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Abstract: Beneficial microbes are crucial for improving crop adaptation and growth under various
stresses. They enhance nutrient uptake, improve plant immune responses, and help plants tolerate
stresses like drought, salinity, and heat. The yield potential of any crop is significantly influenced
by its associated microbiomes and their potential to improve growth under different stressful
environments. Therefore, it's crucial and exciting to understand the mechanisms of plant-microbe
interactions. Maize (Zea mays L.) is one of the primary staple foods worldwide, in addition to wheat
and rice. Maize is also an industrial crop globally, contributing 83% of its production for use in feed,
starch, and biofuel industries. Maize requires significant nitrogen fertilization to achieve optimal
growth and yield. Maize plants are highly susceptible to heat, salinity, and drought stresses and
require innovative methods to mitigate the harmful effects of environmental stresses and reduce the
use of chemical fertilizers. This review summarizes our current understanding of the beneficial
interactions between maize plants and specific microbes. These beneficial microbes improve plant
resilience to stress and increase productivity. For example, they regulate electron transport,
downregulate catalase, and upregulate antioxidants. We also review the roles of plant growth
promoting rhizobacteria (PGPR) enhancing stress tolerance in maize. Additionally, we explore the
application of these microbes in maize production and identify major knowledge gaps that need to
be addressed to utilize the potential of beneficial microbes fully.

Keywords: abiotic and biotic stress; beneficial microbes; stress tolerance; maize; plant growth-
promoting rhizobacteria (PGPR); AMF; mycorrhiza

1. Introduction

Maize (Zea mays L.), alongside wheat and rice, stands as one of the primary staple foods
worldwide, boasting a global production of 1147.7 million metric tons in 2020 [1]. Maize has risen to
prominence as an industrial crop on a global scale, with 83% of its production allocated for use in
feed, starch, and biofuel industries. Among the 125 developing countries, approximately 75 consider
maize a staple crop, contributing to 70% of the world's maize production originating from these
nations [2]. Maize is a nitrogen-hungry crop requiring a significant amount of nitrogen fertilization
to achieve optimal growth and yield, particularly during its vegetative and early reproductive stages,
which are more sensitive to nitrogen requirements. Inadequate nitrogen supply during these phases
limits plant development, reduces photosynthetic efficiency, and ultimately decreases the grain yield
[3,4]. Moreover, maize crops are extremely susceptible to heat, salinity, and drought stresses. Global
maize yield is projected to decline by 20-40% under a 2°C warming scenario and by 40-60% under a
4°C warming scenario [5]. The variability in global maize production between 1980 and 2013 can be
attributed to heat stress and drought [5]. Salinity stress further exacerbates challenges by decreasing
the germination rate in maize. It causes osmotic stress, inhibiting water uptake by seeds delaying
germination [6]. In salinity stress, the accumulation of Na*competes with K*, leading to inhibition of
protein synthesis [7]. This stress causes ionic toxicity, reactive oxygen species (ROS) generation, and
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osmotic stress [8]. In addition to abiotic stresses, between 6% to 19% of maize production worldwide
is lost annually due to damage caused by insects and other herbivores. The primary pests of maize
are Leaf aphids (Rhopalosiphum maidis), thrips (Frankliniella williamsi) [9], fall armyworm (Spodoptera
frugiperda), black cutworms (Agrotis ipsilon), cotton bollworm (Helicoverpa armigera), corn earworm
(Helicoverpa zea) [10] stalk borer (Elasmopalpus lignosellus) and armyworm (Spodoptera spp.).

Plant microbiomes are microorganisms that live in and around plant, forming a complex
microbial ecosystem and can play a significant role in plant growth and development. These
microbiomes includes bacteria, fungi, nematodes, archaea and viruses that inhabits at different parts
of plants. These parts include rhizosphere (soil surrounding roots), phyllosphere (above-ground
parts like leaves and stems), endosphere (internal tissue) and spermosphere (seed surfaces) [11,12].
Beneficial plant-microbial interactions significantly affect plant’s growth and development and
mitigate environmental stresses [13,14]. Plants are intimately associated with microbes for their
growth and survival; they play a significant role in plant nutrient availability and uptake and plant
stress tolerance [15]. Studies reported the presence of plant growth-promoting rhizobacteria from the
native plant Ceanothus velutinus, which contains several rhizobacteria possessing plant growth-promoting
traits such as the production of IAA, siderophore, protease, catalase, ability to fix nitrogen, and phosphate
solubilization [16]. Moreover, inoculating native soil from the Ceanothus velutinus to the propagation
mix enhanced the cutting propagation, and IAA-producing isolates from the rhizosphere promote
Arabidopsis growth [17]. Thus, exploring plant microbiomes to improve the maize yield and help it
withstand different biotic and abiotic stresses is crucial. This review focuses on the beneficial plant-
microbe interactions in maize to enhance yield and mitigate environmental stresses.

2. Abiotic Stresses and Their Impact on Crop Productivity

To meet high consumptive demand of maize they are often grown in arid locations where maize
may experience drought-related stress. Maize life cycle has various distinct growth stages, including
seedling emergence and development, vegetative growth, flowering and pollination, grain filling,
and maturation. Drought and high temperatures can negatively impact maize crops throughout these
growth stages, with the most significant effects at vegetative and during grain filling stage and when
plants reach the 8th leaf stage [18]. In regions where water is scarce during the growing season, maize
production may decline by up to 15% [19]. In China's key maize-producing areas, approximately 60%
of crops face water and heat stress, leading to a 30% reduction in annual yield [20]. However, the
most alarming prospect is the future. With the ongoing climate change and global shifting weather
patterns, water, and heat stress are projected to diminish the global maize supply by 15-20%, annually
[18]. Elevated temperatures exceeding 35°C can impede maize crop’s reproductive and vegetative
growth, from seed germination to grain filling, the final stage [21]. Concurrently, when maize faces
water and heat stress during its reproductive phases, it becomes even more vulnerable [22]. The
impact of drought stress on maize includes reduced leaf area, low water-use efficiency, lesser nutrient
uptake, decreased photosynthetic efficiency, and reduced biomass accumulation and lower
productivity. Studies have shown that water stress during vegetative growth can diminish growth
rate, decrease root system development, prolong the vegetative phase, and affect CO: distribution. A
brief period of water scarcity can lead to a 28-32% reduction in dry weight during vegetative growth
and 66-93% during tasseling/ear formation [23]. Extended drought stress before flowering can
decrease leaf size and internodal distance, delaying silk emergence and tasseling and resulting in a
15-25% overall yield decrease [24]. Additionally, even a few days of drought stress during
pollination/fertilization can lead to abnormal embryo formation and fewer kernels per plant. Drought
stress before and after pollination is associated with a significant decline in kernel set [24]. The
primary photosynthetic activity of maize plants occurs in their five- or six-ear leaves, mainly
contributing to plant biomass. However, drought stress can diminish the photosynthetic rate by
reducing ear leaf size, and slowing crop growth [25].

Higher temperatures at reproductive stages, such as tasseling, pollination, and grain filling, can
lower maize grain quality. A study by Izaurralde et al.,[26] suggests that increasing the mean seasonal
temperature by 1°C can reduce the maize economic yield by 3-13%. The study by Hussain et al., [20]
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on two maize hybrids, Xida 319 and Xida 889, subjected to heat stress, observed reduced plant height,
lowered biomass accumulation, and decreased yield. Increased heat stress reduces the efficiency of
light utilization in maize plants leading to chlorophyll degradation. Additionally, the increased
temperature during the anthesis stage of maize cultivation results in reduced growth [27]. Similarly,
exposure of maize to heat stress during the 12-leaf stage reduces pollen production, germination rate,
zeatin content, salicylic acid content, and tassel size [28].

Salt stress is among several abiotic stresses affecting maize growth and yield. Increased salt
concentration reduces plant height and biomass due to high osmotic stress and ion toxicity [29]. This
reduction in growth is followed by decreased stomatal conductance and photosynthetic pigments,
disturbance in cytosolic enzyme activity, and impairment of carbon fixation enzymes [30,31]. In a
research by Kaya et al., [32] applying a salt concentration of 100 mM NaCl during the reproductive
phase of maize reduced kernel weight and yield by 8% and 25%, respectively. Similarly, a study by
Kateriji et al., [33] showed an 11.3% reduction in maize grain yield in clay soil subjected to salinity
stress. The increase in salt concentration interferes with the maize plant’s ability to absorb nitrate ions
due to antagonistic action between chloride and nitrate ions [34]. The effect of abiotic stress has been
described in Figure 1B)
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Figure 1. An overview of maize plants showing (A) a healthy maize plant, (B) a maize plant affected
by abiotic and biotic stresses, (C) mechanisms of abiotic stress tolerance including osmotic adjustment,
antioxidant activity, and stomatal regulation, and (D) mechanisms of biotic stress tolerance such as
activation of pathogenesis-related proteins and structural barriers.

3. Biotic Stress and Crop Production

Abiotic stress is the major obstacle in attaining potential yield for maize production worldwide.
In addition to abiotic stress biotic stress also threaten maize cultivation, often leading to substantial
yield losses [35]. Diseases, insects and pests are the primary factors responsible for these losses, with
pathogens such as fungi, bacteria, and viruses eliciting syndromes like ear/stalk/kernel rot, rough
dwarf/wilt disease, and northern leaf blight/maize mosaic [36], which are the major diseases that
reduce maize yield. The simultaneous occurrence of abiotic and biotic stresses exacerbates the
situation, resulting in a remarkable reduction in global maize production. Studies indicate that over
50% reduction in yield occurs in major crops, including maize, due to abiotic stresses alone. In
comparison, approximately 10% of maize productivity is lost annually to biotic stresses worldwide
[37], and 22.5% of global maize loss is due to diseases and pests. The effect of abiotic stress has been
described in Figure 1B.
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4. Mechanism of Abiotic Stress Tolerance in Maize

Plants developed various mechanisms to cope with various abiotic stresses, which are described
below for three major abiotic stresses in maize.

4.1. Drought Stress

To cope with drought stress, maize plants have evolved various mechanisms broadly
categorized into escape, avoidance, and tolerance strategies [38]. Drought escape refers to shortening
a crop's life cycle to avoid drought stress, which is particularly crucial during reproductive growth
stages. Traits like days to sowing, flowering, and maturity are genetically heritable, allowing for
phenological adjustments in response to water availability [38]. Developing early maturing cultivars
aids in evading terminal drought stress [39]. However, this strategy may reduce yields, as crop
duration directly correlates with yield [40]. Through selection, crops adjust their growth period based
on available moisture, completing their life cycle before drought onset. The maize plant tries to
complete the reproductive stage before the drought becomes more prevalent. Maize, highly
susceptible to drought, benefits significantly from this escape mechanism [41].

Drought avoidance in maize is assessed by measuring tissue water status, typically indicated by
turgor water potential under drought stress conditions. Avoidance involves maintaining plant water
status by reducing transpiration rates or increasing water uptake [42]. Various physiological and
morphological traits are essential selection criteria for drought avoidance in maize, including leaf
rolling, leaf firing, canopy temperature, stomatal closure, leaf attributes, and root traits [43]. Stomata
regulate transpiration and gaseous exchange, governing photosynthesis and respiration. Plants
reduce water loss by closing their stomata, preserving water status, and enhancing drought
avoidance [40]. Drought tolerance for the combination of heat and drought stress involves
maintaining growth and development through cellular and biochemical adaptations. Along with
sustaining average physical growth, drought tolerance is also associated with yield stability under
water-stressed conditions, a complex process in which crops have developed various natural
mechanisms to adapt and tolerate drought stress [44]. These adaptations include accumulating
compatible osmolytes like proline, glycine betaine, soluble sugars, and various inorganic ions (K*,
Nar, Ca%, Mg?, Cl, and NOs") to support plant water status via osmotic adjustment [44,45].

Additionally, the enzymatic and non-enzymatic antioxidant systems, including superoxide
dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX), are activated
to mitigate oxidative damage. Growth regulators like abscisic acid (ABA) also play a role [20,25].
Moreover, transcription factors (TFs) are activated to regulate gene expression sensitive to drought
and high temperatures, while stress proteins like heat shock proteins (HSP), late embryogenesis
abundant (LEA) proteins, and aquaporins assist in water movement under stress [41].

4.2. Maintaining Ion Homeostasis in Salinity Stress

An imbalance in the cellular ion exchange process causes salinity stress in the plant. Due to this
ionic imbalance, Na* influx and K* efflux through various ion transporters in the cell membrane [46].
The excess concentration of Na*increases oxidative stress by enhancing ROS (reactive oxygen species)
production [47]. Consequently, cellular membranes become disrupted, leading to a breakdown in cell
homeostasis. During salinity stress, genes and transcription factors regulating ion transports are
activated which, helps alleviate ion toxicity in cells. These include plasma membrane protein (PMP),
high sodium affinity transporter (HKT), Salt overly sensitive (SOS) pathway, and Na*/H* exchangers
(NHXs) [48]. ZmCIPK24a and ZmCBL4 plus ZmCBLS8 act as SOS2 and SOS3 in maize [49]. During
salinity stress, SOS3 senses the changes in the cytoplasmic Ca2+ level, which activates SOS2. The
S0S2-5053 complex phosphorylates ZmSOS1, activating SOS1 and increasing root-to-soil Na+ efflux,
enhancing salt tolerance [50]. The study identified QTL for K* content (qKC3), which encodes
ZmHKT2, a K* transporter localized in the xylem parenchyma [51]. ZmHKT2 reduces shoot K*
content by retrieving K+ from xylem vessels. The mutants lacking ZmHKT2 have higher shoot K*
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content and salt tolerance [52]. Decreasing the activity of ZmHKT2 is one viable strategy for
developing salt tolerant maize varieties.

4.3. Osmotic Adjustment

Osmotic adjustment involves creating a water gradient to enhance water influx, thereby
maintaining turgor by reducing osmotic potential. This adjustment aids in preserving tissue water
status by minimizing the detrimental effects of drought through the accumulation of solutes in
cellular cytoplasm and vacuoles. By sustaining turgor potential and supporting physiological
processes, osmotic adjustment protects against drought-induced damage [53]. Relative water content
is a crucial indicator for estimating drought tolerance in plants with closed stomata and reduced CO:
accumulation resulting from decreased relative water content under drought stress [42]. The
sustainable regulation of photosynthetic rate and turgor potential ensures the translocation of
photosynthetic assimilates to developing kernels [54]. Osmoprotectants, including nitrogenous
compounds like proline, polyols, polyamines, and glycine betaine, as well as hydroxy compounds
like polyhydric alcohols, sucrose, and oligosaccharides, play crucial roles in osmotic adjustment [55].
These compounds protect cellular proteins and membranes against dehydration effects and help
maintain cellular integrity [56]. Glycine betaine, for instance, acts as an important osmoprotectant,
safeguarding plants against various stresses such as drought, salinity, cold, and heat by protecting
the photosynthetic apparatus and stabilizing cellular proteins [57]. Proline, another osmoprotectant,
helps maintain water status, protect cellular membranes, and prevent protein denaturation under
osmotic stress [57,58]. Soluble sugars, accumulated in response to drought stress, serve multiple roles
in plant metabolism and protection, including acting as substrates for biosynthesis processes and
protecting cellular organelles through vitrification [59]. Polyols, such as sorbitol, glycerol, and
mannitol, form hydration spheres around macromolecules, safeguarding them from dehydration
[60]. These mechanisms collectively contribute to plants' ability to tolerate drought stress and
maintain essential physiological processes.

Antioxidants and plant growth regulators

Antioxidants are molecules that protect plants by scavenging reactive oxygen species, thus
preventing oxidative damage. They form a defense shield against oxidative stress. Antioxidants can
be enzymatic or non-enzymatic. Enzymatic antioxidants include catalase (CAT), superoxide
dismutase (SOD), glutathione reductase (GR), ascorbate peroxidase (APX), peroxidase, and
polyphenol oxidase. Non-enzymatic antioxidants include a-tocopherol, ascorbic acid, p-carotene,
glutathione, and cysteine [61]. These components are essential in neutralizing reactive oxygen species
and preserving plant health under oxidative stress conditions. Plant hormones, also known as plant
growth regulators or phytohormones, play vital roles in governing the growth and development of
plants, acting as signaling molecules that trigger cellular differentiation and function locally or are
transported to distant targets.

In response to drought stress, plants undergo various adaptations, including maintaining
endogenous hormonal balance [62]. Different plant growth regulators confer drought tolerance,
including auxins, cytokinins, abscisic acid (ABA), gibberellins, salicylic acid, brassinosteroids, methyl
jasmonate, polyamines, ethylene, and zeatin. These hormones interact to regulate plant responses,
specific growth stages, tissues, and environmental conditions. For instance, auxins are involved in
drought stress responses, with interactions observed between ethylene, cytokinins, and auxins
affecting their biosynthesis [63,64]. The concentration of indole acetic acid (IAA) decreases in maize
leaves under drought stress, while the accumulation of ABA increases, influencing hormonal balance.
The IAA accumulation increases under moderate stress (13.4%) while decreases under severe
drought stress (63.2%) in maize [25]. Salicylic acid helps maintain photosynthesis by retaining higher
chlorophyll content under drought stress, contributing to drought tolerance [65]. ABA and ethylene
regulate stomatal conductance, grain number, grain filling rate, and plant apex growth
antagonistically, with cytokinin enhancing growth and development. ABA plays a crucial role as a
stress hormone, modulating growth, development, and stress responses through a signaling pathway
involving various components highly responsive to ABA. Average water availability does not induce
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ABA accumulation, and extremely severe drought reduces ABA accumulation due to the cessation
of ABA precursors [66]. The antioxidant defense system detoxifies ROS and maintain redox
homeostasis [67]. Overall plant hormonal balance is critical for various growth and development
processes, with interactions between hormones playing a crucial role in plant adaptation to drought
stress.

4.5. Polyamines and Their Roles in Biotic Stress in Maize

The detrimental effects of biotic stress on significant crop plants, maize, are not just a concern,
but a pressing issue. The production of highly carcinogenic aflatoxins by Aspergillus flavus alone has
led to a staggering loss of USD 686.6 million in maize cultivation in the U.S These statistics are not
mere statistics but a stark reminder of the economic havoc wreaked by biotic stress. Other climate-
dependent pathogens, such as Fusarium spp. and Ustilago maydis, further compound the issue
[68,69].

Polyamines (PA) has emerged as a beacon of hope in reducing biotic stress caused by various
pathogens in maize. PAs play a crucial role in the production of H20», acting as both a defensive tool
and a signaling molecule in response to biotic stress [69]. For example, spermine (Spm), a form of PA,
functions as a signaling molecule in pathogen defense and plays a critical role in resistance against
viral infections [70]. In the case of Ustilago maydis, a dimorphic host-specific fungus, it induces
‘huitlacoche' or common smut in maize plants. The accumulation of H20: derived from polyamine
oxidase plays a significant role in tumor formation caused by U. maydis in maize plants. The maize
polyamine oxidases (zMPAOs) transcription factor was found to be downregulated in tumors. The
symptoms of the disease were observed to reduce upon application of 1,8-diamino octane (1,8-DO),
a potent polyamine oxidase inhibitor[69].

5. Beneficial Plant-Microbe Interactions in Maize
5.1. Arbuscular Mycorrhizal Symbiosis

Maize forms symbiotic associations with Arbuscular mycorrhizal (AM) fungi. This partnership,
established via the mycorrhizal and root pathway, allows plants to efficiently uptake nutrients from
the soil. In this symbiosis, the fungi and plants engage in a mutual exchange where the fungi provide
mineral nutrients while the plant supplies carbon (C). Maize roots, in addition to beneficial
relationships with microbes such as mycorrhizal fungi, play a crucial role in uptake of nutrients like
phosphorus (P) and nitrogen (N). Maize root residues, a significant byproduct of this symbiosis,
provide N for other plants in crop rotation, thereby improving agricultural productivity [71,72]. This
exchange occurs via arbuscules inside root cortex cells, where AM fungi acquire 4-20% of the total
photosynthetic carbon fixed by the plant through symbiotic relationships. The AM fungal hyphae
then utilize this carbon to generate specialized exudates, which attract and establish a hyphosphere
microbiome. This microbiome plays a crucial role in compensating for the fungi's incapacity to utilize
organic nutrients directly. By secreting enzymes and fostering the mineralization of organic nutrient
sources, the hyphosphere microbiome significantly increases nitrogen and phosphorus availability.
This collaborative functionality within the holobiont substantially enhances nutrient accessibility for
all interacting organisms, including plants, AM fungi, and hyphosphere bacteria (Figure 1C and D).

In maize, the colonization of maize roots by AM fungi begins early in the plant development
phase, which peaks at the vegetative growth stages. Maize roots produce strigolactones (5-deoxy-
strigol and Sorghumol), essential for establishing AM symbiosis [73,74]. These compounds act as
chemoattractants and guide the fungal hyphae toward the root system [75]. Upon contact with
strigolactones, AM fungi initiate signaling cascades that activate genes such as SYM and RAM1
involved in colonization. Like other plants such as carrots, maize roots form pre-penetration
apparatuses (PPAs) at the root surface to facilitate penetration of fungal hyphae into root tissue. Upon
penetration, the fungal hyphae initiate a series of molecular events, such as the production of chitin
and lipochitooligosaccharides for recognition and signaling between plant and fungus [76]. The
signal transduction also leads to activation of transcription factors and arbuscule formation. Fungal-
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derived proteins, such as Small Secreted Effector Proteins (SSEPs), are transported into the plant cell
and are believed to play roles in arbuscule formation and function [77]. The nutrient exchange
between fungus and maize plants occurs within the arbuscules. In addition to arbuscules, vesicles
are formed within root cells, which act as storage structures for lipids, glycogen, and other
metabolites.

Once the symbiosis between AM fungi and maize plants is established, AM fungi can increase
the root volume, increasing the surface area for water absorption. D-myo-inositol-3-phosphate
synthase (IPS) and the 14-3-3-like protein GF14 (14-3GF) are pivotal in facilitating signal
communication between maize and AMF during drought stress. Co-expression of these two genes
has been shown to enhance maize drought tolerance significantly [78]. Similarly, the AM fungi
infection upregulates the expression level of NPF4.5 homologs, indicating higher nitrate uptake
during symbiosis [78]. The ammonium transporter ZmAMT3;1 expressed in cortical cells of maize
during AM fungi infection absorbs 68-70% of the transported nitrogen AM fungi to maize plants [79].

5.2. Nitrogen-Fixing Symbiosis with Rhizobia

Rhizobia, the widely distributed Gram-negative bacteria in soil, can enhance maize cultivation.
Despite being primarily associated with legumes, these beneficial bacteria can promote growth and
yield in maize through various mechanisms. While their efficiency with maize is generally lower than
with legumes, the potential for improvement is promising [80].

The inoculation of the Azospirillum strain in maize roots increased the GAs levels, thereby
boosting root growth [81]. Similarly, the strains of Rhizobium (such as R. etli bv. Phaseoli and R.
leguminosarum bv. trifolii) and Sinorhizobium sp. Have shown promising results in enhancing
growth, increasing plant height, and improving grain yield in maize [82]. Numerous studies have
reported on the nitrogen-fixing ability of Herbaspirillum seopedicae and Azospirillum spp. in maize.
A study on two maize genotypes, Morgan 318 and Dekalb 4D-70, demonstrated a significant increase
in grain yield and higher N accumulation with the inoculation of a mixture of Azospirillum spp.
strains, a result comparable to the application of 100 Kg N ha7[83]. Another study unveiled the
identification of a nitrogen-fixing association with the native variety of maize grown in nitrogen-
depleted soils in Mexico. The microoxic environment for better nitrogen fixation is created by the
mucilage tube surrounding the roots, which had a high abundance of proteobacteria. [84]. These
symbiotic relationships are crucial in enhancing plant growth, higher nutrient acquisition, and crop
yield, offering a hopeful outlook for the future of maize cultivation.

5.3. Agricultural Application of Stress-Tolerant Microbes

The use of stress-tolerant microbes shows a significant increase in the yield of maize plants.
Maize plants inoculated with Piriformospora indica, an endophytic fungus grown under drought
stress conditions, resulted in increased leaf area, SPAD value, higher root fresh and dry weight, and
upregulation of antioxidants catalase and superoxide dismutase. Upregulating drought-related
genes DREB2A, CBL1, ANAC072, and RD29A increased resistance to drought stress [85]. The Bacillus
spp. PM31 also improved maize growth under salinity stress [86]. The microbes can be applied to
enhance plant yield and improve soil health. Stress-tolerant microbes can replace 20-40% of chemical
fertilizers while alleviating drought stress impact. Integrating stress-tolerant bacteria with other
beneficial microbes, such as AM fungi, can increase stress tolerance in maize and other plants,
offering more significant agricultural benefits. These microbes can be integrated into agronomic
practices through various application strategies that contribute to sustainable agriculture (Table 1).

5.4. Microbe Mediated Induced Systemic Resistance (ISR) in Maize

Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR) are different
mechanisms by which plants can develop systemic resistance against pathogens and diseases. SAR
is a plant defense mechanism that protects plants against a broad spectrum of pathogens following
an initial infection. SAR is induced by recognizing pathogen-associated molecular patterns (PAMPs)
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or effector molecules released by the pathogen [87]. ISR is a plant defense mechanism in which
exposure to certain beneficial microorganisms, pathogens, or chemical compounds primes the plant's
immune system to enhance its resistance against subsequent pathogen attacks. Unlike SAR, which is
induced by direct pathogen infection, ISR is triggered by beneficial microbes or certain chemical
compounds in the plant's environment [88].

ISR is a complex process that involves the activation of various defense responses within the
plant, including the production of antimicrobial compounds, reinforcement of cell walls, and the
activation of defense-related genes. ISR is triggered by non-pathogenic rhizobacteria, which colonizes
the rhizosphere. The microbes prime the plant’s innate immune system, enhancing its defense
response against subsequent pathogen and insect attacks [89]. Specific microorganisms, such as
beneficial rhizobacteria, B. velezensis SQR9, and the fungus Trichoderma harzianum, play crucial
roles in inducing ISR in maize against pathogens. B. velezensis SQR9 colonizes maize roots and
activates defense signaling pathways. This colonization leads to the enrichment of phenylpropanoid
biosynthesis, amino acid metabolism, and plant-pathogen interaction pathways in maize roots. The
calcium signaling pathway is pivotal in SQR9-induced ISR, as inhibiting calcium signaling weakens
the induced resistance [51]. Similarly, Trichoderma harzianum triggers ISR in maize against
Curvularia leaf spot by releasing cellulases and cellobiose from roots. The cellobiose released from T.
harzianum-colonized roots prompts the expression of defense-related genes (Opr7, Pr4, Aocl, Erfl)
in maize, thereby enhancing ISR against the pathogen [90]. ISR in maize involves jasmonic acid and
ethylene signaling pathways mediated by the NPR1 protein.

Table 1. The Plant Growth Promoting Rhizobacteria (PGPR) enhancing stress tolerance in Maize.

Host associated microbial strains Effect/Mechanism of Stress tolerance References

Microbial mediated beneficial drought stress tolerance

Rhizobium (R. etli bv. Phaseoli, R.
leguminosarum bv. Trifolii,
Sinorhizobium sp
Herbaspirillum seopedicae Increased grain yield
Azospirillum sp Higher N accumulation
Increased leaf area and SPAD value
Increased root fresh and dry weight
Piriformospora indica Decreased Malondialdehyde (MDA) accumulation [85]
Upregulation of antioxidants and drought
related genes
Forms viable biofilms around roots
Pseudomonas putida Increase soil holding capacity [91]
Improve soil structure
Increase soil moisture content
Enhances plant growth traits such as leaf area, shoot
length, root length

Enhanced growth, increased plant height, [82]
improved grain yield

[83]

Pseudomonas aeruginosa

é\lc?llgenes fa_ecalls Downregulation of catalase, ascorbate peroxidase and [92]
roteus peneri glutathione peroxidase

Klebsiella variicola

Pseudomonas fluorescens Increased levels of betaine, glycine and choline 93

Raoultella planticola Improved plant growth [93]
Increased proline and phytohormone accumulation

Burkholderia sp. Higher antioxidant activity 94

Mitsuaria sp. Decreased MDA content [94]
Increased proline accumulation

i Decrease in MDA content
Megathyrsus maximus [95]

Reduced glutathione reductase activity
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Azospirillum brasilense
Pseudomonas putida
Sphingomonas

Symcoms containing these microbes increases

shoot dry weight, root dry weight and plant [96]
height

Increased proline, soluble sugar and amino acids

accumulation

Azospirillum lipoferum Enhances shoot and root weight, root length

[97,98]

Increased proline accumulation

Bacillus sp. Reduction in electrolyte leakage [99]
Decreased activity of antioxidants
Increased root and shoot biomass

Burkholderia phytofirmans Strain PsJN ~ Higher chlorophyll content
Enterobacter sp. FD17 Increased leaf area and photosynthetic rate [100]
Increased hydraulic conductivity and water
permeability coefficient
. . . Increased phosphorylation of Plasma membrane
Rhizophagus irregularis intrinsic proteins (P1Ps) [101]

Increased photosynthetic activity

Increased relative water content and osmotic
potential

B pumilus Higher photosynthetic activity [102]
Increased ABA production

Azospirillum brasilense SP-7

Herbaspirillum seropedicae Z-152 Decreased expression of ZmVP14 [103]

Microbial mediated beneficial saline stress tolerance
Improved maize growth under salinity stress

Bacillus sp. PM31 [86]
. . . Increased nutrient uptake

Co-inoculation of Rhizophagus Increased AMF root colonization

intraradices [104]

Massilia sp. RK4 Decreased leaf proline levels

Enhanced proline production
L Decrease in electrolyte leakage
Rhizobium sp. Reduction in osmotic potential [105]
Pseudomonas sp. Selective K ions uptake

ACC-deaminase for increasing plant height, biomass,

and cob yield
Pseudomonas fluorescens, Higher grain mass and straw yield
P. syringae, P. chlororaphis Enterobacter |, reased P and K uptake [106]
aerogenes Higher K*/Na* ratio

Enhanced soluble sugars accumulation

Increased total organic acids, acetic acid, malic acid,
oxalic acid, fumaric acid and citric acid accumulation
Increased upregulation of osmoregulation

process

Glomus mosseae [107]

Increased chlorophyll content
Enhanced soluble sugar content

B. amyloliquefaciens SQR9 Decreased level of Na* [108]
Upregulation of RBCS, RBCL, H*-PPase, HKT1,

NHX1, NHX2 and NHX3
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Increased photosynthetic capacity and relative water
content

Kocuria rhizophila Y1 Increased antioxidant levels [109]
Decreased level of Na*

Increased K*/Na* ratio
Azotobacter chroococcum Higher chlorophyll content [91]
Increased proline concentration

Microbial mediated beneficial heat stress tolerance
Upregulation of heat shock proteins (HSP)
Increased total chlorophyll, catalase, and peroxidase
Enhances plant height, leaf area, root & shoot fresh [110]
and dry weight
Decreased concentration of MDA
Increased quantum efficiency of PSII
Higher photosynthetic rate

Bacillus sp. AH-08, AH-67, AH-16
Pseudomonas sp. SH-29

Rhizophagus intraradices

Funneliformis mosseae Increased plant height, leaf width and cob [H11]
F. geosporum
number
Increased water content and leaf water potential
Glomus etunicatum Increased photosynthetic activity [112]
Higher stomatal conductance
Regulation of electron transport through PSI|
Glomus sp. g P g [113]

Increased plant height and leaf width

6. Challenges and Future Perspectives

Abiotic and biotic stresses significantly influence the growth and development of maize plants.
Salt stress disrupts water uptake and nutrient acquisition, while drought stress hinders
photosynthetic activity, decreasing in maize yield. Despite their heat tolerance, prolonged exposure
to temperatures exceeding 35°C is detrimental to crop growth and development, and exceeding 40°C
during flowering and grain-filling season will reduce grain productivity.

Despite the known benefits of plant-microbe interactions such as arbuscular mycorrhizal (AM)
fungi, rhizobia, as well as bacterial and fungal endophytes, there is still much to learn about the
diversity of beneficial microbes present in maize rhizosphere and their specific functions.
Understanding which microbes are most helpful under different growing conditions and soil types
is crucial for optimizing microbial inoculants. The interactions between introduced beneficial
microbes and native soil microbiota are complex and poorly understood. Competition, cooperation,
and antagonistic interactions among microbes can influence their effectiveness in promoting plant
growth. More research is needed to assess the long-term effects of microbial inoculation on soil
health, microbial community dynamics, and crop productivity. We are responsible for developing
sustainable management practices that integrate microbial interactions into existing agricultural
systems.

7. Conclusions

The positive interactions between maize plants and beneficial microbes offer a promising
solution for enhancing plant growth and nutrient absorption under challenging conditions. These
interactions not only have the potential to bolster the environmental resilience of maize agriculture
but also to promote sustainability. using microbes for defense against various stresses can
significantly increase crop yield and productivity, leading to economic benefits for farmers and
potentially reducing the need for chemical inputs, thus benefiting the environment.
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