of the back emission coordinate systems, are
disjoint.

In addition, these coordinate domains are related by the following property: all of the values of
the emission coordinates {τA} on the back emission coordinate domain are also values of the emission
coordinates on a (generically proper) set of the front emission coordinate domain, which is called the
time-like front region; the complementary set (in the front emission coordinate domain) of this time-like
front region is called the central region of the relativistic positioning system [7,8].

This coincidence of values, of the emission coordinates in the back coordinate domain and in the
time-like front coordinate domain, is at the origin of the bifurcation problem: how can the users of the
relativistic positioning system know in which of the two coordinate domains of space-time they are?
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To answer this question the user needs to compute the causal character of the emitter configuration
(at x): it is said to be space-like, light-like or time-like if χ2 < 0, χ2 = 0 or χ2 > 0, respectively, at x.
The regions defined by these conditions are respectively denoted as Cs, Cl and Ct. The central region is
C = Cs ∪ Cl . The time-like front region CF

t and the central region form the front emission coordinate
domain. The back emission coordinate domain is the time-like back region CB

t .
Therefore, depending on the causal character of the configuration vector χ, we distinguish three

situations (see Figures 3–5 in [8]):

1. If χ is time-like, there is only one emission solution P, the other (P′) is a reception solution. In
this case, the sign of ϵ̂ can be determined from the sole standard emission data {γA(τ

A), {τA}}
(see Proposition 9).

2. If χ is light-like, there is only one valid emission solution (the other solution is degenerate). The
sign of ϵ̂ can be determined from {γA(τ

A), {τA}} (see Proposition 9).
3. If χ is space-like, there are two valid emission solutions: in order to determine the sign of ϵ̂,

additional observational information is necessary (relative positions of emitters on the user’s
celestial sphere, see [8]).

4. Kleusberg’s Solution

In GNSS the pseudoranges are modelled considering the emitters’ positions at signal emission,
user and emitter clock biases and different corrections affecting signal propagation [29,30]. The
pseudorange equations are first linearized around an approximate position and then solved by iterative
methods. The user’s approximate position is usually obtained using analytic (closed-form) solutions of
the equations (neglecting emitter clock biases and signal propagation corrections), where the unknowns
are the user’s coordinates and clock bias with respect to a certain reference frame and reference time.
In this section we see how the relative formulation of the characteristic quantities of a RPS allows to
interpret Kleusberg’s analytical solution to the GPS navigation equations [3].

4.1. Concepts and Notation

In [3] the starting point are the measured pseudoranges between the satellites and the user. The
pseudoranges pA are modelled as follows (taking the speed of light c = 1):

pA = [(x− xA)
2 + (y− yA)

2 + (z− zA)
2]

1
2 + dT, (45)

where {xA, yA, zA} are the Cartesian coordinates of the A-th satellite (A = 1, 2, 3, 4) at the time tA of
emission, {x, y, z} those of the user at the time t of reception and dT the user’s clock bias, defined as
the difference between the user’s clock time and the so-called GPS time.

Assuming that the bias dT is the same for all the satellites, it can be removed by subtracting one
reference pseudorange (p4) from the other three: da := pa − p4, a = 1, 2, 3. In the covariant solution,
this difference can be identified with σa := ta − t4:

da ←→ σa.

Kleusberg denotes the Euclidean positions of the three emitters with respect to the reference
emitter as ba êa and the user’s position vector from the reference emitter as s0ê, where êa and ê are unit
vectors. In the covariant solution, the position four-vector ea of the a-th emitter with respect to the
reference emitter is decomposed relatively to the inertial observer u as ea = σau + e⃗a and therefore:

ba ←→ |⃗ea|.

These and other correspondences are summarized in Table 1, including the electric and magnetic
parts of the configuration bivector H.
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Table 1. Identifying Kleusberg’s notation and concepts with the time-like and space-like components
of those of the RPS solution. In the last row, µ = 1 (µ = −1) stands for emission (reception) solutions.

Kleusberg RPS
pseudorange difference da σa coordinate time difference

emitter distance
to reference emitter ba |⃗ea|

emitter distance
to reference emitter

unit vector from reference
emitter to emitter a êa

e⃗a
|⃗ea |

unit vector from reference
emitter to emitter a

user distance
to emitter a sa |m⃗a|

user distance
to emitter a

user distance
to reference emitter s0 |⃗y| user distance

to reference emitter
unit vector from

reference emitter to user ê y⃗
|⃗y|

unit vector from
reference emitter to user

semi-difference 1
2 (b

2
a − d2

a) Ωa world-function scalar

three-vector G⃗ S⃗
4Ω1Ω2Ω3

electric part of
configuration bivector H

three-vector H⃗ B⃗
µ4Ω1Ω2Ω3

magnetic part of
configuration bivector H

With these correspondences we can explain Kleusberg’s procedure in the RPS notation. The
starting point are the following equations, which result from (6), (8) and (9) (see Figure 1b):

e⃗a = γ⃗a − γ⃗4 = m⃗4 − m⃗a = y⃗− m⃗a, a = 1, 2, 3,

implying that:
m⃗2

a = (⃗y− e⃗a)
2 = y⃗ 2 + e⃗ 2

a − 2⃗y · e⃗a. (46)

Furthermore, from (8) as y = m4 is light-like:

−(y0)2 + y⃗ 2 = 0. (47)

This equation is solved by taking y0 = µ|⃗y|, where µ can take the values ±1, with µ = 1 (µ = −1) for
emission (reception) solutions.

Also from (3) and (8) we have (see Figure 1a):

ma = m4 − ea =y− ea,

and then:
−(y0 − σa)

2 + (⃗y− e⃗a)
2 = 0, a = 1, 2, 3. (48)

Therefore:
m⃗2

a = (y0 − σa)
2 = (µ|⃗y| − σa)

2, a = 1, 2, 3, (49)

where in the last equality we have used y0 = µ|⃗y|.
Expanding (49):

m⃗2
a = y⃗ 2 + σ2

a − 2µ|⃗y|σa, a = 1, 2, 3. (50)

Equating (46) and (50), we obtain the equations solved by Kleusberg using the same notation as
in the covariant solution:

−µ|⃗y|σa + y⃗ · e⃗a = Ωa, (51)
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where we have taken into account (4). Then,

|⃗y| = Ωa

−µσa + ê · e⃗a
, a = 1, 2, 3, (52)

where we have used Kleusberg’s notation ê = y⃗
|⃗y| to simplify the expression. Note that the sign µ,

giving the emission or reception character of the solution, has to be maintained for further discussion,
even if such distinction is not made in Kleusberg’s procedure.

4.2. Kleusberg’s Procedure to Obtain the Solution

Kleusberg’s procedure yields y⃗ = |⃗y|ê and therefore involves two steps: first, one obtains ê and
then, |⃗y|, by substituting ê in (52).

In order to solve the system of equations (51), Kleusberg equates the right hand sides of the first
and second of the equations in (52), and of the second and third, to obtain the following equations:

Ωa

−µσa + ê · e⃗a
=

Ωa+1

−µσa+1 + ê · e⃗a+1
, a = 1, 2. (53)

He rearranges each of these equations to obtain:[
e⃗1

Ω1
− e⃗2

Ω2

]
· ê = µ

(
σ1

Ω1
− σ2

Ω2

)
, (54)[

e⃗2

Ω2
− e⃗3

Ω3

]
· ê = µ

(
σ2

Ω2
− σ3

Ω3

)
. (55)

And rewrites these equations as:

F⃗1 · ê = U1, F⃗2 · ê = U2, (56)

F⃗a ≡
e⃗a

Ωa
− e⃗a+1

Ωa+1
, Ua ≡ µ

(
σa

Ωa
− σa+1

Ωa+1

)
, a = 1, 2. (57)

To solve them, Kleusberg starts with the following identity expanding the double cross product:

ê× (F⃗1 × F⃗2) = µ(U2 F⃗1 −U1 F⃗2), (58)

and defines two three-vectors:

G⃗ ≡ F⃗1 × F⃗2, H⃗ ≡ µ
(

U2 F⃗1 −U1 F⃗2

)
. (59)

As results from (25) and (26), these vectors are directly related to the vectors S⃗ and B⃗ in which the
configuration bivector H of the covariant method is split with respect to the inertial observer u (see
Table 1).

Proposition 10. The electric and magnetic parts, S⃗ and B⃗, in which the bivector H is split relatively to an
inertial observer u, can be expressed as:

S⃗ = 4Ω1Ω2Ω3G⃗, B⃗ = µ4Ω1Ω2Ω3H⃗, (60)

with G⃗ and H⃗ given in (59) and where µ = 1 (µ = −1) corresponds to emission (reception) solutions.

Now Equation (58) is written as:

ê× S⃗ = µB⃗, (61)
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or equivalently, multiplying by S⃗ (cross product) from the left:

S⃗× (ê× S⃗) = µS⃗× B⃗. (62)

Expanding the vector triple product on the left hand side:

S⃗2ê− (S⃗ · ê)S⃗ = µS⃗× B⃗. (63)

Furthemore, since:
S⃗ · ê = |S⃗| cos ϕ, (64)

where ϕ ∈ [0, π] is the angle formed by {S⃗, y⃗}. And from (61):

|B⃗| = |S⃗| sin ϕ. (65)

Therefore, when ϕ = π
2 , S⃗ and B⃗ are equimodular. Squaring (64) and (65) and adding:

(
S⃗ · ê

)2
+ B⃗2 = S⃗2 ⇔ S⃗ · ê = ±

√
S⃗2 − B⃗2. (66)

Note that in this step an extra solution has been introduced and that both solutions have the same
emission or reception character. Substituing (66) in (63) we arrive at the following result:

Proposition 11. The unit vector ê = y⃗
|⃗y| , giving the direction from the reference emitter to the user’s position,

can be expressed only in terms of the electric and magnetic parts of the bivector H as follows:

ê = |S⃗|−2
[

µS⃗× B⃗± S⃗
√

S⃗2 − B⃗2
]

, (67)

where µ = 1 (µ = −1) corresponds to emission (reception) solutions.

To obtain |⃗y|, Equation (67) is substituted in any of the equations in (52).

Proposition 12. Using the same notation as in the covariant solution relatively to an inertial observer u,
Kleusberg’s solution y⃗K is expressed as:

y⃗K = |⃗y| ê = Ωa
S⃗× B⃗± µS⃗

√
S⃗2 − B⃗2

−S⃗2σa + (S⃗× B⃗) · e⃗a ± µS⃗ · e⃗a

√
S⃗2 − B⃗2

, (68)

for any a = 1, 2, 3.

4.3. Recovering Kleusberg’s from the Covariant Solution

We can compare Equations (51) with those solved in the covariant method (Eqs. 30 and 31),
written with respect to u:

ea · y = Ωa ⇒ −y0 σa + y⃗ · e⃗a = Ωa, a = 1, 2, 3, (69)

and
y2 = 0⇒ (y0)2 = y⃗ 2, (70)

where we have used y = y0 u + y⃗ and ea = σa u + e⃗a.
Comparing equations (51), (69) and (70), we realize that, in contrast to the covariant method,

where first the linear system (69) and then the quadratic equation (70) are solved (the initial system
of equations is split into a linear system and a single quadratic equation), Kleusberg directly solves
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the quadratic equation. Equation (51) is equivalent to (69) but including the quadratic condition (70),
specifically y0 = µ|⃗y| .

To recover Equation (68) from the covariant solution (28), let us first split the covariant solution y
relatively to the inertial observer u as y = y0u + y⃗,

y0 = y0
∗ + λχ0, y⃗ = y⃗∗ + λχ⃗, (71)

where y0 and y⃗∗ are given by (36), λ by (40) and χ0 and χ⃗ by (12).
Note that the particular solution y∗ and, by extension, λ, depend on the choice of the transversal

vector ξ. Therefore, we expect to recover (68) with a suitable choice of ξ. As long as the transversality
condition (34) is satisfied, we can choose ξ of the form ξ = u + ξ⃗. We start by writing a general
expression for ξ⃗ as

ξ⃗ = aS⃗ + bB⃗ + cS⃗× B⃗, (72)

with {a, b, c} real scalars. Kleusberg’s solution (68) is equivalent to the covariant solution with respect
to the inertial observer (71) if we take a = ± 1√

∆
and c = 0 in (72):

ξ⃗ = ± S⃗√
∆
+ bB⃗, (73)

with b a real scalar. With this choice of ξ, it is easy to see from (36) that y∗ is light-like and, from (40),
λ = 0, so that y⃗ = y⃗∗. Then, the following result is established:

Proposition 13. Setting the transversal vector ξ = u + ξ⃗, with ξ⃗ = ± S⃗√
∆
+ bB⃗ and b a real scalar, the

covariant solution y obtained with this choice of ξ is split relatively to the inertial observer as y = y0u + y⃗,
where:

y0 = Ωa
S⃗2

−S⃗2σa + (S⃗× B⃗) · e⃗a ± S⃗ · e⃗a

√
S⃗2 − B⃗2

,

y⃗ = Ωa
S⃗× B⃗± S⃗

√
S⃗2 − B⃗2

−S⃗2σa + (S⃗× B⃗) · e⃗a ± S⃗ · e⃗a

√
S⃗2 − B⃗2

,

(74)

for any a = 1, 2, 3. The space-like component y⃗ is Kleusberg’s solution (68).

5. Covariant Solution in Terms of the Principal Directions of H

The covariant solution (28) can also be expressed in terms of the principal directions (eigenvectors)
of H. In general, a two-form, such as H, may be algebraically decomposed in terms of its principal
directions through its scalar invariants (see [31,32]). We say that a two-form F is regular if it has at
least one non-zero scalar invariant and can therefore be decomposed as:

F = α n ∧ l + β ∗ (n ∧ l), (75)

with {α, β} real scalars and n and l the principal directions of F, which are light-like and satisfy
l · n = −1. These are the eigenvectors of F with respective eigenvalues α and −α (they are also the
eigenvectors of ∗F with respective eigenvalues −β and β).

If f = − 1
2 FµνFµν and f̃ ≡ 1

2 Fµν(∗F)µν are the usual scalar invariants, the eigenvalues are related
to the invariants as follows:

α =
1√
2

√√
f 2 + f̃ 2 + f , β =

1√
2

√√
f 2 + f̃ 2 − f . (76)
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As it was noticed in [8], in the case of the bivector H, since the invariant f̃ = Hµν(∗H)µν = 0, it
follows from (76) that β = 0. Then, from (75), it can be decomposed as:

H = α n ∧ l, (77)

with α =
√

∆, which follows from (32) and (76). Note that, from (44), there is a region where ∆ = 0
and thus α = 0. But this does not mean that H = 0, rather that H is singular (α = β = 0) in that region.

5.1. Principal Directions of H Covariant Determination

According to [31,32], the principal directions of a regular H (α = 0) can be obtained in covariant
form from its minimal polynomial. Since the eigenvalue β = 0, the minimal polynomial p(κ) of H is:

p(κ) = (κ + α)(κ − α)κ. (78)

For each of the eigenvalues ±α, we can construct a polynomial p±(κ):

p+(κ) = (κ − α)−1 p(κ), p−(κ) = (κ + α)−1 p(κ). (79)

And define the projectors:

H+ ≡ p+(H) = H2 + αH, (80)

H− ≡ p−(H) = H2 − αH. (81)

Since p(H) = H3 − α2H = 0, it is then easy to verify that the principal directions n and l are obtained
by contracting an arbitrary time-like direction v with these projectors:

n = i(v)H+, l = i(v)H−, (82)

and normalising such that n · l = −1. Now we can express the covariant solution of the location
problem in terms of l and n, which are computable from the standard data E using (80)-(82).

Proposition 14. In regions where ∆ ̸= 0, each of the two solutions, y+ and y−, included in the general solution
y to the location problem (28), can also be expressed as:

y+ =
αn

χ · n , y− = − αl
χ · l , (83)

where n and l are the principal directions of H, which are known from (82), α =
√

1
2 trH2 and χ the configuration

vector (11).

In order to analyse the cases in which the denominators in (83) vanish, first note that we can
form a basis of Minkowski space-time {l, n, p, q} with the principal directions l and n and with two
orthogonal space-like directions p and q, where

l2 = n2 = 0, l · n = −1, p2 = q2 = 1,

l · p = l · q = n · p = n · q = p · q = 0.

We can express the configuration vector χ in this basis as:

χ = a l + b n + c p + d q, (84)
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with {a, b, c, d} real scalars. From (11) and (23) it follows that:

i(χ) ∗ H = 0. (85)

Since H = αn ∧ l (β = 0), it follows that ∗H = hp ∧ q (with h a real scalar) and thus

i(χ) ∗ H = h i(χ)(p⊗ q− q⊗ p) = h(χ · p)q− h(χ · q)p = 0.

Therefore, c = χ · p = 0 and d = χ · q = 0, so that χ is a linear combination of l and n:

χ = a l + b n. (86)

5.2. Emission Coordinate Domains and Bifurcation Problem

With this expression of χ, we can analyse the denominators in (83). This discussion is directly
related to the causal character of χ, which in turn determines the number of valid emission solutions
(see Section 3).

1. If χ is time-like, there is only one emission solution, the other is a reception solution. Explicitly
using (86):

χ2 = (a l + b n)2 = −2ab < 0. (87)

Therefore, sgn(a) = sgn(b) ̸= 0. Since a = −χ · n and b = −χ · l, it follows that the denominators
in (83) do not vanish in this case. Furthermore, since n and l are both future oriented and α > 0,
y+ and y− have different orientation, one being an emission and the other a reception solution. If
χ is future (past) oriented, then y− (y+) is the valid emission solution.

2. If χ is light-like, there is only one valid emission solution (the other solution is degenerate).
Again, using (86):

χ2 = (a l + b n)2 = −2ab = 0. (88)

Therefore, a = 0 or b = 0, so that χ is collinear with n or l and one of the solutions, y+ or y−, is
degenerate, the other being an emission solution. If χ is future (past) oriented, then y− (y+) is the
valid emission solution.

3. If χ is space-like, there are two valid solutions. Using (86):

χ2 = (al + bn)2 = −2ab > 0. (89)

Therefore, sgn(a) = −sgn(b) ̸= 0 and the denominators in (83) do not vanish in this case. Since
n and l are both future oriented and α > 0, y+ and y− are both emission solutions if χ · n > 0 or
χ · l < 0.

5.3. User Location in the Region Where jΘ(x) = 0

As said earlier, there is a region in which α = 0 and then, since β = 0, H is a singular two-form.
In this case, H can be decomposed as:

H = k ∧ p, (90)

where k is the fundamental direction, which is light-like and satisfies i(k)H = i(k) ∗ H = 0 and p is a
space-like vector such that k · p = 0. Note that p can be determined up to a transformation p→ p + ωk
(with ω a real scalar). To obtain the fundamental direction k one constructs the projectorH0 by setting
α = 0 in (80) or (81):

H0 = H2 (91)
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and contracts an arbitrary time-like direction v with it:

k = i(v)H0. (92)

In this case, the only solution to the location problem is found according to the following result.

Proposition 15. In the region where ∆ = 0, the solution y0 to the location problem (28) can also be expressed
as:

y0 = Ωa
k

k · ea
, (a = 1, 2, 3), (93)

where k is the fundamental direction of H, which is known from (92), ea the position vector of the a-th emitter
with respect to the reference emitter (3) and Ωa the world function scalar (4).

Note that, from (11) and (23), i(ea)H = −Ωaχ. Furthermore, as was stated in [8], the region where
∆ = 0 is a subregion of the time-like region Ct, so that χ2 > 0 in this region. Therefore, (i(ea)H)2 ̸= 0.
Explicitly, using (90):

i(ea)H = −Ωa[(k · ea)p− (p · ea)k]. (94)

Squaring:

(i(ea)H)2 = Ω2
a(k · ea)

2 ̸= 0. (95)

Hence, the denominator in (93) does not vanish in this region.

5.4. Splitting of the Covariant Solution in Terms of l and n

We can split the principal directions of H relatively to an inertial observer u by posing the
eigenvalue equations

i(n)H = αn, i(l)H = −αl, (96)

and expressing H relatively to u according to (24) and n and l as:

n = n0 u + n⃗, l = l0 u + l⃗. (97)

Expanding the left hand side of (96) using (24), (97) and (A3):

i(n)H = i(n)(u ∧ S⃗)− i(n) ∗ (u ∧ B⃗) = (−n⃗ · S⃗)u− (n0S⃗ + n⃗× B⃗). (98)

Expanding the right hand side of (96) using (97):

i(n)H = αn0u + α⃗n, (99)

and equaling (98) and (99), yields the following equations for the time-like and space-like components
of the principal direction n:

n⃗ · S⃗ = −αn0, n0S⃗ + n⃗× B⃗ = −α⃗n. (100)
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Similarly, the second eigenvalue equation in (96) leads to the following equations for the time-like
and space-like components of the principal direction l:

l⃗ · S⃗ = αl0, l0S⃗ + l⃗ × B⃗ = α⃗l. (101)

The solution of Eqs. (100)-(101) yields the following result.

Proposition 16. In each coordinate domain of a RPS, the bivector H is a regular two-form that can be
algebraically decomposed as H = α n ∧ l, where n and l are the prinicipal directions, which are light-like
eigenvectors of H with eigenvalues α and −α, satisfying n · l = −1. Relatively to an inertial observer u, the
principal directions are split as n = n0u + n⃗ and l = l0u + l⃗, where:

n0 =
S⃗2

M
, n⃗ =

−αS⃗ + S⃗× B⃗
M

, (102)

l0 =
S⃗2

M
, l⃗ =

αS⃗ + S⃗× B⃗
M

, (103)

with M =
√

2α|S⃗| and α =
√

S⃗2 − B⃗2.

Then, the alternative expression of the covariant solution given in Proposition 15 may be split
according to the following Proposition.

Proposition 17. Relatively to an inertial observer u, the covariant solutions y+ and y− for the E-location
problem given in (83) are split as y+ = y0

+u + y⃗+ and y− = y0
−u + y⃗−, with

y0
+ = Nn0, y⃗+ = Nn⃗, N =

α

χ · n , (104)

y0
− = −Ll0 y⃗− = −L⃗l, L =

α

χ · l , (105)

where {n0, n⃗} and {l0, l⃗} are given by (102) and (103), respectively.

Using Proposition 17, it is easy to verify that each of the solutions included in (68), depending on
the sign of the square-root term, are y⃗+ and y⃗− given in (104)-(105).

Proposition 18. The covariant solutions y± are split relatively to the inertial observer as
y± = y0

±u + y⃗±, where y0
± and y⃗± are given by (74). The space-like component y⃗± is Kleusberg’s solution (68).

6. Discussion and Comments

Users of Global Navigation Satellite Systems, such as GPS and Galileo, locate themselves by
solving the navigation equations through iterative methods around an initial approximate position.
This initial estimation is usually obtained solving a simplified version of the equations (neglecting
gravitational, atomospheric and instrumental effects) analytically. These closed-form solutions are
either based on pseudoranges or on pseudorange differences. In [14] one known analytical solution
based on pseudoranges, Bancroft’s solution [1], was interpreted in the language of RPS.

In this paper we have analysed, from the perspective of the theory of RPS, another known closed-
form solution based on pseudorange differences, Kleusberg’s solution [3]. We have first formulated
the theory of RPS in the framework of an inertial coordinate system. To this end, the quantities that are
related to the configuration of the emitters, such as the configuration vector χ and the bivector H, have
been split in time-like and space-like components. This formulation of the theory has allowed us to
interpret and express Kleusberg’s solution to the pseudorange navigation equations in terms of these
quantities.
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Furthermore, a new expression of the covariant solution to the standard location problem has
been given in terms of the principal directions (eigenvectors) of H and its only non-vanining scalar
invariant, and the procedure to obtain these eigenvectors in covariant form [31,32] has been applied.
A brief analysis of the solutions based on the causal character of the emitter configuration has been
provided for this alternative expression of the covariant solution.

Kleusberg’s solution has been recovered from the space-like component of the covariant solution,
both from its original expression and from the alternative expression given in terms of the principal
directions of the bivector H.

This manuscript aims to contribute to the development of RPS theory in a specific direction: the
3 + 1 splitting, relatively to an inertial observer, of the general transformation from emission to inertial
coordinates in flat space-time. But RPS theory [11] was conceived as a primordial element to provide
current GNSS with a true relativistic conception, founded exclusively on Relativity Theory. Moreover,
since a RPS can be constructed without any information about the gravitational field [33], it allows to
carry out relativistic gravimetry [34,35] in the unknown space-time domain where it operates, being an
essential element of a true relativistic laboratory (see Ref. [9,10] for a deep discussion of these ideas).
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Appendix A. Notation

The main sign convections and notation we adopt in this paper are:
(i) g is the Minkowski space-time metric, with signature taken as (−,+,+,+). We use units in

which the speed of light in vacuum is c = 1.
(ii) η is the metric volume element of g, defined by ηαβγδ = −

√
−det g ϵαβγδ, where ϵαβγδ stands

for the Levi-Civita permutation symbol, ϵ0123 = 1. The Hodge dual operator associated to η is denoted
by an asterisk ∗.

For instance, and using index notation, if x, y, z are space-time vectors, one has

[∗(x ∧ y ∧ z)]α = ηαβγδxβyγzδ. (A1)

where ∧ stands for the wedge or exterior product (antisymmetrized tensorial product of antisymmetric
tensors).

(iii) i() denotes the interior or contracted product, that is, i(x)T denotes the contraction of a vector
x and the first slot of a tensor T. Thus, for a covariant 2-tensor, [i(x)T]ν = xµTµν.

(iv) For an observer of unit velocity u, (u2 = g(u, u) = −1), the vector x splits as:

x = x0u + x⊥ (A2)

where x0 = −g(x, u) ≡ −x · u and x⊥ = x⃗ is orthogonal to u, g(u, x⊥) = 0. We will use the
notation x = (x0, x⃗), where x0 and x⊥(∈ E⊥) are the time-like and space-like components x relative
to u, respectively and E⊥ is the space orthogonal to u. E⊥ has induced volume element given by
η⊥ ≡ −i(u)η, that is, (η⊥)βγδ = −uαηαβγδ.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2024                   doi:10.20944/preprints202406.0351.v1

https://doi.org/10.20944/preprints202406.0351.v1


19 of 20

(v) For vectors x⃗, y⃗ ∈ E⊥, the vector or cross product is expressed as

x⃗× y⃗ = ∗(u ∧ x⃗ ∧ y⃗), (A3)

and, if z⃗ ∈ E⊥, the scalar triple product (x⃗× y⃗) · z⃗ ≡ (x⃗, y⃗, z⃗) is then given by

(x⃗, y⃗, z⃗) u = ∗(x⃗ ∧ y⃗ ∧ z⃗). (A4)
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