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Abstract: This manuscript presents a new two-parameter unit stochastic distribution, obtained by
transforming the Laplace distribution, using generalized logistic map, into a unit interval. The
distribution thus obtained is named the Laplace-logistic unit (abbreviated LLU) distribution, and
its basic stochastic properties are examined in detail. Also, the procedure for estimating parameters
based on quantiles is provided, along with the asymptotic properties of the obtained estimates and the
appropriate numerical simulation study. Finally, the application of the LLU distribution in dynamic
and regression analysis of real-world data with accentuated "peaks" and "fat" tails is also discussed.
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1. Introduction

Unit stochastic distributions, defined on the interval (0, 1), represent an important tool of
contemporary probability theory. They are primarily used as stochastic models that can describe
so-called proportional (percentage) variables and represent theoretical models that can successfully
explain the behaviour of some real-world phenomena (see, as more contemporary, e.g. [1]-[13]). On
the other hand, modeling with unit distributions differs from common stochastic modeling procedures,
primarily due to the limitation of data within (0, 1) interval. Although the procedure for creating unit
distributions can be given in a general form [14], the most common approach is based on continuous
transformations of distributions defined on infinite intervals into a unit interval (as some recent
results, see e.g. [15]-[23]). Nevertheless, most of these distributions are limited by a unique form
of (a)symmetry and modality, "vanishing" data at the ends of the unit interval, etc. This is often
inappropriate for modeling real phenomena with different characteristics, especially where data with
pronounced "peaks" and "fat tails" appear.

To this end, proceeding from similar considerations as in Stojanović et al. [24,25], a new unit
distribution, named the Laplace-logistic unit (LLU) distribution, is described here. It is based on
a general logistic mapping of the Laplace distribution to a unit interval, and as will be seen, has
considerable flexibility and suitability for describing a variety of empirical distributions, from those
with pronounced extremes to increasing, decreasing or bathtub-shaped ones. The definition and the
key stochastic properties of the LLU distribution, regarding its limit properties, (a)symmetry and
modality, are presented in the next Section 2. Thereafter, Section 3 considers the parameters estimation
based on sample quantiles, the asymptotic properties of thus obtained estimators, as well as their
numerical Monte Carlo study. An application of the LLU distribution in fitting some real-world data,
primarily from the aspect of dynamic and regression analysis, is presented in Section 4, while Section 5
contains some concluding remarks.
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2. The LLU Distribution

2.1. Definition and Main Properties

Let us first consider a random variable (RV) Y with a symmetric Laplace distribution, whose
probability density function (PDF) is:

g(y; θ) =
λ

2
exp (−λ |y|) , (1)

where y ∈ R and λ > 0 is the scale parameter. For an arbitrary θ > 0, let us define the so-called
general logistic map x = φ(y; θ) = (1 + exp(y))−1/θ , which is the bijective, continuous transformation
φ : (−∞,+∞)× (0,+∞) → (0, 1), with limits:

lim
y→−∞

φ(y; θ) = 1−, lim
y→+∞

φ(y; θ) = 0+.

Using Equation (1) and the inverse transformation y = φ−1(x; θ) = ln(x−θ − 1), the new RV X =

φ(Y; θ), defined on the unit interval (0, 1) is obtained. After some computation, for the PDF of the RV
X one obtains:

f (x; λ, θ) = g
(

φ−1(x; θ); λ
)
·
∣∣∣∣∂φ−1(x; θ)

∂x

∣∣∣∣ = θλ

2x(1 − xθ)
exp

(
−λ

∣∣∣ln(x−θ − 1)
∣∣∣)

=


θλxθλ−1

2
(
1 − xθ

)λ+1 , x ≤ 2−1/θ

θλ
(
1 − xθ

)λ−1

2xθλ+1 , x > 2−1/θ

,
(2)

where x ∈ (0, 1) and
∫ 1

0 f (x; λ, θ)dx = 1. Thus, we say that the RV X, whose PDF is given by
Equation (2), has a Laplace-logistic unit (LLU) distribution, with the parameters λ, θ > 0, or abbr.
X : L(λ, θ). Obviously, LLU distribution is a two-parameter distribution, where, in addition to the
scale parameter λ > 0, there is also a shape parameter θ > 0. Also, let us emphasize that symmetric
Laplace density is expressed in terms of the absolute difference from the zero and it has pronounced
“peaks” and tails more "fat" than, for instance, the Gaussian distribution. For these reasons, the RV
X : L(λ, θ) will have similar properties, but it also has some other specificities. To describe them more
completely, we first introduce some terms related to the limit behaviour of the density at the ends of
the unit interval:

Definition 1. Let X : L(λ, θ) be the RV with the LLU distribution, whose PDF f (x; λ, θ) is given by
Equation (2). The PDF f (x; λ, θ) is left-(right-)vanishing if is valid:

lim
x→0+

f (x; λ, θ) = 0+
(

lim
x→1−

f (x; λ, θ) = 0+
)

.

Otherwise, the PDF f (x; λ, θ) is left-(right-)tailed.

Now, some properties of the LLU distribution regarding its possible shapes and boundary
characteristics can be given by the following proposition:

Theorem 1. The PDF f (x; λ, θ) of the RV X : L(λ, θ) is continuous function, non-differentiable at the point
x0 = 2−1/θ , with the following properties:

(i) When θ(1 + 2λ) < 1 and λ > 1, it is decreasing.
(ii) When θ(1 − 2λ) > 1 and θλ > 1, it is increasing.
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(iii) When θ(1 + 2λ) ≥ 1, θλ ≤ 1 and λ > 1, it is left-tailed and right-vanishing.
(iv) When θ(1 − 2λ) ≤ 1, θλ > 1 and λ ≤ 1, it is right-tailed and left-vanishing.
(v) When θλ ≤ 1 and λ ≤ 1, it is (both sides) tailed.
(vi) When θλ > 1 and λ > 1, it is (both sides) vanishing.

Proof. For simplicity, let us denote the left and right branches of the PDF f (x; λ, θ), respectively, as
follows:

f1(x; λ, θ) :=
θλxθλ−1

2
(
1 − xθ

)λ+1 , f2(x; λ, θ) :=
θλ
(
1 − xθ

)λ−1

2xθλ+1 .

Accordingly, it is obtained:

lim
x→2−1/θ

f1(x; λ, θ) = lim
x→2−1/θ

f2(x; λ, θ) = θλ 21/θ ,

so the PDF f (x; λ, θ) is indeed continuous at x0 = 2−1/θ . Furthermore, after some computation, one
obtains:

lim
x→0+

f1(x; λ, θ) =


0, θλ > 1
1/2, θλ = 1
+∞, θλ < 1

, lim
x→1−

f2(x; λ, θ) =


0, λ > 1
θ/2, λ = 1
+∞, λ < 1

, (3)

as well as:
∂ f1(x; λ, θ)

∂x
=

θλxθλ−2

2
(
1 − xθ

)λ+2

(
(θ + 1)xθ + θλ − 1

)
,

∂ f2(x; λ, θ)

∂x
=

θλ
(
1 − xθ

)λ−2

2xθλ+2

(
(θ + 1)xθ − θλ − 1

)
.

(4)

Thus, the sign of the partial derivatives in Equation (4) depends on the sign of the functions:

ψ1(x; λ, θ) = (θ + 1)xθ + θλ − 1, ψ2(x; λ, θ) = (θ + 1)xθ − θλ − 1.

Obviously, both of these functions are monotonically increasing on x ∈ (0, 1), and their values at the
critical points x ∈ {0, 2−1/θ , 1} are, respectively,

ψ1(0; λ, θ) = θλ − 1, ψ1(2−1/θ ; λ, θ) =
1
2
(θ(2λ + 1)− 1) ,

ψ2(2−1/θ ; λ, θ) =
1
2
(θ(1 − 2λ)− 1) , ψ2(1; λ, θ) = θ(1 − λ).

(5)

Then, by using Equations (3) and (5), all cases in the statement of the theorem are simply obtained.

Remark 1. The different conditions for the shape and boundary behavior of the LLU distribution can be seen in
Figure 1 (a), where the six different areas mentioned in the previous Theorem are shown. On the other hand,
Figure 1 (b) shows typical, different shapes of the PDFs of this distribution. As can be easily seen, the LLU
distribution takes very different forms, where in addition to the typical one with a "peak", which is similar to the
Laplace distribution, it can have a decreasing, increasing or bathtub-shaped PDF. In that way, it has a significant
flexibility, which is of particular importance in applications. Moreover, when λ ≈ 0 one obtains:

ψ1(x; λ, θ)
∣∣∣
x=2−1/θ

≈ ψ2(x; λ, θ)
∣∣∣
x=2−1/θ

≈ 0,

so in this asymptotic case the PDF f (x; λ, θ) will be an approximately differentiable, with extreme value (i.e.
mode) at the point x0 = 2−1/θ . In any case, the modality of the LLU distribution will be explored in more detail
in the next part of this section.
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(a) (b)

Figure 1. (a) Parameter areas with different shapes of the LLU distribution; (b) Plots of the PDFs
f (x; λ, θ) for different values of parameters λ, θ > 0.

The PDF of the LLU distribution can also be used to obtain its moments and other moment-based
features, as given below.

Theorem 2. The rth moment of the LLU of the distributed RV X can be expressed as:

µr(λ, θ) := E(Xr) =
λ

2

(
B1/2

( r
θ
+ λ,−λ

)
+ B1/2

(
λ,

r
θ
− λ

))
, (6)

where r is an integer and Bz(a, b) =
∫ z

0 ta−1(1 − t)b−1dt is an incomplete beta function. In addition, the
following convergence holds:

lim
θ→∞

µr(λ, θ) = 1. (7)

Proof. By definition of the LLU distribution, its rth moment can be computed as follows:

µr(λ, θ) =
∫ 1

0
xr f (x; λ, θ)dx = µ

(1)
r (λ, θ) + µ

(2)
r (λ, θ), (8)

wherein is:

µ
(1)
r (λ, θ) :=

∫ x0

0
xr f1(x; λ, θ)dx =

λθ

2

∫ x0

0

xr+λθ−1dx
(1 − xθ)λ+1 =

λ

2

∫ 1/2

0
tr/θ+λ−1(1 − t)−λ−1dt

=
λ

2
B1/2

( r
θ
+ λ,−λ

)
,

µ
(2)
r (λ, θ) :=

∫ 1

x0

xr f2(x; λ, θ)dx =
λθ

2

∫ 1

x0

(1 − xθ)λ−1dx
xλθ+1−r =

λ

2

∫ 1

1/2
tr/θ−λ−1(1 − t)λ−1dt

=
∫ 1/2

0
zλ−1(1 − z)r/θ−λ−1dz =

λ

2
B1/2

(
λ,

r
θ
− λ

)
),

as well as x0 = 2−1/θ , t = xθ , z = 1 − t, and Bz(a, b) =
∫ z

0 ta−1(1 − t)b−1dt. According to this and
Equation (8), the first part of the theorem, that is Equation (6) is proven. Finally, Equation (7) follows
from equalities:

B1/2 (λ,−λ) =
∫ 1/2

0

tλ−1dt
(1 − t)λ+1 =

∫ 1

0
uλ−1du =

1
λ

,

where u = t/(1 − t).
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Remark 2. By using Equation (6), for the mean and the variance of the RV X : L(λ, θ) ones obtain, respectively,

E(X) = µ1(λ, θ) =
λ

2

[
B 1

2

(
λ,

1
θ
− λ

)
+ B 1

2

(
λ +

1
θ

,−λ
)]

,

Var(X) = µ2(λ, θ)− (µ1(λ, θ))2 =
λ

2

[
B 1

2

(
λ,

2
θ
− λ

)
+ B 1

2

(
λ +

2
θ

,−λ
)

− λ

2

(
B 1

2

(
λ,

1
θ
− λ

)
+ B 1

2

(
λ +

1
θ

,−λ
))2 ]

.

Additionally, according to Equation (7), it follows:

lim
θ→∞

E(X) = 1, lim
θ→∞

Var(X) = 0,

that is, in this limit case, X as
= 1 holds, where "as" means "almost surely". Therefore, the RV X is then reduced

to a unit constant, obtained by transforming the Laplace distribution, whose PDF is given by Equation (1),
using the trivial logistic map φ(y; θ) ≡ 1. This can also be seen in Figure 2 below, where 3D plots of mean value
and variance are shown, depending on the parameters λ, θ > 0.

(a) (b)

Figure 2. 3D Plots of the mean (a) and variance (b) of the LLU distribution, in dependence on parameters
λ, θ > 0.

Similarly, the skewness coefficient and the kurtosis of the RV X : L(λ, θ) are, respectively,

S(λ, θ) :=
E(X − µ1(λ, θ))3

[Var(X)]3/2 =
µ3(λ, θ)− 3µ1(λ, θ)Var(X)− (µ1(λ, θ))3

[Var(X)]3/2 ,

K(λ, θ) =
E (X − µ1(λ, θ))4

[Var(X)]2

=
µ4(λ, θ)− 4µ3(λ, θ)µ1(λ, θ) + 6µ2(λ, θ) (µ1(λ, θ))2 − 3 (µ1(λ, θ))4

[Var(X)]2
.

Nevertheless, because of the complexity though, a more detailed procedure for calculating these coefficients will
be omitted.
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2.2. Cumulative, Hazard and Quantile Function

Using Equation (2), the cumulative distribution function (CDF) of the LLU distribution can be
obtained as follows:

F(x; λ, θ) = P{X < x} =
∫ x

0
f (t; λ, θ)dt =


xθλ

2
(
1 − xθ

)λ
, x ≤ 2−1/θ

1 −
(
1 − xθ

)λ

2xθλ
, x > 2−1/θ

, (9)

where x ∈ (0, 1). Note that the function F(x; λ, θ) is differentiable on x ∈ (0, 1), and well defined
outside the unit interval, since it is valid:

lim
x→0+

F(x; λ, θ) = 0+, lim
x→1−

F(x; λ, θ) = 1−.

Furthermore, according to Equations (2) and (8), the hazard rate function (HRF) can be obtained as
follows:

H(x; λ, θ) :=
f (x; λ, θ)

1 − F(x; λ, θ)
=


θλxθλ−1(

1 − xθ
) (

2
(
1 − xθ

)λ − xθλ
) , x ≤ 2−1/θ

θλ

x(1 − xθ)
, x > 2−1/θ

. (10)

The basic properties of the HRF H(x; λ, θ) can be expressed by the following statement:

Theorem 3. Let X : L(λ, θ) and H(x; λ, θ) is the HRF of the RV X, defined by Equation (10). Then, H(x; λ, θ)

is a continuous function, non-differentiable at the point x0 = 2−1/θ , with the following properties:

(i) When θλ ≤ 1 and θ < 1, it is (both sides) tailed with a local maxima at x0 = 2−1/θ .
(ii) When θλ ≤ 1 and θ ≥ 1, it is (both sides) tailed without maxima, that is, bathtub-shaped.
(iii) When θλ > 1 and θ < 1, it is left-vanishing with a local maxima at x0 = 2−1/θ .
(iv) When θλ > 1 and θ ≥ 1, it is increasing.

Proof. Similarly as in the proof of Theorem 1, let us denote:

H1(x; λ, θ) :=
θλxθλ−1(

1 − xθ
) (

2
(
1 − xθ

)λ − xθλ
) , H2(x; λ, θ) :=

θλ

x(1 − xθ)
,

according to which it follows:

lim
x→0+

H1(x; λ, θ) =


0, θλ > 1
1/2, θλ = 1
+∞, θλ < 1

, lim
x→1−

H2(x; λ, θ) = +∞, (11)

as well as:

∂H1(x; λ, θ)

∂x
=

θλxθλ−2
(

xθλ
(
1 − (θ + 1)xθ

)
+ 2(θ + 1)xθ

(
1 − xθ

)λ
+ 2(θλ − 1)

(
1 − xθ

)λ
)

(
xθ − 1

)2
(

xθλ − 2
(
1 − xθ

)λ
)2 ,

∂H2(x; λ, θ)

∂x
=

θλ
(
(θ + 1)xθ − 1

)
x2
(

xθ − 1
)2 .

(12)

Thus, Equations (11) and (12) give the statement of the theorem.
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Remark 3. Plots of the CDF and HRF of the LLU distribution are given in Figure 3 below. It is known that
the hazard (failure) rate represents the failure frequency of the designed system or component. Thus, the HRF
usually increases, which means that the probability that the designed system or component will fail increases.
In contrary, decreasing failure rate (DFR) describes the phenomenon where this probability decreases in some
interval. As can be concluded from the previous theorem, both of these situations can be obtained from the
LLU distribution, for certain values of its parameters. Moreover, in cases where HRF has a local maximum
at x0 ∈ (0, 1), the "peaked" value can then be interpreted as the critical point of the system. Therefore, these
properties of HRF give diverse possibilities of its practical application, which will be discussed later.

(a) (b)

Figure 3. Plots of the CDF (a) and HRF (b) of the LLU distribution, obtained with various parameters
values λ, θ > 0.

In the last part of this section, the so-called quantile function (QF) of the LLU distribution is
considered, obtained as inverse function of its CDF:

Q(p; λ, θ) := F−1(p; λ, θ) =

 (2p)
1

θλ

(
(2p)1/λ + 1

)− 1
θ , 0 < p ≤ 1/2(

(2(1 − p))1/λ + 1
)− 1

θ , 1/2 < p < 1
, (13)

where p = F(x; λ, θ). The QF is a useful tool for obtaining some other properties of the LLU distribution,
primarily related to its modality and (a)symmetry.

Theorem 4. Let X : L(λ, θ) be the LLU distributed RV, whose QF is given by Equation (13). Then, the
following statements hold:

(i) The RV X is symmetrically distributed if and only if θ = 1. Otherwise, X is positively asymmetric when
0 < θ < 1, and negatively asymmetric when θ > 1.

(ii) The RV X is unimodal, with the mode x0 = 2−1/θ , if and only if θ(1 + 2λ) ≥ 1 and θ(1 − 2λ) ≤ 1.

Proof. (i) By substituting the quantile p = 1/2 in the QF Q(p; λ, θ), it is obtained the median m =

Q(1/2; λ, θ) = 2−1/θ . Thus, the RV X is symmetrically distributed if and only if the median is equal to
1/2, that is, when θ = 1. The positive and negative asymmetry conditions are also easily obtained, by
solving the inequalities Q(1/2; λ, θ) < 1/2 and Q(1/2; λ, θ) > 1/2 , respectively.

(ii) Using the rule for the derivative of the inverse function, for the derivatives up to the second
order of the QF Q(p; λ, θ) one obtains:

∂Q(p; λ, θ)

∂p
=

1
∂F(x; λ, θ)/∂x

=
1

f (x; λ, θ)
,

∂Q2(p; λ, θ)

∂p2 = −∂ f (x; λ, θ)/∂x
f 2(x; λ, θ)

. (14)
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where p ̸= 1/2. Further, if we denote:

Q1(p; λ, θ) := (2p)
1

θλ
(
(2p)1/λ + 1

)− 1
θ , Q2(p; λ, θ) :=

(
(2(1 − p))1/λ + 1

)− 1
θ ,

then, after some computation, it is obtained:

∂Q2
1(p; λ, θ)

∂p2 = −
2

1
θλ p

1
θλ −2

(
θ 21/λ(λ + 1)p1/λ + θλ − 1

)
θ2λ2

(
21/λ p1/λ + 1

)2+ 1
θ

∂Q2
2(p; λ, θ)

∂p2 =
(2 − 2p)1/λ

(
(θλ + 1)(2 − 2p)1/λ + θ(λ − 1)

)
θ2λ2(1 − p)2

(
(2 − 2p)1/λ + 1

)2+ 1
θ

.

(15)

Obviously, the sign of derivatives in Equation (15) depends on the sign of the functions:

ξ1(x; λ, θ) = −θ 21/λ(λ + 1)p1/λ − θλ + 1,

ξ2(x; λ, θ) = (θλ + 1)(2 − 2p)1/λ + θ(λ − 1),

which are, respectively, monotonically decreasing and increasing on p ∈ (0, 1). Thus, according to the
second one in Equations (14), the RV X has a local maxima at x0 = 2−1/θ if and only if the following
inequalities hold:

ξ1(1/2; λ, θ) = 1 − θ(1 + 2λ) ≤ 0, ξ2(1/2; λ, θ) = 1 − θ(1 − 2λ) ≥ 0. (16)

Therefore, Equations (16) obviously provide a statement of this part of the theorem.

Remark 4. Theorem 4, along with the previously proved Theorem 1, give a complete insight into the variety of
shapes of the LLU distribution (see again Figure1). At the same time, note that its median and mode are equal,
but that the true symmetry holds only for θ = 1. This can also be confirmed by the definition of the PDF of LLU
distribution, given by Equation (2), based on which it follows f (x; λ, 1) = f (1 − x; λ, 1) for each x ∈ (0, 1).

Remark 5. Using the QF Q(p; λ, θ), given by Equation (13), some more measures of shape of the CLU
distribution can be studied. These are, for instance, Galton’s skewness (GS) which measures the degree of long
tail, and Moors kurtosis (MK) which measures the degree of weight of the tail of the distribution (see, e.g. [12]).
In the case of the LLU distribution, these two measures, after some calculation, can be expressed as:

GS(λ, θ) =
Q (3/4; λ, θ)− 2Q (1/2; λ, θ) + Q (1/4; λ, θ)

Q (3/4; λ, θ)− Q
(

1/4; λ, θ
)

=
2−1/θ

(
− 2

1
θλ +1

(
2−1/λ + 1

)1/θ
+ 2

λ+1
θλ + 21/θ

)
2

1
θλ − 1

,

MK(λ, θ) =
Q (7/8; λ, θ)− Q (5/8; λ, θ) + Q (3/8; λ, θ)− Q (1/8; λ, θ)

Q (3/4; λ, θ)− Q (1/4; λ, θ)

= 2−
1

θλ

(
2−1/λ + 1

)1/θ
((

2
1

θλ + 1
) (

4−1/λ + 1
)−1/θ

+

(
3

1
θλ − 4

1
θλ

) (( 3
4
)1/λ

+ 1
)−1/θ

2
1

θλ − 1

)
,

and 3D plots of their dependence in relation to (λ, θ) are given in Figure 4.
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(a) (b)

Figure 4. 3D graphs of the dependence of the coefficients of skewness and kurtosis with respect to the
parameters (λ, θ).

3. Parameters Estimation & Simulation Study

In this section, the procedure for estimating the unknown parameters λ, θ > 0 of the
LLU-distributed RV X is presented. In doing so, note that according to the previously described
properties of the LLU distribution, using some common procedures to estimate its parameters has
some difficulties. Thus, for instance, due to the fact that the moments of the LLU distribution, given
by Equation (6), are expressed using the beta function, the method of moments requires certain
complex calculations. On the other hand, since the PDF of the LLU distribution is not a differentiable at
x0 = 2−1/θ , the usage of the maximum likelihood (ML) estimation method is very specific. Considering
that the ML estimator of the scale parameter λ in the case of the Laplace distribution is equal to the
sample median (see, for more detail Norton [26]), here we consider methods of parameter estimation
based on the quantiles of the LLU distribution.

For that cause, let X1, X2, . . . , Xn be the random sample of the length n, for which we define the
corresponding order statistics X(1) ≤ X(2) ≤ . . . X(n). As is well-known, PDF of i-th order statistics
X(i) is given as follows:

fX(i)
(x; λ, θ) =

n!
(i − 1)!(n − i)!

f (x; λ, θ) [F(x; λ, θ)]i−1 [F(x; λ, θ)]n−i , (17)

where i = 1, . . . , n. By substituting p = j/4, j = 1, 2, 3 into the QF Qp := Q(p; λ, θ), given by
Equation (13), for the quartiles of the RV X one obtains:

Q(1/4; λ, θ) = 2−
1

θλ

(
2−1/λ + 1

)−1/θ
, Q(3/4; λ, θ) =

(
2−1/λ + 1

)−1/θ
, (18)

while the second quartile is the median m = Q(1/2; λ, θ) = 2−1/θ . On the other hand, the sample
quantiles are given by equality:

Q̂p := X(ip), ip =

{
np, np is integer,

1 + [np], otherwise,
(19)

where [np] is the integer part of np. In this way, the sample quantiles are in fact the order statistics,
and their distribution can be obtained according to Equation (17).

Furthermore, the sample quartiles Q̂j/4, j = 1, 2, 3 can be used as the estimators of theoretical
ones. Thus, by equating median m = 2−1/θ of the RV X with the sample one m̂ = Q̂1/2, the estimator
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of the shape parameter θ̂ = − ln 2/ ln m̂ is easily obtained. In addition, according to Equations (18) it
follows: (

Q (3/4, λ, θ)

Q (1/4, λ, θ)

)θ

= 21/λ,

and using the estimator θ̂, for the estimator of the scale parameter λ one obtains:

λ̂ =
ln 2

θ̂
(

ln Q̂3/4 − ln Q̂1/4
) . (20)

In the following, we examine the asymptotic properties of the proposed estimators:

Theorem 5. Statistics (λ̂, θ̂) are consistent and asymptotic normal (AN) estimators of the true parameters
(λ, θ), respectively.

Proof. First, by using some general asymptotic sample quantile theory [27], we shall prove the
consistency of the proposed estimators. For that cause, let us notice that the CDF p = F(x; λ, θ)

is a differentiable and increasing on p ∈ (0, 1). Thus, the quantiles Qp := Q(p; λ, θ) are uniquely
determined by Equation (13), and sample quantiles Q̂p are uniquely determined by Equation (19).
Using Bahadur’s representation of sample quantiles (see, e.g. Theorem 1 in Dudek & Kuczmaszewska
[28], or Serfling [29], pp. 91-92), one obtains:

Q̂p = Qp +
p − Fn(Qp)

f (Qp; λ, θ)
+O

[(
ln n

n

)3/4
]

, (21)

where Fn(x) := n−1 ∑n
i=1 1(Xi < n) is the empirical CDF. As is known, for each x ∈ R, the empirical

CDF Fn(x) almost surely and uniformly converge to the CDF p = F(x; λ, θ), when n → ∞. So, by
applying this convergence on Equation (21), when x = Qp, it follows:

Q̂p
as−→ Qp, n → ∞,

i.e. the sample quantiles are consistent estimators of the theoretical ones. Finally, as estimators (λ̂, θ̂)

are continuous functions of sample quartiles Q̂j/4, j = 1, 2, 3, by using the property of continuity of
almost sure convergence (see, e.g. Serfling [29], pp. 24), it is obtained:

(λ̂, θ̂)
as−→ (λ, θ), n → ∞.

For the proof of the AN property, notice that under the same assumptions sa above, Equation (21)
gives the following convergence in distribution:

√
n
(

Q̂p − Qp

)
d−→ N

(
0,

p(1 − p)
[ f (Qp, λ, θ)]2

)
, n → ∞. (22)

According to Equation (22), for the sample median m̂ = Q̂1/2 one obtains:

√
n (m̂ − m)

d−→ N
(

0, σ2
m

)
, n → ∞,

wherein is:

σ2
m =

1
4[ f (m; λ, θ)]2

∣∣∣∣
m=2−1/θ

=
4−

1
θ −1

λ2 θ2 .
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Now, using the continuity of convergence in distribution (see, e.g. Serfling [29], pp. 118), for the
estimator θ̂ = − ln 2/ ln m̂ is obtained:

√
n
(
θ̂ − θ

) d→ N
(

0, σ2
θ

)
, n → ∞, (23)

wherein is:

σ2
θ := Var(θ̂) =

[
− ∂

∂m

(
ln 2
ln m

)]2 ∣∣∣∣
m=2−1/θ

· σ2
m =

θ2

4λ2 ln2 2
.

The AN property of the estimator λ̂, given by Equation (20), is similarly proven. For this purpose,
let us first define a statistic:

η̂ := θ̂
(

ln Q̂3/4 − ln Q̂1/4

)
,

which is consistent estimator of η := θ ln (Q3/4/Q1/4). Using Equation (22), as well as the continuity
of convergence in distribution, it follows:

√
n
(
η̂ − η

) d−→ N
(

0, σ2
η

)
, n → ∞,

where, after some computations, one obtains:

σ2
η := Var(η̂) = θ2

(
Var
(
Q̂1/4

)
Q2

1/4
+

Var
(
Q̂3/4

)
Q2

3/4

)
=

3θ2

16

(
1

Q2
1/4 f 2 (Q1/4, λ, θ)

+
1

Q2
3/4 f 2 (Q3/4, λ, θ)

)

=
3θ2

16

(
2

2
λ +4

θ2λ2
(
21/λ + 1

)2 +
16

θ2λ2
(
21/λ + 1

)2

)
=

3
(
41/λ + 1

)
λ2
(
21/λ + 1

)2 .

(24)
Finally, according to λ̂ = ln 2/η̂ and Equation (24), it is obtained:

√
n
(
λ̂ − λ

) d−→ N
(

0, σ2
λ

)
, n → ∞, (25)

wherein is:

σ2
λ := Var(λ̂) =

[
∂

∂η

(
ln 2
η

)]2
· σ2

η =
3λ2(41/λ + 1

)
ln2 2

(
21/λ + 1

)2 . (26)

Thus proven convergences in Equations (23) and (25) confirm the AN properties of both proposed
estimators (θ̂, λ̂).

Remark 6. It is worth noting that the variance of the estimator λ̂, given by Equation (26), does not depend on
the parameter θ. This, among others, is one of the reasons that justifies the use of this estimator.

A numerical study of the effectiveness of the proposed estimators is presented below, based on
Monte Carlo simulations of samples x1, . . . , xn taken from the LLU distribution. More precisely, for
different samples and parameters values, the proposed estimators were calculated and their statistical
analysis was performed. To this end, three different types of samples are considered (see also Figure 5
below):

(i) Sample I is drawn from an increasing LLU distribution with parameters λ = 0.3 and θ = 3.5.
(ii) Sample II was drawn from a symmetric, both-sides tailed (i.e. bathtub-shaped) LLU

distribution with parameters λ = 0.3 and θ = 1.
(iii) Sample III was drawn from a symmetric, both-sides vanishing, unimodal LLU distribution

with parameters λ = 2 and θ = 1.
The simulated values of all samples are generated by the R-package "distr" [30], according to

which the estimates θ̂ and λ̂ are calculated. In order to additionally check the effectiveness of the
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proposed estimators, the sample realizations of different lengths n ∈ {150, 500, 1500} were observed. It
is worth noting that the above sample sizes were chosen similar to some of the real-world data which
will be further analyzed. Additionally, S = 200 independent simulations were performed for each
sample, and the results of their statistical analysis are presented in the following Tables 1–3.

Figure 5. Left plots: Realizations of the different samples taken from the LLU-distribution. Right plots:
Empirical and fitted PDFs of the RV X : L(λ, θ).
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More precisely, Tables 1–3 contain the summary statistics of the obtained estimates, that is, their
minimums (Min.), mean values (Mean), maximums (Max.) and standard deviations (SD). Additionally,
mean square estimation errors (MSEE), fractional estimation errors (FEE), and the Anderson-Darling
(AD) normality test statistics are provided, too. According to this, it can be observed that the proposed
estimators are efficient, as the bias, sample range (Max.–Min.), as well as SD and MSEE values decrease
with increasing sample size. Thereby, it can be noticed that the estimates θ̂ are more stable and efficient
than λ̂. This is due to the fact that the estimate λ̂ is obtained by a two-step procedure, according to the
previously calculated values of θ̂, and then using Equation (20).

Table 1. Summary statistics, estimation errors, and AN testing of parameters estimates of the LLU
distribution. (Sample I with the parameters values: θ = 3.5, λ = 0.3).

n = 150 n = 500 n = 1500Statistics
θ̂ λ̂ θ̂ λ̂ θ̂ λ̂

Min. 1.770 0.1773 2.247 0.2190 2.676 0.2400
Mean 3.210 0.2850 3.378 0.2883 3.459 0.2928
Max. 5.907 0.4094 4.099 0.3660 3.650 0.3195

SD 0.0636 0.0448 0.0332 0.0260 0.0180 0.0150
MSEE 0.0790 0.0471 0.0722 0.0335 0.0712 0.0269
FEE (%) 8.286 15.715 3.486 11.029 1.171 8.959

AD 0.8939∗ 1.6913∗∗ 0.3090 0.6818 0.3796 0.1678
(p-value) (0.0221) (2.38×10−4) (0.5553) (0.0739) (0.4013) (0.9359)

∗0.01 < p < 0.05 ∗∗p < 0.01

Table 2. Summary statistics, estimation errors, and AN testing of parameters estimates of the LLU
distribution. (Sample II with the parameters values: θ = 1, λ = 0.3).

n = 150 n = 500 n = 1500Statistics
θ̂ λ̂ θ̂ λ̂ θ̂ λ̂

Min. 0.5990 0.2161 0.7375 0.2369 0.8494 0.2602
Mean 1.0254 0.3054 1.0170 0.2987 1.0018 0.2968
Max. 1.8447 0.5394 1.4075 0.3824 1.2316 0.3477

SD 0.1907 0.0508 0.1224 0.0252 0.0698 0.0156
MSEE 0.0254 0.1169 0.0170 0.1019 0.0020 0.0981
FEE (%) 2.1346 34.453 0.5739 24.476 0.2030 21.908

AD 1.1064∗∗ 1.481∗∗ 0.6684 0.8172∗ 0.5166 0.6030
(p-value) (6.58×10−3) (7.83×10−4) (0.0798) (0.0341) (0.1879) (0.1159)

∗0.01 < p < 0.05 ∗∗p < 0.01
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Table 3. Summary statistics, estimation errors, and AN testing of parameters estimates of the LLU
distribution. (Sample III with the parameters values: θ = 1, λ = 2).

n = 150 n = 500 n = 1500Statistics
θ̂ λ̂ θ̂ λ̂ θ̂ λ̂

Min. 0.9036 1.4760 0.9529 1.657 0.9698 1.860
Mean 1.0048 2.0360 1.0009 2.024 1.0003 2.016
Max. 2.6290 1.1179 1.0606 2.483 1.0262 2.243

SD 0.0305 0.2603 0.0166 0.1451 9.20×10−3 0.0767
MSEE 4.78×10−3 0.2621 8.88×10−4 0.1466 2.71×10−4 0.0782
FEE (%) 0.4783 13.106 0.0888 7.3314 0.0271 3.9117

AD 0.4960 0.8509∗ 0.4029 0.2194 0.2951 0.3024
(p-value) (0.2113) (0.0282) (0.3539) (0.8346) (0.5930) (0.5726)

∗0.01 < p < 0.05 ∗∗p < 0.01

Similar conclusions can be confirmed based on the AN analysis of the obtained estimates. Its
examination was performed using the Anderson-Darling normality test, whose test statistic (AD)
and corresponding p-values are calculated using the R-package "nortest" [31]. According to thus
obtained results, also presented in Tables 1-3, it can be noted that estimates of λ̂ from smaller samples
have a less pronounced AN feature than θ̂. Nevertheless, the AN property was confirmed in most
cases, especially for larger samples. Some confirmation of these facts can be seen in Figure 5, where
realizations, empirical and theoretical distributions of the observed samples are shown.

4. Applications of the LLU distribution

This section discusses some possibilities of applying the LLU distribution in real-world data
modeling, primarily in the domain of dynamic and regression analysis. Also, a comparison of the LLU
distribution with some existing, well-known and frequently used unit distributions is made. For this
purpose, three sets of data are considered, and their brief description is as follows:

(i) The first data set, called Series A, represents broadband usage in n = 153 rural counties in
the United States, based on Microsoft’s Air Belt initiative to help close the rural broadband gap and
improve the performance and security of broadband software and services. More specifically, this
dataset, taken from the GitHub, Inc. database [32], consists of the percentage of devices connected to
the Internet at broadband speed by each zip code, during October 2020.

(ii) The second one (Series B), taken from the official website of the National Center for
Environmental Information, contains historical data on the melting rate of the South Greenland
ice core. The dataset itself was based on research and reconstruction of ice melting rates conducted by
Kameda et al. [33] and the World Data Center for Paleoclimatology. In this way, a time series of annual
percentage data was generated in the period from 1546. to 1989., the length of which is n = 444.

(iii) Finally, the third, Series C, is obtained according to the official data from the National
Association of Securities Dealers Automated Quotations (NASDAQ) Stock Market [34], and the
so-called log-returns of daily changes of natural gas prices (in US dollars per cubic meter), from 1
January, 2018. until to 1 March, 2023. It represents a time series of length n = 1302, which was
also considered in Stojanović et al. [25], where it was shown that it can be viewed as a series of
independent realizations of RVs with Laplace distribution. Therefore, this series was transformed
using the previously mentioned logistic function x = φ(y; θ) and thus is obtained a corresponding
regression model with an output variable that can be seen as the realization of independent RVs with
LLU distribution.
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In order to additionally verify the efficiency of the LLU distribution, it is compared with the
well-known Beta distribution and the Kumaraswamy distribution, whose PDFs are, respectively,

g1(x; a, b) =
1

B(a, b)
xa−1(1 − x)b−1, g2(x; a, b) = ab xa−1(1 − xa)b−1.

Herein is 0 < x < 1, while a, b > 0 are the distribution parameters, and B(a, b) is the beta function. To
obtain the estimated values of the parameters of the Beta distribution, the method of moments (MM) is
applied, according to which the estimates are as follows:

â = x̄
( x̄(1 − x̄)

v̄
− 1
)

, b̂ = (1 − x̄)
( x̄(1 − x̄)

v̄
− 1
)

.

Here, x̄ = n−1 ∑n
i=1 xi and v̄ = (n − 1)−1 ∑n

i=1(xi − x̄)2 are the sample mean and variance, respectively,
wherein is v̄ < x̄(1 − x̄). On the other hand, for the Kumaraswamy distribution, the maximum
likelihood (ML) estimation method is used, according to which the following parameter estimates are
simply obtained (see, e.g. Jones [36]):

â = −
(

1
n

n

∑
i=1

ln xi

)−1

, b̂ = −
(

1
n

n

∑
i=1

ln
(

1 − xâ
i

))−1

.

We emphasize that one of the reasons for the choice of estimation methods of these two distributions
is the comparison not only with their distributions, but also with regard to different estimation
procedures.

Realizations of the series mentioned above, along with the fitted PDFs obtained by the previously
described estimation procedures, are shown in Figure 6. As can be seen, all series have pronounced
and persistent fluctuations, which create "heavy tails" in their distributions. Specifically, Series A has
an increasing PDF, for Series B the PDF is positively asymmetric and unimodal, while the PDF of
Series C indicates the symmetry of its distribution. Estimated parameter values for each series and
for all competing models are shown in Table 4, and S = 1000 independent Monte Carlo simulations
were conducted using them. Thereafter, the agreement of the distributions between the actual and
fitted data was checked using the MSEE error statistic, the Akaike information criterion (AIC ), and the
Kolmogorov- Smirnov (KS) test of equivalence of the asymptotic distribution of two samples. Based
on the results thus obtained, it is noticeable that MSEE and AIC values are generally lower when LLU
and Beta distribution are applied as the appropriate fitting model. At the same time, it is obvious that
the LLU distribution has better fit-characteristics than both other distributions. Moreover, only in the
case of the LLU distribution the KS test do not reject, with a significant level p > 0.01, the hypothesis
of equivalence with the observed empirical distributions.
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Figure 6. Panels left: Observed values of the real-world data series. Panels right: Empirical and fitted
PDFs, obtained with LLU, Beta and Kumaraswamy distributions.
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Table 4. Estimated parameters of the LLU, Beta and Kumaraswamy distribution, along with the
corresponding estimation errors and fit statistics.

Paramet./ Series A Series B Series C

Statistics LLU BETA KUM LLU BETA KUM LLU BETA KUM

λ/a 0.2972 1.6572 3.7527 2.5106 1.9375 0.4843 35.459 1133.27 1.4423
θ/b 8.4338 0.3394 0.5241 0.3436 10.299 1.9341 0.9999 1133.21 2.1782

MSEE 0.0091 0.0139 0.0249 2.50×10−3 3.94×10−3 0.0205 1.31×10−4 2.28×10−4 0.0794
AIC -812.13 -398.61 -291.23 -2671.99 -891.80 -687.07 -17785.9 -8173.7 -325.18

KS 0.0892 0.0797 0.1251∗ 0.0541 0.0676 0.3514∗∗ 0.0215 0.0760∗ 0.5722∗∗
(p-value) (0.2534) (0.3818) (0.0347) (0.5354) (0.2629) (0.00) (0.9241) (0.0108) (0.00)

∗0.01 < p < 0.05 ∗∗p < 0.01

5. Conclusion

A new, the so-called the LLU distribution is presented here, along with the corresponding key
properties and a procedure for estimating its parameters based on quantiles. The consistency and AN
property of the estimators were also examined, as well as a Monte-Carlo study of their efficiency. Finally,
a practical application of the LLU distribution in fitting real-world data is presented. To verify the
effectiveness of the proposed model, it was applied to fit the distributions of three real-world datasets
and compared with the Beta and Kumaraswamy distributions. According to the results obtained in
this way, the LLU distribution provides a better fit to the observed data, which is a motivation for
further research of some other new unit distributions, with slightly different characteristics. Thus, for
instance, by applying the logistic map to some other probability distribution supported on the entire
real line (such as, for example, normal, Student or Gumbel distribution), new unit distributions can be
obtained and this can be a guideline for some potential further researches for the authors.
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