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Abstract: Air pollution has recently gained much attention from the general population. Despite pollution
control being an issue in both urban and rural regions, most of the available research has concentrated on urban
districts. Hence, investigations into how urban-rural transition affects PM2s are warranted within the
framework of urban-rural integration. Using the Yellow River Basin as a case study, this study employed the
entropy method and Analytic Hierarchy Process (AHP) to uncover the extent of urban-rural transformation. It
then used the spatial autocorrelation method to investigate the spatiotemporal features of PM2s and the spatial
econometric model to investigate the mechanisms that influence the relationship between urban-rural
transformation and PMzs. The results are as follows: (1) Over time, there was a discernible upward tendency
in the change in urban-rural areas. The development has progressed from asymmetrical north-east and south-
west elevations to a more balanced pattern of north-east, middle-east, and west-west elevations. (2) The PM2s
concentration increased steadily, then fluctuated, and finally decreased. Notably, the general pattern has not
changed much, and it is high in the east and low in the west. (3) Different subsystems of the urban-rural
transformation have different impacts on air pollution at different stages. The influence of industrial
transformation (IT) on PM2s showed an inverted “N-shaped” curve of negative-positive-negative changes, and
the industrial structure played a leading role in the spatiotemporal evolution of PM2s. Currently, an inverted
"U-shaped" curve forms the left side of the impact of population transition (PT) on PM2s. Land development
(LT) has a "U-shaped" curve for its effect on PMzs. This research provides a new perspective on the topic of
PM25 and its connection to urban-rural integration, which is crucial to understanding the dynamics of this shift.
To achieve its goal of high-quality development, it supports regional initiatives to reduce PM2s emissions in
the Yellow River Basin. Moreover, it can provide a reference for decision-makers in the world’s densely
populated areas that suffer from serious air pollution.

Keywords: urban-rural transformation; air pollution; PM:s; influencing mechanisms; the Yellow river Basin;
China

1. Introduction

Cities often drive global economic development, whereas rural areas generally supply the
resources they need while bearing the resulting environmental pressure [1]. Based on the report, there
is predicted to be a 1.76 billion increase in the world's urban population from 2000 to 2024, with
developing countries expected to account for 86% of this rise. [2]. However, extensive and rapid
urbanization has spawned many environmental problems, among which air pollution is particularly
serious [3, 4]. In particular, haze pollution, mainly in the form of PM2s emissions, is most prominent.
In response to these changes, the Chinese government established a new ambient air quality standard
(GB3095-2012) in 2012; it states that primary PM2s concentrations cannot exceed 15 pg/m® and
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secondary PM:s5 concentrations cannot exceed 35 pg/m?3. Although China has made some progress in
reducing PM:s pollution, it still lags behind Japan, the United States and other developed nations.
According to the World Health Organization’s (WHO) Global Air Quality Report 2020 2022, the
average annual concentration of PM2s in China consistently exceeded five to seven times the health
standard set by the WHO (<5 pg/m?) (https://www.iqair.cn) and the current situation of PMo2s
emissions remains pessimistic. Even though the Yellow River Basin's natural environment has
improved, the area still has several ecological challenges. Contributing significantly to China's social
and economic development and ecological security, the Yellow River Basin is vital to the country's
basic industries, energy, chemical industry, and other sectors. The CPC Central Committee and the
State Council in 2020 pointed out that the Yellow River has a poor ecological background, weak
resource endowments, and environmental carrying capacity, as well as deep environmental
pollution. In 2022, the Ministry of Ecology and Environment, the National Development and Reform
Commission, the Ministry of Natural Resources, and the Ministry of Water Resources issued an
Ecological and Environmental Protection Plan for the Yellow River Basin, which declared that
ensuring air quality standards in key areas and improving the level of air pollution control were key
priorities. Due to its long history of agricultural production, the Yellow River Basin has a dense
population and industry. Thus, its air quality has been in a state of severe decline for many years [5].
Rapid urbanization drives the population-land relationship and urban-rural development in the
Yellow River Basin, especially as it regards typical ecological problems such as water and air
pollution caused by rapid urbanization and industrial development in its middle and lower reaches,
and thus is a region in which population, natural resources, and environmental conflicts are highly
concentrated [6]. Therefore, this study takes the Yellow River Basin as the research object,
summarizes the spatiotemporal characteristics of air pollution during its urban-rural transition
period, and further examines its influencing mechanisms. The research results are conducive to the
sustainable, high-quality development of the Yellow River Basin. They can provide a reference for
decision-makers in densely populated developing countries suffering serious air pollution.

During the urban-rural transition, problems such as rural economic weakness, environmental
pollution, and resource shortages have been experienced worldwide [7]. However, the urban-rural
transition is inevitable [8]. Researchers have studied the fundamental nature, objective, and
components of urban-rural change. Liu, Long, and other academics assert that the core of the urban-
rural transition is facilitating the fundamental overhaul of industrial, agricultural production, and
urban-rural dynamics [9, 10]. Industrial development, land transformation, and population transition
are important components of rural spatial transformation [11]. The research on urban-rural
transformation has also shifted from focusing on single-factor analyses of land transformation [9],
industrial development [12], and the population transition [13] to the systematic exploration of a
multifactor transformation that includes people, land, and industry [2, 14-16]. Scholars have also
studied the resource and environmental problems associated with the urban-rural transformation.
Due to weak environmental management in rural areas, urban pollution has gradually been
transferred to rural areas. Many enterprises with high energy consumption, heavy pollution, or that
are difficult to regulate will relocate to or discard untreated waste in rural areas. In addition, rural air
pollution is aggravated due to straw burning and related farming practices [1, 17, 18]. Urban-rural
areas are inseparable after their integration, and only by placing equal emphasis on both can
sustainable development be achieved [19, 20]. Hence, giving equal importance to controlling
pollution in both urban and rural areas is imperative. While previous research has made progress in
comprehending urban-rural change and conducting a qualitative analysis of the associated resource
and environmental concerns, there is a scarcity of studies investigating the quantitative correlation
between these two factors. Moreover, the research concerning the urban-rural transformation in the
Yellow River Basin is inadequate, with a specific absence of knowledge regarding its impact on air
pollution and the underlying causes.

PM2:s, as the main pollutant that causes haze, not only reduces visibility but poses a serious threat
to human health [21]. As more attention is being paid to air pollution, there have been notable
achievements in related research. Cheng et al. pointed out that the Gangetic Plain of India and central
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and eastern China (i.e., the Yellow River Basin regions) are the most serious PM:s5 pollution areas
globally [3]. At present, the research on PM25 mainly involves the nature, sources of PMas [22, 23] as
well as its spatial agglomeration characteristics and spatial heterogeneity [24, 25]. The temporal and
spatial characteristics of PMzs were studied using such methods as spatial autocorrelation and ellipse
of standard deviation [26-28]. Various techniques such as geographical weighted regression,
geographical detector, spatial econometric models, and random forest have been employed to
analyze the components that influence PM2s [29-34]. The influencing factors of PMzs encompass
various natural factors such as terrain, altitude, and others [20, 32]. Additionally, economic
development, population density, industrial structure, foreign direct investment (FDI), scientific and
technological inputs, social activity intensity, municipal transportation, energy consumption,
environmental regulation, urban landscape, urbanization, and other social and economic factors also
play roles in PMzs levels [35-38]. However, the current discussion on the impact of urbanization on
PMb:s is mostly based on city-level analyses. In addition, the approach to controlling air pollution
commonly adopted in China focuses on treating its symptoms. It thus lacks systematic,
comprehensive, and holistic considerations of factors in urban-rural areas.

Studying the factors that cause the change from rural to urban areas and how they affect the
levels of PM:2s pollution is crucial for achieving sustainable development. Nevertheless, our current
comprehension of the factors that drive the impact of the shift from urban to rural areas on air
pollution remains inadequate. This study focuses on 498 counties in the Yellow River Basin, which
are considered representative locations. This study uses extensive county-level data to examine the
spatial and temporal patterns of urban-rural change and its impact on air pollution. It employs
several approaches to analyze the integration of urban and rural areas completely. The purpose of
this study was to (1) measure the level of the urban-rural transformation in the study area, (2)
accurately assess the overall level of air pollution in the Yellow River Basin, and (3) explore the
influencing mechanisms of the urban-rural transition on air pollution. This study aimed to elucidate
the multidimensional relationships and patterns between land, population, industrial
transformation, and PM:s at the county level to support the formulation of regional PM2s emission
reduction policies and provide a reference for decision-makers in densely populated and severely
polluted regions worldwide.

2. Analytical Framework

The urban and rural systems have experienced significant transformations due to globalization,
urbanization, industrialization, information technology, and various other causes. The occurrence of
haze in the transitional phase between urban and rural areas is closely linked to the long-standing
urban-rural dual system and economic development pattern applied in China [1]. Following reform
and opening-up policies, China has embarked on numerous labor-intensive and resource-intensive
industries characterized by significant input, substantial consumption, and considerable pollution.
Under the guidelines of economic construction as the center, China's environmental governance
always follows the way of pollution first and then treatment. Simultaneously, China carries out the
strategy of urban-biased development, which has produced a huge difference in economic and social
development between urban and rural areas. Several imprudent practices, including the burning of
straw, emitting diesel emissions, and utilizing polluting energy sources like coal, have been adopted
by farmers to improve their standard of living despite the detrimental effects on the environment and
resource depletion. In broad strokes, the haze issue during transition periods can be attributed to the
urban-rural dual system and the direct influence of China's economic development model. The
economic growth model established under the urban-rural dual system, the environmental
management system, and the urban-rural development gap served as the foundation for these forces
[17]. The transition period witnessed the urbanization of the rural population and the non-
agricultural sector as the primary drivers of factor flow and aggregation. Subsequently, concerns
have increased in rural regions, whereas the carrying capacity of resources and the environment in
urban areas has progressively waned. Simultaneously, rural regions experience the strain of
resources and the environment due to the transmission of factors from urban spots (Figure 1). In a
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multidimensional fashion, this article quantitatively analyses the pollution problem resulting from
the rapid urban and rural transformation (URT) process.

Economic growth pattern Urban-rural dual system
Labor-intensive industries, Urban and rural environmental | |Economic and social differences
Resource-intensive industries management system between urban and rural areas

Non-agricultural development of

i industry, -
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Figure 1. An analytical framework for the urban-rural transformation and its impact on air
pollution.

3. Materials and Methods

3.1. Study Area

The Ecological Environment Protection Plan for the Yellow River Basin defines the geographical
extent of the basin as encompassing the county-level administrative regions of nine provinces (i.e.,
autonomous regions), including Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia, Shaanxi, Shanxi,
Henan, and Shandong provinces, where the main and tributaries flow of the Yellow River. This
includes the main river and its tributaries. This study focused on 498 counties in the Yellow River
Basin as the research subjects, considering the spread of air pollution and the correlation of economic
and other aspects across county-level units (Figure 2). The study area's permanent population
reached roughly 212.23 million by the end of 2020, or 15.03% of China's total population. The gross
domestic product is roughly 9.8 trillion yuan, representing around 9.66% of the nation's output. The
urbanization rate, on average, stands at approximately 56.6%, below the urbanization rate reported
in the national population census (63.9%). The policy of fostering the "Rise of the Central Region" was
reinforced by the Central Committee of the Communist Party of China and the State Council in 2006,
which issued several opinions. During this timeframe, sectors with substantial energy consumption,
pollution, and emissions were significantly shifted from the economically advanced eastern areas to
the central region [39]. As a consequence, the central region experienced elevated levels of PM2s
pollution. In 2013, the State Council released the Ecological Environment Protection Plan for the
Yellow River Basin, which partially tackled the issue of air pollution. The average annual
concentration of PM2s in the Yellow River Basin in 2020 was 37.56 pg/m?, exceeding the secondary
air quality level (35 pg/m?) established by the Chinese government in 2012 and well below the health
threshold set by the World Health Organization (<5 pg/m?). Consequently, air pollution continues to
pose a significant danger. As our understanding of the interconnectedness between urban and rural
areas grows, it is crucial to prioritize air pollution mitigation in both settings. Hence, it is imperative
to investigate the influential mechanisms of urban-rural transformation on PM:s in the Yellow River
Basin.
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Figure 2. Study area.

3.2. Data Sources

The data include county-level administrative boundary vectors, average annual PMo2s
concentrations, explanatory variables, and control variables (Table 1). Among them, the county-level
administrative boundary vector data were finally obtained using ArcGIS software based on the 2021
administrative regions as the benchmark, which resulted in 498 county-level units. Average annual
PM25 concentration data were derived from the global PM2s dataset. The advantages of this data are
its long observation times, high observation accuracy, and wide coverage [40]. In addition, drawing
upon existing research, this study divides the urban-rural transition into three dimensions: PT, IT,
and LT [41, 42]. Simultaneously, existing studies have shown that natural factors, population size,
energy optimization, human activities, vegetation cover, and other factors impact PM2s [4, 43, 44].
Therefore, studying the impact of the urban-rural transition on PM2s requires us to include these
factors as control variables. The specific data of the explanatory and control variables are set as
follows (Table A1):

(1) PT, IT, and LT are set as the core explanatory variables (Table 2). PT is a process by which the
rural population is transformed into an urban population through its agglomeration into the urban.
The urbanization rate of the population is a measure of the extent to which people are moving from
rural areas to cities. It is calculated by dividing the number of people living in cities permanently by
the total number of permanent residents. IT is a comprehensive process that involves direct or
indirect adjustments to various aspects of the existing industrial structure, characterized by the
proportion of non-agricultural industrial output to total regional output. LT results from a
combination of urban land (LUT) and rural land (LRT) change. On the one hand, land transformation
is reflected in the sprawling expansion of urban construction. Conversely, cultivated land is closely
related to transforming urban-rural areas. It is represented by the ratio of town dwelling, industrial,
and mining land in the county and the ratio of cultivated land in the county, respectively. The
population data come from the census data in 2000 (the fifth census year), 2010 (the sixth census year),
and 2020 (the seventh census year). The economic data mainly come from 2001, 2011, and 2021 China
County Statistical Yearbook, Qinghai Province, Sichuan Province, Gansu Province and Ningxia
Provincial Statistical Yearbook, as well as the national economic and social development statistical
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bulletins in relevant cities and counties in the Yellow River Basin in 2000, 2010, and 2020. Some
missing data were processed by replacing missing values using SPSS26 software for mean and linear
interpolation. The statistics for urban industrial, mining, and agricultural land originate from the
Resource and Environmental Science Statistics Center of the Chinese Academy of Sciences, accessible
at http://www.resdc.cn/. The data presented here are derived from Landsat TM/ETM remote sensing
pictures. The necessary data are obtained through a process of supervised classification and
reclassification.

(2) Regarding the selection of control variables, electricity consumption (EL) represents not only
the consumption of industrial energy in urban areas but also the reduction in the use of non-clean
energy sources, such as coal in rural areas, as represented by per capita electricity consumption. The
continuous expansion of population size (POP) leads to problems such as expanding construction
land, traffic congestion, housing shortages, reduction in per capita public resources, and increased
energy consumption intensity. In theory, the expansion of the population will exacerbate the increase
in PM2s, which is associated with the number of permanent residents. The intensity of social activity
reflects the comprehensive intensity of human socioeconomic activities. Previous studies have shown
a close relationship between nighttime light image data and energy consumption, urban population
density, and total GDP characterized by nighttime light brightness (NLT) [45, 46]. The vegetation
index can accurately reflect the surface vegetation coverage status and is represented by the annual
normalized vegetation index (NDVI). The data originated from the China Annual Vegetation Index
Spatial Distribution Dataset, managed by the Resources and Environmental Sciences and Data Center
of the Chinese Academy of Sciences (http://www.resdc.cn).

Table 1. Variable selection and definition.

Variable type Variable selection Variable definition
D dent
epe.n en PM:25 concentration (PM2s) Degree of air pollution
variable

. . The urbanization rate of the
Population transition (PT) }
population

Industrial transformation (IT) Non-agricultural development of
Explanatory

iabl Th li i f
varables Land Construction land (LUT) ¢ Sprawing expansmn'o
urban and town construction

transformation . . .
(LT) Cultivated land (LRT) The ratio of cultivated land in the
county

industry

the consumption of industrial
energy and non-clean energy
Population size (POP) Number of permanent residents

Control variables Nighttime light brightness (NLT) The night light brightness value

Electricity consumption (EL)

of each county and district
Urban average annual

Normalized vegetation index (NDVI) normalized vegetation index

Table 2. Explanatory variables weight.

Indicator Estimate

Explanatory variables Variable selection weight  properties
Population transition (PT) 0.23 +
Urban-rural Industrial transformation (IT) 0.22 +
transformation (URT) Land transfor-  Construction land (LUT) 0.37

mation (LT) Cultivated land (LRT) 0.18 -
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3.3. Research Methods

3.3.1. Index of Urban-Rural Transformation

The process of urban-rural transformation encompasses various dimensions, including
population dynamics, land utilization, and industrial development. This paper uses previous study
findings to develop an index to measure urban-rural change in counties within the Yellow River
Basin. The index is constructed based on three fundamental factors: population, land, and industry
(Table 1). Within the indication system, the criterion layer consists of three dimensions: PT, IT, and
LT. The indicator layer integrates the three aspects above while considering the availability of data.
The weight of each indicator layer is determined by the objective weighing method, namely the
entropy approach, and the subjective weighting method, known as AHP. These methods are used to
accurately assess the contribution of each indicator layer to the urban-rural transformation. As the
value increases, the contribution also increases, and vice versa. The specific process is as follows:

1. Data standardization processing [47].

To eliminate the influence of different indices on the comprehensive evaluation of the urban-
rural transformation, this paper adopts the range standardization method to standardize the data of
four explanatory variables indices of counties and districts in the Yellow River Economic Belt in 2000,

2010, and 2020 year. The calculation is expressed as:

. o — Ai]-—min(Ai]-)
Forward pointer: r;; = T (Ay)—min(a,) )
max(Aij)—Ai]-

Negative indicators: rij = m (2)

where rij is the index value after standardization; Ajj is the original value of index data; max(Aj) and
min(Aj) are the maximum and minimum values of the original Ajj indicator, respectively.

2. Calculate the weights.

In this paper, the objective and subjective weighting methods are used to determine the index
weights. Specifically, the objective weighting law avoids the problem of subjective assumptions. Still,
there is a problem in that the weight of indicators is judged only by the differences in the data
themselves. Thus, it sometimes ignores the differences in the actual importance of the indicators,
thereby resulting in unreasonable weights. While the subjective weighting method is reasonable in
judging the difference in the importance of information represented by the indicators, it still has the
problems of subjective assumptions and random scoring [48]. Therefore, this paper adopts the
combination weighting method based on entropy and AHP to calculate the level of the urban-rural
transition in the Yellow River Basin.

3.3.2. Kernel Density Estimation

This paper uses the Kernel density method to analyze the distribution of PM2s in the Yellow
River Basin and estimate the dynamic distribution characteristics of PMs in the Yellow River basin.
3.3.3. Spatial Autocorrelation Analysis

Air pollution is spatially dependent and heterogeneous. In terms of PM2s, due to the fluidity of
the atmosphere, the occurrence of haze often affects multiple neighboring regions. Therefore, this
paper uses the global autocorrelation Moran’s index to test the spatial correlation of PMzs in the
Yellow River Basin, the specific formula of which is as follows:

nYio 1 Xj=1 Wi (xi =) (x; — X)
Qo1 X7 W) X1 (i — X)?

where xi and x;j are the observed values in region i and j; n is the number of counties; Wi is the space

| =

®)

weight matrix; and x is the average of the observed values in n regions. The global Moran index [ is
a rational number with values distributed in [-1,1]. When I > 0, a positive correlation exists; when I <
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0, anegative correlation exists; when I =0, there is no spatial correlation. The larger the absolute value
of I, the stronger the spatial autocorrelation is (i.e., the stronger the overall spatial agglomeration of
PMzs).

3.3.4. Spatial Metrology Model

Normal least squares regression models have spatial dependence issues when analyzing the
spatial impacts of numerous variables. This article uses the spatial econometric model to examine the
elements contributing to air pollution and how it correlates with space. Common components include
the spatial lag model (SLM), the spatial error model (SEM), the spatial Durbin model (SDM), and
others. Spatial Durbin is an expanded version of the spatial lag and spatial error models that
incorporates both endogenous interaction effects (WY) and exogenous interaction effects (WX) [49].
Its specific formula is as follows:

y = pW, + X+ WX0 +pu, u~N(0, 5% (4)

where Wy describes the endogenous interaction effect of y; WX describes the exogenous interaction
effect of X; p is the spatial autoregressive coefficient; 0 is the coefficient on exogenous interaction
effect. When 0 = 0, it is the SLM model, and when 0 = - pg, it is the SEM model. The more significant
0 is, the stronger the spatial interaction between explanatory variables, and it can be theoretically
determined whether there is a spatial spillover effect. This paper selects the adjacent space weight
matrix and uses the spatial weight matrix based on the reciprocal square of Euclidean distance as the
robustness test of the model results. Regarding optimal model selection, LM, Hausman, effect, WALD
and LR test were carried out sequentially, and log-likelihood ratios were used to compare the
goodness-of-fit of different models.

4. Results

4.1. Characteristics of the Spatiotemporal Evolution of the Urban-Rural Transformation

Using the quartile technique, the Yellow River Basin counties' urban-rural transformation is
assessed as follows: 25% (1/4th quartile), 50% (1/2th quartile), and 75% (3/4th quartile). Figure 3 shows
the spatial representation of the four tiers of urban-rural change in counties: low, lower, higher, and
high.

There was a considerable increase in the total transition level of urban-rural areas between 2000
and 2020. Overall, the urban-rural transformation has been trending upwards, with average index
values of 0.3284, 0.3947, and 0.4478 in 2000, 2010, and 2020, respectively. Overwhelmingly, the degree
of urban-rural change was low in 2000, with 71.49 percent of counties falling into zones with Low or
Lower index values. There was a concentration in the western and central regions, and 253 counties
had low index values, and 103 had lower index values. Dispersed over the province capital areas, the
regions with high index values comprise just 17.06% of the total. Even though fewer counties had
Low index scores in 2010, the urban-rural transformation index was higher than in 2000. A total of
49.59% of counties are located in areas with Higher or Higher index values. Among these, high-value
areas are consistently distributed in provincial capital cities and exhibit a relatively high level of
urban-rural transformation in Inner Mongolia Province. The proportion of counties with Low index
values decreased from 50.81% to 15.46%, primarily in the west and east of Qinghai Province,
Northern Sichuan Province, Central and Eastern Gansu Province, Southern Ningxia Province,
Eastern Henan Province, and other regions. In 2020, the urban-rural transformation in the Yellow
River Basin increased significantly compared to 2000. This was due to the rural revitalization strategy
and poverty alleviation measures. 71.49% of the counties and districts were located in areas with high
or high-index values, while only 0.03% had low index values. Counties that have high index values
tend to cluster around major cities. Counties in the Yellow River Basin with low index values are
dispersed over the borderlands of different provinces.

Over time, the Yellow River Basin's urban-rural transformation level has shifted from
asymmetrical growth in the north and east to a more balanced pattern of development in the middle
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and west. A decrease in the urban-rural transformation index difference from 0.894 to 0.785 during
the research period suggests that the spatial differences in the region's urban-rural transformation
shrank. Most of Inner Mongolia's and each province's counties with a high degree of urban-rural
transformation are located in or close to the cities. This might be because Inner Mongolia is rich in
natural gas, rare earth metals, coal, sheep, and a relatively tiny population. Consequently, it is leading
the urban-rural transformation with its greater urbanization rate and more developed economy than
other provinces and cities in the Yellow River Basin. The western regions and the periphery of
provinces in the Yellow River basin are primarily home to the counties with lower index values. The
urban-rural transformation may progress slowly in the western region since its physical geography
is unstable and constrained by numerous factors like topography, resource distribution, policies, etc.

Urban-rural transformation index
2000
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Figure 3. Spatiotemporal pattern of the urban-rural transformation from 2000 to 2020: (a) Urban-rural
transformation index in 2000; (b) Urban-rural transformation index in 2010; (¢) Urban-rural
transformation index in 2020.

4.2. Characteristics of the Spatiotemporal Evolution of PMzs

4.2.1. Distribution situation of PM2s in the Yellow River Basin

The distribution condition of PM:2s in 498 counties of the Yellow River Basin from 2000 to 2020
is analyzed in this paper using the Kernel density approach. From Figure 4, we may deduce the PMzs
dynamic dispersion features. When looking at the data as a time series, there were turning points in
the average PM2s concentration between 2006 and 2015. From 2000 to 2006, it showed an upward
trend, with the average concentration increasing from 43.39 pug/m? to 59.57 ug/m?3, which is the
maximum value observed during the study period. From 2006 to 2015, the overall average
concentration of the region was at a relatively high level, and pollution was relatively severe. From
2015 to 2020, the overall average annual concentration in the region showed a downward trend.
During this period, the State Council of China issued policies such as the Action Plan for Air Pollution
Prevention and Control in 2013, which curbed air pollution to some extent. However, there are
significant differences in PM2s among different counties, but the fluctuations are small, and the
overall trend tends to be consistent. In the dynamic distribution characteristics, first of all, from the
characteristics of the peak, the peak of PM2s concentration in the Yellow River basin showed a trend
of first decreasing and then rising during the sample period. The shape of the wave peak did not
change significantly, indicating that the gap of PM2s concentration in all counties persisted. When
looking at the nuclear density curve regarding the number of wave peaks, we can see that it went
from having many side peaks to just one, and the side peaks gradually flattened and widened. This
suggests that the overall PM2s concentration in the Yellow River basin was reduced, too. Finally, from
the perspective of distribution pattern, the nuclear density curve has obvious right tail characteristics,
indicating that PM2s in these counties is greatly different, and individual counties exceed others.
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Figure 4. Distribution situation of PM:s in 498 counties in the Yellow River Area.

4.2.2. Spatial Pattern of PM2s in the Yellow River Basin

To further analyze the spatial differences of PMzs, the PMas values of 498 counties in the Yellow
River Basin in 2000, 2010, and 2020 were visualized (Figure 5). Generally, it showed a spatial
distribution pattern of high in the east and low in the west. PM2s is generally high in Shandong and
Henan provinces, with some counties in Shaanxi, Shanxi, Inner Mongolia, Ningxia, and Gansu
provinces having relatively high PMas, while they are relatively low in the northern regions of the
Qinghai and Sichuan provinces. Specifically, 29.52% of the districts and counties reached the second
level of air quality standards in 2000 and were mainly distributed in the western part of the region.
The areas with higher PM2s are mostly located in Shandong, Henan, Shanxi, and Shaanxi provinces
and are distributed around various urban centers. In 2010, pollution intensified compared to 2000,
with 10.84% of districts and counties meeting the second level of air quality standards. Shandong,
Henan, Shaanxi, and Shanxi provinces further increased air pollution and became a “heavy disaster
area” for haze. The flat terrain in these areas provides ideal conditions for the diffusion of pollutants,
and, coupled with the abundance of resource-dependent cities in these regions; their economic
development generally faces difficulties such as a lack of economic diversity and underdeveloped
energy-saving and emissions-reducing technologies, which exacerbate industrial pollution. In 2020,
the number of areas with high PMas significantly decreased, and their spatial distribution contracted.
Among all districts and counties, the lowest annual PM2s concentration is 1.27 pg/m? the highest is
62.44 pg/m3. The number of districts and counties that have reached the second level of air quality
standards increased to 233, accounting for 46.79% of the sample. However, according to WHO
standards, the average annual concentration of PM2s should be less than 5 pig/m? to be sufficient to
prevent harm to human health, but only nine districts and counties meet that standard.
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Figure 5. Spatiotemporal pattern of PM2s from 2000 to 2020: (a) Spatiotemporal pattern of PMzs in
2000; (b) Spatiotemporal pattern of PMzs in 2010; (c) Spatiotemporal pattern of PM2s in 2020.

4.2.3. PM:s Spatial Correlations

We used Statal6 and ArcGIS10.4 software to analyze the correlation of PM25, and Moran’s I was
0.75%%*, 0.742***, and 0.722***, thus indicating a significant positive spatial correlation (Figure 6a, 6¢
and 6e). Local Moran’s I is used to further detect the local clustering of PM:zs. The cold-hot spot
analysis (Figure 6b, 6d and 6f) shows that the “high—high” clustering is mainly concentrated in the
eastern part of the region. From 2000 to 2010, the “high-high” agglomeration area moved eastward,
and air pollution in Shaanxi and Shanxi improved, while that in Shandong further intensified. From
2010 to 2020, there was no significant change in the “high-high” agglomeration area, while Henan
and Shandong provinces have always been areas of high PMzs. The “low—low” clustering is mainly
concentrated in the western part of the region, and the clustering points in Qinghai Province
gradually connect with those in the eastern region of Inner Mongolia, with obvious spatial effects.
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Figure 6. Global and local correlations of PMas: (a) Moran’s I of PM2s in 2000; (b) Cold-hot spot
analysis of PM2s in 2000; (c) Moran’s I of PM2s in 2010; (d) Cold-hot spot analysis of PMas in 2010; (e)
Moran'’s I of PM2s in 2020; (f) Cold-hot spot analysis of PM2s in 2020.

4.3. The Processes by which PMzs is Affected by the Urban-Rural Transition

4.3.1. Applicability Test of Model

When examining the spatial impact of air pollution, it is seen that PM:s, as the variable being
studied, has notable spatial autocorrelation. This work utilizes the spatial econometric model to
address the issue of spatial dependence, which the standard least squares regression model cannot
handle. First, an LM test was conducted to determine the most appropriate method among SLM,
SEM, and SDM. The test compared LM (lag), LM (error), RobustLM (lag), and RobustLM (error), and
all four parameters were shown to be statistically significant at the 1% level. This suggests that both
SLM and SEM are good options. Thus, in this investigation, the choice was made to use SDM, a more
comprehensive version of SLM and SEM that includes both endogenous and exogenous interaction
effects. Second, the Hausman and impact tests were conducted, revealing that the time effect of SDM
is superior. Subsequently, the WALD and LR tests were employed to assess the appropriateness of
the model and ascertain if SDM would deteriorate into SLM or SEM. The results all rejected the
original hypothesis. Therefore, it was reasonable to choose SDM (Table 3).

Table 3. Model test.

Test Statistic Likelihood ratio (chi2) P-value  Prob>chi2
Moran’s | 5.123 0.000
LM-Spatial error 740.439 0.000
RobustLM-Spatial error ~ 269.159 0.000
LM-Spatial lag 584.981 0.000
RobustLM-Spatial lag 113.701 0.000
LR-Ind 279.77 0.000
LR-Time 3633.36 0.000
LR-Spatial error 21.55 0.0058
LR-Spatial lag 29.44 0.0003
WALD-Spatial error 21.41 0.0032
WALD-Spatial lag 29.62 0.0001
Hausman 244.49 0.000

The estimation results of SDM (Table 4) are further analyzed. W_InPMo:s is significant at the 0.1%
level, and the estimated values of individual, time, and time-fixed effects reach 0.870, 0.396, and 0.546,
respectively, thus indicating that the explanatory variable PM:s has a significant endogenous
interaction effect in space. Under the condition that all other explanatory variables are controlled,
each 1% increase in PMzs in a neighboring area will increase about 0.5% in local PMas. Hence, the
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diffusion and propagation of atmospheric contamination over different areas will substantially
impact the concentration of local PMzs. In the time effect of SDM, the R? value of 0.723 is greater than
the individual and the individual and time fixed effects, thus indicating that the degree to which the
model can explain the dependent variable PMozs is 72.3%. Furthermore, the quadratic terms of PT, IT,
and LT are all significant at less than the 5% level; that is, the reliability of the results is greater than
95%. This indicates a nonlinear relationship between the urban-rural transition and PMzs. We further
analyze this relationship in Figure 6, and the U-test is conducted to measure the “U-shaped”
relationship that exists in LT. In addition, the estimation of the coefficient representing the exogenous
interaction effect under time effects is given in Table 3. It can be seen that EL and POP have significant
significance. The direct and indirect effects of SDM are given in Table 5 to analyze this phenomenon
further.

Table 4. The coefficient on the exogenous interaction effect under time effects.

Variables Ind Time Both
W-InPM25 0.870*** 0.396*** 0.546***
Main
InPT 0.00714 0.0710*** 0.00498
In2PT 0.000886 0.0375* 0.000612
InIT -0.446 -9.864** -1.739
In2IT 1.277 20.84** 4.101
In3IT -0.807 -10.93** -2.352
InLUT -0.0141 0.253*** 0.0170
In2LUT -0.00450 -0.153*** -0.000974
InLRT -0.0597 0.437*** -0.0382
In2LRT 0.126*** -0.0537** 0.132%**
EL -0.106*** 0.0286 -0.103***
POP 0.00918 0.0290* 0.000774
NLT 0.0810*** 0.105*** 0.0938***
NDVI 0.00885 -0.0251 0.00987
Wx
InPT -0.0728
In2PT -0.0346
InIT -3.447*
In2IT 7.768*
In3IT -4.327*
InLUT -0.0868*
In2LUT 0.192***
InLRT 0.110*
In2LRT -0.0357
EL 0.146***
POP 0.0101*
NLT -0.0455
NDVI -0.00931
Variance
sigma?2_e 0.0126*** 0.0154*** 0.0123%**
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R2 0.454 0.723 0.207

N 1494 1494 1494
t-statistics in parentheses* p <0.05, ** p <0.01, *** p <0.001. Note: The urban-rural transition itself failed the model

due to high collinearity.

Table 5. The outcomes of the Durbin spatial regression model.

Land transformation (LT)

Explanatory Population Industrial - -
variable transformation (PT) transformation (IT) Construction land Cultivated land
(LUT) (LRT)
InPM2s 0.523*** 0.534*** 0.559*** 0.895***
InURT 0.071** -20.948*** -0.262*** -0.207*
In2URT 0.113* 45.114*** 0.232%** 0.166**
In3URT -24.017***

InEL -0.254%** -0.246%** -0.052%%* 0.157***
InPOP 0.138*** 0.130*** 0.037** 0.046
InNLT 0.078*** 0.110*** 0.134*** 0.070***

InNDVI -0.039* -0.041** -0.029* -0.028**
R2 0.469 0.536 0.618 0.266
N 1494 1494 1494 1494

*,**, and * * * indicate significance at the 10%, 5%, and 1% levels, respectively.

4.3.2. Model Results and Influencing Mechanisms

To achieve sustainable and high-quality development in the Yellow River Basin, examining
urban and rural areas as an organic system and analyzing how subsystems like population, land, and
industry affect PM2s is beneficial. This approach is based on the idea of urban-rural integration.

1. Impact of PT on PMzs.

According to the results of SDM analysis with the population urbanization rate as the core
explanatory variable (Table 5), as the PT deepens, the elastic coefficient on its influence on PM2s
changes from 0.071 to 0.113. That is, the rural-to-urban agglomeration will increase the pollution.
Increased consumption of resources, such as private car exhaust and coal, has exacerbated PMo2s
emissions [50]. Based on the census statistics, the percentage of the urban population in the Yellow
River Basin has risen from 32.63% in 2000 to 56.55% in 2020. In the densely populated areas in the
middle and lower reaches of the Yellow River Basin, the increase in the number of private motor
vehicles per capita has aggravated road congestion, thereby resulting in carbon dioxide and PM2s
emissions soaring, which has led to an increase in the occurrence of PM2s (Figure 7a).

2. Impact of IT on PMas.

A negative-positive-negative relationship between IT and PM:s is indicated by an inverted "N-
shaped" curve between the two variables, as shown in Table 5, which is the outcome of SDM analysis
using the proportion of non-agricultural industry as the primary explanatory variable. When the
proportion of non-agricultural industries is lower than 30.8%, the elasticity coefficient of industrial
transformation on PMzs is -20.948 and is significant at less than the 1% level. The increase in the
proportion of secondary and tertiary industries is conducive to reducing PM2s emissions. When the
proportion of non-agricultural industries is relatively low, the levels of economic development and
industrialization are low, the economy is simple, and the impact on the environment is within the
range of its carrying capacity. When the proportion of non-agricultural industries is between 30.8%
and 94.4%, the elasticity coefficient is 45.114 and is significant at less than the 1% level. The increase
in the proportion of secondary and tertiary industries will significantly increase PMzs. Against the
backdrop of low barriers to global trade and low awareness of local environmental protection, some
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pollution-intensive enterprises, such as chemical and energy with high pollution and high emissions,
were consolidated, and the economic model based on industrial production led to the aggravation of
PM2s pollution. As industrialization and urbanization progress, there is a significant rise in the
demand for energy and fuel consumption. Such development comes at a certain environmental cost
in countries with the dominant secondary industry. Simultaneously, the energy-saving and
emissions-reducing technology is relatively underdeveloped, and the emissions of industrial dust,
smoke, and other pollutants greatly aggravate PM2s. An elasticity coefficient of -24.017 is observed
when the proportion of non-agricultural industries surpasses 94.4%, and a decrease in PMo2s is
observed as the proportion of secondary and tertiary industries increases. With the proposal of the
concept of industrial ecology, green industries are gaining prominence, the improvement of clean
energy utilization technologies forces the industrial structure to transform, and the establishment of
industrial parks in the county has saved the cost of pollution prevention and control, which greatly
curb PMzs emissions (Figure 7b).

3. Impact of LT on PM2s.

According to the results of the SDM analysis with construction land proportion and cultivated
land proportion as the core explanatory variables (Table 5), both exhibit a “U-shaped” relationship.
With the increase in LUT and LRT, their impact on PMo2s is inhibited and then enhanced. This may
be because urban construction, industrial and mining, residential construction, and cultivated lands
are developed from wastelands. Thus, the environmental impact is within the range of its carrying
capacity. In the later stage, the expansion of construction land will increase PMzs. More urban space
will be created as a result of land use expansion, which in turn will increase energy consumption and
the distances people have to commute. Therefore, the low-density distribution of the population and
the dispersed layout of urban space will lead to the increase of PM2s. Moreover, the increase in the
proportion of construction land implies that the proportion of forest land, wetland, and other
ecological green areas is reduced, which reduces the environmental carrying capacity, making it
difficult to restore and purify the environment [37]. It is worth mentioning that the increase in the
proportion of cultivated land will also aggravate PMzs. This is mainly because the increase in the
proportion of cultivated land will expand the crop planting area, which may increase straw burning
and fuel use. However, agricultural soils contribute significantly to emissions of polluting gases
through the use of chemical fertilizers. Furthermore, the importance of such factors will continue to
increase in response to implementing policies designed to control fossil fuel use and increase fertilizer
inputs due to the growing demand for food[51] (Figure 7c and 7d).

4.  Direct and indirect effects.

The contribution of different explanatory variables can be compared by analyzing the
significance of the explanatory variables and the absolute values of the standardized coefficients
given in Table 6. Regarding direct effects, IT, LRT, and NLT positively affect PMzs, while EL and
NDVI have an inhibitory effect. The direct effects on local air pollution are ranked as follows: LRT >
NLT > IT > EL > NDVI. An increase in the proportion of cultivated land, social activity, and non-
agricultural industry will directly exacerbate local air pollution, and the vegetation index will reduce
it. In this model, EL has an inhibitory impact on PM2s, which may indicate a decrease in the use of
non-clean energy sources such as coal and firewood in the county and rural. Regarding indirect
effects, the spillover effects are ranked as follows: LRT > LUT > POP > NDVI > PT. Among them, LT
positively affects PM2s in adjacent areas, while NDVI has an inhibitory effect. Expanding land in
neighboring counties will also exacerbate local PM2s, and NDVI in neighboring counties will also
reduce local pollution. In this model, POP and PT have an inhibitory effect on PM2s in neighboring
areas. This indicates that the increase in population in neighboring counties, as well as the increase
in the local population, will reduce local PMzs. This may be due to urbanization, which leads to large-
scale migration to the county and reduces the carrying pressure on the surrounding environment
(Figure 8).
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Figure 7. Effect of the urban-rural transformation on PMzs: (a) Effect of the PT on PMozs; (b) Effect of
the IT on PMz25; (c) Effect of the LUT on PM:s5; (d) Effect of the LRT on PMas.

Table 6. Analysis of spatial spillover effect.

Explanatory variable Direct effect Indirect effect
InPT 0.018 -0.033**
InIT 0.044*** 0.009
InLUT 0.032 0.211%**
InLRT 0.384*** 1.028**
InEL -0.059*** 0.039
InPOP -0.005 -0.122%**
InNLT 0.315*** 0.093
InNDVI -0.015* -0.062**

*, * and * * * indicate significance at the 10%, 5%, and 1% levels, respectively.
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Figure 8. Flow chart of the influencing mechanisms on PMzs.

5. Discussion

Air pollution is a cross-regional problem with complex formation mechanisms. The key to
promoting urban-rural integration and economic development while protecting the environment is
quantitatively assessing the level of urban-rural transformation and the temporal and spatial
variations of PM:zs. Furthermore, it is crucial to evaluate the driving mechanism behind urban-rural
transformation and its impact on changes in PM2s concentration. The empirical findings will be
discussed in the following parts:

1. The driving force in large cities;

The urban-rural transformation measured in this article emphasized the coordination of
urbanization and ruralization. To a certain extent, it embodies the overall process of agricultural and
rural modernization [52]. The urban-rural change in the Yellow River Basin has a spatial pattern
characterized by high levels in the northern and eastern regions and low levels in the southern and
western regions. The counties with High or Higher index values are mainly distributed in Inner
Mongolia and near the capital city of each province. This could be attributed to the proximity of the
counties around the provincial capital to the economic hub of the province. As urban-rural
integration progresses, the connection between urban and rural areas is growing stronger, and rural
areas are greatly influenced by the influences originating from metropolitan centers. The counties
with Low or Lower index values are mainly distributed in the western part and the border areas of
each province. This may be because counties in the provincial border regions are affected by their
spatial location as well as administrative barriers and policies. Most of the border regions are at the
“end” of each province’s economic system regarding geography and their integration into high-level
regional development strategies, resulting in inefficient and slow development. This indicates that
large cities can promote urban-rural transformation, but their range is limited. In the future, attention
should be paid to these edge areas at the “end” of each province’s economic system. It is therefore
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recommended to break down administrative barriers, form a joint force, and promote cooperative
development by leveraging each region’s advantages.

2. Take integrated and localized measures to control air pollution.

PMo2s in the Yellow River Basin shows a clear spatial correlation, thus indicating the need for
regional collaboration to control air pollution. To enhance the collective efforts in preventing and
controlling regional air pollution, it is imperative to promote awareness of urban-rural integration in
the future. “High-high” aggregation areas are mainly concentrated in the eastern part of the region,
with the Henan and Shandong provinces being the most heavily affected regions. This suggests that
air pollution in these areas is particularly severe, and localized ecological restoration policies should
be established accordingly.

3. The influencing mechanisms of PMzs by different subsystems of the urban-rural transformation vary.

According to the research results, the impact of IT on PM2s has the highest elastic coefficient,
thus indicating that the industrial structure plays a dominant role in the spatiotemporal evolution of
PM:s. Specifically, the impact of IT on PMz2s shows an inverted “N-shaped” curve. This indicates that
different stages of industrial transformation have different effects on air pollution, and the
relationship between IT and PM:s is shifting from positive to negative. This could be attributed to the
transformation of the Yellow River Basin industry from a factor-driven model to a green technology-
driven model. In the future, it may be necessary to abandon economic models that do not consider
the environment and continue accelerating industrial restructuring and transformation through
innovative green technologies in counties to create a sustainable industrial system in the Yellow River
Basin.

Regarding the impact of PT on PM2s, excessive rural-urban population aggregation leads to
insufficient public resources, traffic congestion, and high energy intensity, resulting in a continued
rise in PMzs. It should be noted that some studies have pointed out that the spatial aggregation of the
population can reduce production costs and improve economic efficiency, promote energy
conservation and emissions reduction, and improve the overall air pollution situation, thereby
reducing the pollution caused by PM:s emissions [43]. According to the principles of urban
economics, moderate population aggregations can reduce atmospheric pollution. The impact of PT
on PM2;5 will appear as a downward sloping trend (i.e., the left-hand side of the “U-shaped” curve).
In the future, the spatial layout of the population and the carrying capacity of resources and
environment should be considered overall, and the spatial planning of the land should be
scientifically formulated.

Regarding the influence of LT on PMzs, the relationship between LUT, LRT, and PM:s exhibits
a “U-shaped” curve. The uncontrolled expansion of construction land results in a scattered layout
and low land use efficiency, resulting in pollution problems in many counties. The increase in the
proportion of cultivated land will also aggravate atmospheric pollution, which indicates that soil and
air pollution influence each other, creating a pollution cycle [17]. In the future, it is urgent to ensure
purposeful development, redefine Urban built-up area boundaries according to scientific findings,
and rationally expand cities while preventing their uncontrolled expansion. Decision-makers should
firmly grasp the concept of safe, efficient, ecological, and high-quality urban land space planning,
strengthen land use controls and ecological red lines, and include urban construction land and
ecological preservation land in national spatial planning [44]. Furthermore, it is imperative to
consider the three-dimensional effect of soil pollution, restrict the emissions of harmful gases from
agricultural land through active land management, and vigorously develop green agriculture, which
will benefit the economy, ecosystems, and human health in urban-rural areas of the region.

6. Conclusions

This study utilized remote sensing imagery and panel data collected from counties in the Yellow
River Basin between 2000 and 2020 to create an index measuring urban-rural change. The
spatiotemporal pattern was revealed using the entropy approach and AHP hierarchical analysis. In
addition, spatial autocorrelation was employed to examine the spatiotemporal properties of PMzs,
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while spatial econometric models were utilized to study the non-linear correlation and influencing
processes between the urban-rural transformation and PMzs. The main conclusions are as follows.

From 2000 to 2020, the urban-rural transformation in the Yellow River basin has shown a clear
upward trend. From a spatial distribution perspective, it has evolved from high in the north and the
east and low in the south and the west to high in the north and balanced in the east, middle, and
west, and the interregional differences are gradually narrowing. Counties with High or Higher
indexes are mainly distributed in Inner Mongolia and the counties around cities in various provinces,
while counties with Low or Lower index values are mainly distributed in the western and peripheral
areas of various provinces.

PMo2s5 showed inflection points in 2006 and 2015, with a trend of first rising, then fluctuating
around a high baseline, then gradually decreasing. PM:s in the Yellow River basin generally exhibits
a spatial pattern that is high in the east and low in the west, and “high-high” clusters are mainly
concentrated in the eastern regions, thus indicating that Henan and Shandong provinces have high
concentrations of haze, while “low-low” clusters are mainly concentrated in the western part of the
region.

Different stages in the development of various subsystems of the urban-rural transformation
have different impacts on PMzs. The impact of IT on PM2s exhibits an inverted “N-shaped” curve of
negative-positive-negative changes, and the industrial structure plays a controlling role in the
spatiotemporal evolution of PMzs. Presently, the influence of the PT on PM:s has taken the form of
the left extremity of an inverted "U-shaped" curve. A "U-shaped" relationship illustrates the effect of
LT on PMz2s.

Regarding direct effects, IT, LRT, and NLT all have a positive impact on PM:z5, while EL and
NDVI have a negative effect on it. Regarding indirect effects, LT (LUT, LRT) has a positive impact on
the PM2s5 of adjacent areas, while NDVI and POP have a negative effect on it.

This research offers a novel approach to examining the correlation between urban-rural change
and PM2s within urban-rural integration. Implementing PM2s emission reduction measures in the
Yellow River Basin promotes sustainable and high-quality development. Furthermore, it can serve
as a valuable resource for policymakers in densely populated regions that experience significant air
pollution, particularly in developing nations.

Author Contributions: Conceptualization, M.C. and C.X.; methodology, C.X.; software, Z.Y.; validation, W.S,,
Z.C. and C.X,; formal analysis, C.X.; resources, M.C.; data curation, Z.Y.; writing—original draft preparation,
Z.Y.; writing—review and editing, Z.Y.; visualization, Z.Y.; supervision, C.X.; project administration, M.C.;
funding acquisition, M.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Key Science and Technology Program of Henan Province, grant number
242102320240.

Data Availability Statement: The data presented in this study are available on request from the corresponding
author.

Conflicts of Interest: The authors declare no conflicts of interest.
Appendix A

Table A1. Descriptive statistics.

Variable name Mark Mean value St::(l;rd Minimum Maximum
PMa25 concentrations PMo2s 45. 15813 16. 9881 1.265238 88.11379
Population transformation PT 44. 44847 27.03547 0 100
Industrial transformation 1T 79. 68927 15. 54944 19. 97809 100
Land Construction LUT 10. 9204 13. 29152 0. 0052168 99. 42327

transformation land
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Cultivated LRT 45. 9908 24.79752  0.0047788  87.46495
land
Electricity consumption EL 4754.903  9823.977  202.3436  159999.2
Population size POP 842.4223  2214.075 1500 2146000
Normalized vegetation index ~ NDVI 0.8199384  0.0996595 0.3 0.92
Nighttime light brightness NLT 9.045765  12.40715 0 63
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