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Abstract: Air pollution has recently gained much attention from the general population. Despite pollution 

control being an issue in both urban and rural regions, most of the available research has concentrated on urban 

districts. Hence, investigations into how urban-rural transition affects PM2.5 are warranted within the 

framework of urban-rural integration. Using the Yellow River Basin as a case study, this study employed the 

entropy method and Analytic Hierarchy Process (AHP) to uncover the extent of urban-rural transformation. It 

then used the spatial autocorrelation method to investigate the spatiotemporal features of PM2.5 and the spatial 

econometric model to investigate the mechanisms that influence the relationship between urban-rural 

transformation and PM2.5. The results are as follows: (1) Over time, there was a discernible upward tendency 

in the change in urban-rural areas. The development has progressed from asymmetrical north-east and south-

west elevations to a more balanced pattern of north-east, middle-east, and west-west elevations. (2) The PM2.5 

concentration increased steadily, then fluctuated, and finally decreased. Notably, the general pattern has not 

changed much, and it is high in the east and low in the west. (3) Different subsystems of the urban-rural 

transformation have different impacts on air pollution at different stages. The influence of industrial 

transformation (IT) on PM2.5 showed an inverted “N-shaped” curve of negative-positive-negative changes, and 

the industrial structure played a leading role in the spatiotemporal evolution of PM2.5. Currently, an inverted 

"U-shaped" curve forms the left side of the impact of population transition (PT) on PM2.5. Land development 

(LT) has a "U-shaped" curve for its effect on PM2.5. This research provides a new perspective on the topic of 

PM2.5 and its connection to urban-rural integration, which is crucial to understanding the dynamics of this shift. 

To achieve its goal of high-quality development, it supports regional initiatives to reduce PM2.5 emissions in 

the Yellow River Basin. Moreover, it can provide a reference for decision-makers in the world’s densely 

populated areas that suffer from serious air pollution. 

Keywords: urban-rural transformation; air pollution; PM2.5; influencing mechanisms; the Yellow river Basin; 

China 

 

1. Introduction 

Cities often drive global economic development, whereas rural areas generally supply the 

resources they need while bearing the resulting environmental pressure [1]. Based on the report, there 

is predicted to be a 1.76 billion increase in the world's urban population from 2000 to 2024, with 

developing countries expected to account for 86% of this rise. [2]. However, extensive and rapid 

urbanization has spawned many environmental problems, among which air pollution is particularly 

serious [3, 4]. In particular, haze pollution, mainly in the form of PM2.5 emissions, is most prominent. 

In response to these changes, the Chinese government established a new ambient air quality standard 

(GB3095-2012) in 2012; it states that primary PM2.5 concentrations cannot exceed 15 μg/m3 and 
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secondary PM2.5 concentrations cannot exceed 35 μg/m3. Although China has made some progress in 

reducing PM2.5 pollution, it still lags behind Japan, the United States and other developed nations. 

According to the World Health Organization’s (WHO) Global Air Quality Report 20202022, the 

average annual concentration of PM2.5 in China consistently exceeded five to seven times the health 

standard set by the WHO (≤5 μg/m3) (https://www.iqair.cn) and the current situation of PM2.5 

emissions remains pessimistic. Even though the Yellow River Basin's natural environment has 

improved, the area still has several ecological challenges. Contributing significantly to China's social 

and economic development and ecological security, the Yellow River Basin is vital to the country's 

basic industries, energy, chemical industry, and other sectors. The CPC Central Committee and the 

State Council in 2020 pointed out that the Yellow River has a poor ecological background, weak 

resource endowments, and environmental carrying capacity, as well as deep environmental 

pollution. In 2022, the Ministry of Ecology and Environment, the National Development and Reform 

Commission, the Ministry of Natural Resources, and the Ministry of Water Resources issued an 

Ecological and Environmental Protection Plan for the Yellow River Basin, which declared that 

ensuring air quality standards in key areas and improving the level of air pollution control were key 

priorities. Due to its long history of agricultural production, the Yellow River Basin has a dense 

population and industry. Thus, its air quality has been in a state of severe decline for many years [5]. 

Rapid urbanization drives the population–land relationship and urban-rural development in the 

Yellow River Basin, especially as it regards typical ecological problems such as water and air 

pollution caused by rapid urbanization and industrial development in its middle and lower reaches, 

and thus is a region in which population, natural resources, and environmental conflicts are highly 

concentrated [6]. Therefore, this study takes the Yellow River Basin as the research object, 

summarizes the spatiotemporal characteristics of air pollution during its urban-rural transition 

period, and further examines its influencing mechanisms. The research results are conducive to the 

sustainable, high-quality development of the Yellow River Basin. They can provide a reference for 

decision-makers in densely populated developing countries suffering serious air pollution. 

During the urban-rural transition, problems such as rural economic weakness, environmental 

pollution, and resource shortages have been experienced worldwide [7]. However, the urban-rural 

transition is inevitable [8]. Researchers have studied the fundamental nature, objective, and 

components of urban-rural change. Liu, Long, and other academics assert that the core of the urban-

rural transition is facilitating the fundamental overhaul of industrial, agricultural production, and 

urban-rural dynamics [9, 10]. Industrial development, land transformation, and population transition 

are important components of rural spatial transformation [11]. The research on urban-rural 

transformation has also shifted from focusing on single-factor analyses of land transformation [9], 

industrial development [12], and the population transition [13] to the systematic exploration of a 

multifactor transformation that includes people, land, and industry [2, 14-16]. Scholars have also 

studied the resource and environmental problems associated with the urban-rural transformation. 

Due to weak environmental management in rural areas, urban pollution has gradually been 

transferred to rural areas. Many enterprises with high energy consumption, heavy pollution, or that 

are difficult to regulate will relocate to or discard untreated waste in rural areas. In addition, rural air 

pollution is aggravated due to straw burning and related farming practices [1, 17, 18]. Urban-rural 

areas are inseparable after their integration, and only by placing equal emphasis on both can 

sustainable development be achieved [19, 20]. Hence, giving equal importance to controlling 

pollution in both urban and rural areas is imperative. While previous research has made progress in 

comprehending urban-rural change and conducting a qualitative analysis of the associated resource 

and environmental concerns, there is a scarcity of studies investigating the quantitative correlation 

between these two factors. Moreover, the research concerning the urban-rural transformation in the 

Yellow River Basin is inadequate, with a specific absence of knowledge regarding its impact on air 

pollution and the underlying causes.  

PM2.5, as the main pollutant that causes haze, not only reduces visibility but poses a serious threat 

to human health [21]. As more attention is being paid to air pollution, there have been notable 

achievements in related research. Cheng et al. pointed out that the Gangetic Plain of India and central 
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and eastern China (i.e., the Yellow River Basin regions) are the most serious PM2.5 pollution areas 

globally [3]. At present, the research on PM2.5 mainly involves the nature, sources of PM2.5 [22, 23] as 

well as its spatial agglomeration characteristics and spatial heterogeneity [24, 25]. The temporal and 

spatial characteristics of PM2.5 were studied using such methods as spatial autocorrelation and ellipse 

of standard deviation [26-28]. Various techniques such as geographical weighted regression, 

geographical detector, spatial econometric models, and random forest have been employed to 

analyze the components that influence PM2.5 [29-34]. The influencing factors of PM2.5 encompass 

various natural factors such as terrain, altitude, and others [20, 32]. Additionally, economic 

development, population density, industrial structure, foreign direct investment (FDI), scientific and 

technological inputs, social activity intensity, municipal transportation, energy consumption, 

environmental regulation, urban landscape, urbanization, and other social and economic factors also 

play roles in PM2.5 levels [35-38]. However, the current discussion on the impact of urbanization on 

PM2.5 is mostly based on city-level analyses. In addition, the approach to controlling air pollution 

commonly adopted in China focuses on treating its symptoms. It thus lacks systematic, 

comprehensive, and holistic considerations of factors in urban-rural areas. 

Studying the factors that cause the change from rural to urban areas and how they affect the 

levels of PM2.5 pollution is crucial for achieving sustainable development. Nevertheless, our current 

comprehension of the factors that drive the impact of the shift from urban to rural areas on air 

pollution remains inadequate. This study focuses on 498 counties in the Yellow River Basin, which 

are considered representative locations. This study uses extensive county-level data to examine the 

spatial and temporal patterns of urban-rural change and its impact on air pollution. It employs 

several approaches to analyze the integration of urban and rural areas completely. The purpose of 

this study was to (1) measure the level of the urban-rural transformation in the study area, (2) 

accurately assess the overall level of air pollution in the Yellow River Basin, and (3) explore the 

influencing mechanisms of the urban-rural transition on air pollution. This study aimed to elucidate 

the multidimensional relationships and patterns between land, population, industrial 

transformation, and PM2.5 at the county level to support the formulation of regional PM2.5 emission 

reduction policies and provide a reference for decision-makers in densely populated and severely 

polluted regions worldwide. 

2. Analytical Framework 

The urban and rural systems have experienced significant transformations due to globalization, 

urbanization, industrialization, information technology, and various other causes. The occurrence of 

haze in the transitional phase between urban and rural areas is closely linked to the long-standing 

urban-rural dual system and economic development pattern applied in China [1]. Following reform 

and opening-up policies, China has embarked on numerous labor-intensive and resource-intensive 

industries characterized by significant input, substantial consumption, and considerable pollution. 

Under the guidelines of economic construction as the center, China's environmental governance 

always follows the way of pollution first and then treatment. Simultaneously, China carries out the 

strategy of urban-biased development, which has produced a huge difference in economic and social 

development between urban and rural areas. Several imprudent practices, including the burning of 

straw, emitting diesel emissions, and utilizing polluting energy sources like coal, have been adopted 

by farmers to improve their standard of living despite the detrimental effects on the environment and 

resource depletion. In broad strokes, the haze issue during transition periods can be attributed to the 

urban-rural dual system and the direct influence of China's economic development model. The 

economic growth model established under the urban-rural dual system, the environmental 

management system, and the urban-rural development gap served as the foundation for these forces 

[17]. The transition period witnessed the urbanization of the rural population and the non-

agricultural sector as the primary drivers of factor flow and aggregation. Subsequently, concerns 

have increased in rural regions, whereas the carrying capacity of resources and the environment in 

urban areas has progressively waned. Simultaneously, rural regions experience the strain of 

resources and the environment due to the transmission of factors from urban spots (Figure 1). In a 
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multidimensional fashion, this article quantitatively analyses the pollution problem resulting from 

the rapid urban and rural transformation (URT) process. 

 

Figure 1. An analytical framework for the urban-rural transformation and its impact on air 

pollution. 

3. Materials and Methods 

3.1. Study Area 

The Ecological Environment Protection Plan for the Yellow River Basin defines the geographical 

extent of the basin as encompassing the county-level administrative regions of nine provinces (i.e., 

autonomous regions), including Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia, Shaanxi, Shanxi, 

Henan, and Shandong provinces, where the main and tributaries flow of the Yellow River. This 

includes the main river and its tributaries. This study focused on 498 counties in the Yellow River 

Basin as the research subjects, considering the spread of air pollution and the correlation of economic 

and other aspects across county-level units (Figure 2). The study area's permanent population 

reached roughly 212.23 million by the end of 2020, or 15.03% of China's total population. The gross 

domestic product is roughly 9.8 trillion yuan, representing around 9.66% of the nation's output. The 

urbanization rate, on average, stands at approximately 56.6%, below the urbanization rate reported 

in the national population census (63.9%). The policy of fostering the "Rise of the Central Region" was 

reinforced by the Central Committee of the Communist Party of China and the State Council in 2006, 

which issued several opinions. During this timeframe, sectors with substantial energy consumption, 

pollution, and emissions were significantly shifted from the economically advanced eastern areas to 

the central region [39]. As a consequence, the central region experienced elevated levels of PM2.5 

pollution. In 2013, the State Council released the Ecological Environment Protection Plan for the 

Yellow River Basin, which partially tackled the issue of air pollution. The average annual 

concentration of PM2.5 in the Yellow River Basin in 2020 was 37.56 μg/m3, exceeding the secondary 

air quality level (35 μg/m3) established by the Chinese government in 2012 and well below the health 

threshold set by the World Health Organization (≤5 μg/m3). Consequently, air pollution continues to 

pose a significant danger. As our understanding of the interconnectedness between urban and rural 

areas grows, it is crucial to prioritize air pollution mitigation in both settings. Hence, it is imperative 

to investigate the influential mechanisms of urban-rural transformation on PM2.5 in the Yellow River 

Basin. 
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Figure 2. Study area. 

3.2. Data Sources 

The data include county-level administrative boundary vectors, average annual PM2.5 

concentrations, explanatory variables, and control variables (Table 1). Among them, the county-level 

administrative boundary vector data were finally obtained using ArcGIS software based on the 2021 

administrative regions as the benchmark, which resulted in 498 county-level units. Average annual 

PM2.5 concentration data were derived from the global PM2.5 dataset. The advantages of this data are 

its long observation times, high observation accuracy, and wide coverage [40]. In addition, drawing 

upon existing research, this study divides the urban-rural transition into three dimensions: PT, IT, 

and LT [41, 42]. Simultaneously, existing studies have shown that natural factors, population size, 

energy optimization, human activities, vegetation cover, and other factors impact PM2.5 [4, 43, 44]. 

Therefore, studying the impact of the urban-rural transition on PM2.5 requires us to include these 

factors as control variables. The specific data of the explanatory and control variables are set as 

follows (Table A1): 

(1) PT, IT, and LT are set as the core explanatory variables (Table 2). PT is a process by which the 

rural population is transformed into an urban population through its agglomeration into the urban. 

The urbanization rate of the population is a measure of the extent to which people are moving from 

rural areas to cities. It is calculated by dividing the number of people living in cities permanently by 

the total number of permanent residents. IT is a comprehensive process that involves direct or 

indirect adjustments to various aspects of the existing industrial structure, characterized by the 

proportion of non-agricultural industrial output to total regional output. LT results from a 

combination of urban land (LUT) and rural land (LRT) change. On the one hand, land transformation 

is reflected in the sprawling expansion of urban construction. Conversely, cultivated land is closely 

related to transforming urban-rural areas. It is represented by the ratio of town dwelling, industrial, 

and mining land in the county and the ratio of cultivated land in the county, respectively. The 

population data come from the census data in 2000 (the fifth census year), 2010 (the sixth census year), 

and 2020 (the seventh census year). The economic data mainly come from 2001, 2011, and 2021 China 

County Statistical Yearbook, Qinghai Province, Sichuan Province, Gansu Province and Ningxia 

Provincial Statistical Yearbook, as well as the national economic and social development statistical 
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bulletins in relevant cities and counties in the Yellow River Basin in 2000, 2010, and 2020. Some 

missing data were processed by replacing missing values using SPSS26 software for mean and linear 

interpolation. The statistics for urban industrial, mining, and agricultural land originate from the 

Resource and Environmental Science Statistics Center of the Chinese Academy of Sciences, accessible 

at http://www.resdc.cn/. The data presented here are derived from Landsat TM/ETM remote sensing 

pictures. The necessary data are obtained through a process of supervised classification and 

reclassification.  

(2) Regarding the selection of control variables, electricity consumption (EL) represents not only 

the consumption of industrial energy in urban areas but also the reduction in the use of non-clean 

energy sources, such as coal in rural areas, as represented by per capita electricity consumption. The 

continuous expansion of population size (POP) leads to problems such as expanding construction 

land, traffic congestion, housing shortages, reduction in per capita public resources, and increased 

energy consumption intensity. In theory, the expansion of the population will exacerbate the increase 

in PM2.5, which is associated with the number of permanent residents. The intensity of social activity 

reflects the comprehensive intensity of human socioeconomic activities. Previous studies have shown 

a close relationship between nighttime light image data and energy consumption, urban population 

density, and total GDP characterized by nighttime light brightness (NLT) [45, 46]. The vegetation 

index can accurately reflect the surface vegetation coverage status and is represented by the annual 

normalized vegetation index (NDVI). The data originated from the China Annual Vegetation Index 

Spatial Distribution Dataset, managed by the Resources and Environmental Sciences and Data Center 

of the Chinese Academy of Sciences (http://www.resdc.cn). 

Table 1. Variable selection and definition. 

Variable type Variable selection Variable definition 

Dependent 

variable 
PM2.5 concentration (PM2.5) Degree of air pollution 

Explanatory 

variables 

Population transition (PT) 
The urbanization rate of the 

population 

Industrial transformation (IT) 
Non-agricultural development of 

industry 

Land 

transformation 

(LT) 

Construction land (LUT) 
The sprawling expansion of 

urban and town construction 

Cultivated land (LRT) 
The ratio of cultivated land in the 

county 

Control variables 

Electricity consumption (EL) 
the consumption of industrial 

energy and non-clean energy 

Population size (POP) Number of permanent residents 

Nighttime light brightness (NLT) 
The night light brightness value 

of each county and district 

Normalized vegetation index (NDVI) 
Urban average annual 

normalized vegetation index 

Table 2. Explanatory variables weight. 

Explanatory variables Variable selection 
Indicator 

weight 

Estimate 

properties 

Urban-rural 

transformation (URT) 

Population transition (PT) 0.23 + 

Industrial transformation (IT) 0.22 + 

Land transfor-

mation (LT) 

Construction land (LUT) 0.37 + 

Cultivated land (LRT) 0.18 - 
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3.3. Research Methods 

3.3.1. Index of Urban-Rural Transformation 

The process of urban-rural transformation encompasses various dimensions, including 

population dynamics, land utilization, and industrial development. This paper uses previous study 

findings to develop an index to measure urban-rural change in counties within the Yellow River 

Basin. The index is constructed based on three fundamental factors: population, land, and industry 

(Table 1). Within the indication system, the criterion layer consists of three dimensions: PT, IT, and 

LT. The indicator layer integrates the three aspects above while considering the availability of data. 

The weight of each indicator layer is determined by the objective weighing method, namely the 

entropy approach, and the subjective weighting method, known as AHP. These methods are used to 

accurately assess the contribution of each indicator layer to the urban-rural transformation. As the 

value increases, the contribution also increases, and vice versa. The specific process is as follows: 

1. Data standardization processing [47]. 

To eliminate the influence of different indices on the comprehensive evaluation of the urban-

rural transformation, this paper adopts the range standardization method to standardize the data of 

four explanatory variables indices of counties and districts in the Yellow River Economic Belt in 2000, 

2010, and 2020 year. The calculation is expressed as: 

Forward pointer: ���  =  
�������(���)

���(���)����(���)
 

(1)

Negative indicators: ���  =  
���(���)����

���(���)����(���)
 (2)

where rij is the index value after standardization; Aij is the original value of index data; max(Aij) and 

min(Aij) are the maximum and minimum values of the original Aij indicator, respectively. 

2. Calculate the weights. 

In this paper, the objective and subjective weighting methods are used to determine the index 

weights. Specifically, the objective weighting law avoids the problem of subjective assumptions. Still, 

there is a problem in that the weight of indicators is judged only by the differences in the data 

themselves. Thus, it sometimes ignores the differences in the actual importance of the indicators, 

thereby resulting in unreasonable weights. While the subjective weighting method is reasonable in 

judging the difference in the importance of information represented by the indicators, it still has the 

problems of subjective assumptions and random scoring [48]. Therefore, this paper adopts the 

combination weighting method based on entropy and AHP to calculate the level of the urban-rural 

transition in the Yellow River Basin. 

3.3.2. Kernel Density Estimation 

This paper uses the Kernel density method to analyze the distribution of PM2.5 in the Yellow 

River Basin and estimate the dynamic distribution characteristics of PM2.5 in the Yellow River basin. 

3.3.3. Spatial Autocorrelation Analysis 

Air pollution is spatially dependent and heterogeneous. In terms of PM2.5, due to the fluidity of 

the atmosphere, the occurrence of haze often affects multiple neighboring regions. Therefore, this 

paper uses the global autocorrelation Moran’s index to test the spatial correlation of PM2.5 in the 

Yellow River Basin, the specific formula of which is as follows: 

� =  
� ∑ ∑ ���

�
� � �

�
� � � (�� − �)(�� − �)

(∑ ∑ ���
�
� � �

�
� � � ) ∑ (�� − �)��

� � �

 (3)

where xi and xj are the observed values in region i and j; n is the number of counties; Wij is the space 

weight matrix; and x is the average of the observed values in n regions. The global Moran index I is 

a rational number with values distributed in [-1,1]. When I > 0, a positive correlation exists; when I < 
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0, a negative correlation exists; when I = 0, there is no spatial correlation. The larger the absolute value 

of I, the stronger the spatial autocorrelation is (i.e., the stronger the overall spatial agglomeration of 

PM2.5). 

3.3.4. Spatial Metrology Model 

Normal least squares regression models have spatial dependence issues when analyzing the 

spatial impacts of numerous variables. This article uses the spatial econometric model to examine the 

elements contributing to air pollution and how it correlates with space. Common components include 

the spatial lag model (SLM), the spatial error model (SEM), the spatial Durbin model (SDM), and 

others. Spatial Durbin is an expanded version of the spatial lag and spatial error models that 

incorporates both endogenous interaction effects (WY) and exogenous interaction effects (WX) [49]. 

Its specific formula is as follows: 

� =  ��� + �� + ��� + �，�~�(0，��) (4)

where Wy describes the endogenous interaction effect of y; WX describes the exogenous interaction 

effect of X; ρ is the spatial autoregressive coefficient; θ is the coefficient on exogenous interaction 

effect. When θ = 0, it is the SLM model, and when θ = - ρβ, it is the SEM model. The more significant 

θ is, the stronger the spatial interaction between explanatory variables, and it can be theoretically 

determined whether there is a spatial spillover effect. This paper selects the adjacent space weight 

matrix and uses the spatial weight matrix based on the reciprocal square of Euclidean distance as the 

robustness test of the model results. Regarding optimal model selection, LM, Hausman, effect, WALD 

and LR test were carried out sequentially, and log-likelihood ratios were used to compare the 

goodness-of-fit of different models. 

4. Results 

4.1. Characteristics of the Spatiotemporal Evolution of the Urban-Rural Transformation 

Using the quartile technique, the Yellow River Basin counties' urban-rural transformation is 

assessed as follows: 25% (1/4th quartile), 50% (1/2th quartile), and 75% (3/4th quartile). Figure 3 shows 

the spatial representation of the four tiers of urban-rural change in counties: low, lower, higher, and 

high.  

There was a considerable increase in the total transition level of urban-rural areas between 2000 

and 2020. Overall, the urban-rural transformation has been trending upwards, with average index 

values of 0.3284, 0.3947, and 0.4478 in 2000, 2010, and 2020, respectively. Overwhelmingly, the degree 

of urban-rural change was low in 2000, with 71.49 percent of counties falling into zones with Low or 

Lower index values. There was a concentration in the western and central regions, and 253 counties 

had low index values, and 103 had lower index values. Dispersed over the province capital areas, the 

regions with high index values comprise just 17.06% of the total. Even though fewer counties had 

Low index scores in 2010, the urban-rural transformation index was higher than in 2000. A total of 

49.59% of counties are located in areas with Higher or Higher index values. Among these, high-value 

areas are consistently distributed in provincial capital cities and exhibit a relatively high level of 

urban-rural transformation in Inner Mongolia Province. The proportion of counties with Low index 

values decreased from 50.81% to 15.46%, primarily in the west and east of Qinghai Province, 

Northern Sichuan Province, Central and Eastern Gansu Province, Southern Ningxia Province, 

Eastern Henan Province, and other regions. In 2020, the urban-rural transformation in the Yellow 

River Basin increased significantly compared to 2000. This was due to the rural revitalization strategy 

and poverty alleviation measures. 71.49% of the counties and districts were located in areas with high 

or high-index values, while only 0.03% had low index values. Counties that have high index values 

tend to cluster around major cities. Counties in the Yellow River Basin with low index values are 

dispersed over the borderlands of different provinces.  

Over time, the Yellow River Basin's urban-rural transformation level has shifted from 

asymmetrical growth in the north and east to a more balanced pattern of development in the middle 
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and west. A decrease in the urban-rural transformation index difference from 0.894 to 0.785 during 

the research period suggests that the spatial differences in the region's urban-rural transformation 

shrank. Most of Inner Mongolia's and each province's counties with a high degree of urban-rural 

transformation are located in or close to the cities. This might be because Inner Mongolia is rich in 

natural gas, rare earth metals, coal, sheep, and a relatively tiny population. Consequently, it is leading 

the urban-rural transformation with its greater urbanization rate and more developed economy than 

other provinces and cities in the Yellow River Basin. The western regions and the periphery of 

provinces in the Yellow River basin are primarily home to the counties with lower index values. The 

urban-rural transformation may progress slowly in the western region since its physical geography 

is unstable and constrained by numerous factors like topography, resource distribution, policies, etc. 

 
(a) 

 
(b) 
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(c) 

Figure 3. Spatiotemporal pattern of the urban-rural transformation from 2000 to 2020: (a) Urban-rural 

transformation index in 2000; (b) Urban-rural transformation index in 2010; (c) Urban-rural 

transformation index in 2020. 

4.2. Characteristics of the Spatiotemporal Evolution of PM2.5 

4.2.1. Distribution situation of PM2.5 in the Yellow River Basin 

The distribution condition of PM2.5 in 498 counties of the Yellow River Basin from 2000 to 2020 

is analyzed in this paper using the Kernel density approach. From Figure 4, we may deduce the PM2.5 

dynamic dispersion features. When looking at the data as a time series, there were turning points in 

the average PM2.5 concentration between 2006 and 2015. From 2000 to 2006, it showed an upward 

trend, with the average concentration increasing from 43.39 μg/m3 to 59.57 μg/m3, which is the 

maximum value observed during the study period. From 2006 to 2015, the overall average 

concentration of the region was at a relatively high level, and pollution was relatively severe. From 

2015 to 2020, the overall average annual concentration in the region showed a downward trend. 

During this period, the State Council of China issued policies such as the Action Plan for Air Pollution 

Prevention and Control in 2013, which curbed air pollution to some extent. However, there are 

significant differences in PM2.5 among different counties, but the fluctuations are small, and the 

overall trend tends to be consistent. In the dynamic distribution characteristics, first of all, from the 

characteristics of the peak, the peak of PM2.5 concentration in the Yellow River basin showed a trend 

of first decreasing and then rising during the sample period. The shape of the wave peak did not 

change significantly, indicating that the gap of PM2.5 concentration in all counties persisted. When 

looking at the nuclear density curve regarding the number of wave peaks, we can see that it went 

from having many side peaks to just one, and the side peaks gradually flattened and widened. This 

suggests that the overall PM2.5 concentration in the Yellow River basin was reduced, too. Finally, from 

the perspective of distribution pattern, the nuclear density curve has obvious right tail characteristics, 

indicating that PM2.5 in these counties is greatly different, and individual counties exceed others. 
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Figure 4. Distribution situation of PM2.5 in 498 counties in the Yellow River Area. 

4.2.2. Spatial Pattern of PM2.5 in the Yellow River Basin 

To further analyze the spatial differences of PM2.5, the PM2.5 values of 498 counties in the Yellow 

River Basin in 2000, 2010, and 2020 were visualized (Figure 5). Generally, it showed a spatial 

distribution pattern of high in the east and low in the west. PM2.5 is generally high in Shandong and 

Henan provinces, with some counties in Shaanxi, Shanxi, Inner Mongolia, Ningxia, and Gansu 

provinces having relatively high PM2.5, while they are relatively low in the northern regions of the 

Qinghai and Sichuan provinces. Specifically, 29.52% of the districts and counties reached the second 

level of air quality standards in 2000 and were mainly distributed in the western part of the region. 

The areas with higher PM2.5 are mostly located in Shandong, Henan, Shanxi, and Shaanxi provinces 

and are distributed around various urban centers. In 2010, pollution intensified compared to 2000, 

with 10.84% of districts and counties meeting the second level of air quality standards. Shandong, 

Henan, Shaanxi, and Shanxi provinces further increased air pollution and became a “heavy disaster 

area” for haze. The flat terrain in these areas provides ideal conditions for the diffusion of pollutants, 

and, coupled with the abundance of resource-dependent cities in these regions; their economic 

development generally faces difficulties such as a lack of economic diversity and underdeveloped 

energy-saving and emissions-reducing technologies, which exacerbate industrial pollution. In 2020, 

the number of areas with high PM2.5 significantly decreased, and their spatial distribution contracted. 

Among all districts and counties, the lowest annual PM2.5 concentration is 1.27 μg/m3; the highest is 

62.44 μg/m3. The number of districts and counties that have reached the second level of air quality 

standards increased to 233, accounting for 46.79% of the sample. However, according to WHO 

standards, the average annual concentration of PM2.5 should be less than 5 μg/m3 to be sufficient to 

prevent harm to human health, but only nine districts and counties meet that standard. 
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(b) 
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(c) 

Figure 5. Spatiotemporal pattern of PM2.5 from 2000 to 2020: (a) Spatiotemporal pattern of PM2.5 in 

2000; (b) Spatiotemporal pattern of PM2.5 in 2010; (c) Spatiotemporal pattern of PM2.5 in 2020. 

4.2.3. PM2.5 Spatial Correlations 

We used Stata16 and ArcGIS10.4 software to analyze the correlation of PM2.5, and Moran’s I was 

0.75***, 0.742***, and 0.722***, thus indicating a significant positive spatial correlation (Figure 6a, 6c 

and 6e). Local Moran’s I is used to further detect the local clustering of PM2.5. The cold-hot spot 

analysis (Figure 6b, 6d and 6f) shows that the “high–high” clustering is mainly concentrated in the 

eastern part of the region. From 2000 to 2010, the “high–high” agglomeration area moved eastward, 

and air pollution in Shaanxi and Shanxi improved, while that in Shandong further intensified. From 

2010 to 2020, there was no significant change in the “high–high” agglomeration area, while Henan 

and Shandong provinces have always been areas of high PM2.5. The “low–low” clustering is mainly 

concentrated in the western part of the region, and the clustering points in Qinghai Province 

gradually connect with those in the eastern region of Inner Mongolia, with obvious spatial effects. 

  

(a) (b) 
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(c) (d) 

  

(e) (f) 

Figure 6. Global and local correlations of PM2.5: (a) Moran’s I of PM2.5 in 2000; (b) Cold-hot spot 

analysis of PM2.5 in 2000; (c) Moran’s I of PM2.5 in 2010; (d) Cold-hot spot analysis of PM2.5 in 2010; (e) 

Moran’s I of PM2.5 in 2020; (f) Cold-hot spot analysis of PM2.5 in 2020. 

4.3. The Processes by which PM2.5 is Affected by the Urban-Rural Transition 

4.3.1. Applicability Test of Model 

When examining the spatial impact of air pollution, it is seen that PM2.5, as the variable being 

studied, has notable spatial autocorrelation. This work utilizes the spatial econometric model to 

address the issue of spatial dependence, which the standard least squares regression model cannot 

handle. First, an LM test was conducted to determine the most appropriate method among SLM, 

SEM, and SDM. The test compared LM (lag), LM (error), RobustLM (lag), and RobustLM (error), and 

all four parameters were shown to be statistically significant at the 1% level. This suggests that both 

SLM and SEM are good options. Thus, in this investigation, the choice was made to use SDM, a more 

comprehensive version of SLM and SEM that includes both endogenous and exogenous interaction 

effects. Second, the Hausman and impact tests were conducted, revealing that the time effect of SDM 

is superior. Subsequently, the WALD and LR tests were employed to assess the appropriateness of 

the model and ascertain if SDM would deteriorate into SLM or SEM. The results all rejected the 

original hypothesis. Therefore, it was reasonable to choose SDM (Table 3). 

Table 3. Model test. 

Test Statistic Likelihood ratio (chi2) P-value Prob＞chi2 

Moran’s I 5.123  0.000  

LM-Spatial error 740.439  0.000  

RobustLM-Spatial error 269.159  0.000  

LM-Spatial lag 584.981  0.000  

RobustLM-Spatial lag 113.701  0.000  

LR-Ind  279.77  0.000 

LR-Time  3633.36  0.000 

LR-Spatial error  21.55  0.0058 

LR-Spatial lag  29.44  0.0003 

WALD-Spatial error  21.41  0.0032 

WALD-Spatial lag  29.62  0.0001 

Hausman  244.49  0.000 

The estimation results of SDM (Table 4) are further analyzed. W_lnPM2.5 is significant at the 0.1% 

level, and the estimated values of individual, time, and time-fixed effects reach 0.870, 0.396, and 0.546, 

respectively, thus indicating that the explanatory variable PM2.5 has a significant endogenous 

interaction effect in space. Under the condition that all other explanatory variables are controlled, 

each 1% increase in PM2.5 in a neighboring area will increase about 0.5% in local PM2.5. Hence, the 
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diffusion and propagation of atmospheric contamination over different areas will substantially 

impact the concentration of local PM2.5. In the time effect of SDM, the R2 value of 0.723 is greater than 

the individual and the individual and time fixed effects, thus indicating that the degree to which the 

model can explain the dependent variable PM2.5 is 72.3%. Furthermore, the quadratic terms of PT, IT, 

and LT are all significant at less than the 5% level; that is, the reliability of the results is greater than 

95%. This indicates a nonlinear relationship between the urban-rural transition and PM2.5. We further 

analyze this relationship in Figure 6, and the U-test is conducted to measure the “U-shaped” 

relationship that exists in LT. In addition, the estimation of the coefficient representing the exogenous 

interaction effect under time effects is given in Table 3. It can be seen that EL and POP have significant 

significance. The direct and indirect effects of SDM are given in Table 5 to analyze this phenomenon 

further. 

Table 4. The coefficient on the exogenous interaction effect under time effects. 

Variables Ind Time Both 

W-lnPM2.5 0.870*** 0.396*** 0.546*** 

Main    

lnPT 0.00714 0.0710*** 0.00498 

ln2PT 0.000886 0.0375* 0.000612 

lnIT -0.446 -9.864** -1.739 

ln2IT 1.277 20.84** 4.101 

ln3IT -0.807 -10.93** -2.352 

lnLUT -0.0141 0.253*** 0.0170 

ln2LUT -0.00450 -0.153*** -0.000974 

lnLRT -0.0597 0.437*** -0.0382 

ln2LRT 0.126*** -0.0537** 0.132*** 

EL -0.106*** 0.0286 -0.103*** 

POP 0.00918 0.0290* 0.000774 

NLT 0.0810*** 0.105*** 0.0938*** 

NDVI 0.00885 -0.0251 0.00987 

Wx    

lnPT 

 

-0.0728  

ln2PT 

 

-0.0346  

lnIT  -3.447*  

ln2IT  7.768*  

ln3IT  -4.327*  

lnLUT  -0.0868*  

ln2LUT  0.192***  

lnLRT  0.110*  

ln2LRT  -0.0357  

EL  0.146***  

POP  0.0101*  

NLT  -0.0455  

NDVI  -0.00931  

Variance    

sigma2_e 0.0126*** 0.0154*** 0.0123*** 
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R2 0.454 0.723 0.207 

N 1494 1494 1494 

t-statistics in parentheses* p <0.05, ** p <0.01, *** p <0.001. Note: The urban-rural transition itself failed the model 

due to high collinearity. 

Table 5. The outcomes of the Durbin spatial regression model. 

Explanatory 

variable 

Population 

transformation (PT) 

Industrial 

transformation (IT) 

Land transformation (LT) 

Construction land 

(LUT) 

Cultivated land 

(LRT) 

lnPM2.5 0.523*** 0.534*** 0.559*** 0.895*** 

lnURT 0.071** -20.948*** -0.262*** -0.207* 

ln2URT 0.113* 45.114*** 0.232*** 0.166** 

ln3URT  -24.017***   

lnEL -0.254*** -0.246*** -0.052*** 0.157*** 

lnPOP 0.138*** 0.130*** 0.037** 0.046 

lnNLT 0.078*** 0.110*** 0.134*** 0.070*** 

lnNDVI -0.039* -0.041** -0.029* -0.028** 

R2 0.469 0.536 0.618 0.266 

N 1494 1494 1494 1494 

*, **, and * * * indicate significance at the 10%, 5%, and 1% levels, respectively. 

4.3.2. Model Results and Influencing Mechanisms 

To achieve sustainable and high-quality development in the Yellow River Basin, examining 

urban and rural areas as an organic system and analyzing how subsystems like population, land, and 

industry affect PM2.5 is beneficial. This approach is based on the idea of urban-rural integration. 

1. Impact of PT on PM2.5. 

According to the results of SDM analysis with the population urbanization rate as the core 

explanatory variable (Table 5), as the PT deepens, the elastic coefficient on its influence on PM2.5 

changes from 0.071 to 0.113. That is, the rural-to-urban agglomeration will increase the pollution. 

Increased consumption of resources, such as private car exhaust and coal, has exacerbated PM2.5 

emissions [50]. Based on the census statistics, the percentage of the urban population in the Yellow 

River Basin has risen from 32.63% in 2000 to 56.55% in 2020. In the densely populated areas in the 

middle and lower reaches of the Yellow River Basin, the increase in the number of private motor 

vehicles per capita has aggravated road congestion, thereby resulting in carbon dioxide and PM2.5 

emissions soaring, which has led to an increase in the occurrence of PM2.5 (Figure 7a). 

2. Impact of IT on PM2.5. 

A negative-positive-negative relationship between IT and PM2.5 is indicated by an inverted "N-

shaped" curve between the two variables, as shown in Table 5, which is the outcome of SDM analysis 

using the proportion of non-agricultural industry as the primary explanatory variable. When the 

proportion of non-agricultural industries is lower than 30.8%, the elasticity coefficient of industrial 

transformation on PM2.5 is -20.948 and is significant at less than the 1% level. The increase in the 

proportion of secondary and tertiary industries is conducive to reducing PM2.5 emissions. When the 

proportion of non-agricultural industries is relatively low, the levels of economic development and 

industrialization are low, the economy is simple, and the impact on the environment is within the 

range of its carrying capacity. When the proportion of non-agricultural industries is between 30.8% 

and 94.4%, the elasticity coefficient is 45.114 and is significant at less than the 1% level. The increase 

in the proportion of secondary and tertiary industries will significantly increase PM2.5. Against the 

backdrop of low barriers to global trade and low awareness of local environmental protection, some 
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pollution-intensive enterprises, such as chemical and energy with high pollution and high emissions, 

were consolidated, and the economic model based on industrial production led to the aggravation of 

PM2.5 pollution. As industrialization and urbanization progress, there is a significant rise in the 

demand for energy and fuel consumption. Such development comes at a certain environmental cost 

in countries with the dominant secondary industry. Simultaneously, the energy-saving and 

emissions-reducing technology is relatively underdeveloped, and the emissions of industrial dust, 

smoke, and other pollutants greatly aggravate PM2.5. An elasticity coefficient of -24.017 is observed 

when the proportion of non-agricultural industries surpasses 94.4%, and a decrease in PM2.5 is 

observed as the proportion of secondary and tertiary industries increases. With the proposal of the 

concept of industrial ecology, green industries are gaining prominence, the improvement of clean 

energy utilization technologies forces the industrial structure to transform, and the establishment of 

industrial parks in the county has saved the cost of pollution prevention and control, which greatly 

curb PM2.5 emissions (Figure 7b). 

3. Impact of LT on PM2.5. 

According to the results of the SDM analysis with construction land proportion and cultivated 

land proportion as the core explanatory variables (Table 5), both exhibit a “U-shaped” relationship. 

With the increase in LUT and LRT, their impact on PM2.5 is inhibited and then enhanced. This may 

be because urban construction, industrial and mining, residential construction, and cultivated lands 

are developed from wastelands. Thus, the environmental impact is within the range of its carrying 

capacity. In the later stage, the expansion of construction land will increase PM2.5. More urban space 

will be created as a result of land use expansion, which in turn will increase energy consumption and 

the distances people have to commute. Therefore, the low-density distribution of the population and 

the dispersed layout of urban space will lead to the increase of PM2.5. Moreover, the increase in the 

proportion of construction land implies that the proportion of forest land, wetland, and other 

ecological green areas is reduced, which reduces the environmental carrying capacity, making it 

difficult to restore and purify the environment [37]. It is worth mentioning that the increase in the 

proportion of cultivated land will also aggravate PM2.5. This is mainly because the increase in the 

proportion of cultivated land will expand the crop planting area, which may increase straw burning 

and fuel use. However, agricultural soils contribute significantly to emissions of polluting gases 

through the use of chemical fertilizers. Furthermore, the importance of such factors will continue to 

increase in response to implementing policies designed to control fossil fuel use and increase fertilizer 

inputs due to the growing demand for food[51] (Figure 7c and 7d). 

4. Direct and indirect effects. 

The contribution of different explanatory variables can be compared by analyzing the 

significance of the explanatory variables and the absolute values of the standardized coefficients 

given in Table 6. Regarding direct effects, IT, LRT, and NLT positively affect PM2.5, while EL and 

NDVI have an inhibitory effect. The direct effects on local air pollution are ranked as follows: LRT > 

NLT > IT > EL > NDVI. An increase in the proportion of cultivated land, social activity, and non-

agricultural industry will directly exacerbate local air pollution, and the vegetation index will reduce 

it. In this model, EL has an inhibitory impact on PM2.5, which may indicate a decrease in the use of 

non-clean energy sources such as coal and firewood in the county and rural. Regarding indirect 

effects, the spillover effects are ranked as follows: LRT > LUT > POP > NDVI > PT. Among them, LT 

positively affects PM2.5 in adjacent areas, while NDVI has an inhibitory effect. Expanding land in 

neighboring counties will also exacerbate local PM2.5, and NDVI in neighboring counties will also 

reduce local pollution. In this model, POP and PT have an inhibitory effect on PM2.5 in neighboring 

areas. This indicates that the increase in population in neighboring counties, as well as the increase 

in the local population, will reduce local PM2.5. This may be due to urbanization, which leads to large-

scale migration to the county and reduces the carrying pressure on the surrounding environment 

(Figure 8). 
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(a) (b) 

  

(c) (d) 

Figure 7. Effect of the urban-rural transformation on PM2.5: (a) Effect of the PT on PM2.5; (b) Effect of 

the IT on PM2.5; (c) Effect of the LUT on PM2.5; (d) Effect of the LRT on PM2.5. 

Table 6. Analysis of spatial spillover effect. 

Explanatory variable Direct effect Indirect effect 

lnPT 0.018 -0.033** 

lnIT 0.044*** 0.009 

lnLUT 0.032 0.211*** 

lnLRT 0.384*** 1.028** 

lnEL -0.059*** 0.039 

lnPOP -0.005 -0.122*** 

lnNLT 0.315*** 0.093 

lnNDVI -0.015* -0.062** 

*, ** and * * * indicate significance at the 10%, 5%, and 1% levels, respectively. 
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Figure 8. Flow chart of the influencing mechanisms on PM2.5. 

5. Discussion 

Air pollution is a cross-regional problem with complex formation mechanisms. The key to 

promoting urban-rural integration and economic development while protecting the environment is 

quantitatively assessing the level of urban-rural transformation and the temporal and spatial 

variations of PM2.5. Furthermore, it is crucial to evaluate the driving mechanism behind urban-rural 

transformation and its impact on changes in PM2.5 concentration. The empirical findings will be 

discussed in the following parts: 

1. The driving force in large cities; 

The urban-rural transformation measured in this article emphasized the coordination of 

urbanization and ruralization. To a certain extent, it embodies the overall process of agricultural and 

rural modernization [52]. The urban-rural change in the Yellow River Basin has a spatial pattern 

characterized by high levels in the northern and eastern regions and low levels in the southern and 

western regions. The counties with High or Higher index values are mainly distributed in Inner 

Mongolia and near the capital city of each province. This could be attributed to the proximity of the 

counties around the provincial capital to the economic hub of the province. As urban-rural 

integration progresses, the connection between urban and rural areas is growing stronger, and rural 

areas are greatly influenced by the influences originating from metropolitan centers. The counties 

with Low or Lower index values are mainly distributed in the western part and the border areas of 

each province. This may be because counties in the provincial border regions are affected by their 

spatial location as well as administrative barriers and policies. Most of the border regions are at the 

“end” of each province’s economic system regarding geography and their integration into high-level 

regional development strategies, resulting in inefficient and slow development. This indicates that 

large cities can promote urban-rural transformation, but their range is limited. In the future, attention 

should be paid to these edge areas at the “end” of each province’s economic system. It is therefore 
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recommended to break down administrative barriers, form a joint force, and promote cooperative 

development by leveraging each region’s advantages. 

2. Take integrated and localized measures to control air pollution. 

PM2.5 in the Yellow River Basin shows a clear spatial correlation, thus indicating the need for 

regional collaboration to control air pollution. To enhance the collective efforts in preventing and 

controlling regional air pollution, it is imperative to promote awareness of urban-rural integration in 

the future. “High–high” aggregation areas are mainly concentrated in the eastern part of the region, 

with the Henan and Shandong provinces being the most heavily affected regions. This suggests that 

air pollution in these areas is particularly severe, and localized ecological restoration policies should 

be established accordingly. 

3. The influencing mechanisms of PM2.5 by different subsystems of the urban-rural transformation vary. 

According to the research results, the impact of IT on PM2.5 has the highest elastic coefficient, 

thus indicating that the industrial structure plays a dominant role in the spatiotemporal evolution of 

PM2.5. Specifically, the impact of IT on PM2.5 shows an inverted “N-shaped” curve. This indicates that 

different stages of industrial transformation have different effects on air pollution, and the 

relationship between IT and PM2.5 is shifting from positive to negative. This could be attributed to the 

transformation of the Yellow River Basin industry from a factor-driven model to a green technology-

driven model. In the future, it may be necessary to abandon economic models that do not consider 

the environment and continue accelerating industrial restructuring and transformation through 

innovative green technologies in counties to create a sustainable industrial system in the Yellow River 

Basin.  

Regarding the impact of PT on PM2.5, excessive rural-urban population aggregation leads to 

insufficient public resources, traffic congestion, and high energy intensity, resulting in a continued 

rise in PM2.5. It should be noted that some studies have pointed out that the spatial aggregation of the 

population can reduce production costs and improve economic efficiency, promote energy 

conservation and emissions reduction, and improve the overall air pollution situation, thereby 

reducing the pollution caused by PM2.5 emissions [43]. According to the principles of urban 

economics, moderate population aggregations can reduce atmospheric pollution. The impact of PT 

on PM2.5 will appear as a downward sloping trend (i.e., the left-hand side of the “U-shaped” curve). 

In the future, the spatial layout of the population and the carrying capacity of resources and 

environment should be considered overall, and the spatial planning of the land should be 

scientifically formulated. 

Regarding the influence of LT on PM2.5, the relationship between LUT, LRT, and PM2.5 exhibits 

a “U-shaped” curve. The uncontrolled expansion of construction land results in a scattered layout 

and low land use efficiency, resulting in pollution problems in many counties. The increase in the 

proportion of cultivated land will also aggravate atmospheric pollution, which indicates that soil and 

air pollution influence each other, creating a pollution cycle [17]. In the future, it is urgent to ensure 

purposeful development, redefine Urban built-up area boundaries according to scientific findings, 

and rationally expand cities while preventing their uncontrolled expansion. Decision-makers should 

firmly grasp the concept of safe, efficient, ecological, and high-quality urban land space planning, 

strengthen land use controls and ecological red lines, and include urban construction land and 

ecological preservation land in national spatial planning [44]. Furthermore, it is imperative to 

consider the three-dimensional effect of soil pollution, restrict the emissions of harmful gases from 

agricultural land through active land management, and vigorously develop green agriculture, which 

will benefit the economy, ecosystems, and human health in urban-rural areas of the region. 

6. Conclusions 

This study utilized remote sensing imagery and panel data collected from counties in the Yellow 

River Basin between 2000 and 2020 to create an index measuring urban-rural change. The 

spatiotemporal pattern was revealed using the entropy approach and AHP hierarchical analysis. In 

addition, spatial autocorrelation was employed to examine the spatiotemporal properties of PM2.5, 
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while spatial econometric models were utilized to study the non-linear correlation and influencing 

processes between the urban-rural transformation and PM2.5. The main conclusions are as follows. 

From 2000 to 2020, the urban-rural transformation in the Yellow River basin has shown a clear 

upward trend. From a spatial distribution perspective, it has evolved from high in the north and the 

east and low in the south and the west to high in the north and balanced in the east, middle, and 

west, and the interregional differences are gradually narrowing. Counties with High or Higher 

indexes are mainly distributed in Inner Mongolia and the counties around cities in various provinces, 

while counties with Low or Lower index values are mainly distributed in the western and peripheral 

areas of various provinces. 

PM2.5 showed inflection points in 2006 and 2015, with a trend of first rising, then fluctuating 

around a high baseline, then gradually decreasing. PM2.5 in the Yellow River basin generally exhibits 

a spatial pattern that is high in the east and low in the west, and “high–high” clusters are mainly 

concentrated in the eastern regions, thus indicating that Henan and Shandong provinces have high 

concentrations of haze, while “low–low” clusters are mainly concentrated in the western part of the 

region. 

Different stages in the development of various subsystems of the urban-rural transformation 

have different impacts on PM2.5. The impact of IT on PM2.5 exhibits an inverted “N-shaped” curve of 

negative-positive-negative changes, and the industrial structure plays a controlling role in the 

spatiotemporal evolution of PM2.5. Presently, the influence of the PT on PM2.5 has taken the form of 

the left extremity of an inverted "U-shaped" curve. A "U-shaped" relationship illustrates the effect of 

LT on PM2.5. 

Regarding direct effects, IT, LRT, and NLT all have a positive impact on PM2.5, while EL and 

NDVI have a negative effect on it. Regarding indirect effects, LT (LUT, LRT) has a positive impact on 

the PM2.5 of adjacent areas, while NDVI and POP have a negative effect on it. 

This research offers a novel approach to examining the correlation between urban-rural change 

and PM2.5 within urban-rural integration. Implementing PM2.5 emission reduction measures in the 

Yellow River Basin promotes sustainable and high-quality development. Furthermore, it can serve 

as a valuable resource for policymakers in densely populated regions that experience significant air 

pollution, particularly in developing nations. 

Author Contributions: Conceptualization, M.C. and C.X.; methodology, C.X.; software, Z.Y.; validation, W.S., 

Z.C. and C.X.; formal analysis, C.X.; resources, M.C.; data curation, Z.Y.; writing—original draft preparation, 

Z.Y.; writing—review and editing, Z.Y.; visualization, Z.Y.; supervision, C.X.; project administration, M.C.; 

funding acquisition, M.C. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by Key Science and Technology Program of Henan Province, grant number 

242102320240. 

Data Availability Statement: The data presented in this study are available on request from the corresponding 

author. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Appendix A 

Table A1. Descriptive statistics. 

Variable name Mark Mean value 
Standard 

error 
Minimum Maximum 

PM2.5 concentrations PM2.5 45. 15813 16. 9881 1. 265238 88. 11379 

Population transformation PT 44. 44847 27. 03547 0 100 

Industrial transformation IT 79. 68927 15. 54944 19. 97809 100 

Land 

transformation

Construction 

land 
LUT 10. 9204 13. 29152 0. 0052168 99. 42327 
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Cultivated 

land 
LRT 45. 9908 24. 79752 0. 0047788 87. 46495 

Electricity consumption EL 4754. 903 9823. 977 202. 3436 159999. 2 

Population size POP 842. 4223 2214. 075 1500 2146000 

Normalized vegetation index NDVI 0.8199384 0.0996595 0.3 0.92 

Nighttime light brightness NLT 9. 045765 12. 40715 0 63 
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