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Abstract: The healthcare system is crucial to the development, standard of living, and sustainability of any 

country. Amid the pandemic, most developed countries are experiencing varying levels of difficulty managing 

their healthcare systems. Overloading of healthcare services is common, leading to prolonged waiting times 

for medical services; thus, the wastage of hospital resources must be addressed seriously. In this paper, we 

examine the problem of no-shows in outpatient clinics. Through a review of the literature and practical 

industrial experience, we identify the processes of these clinics. We then propose a robust optimisation 

approach for overbooking using a traditional overbooking model and a robust system. This model aims to 

mitigate the significant parameter uncertainties encountered during the pandemic. Considering risk aversion, 

the optimal policy for overbooking can be established while accounting for the costs associated with 

overbooking. The main contribution of this paper is the introduction of an alternative method to address the 

uncertainty of no-shows using an overbooking technique. 

Keywords: Robust optimization; overbooking; No-shows; Healthcare 
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1. Introduction 

Under the influence of the pandemic, hospitals worldwide are facing unprecedented challenges 

in resource management, including outpatient doctors, nurses, and ambulances. In pre-pandemic 

healthcare systems, hospital managements struggled with demand uncertainties as they typically 

had to plan their resources months in advance. Doctors needed to be recruited ahead of time, and 

medicines and medical equipment had to be deployed well before patients required treatment. 

During the pandemic, saturated hospitals in most countries, whether public or private, have 

struggled to serve patients on time. The consequences of resource mismatches can lead to untreated 

patients and delayed hospital admissions. Overall, healthcare significantly contributes to sustainable 

economic growth, alongside other essential government spending areas such as technology and 

infrastructure. Some believe that efforts to improve healthcare can significantly impact an 

individual’s likelihood of success, studies have shown a positive relationship between healthcare 

spending and GDP in OECD countries[1,2]. 

In this paper, we aim to address one of the problems facing hospitals in outpatient clinics. 

Hospital resource planning is crucial for outpatients. Typically, managers must decide how many 

doctors should be available for outpatient clinics and how many nurses should assist. They also 

determine the number of rooms available for treatment. The overall efficiency and profitability of 

clinics largely depend on how accurately managers match patient appointments with the number of 

doctors assigned. However, patients often change their plans at the last minute or cancel their 

appointments, creating challenges for managers in dealing with appointment demand uncertainties, 

which can result in idle doctors or untreated patients. One solution is overbooking, commonly used 
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in industries with a high number of no-shows and replenishable products, such as the aviation 

industry. Nevertheless, existing overbooking methods with deterministic approaches impose 

restrictions on the assumptions about parameter distributions. Therefore, we propose an alternative 

method to manage no-shows and cancellations in healthcare systems. 

2. Background 

Gupta & Denton[3] investigated the primary issues related to the operational design and patient 

appointment systems for Ambulatory Care Center services. They considered complex factors and 

various processes to develop an optimisation model aimed at minimising the costs of waiting, 

tardiness, and idling. In other words, when all factors are incorporated, revenue and profit can be 

maximised. The model addresses three types of arrival patterns: Periodic Process, Unit Process, and 

Single Batch Process, which define how patients arrive within a specific timeframe. This model can 

be applied to groups, clusters, or individuals. In our study, we have considered additional factors 

beyond those incorporated by Gupta and Denton, including the cost of error, which is a significant 

issue in Hong Kong. 

Stanciu, Vargas and May[4] addressed the problems of revenue management in operating 

theatres using a modified version of Lobaba’s famous EMSRb algorithm. Their main objective was to 

determine the optimal levels of various patients for different services. For a particular timeframe, the 

model calculates the time required to meet the demand based on the type of surgical procedure and 

patient reimbursement. This model addresses issues that previous models scarcely managed to 

resolve. Penalties were added to identify the cost of surgical errors, which degrade service quality 

and prolong medical care. These penalties can be realised in both monetary and non-monetary terms 

and will eventually be incorporated into the model. 

Ratcliffe, Gilland and Marucheck[5] indicated that revenue management in outpatient 

appointment clinics resembles that of the airline industry, particularly in terms of overbooking and 

no-shows. When a reservation is made, both doctors and patients are expected to arrive at the 

designated time and place. If either party fails to show up on time, the clinic will suffer a loss in profit 

as the doctors cannot utilise their time efficiently and become idle. 

Given the specific information regarding bookings, researchers can derive a straightforward 

deterministic formula for optimising booking requests based on historical data. If the constraints are 

removed, the upper and lower bounds of the limits and optimal booking strategies must be redefined. 

Ten different policies are proposed in their sensitivity analysis to explore the relationship between 

model variables and expected profit. In addition to the aforementioned paper, valuable insights can 

be obtained from the American Health Information Management Association concerning 

Ambulatory Care Centres, such as Hospital-Based and Community-Based Ambulatory Care. This 

research can extend the model to incorporate features of Hospital-Based Ambulatory Care. 

Roski and Gregory[6] discussed numerical performance measurement metrics such as the 

effectiveness of care, healthcare choices, accessibility or availability of services, and patient 

satisfaction with medical care. The efficiency of care is our primary measurement factor, as it can 

impact many dimensions. Meanwhile, service quality and patient satisfaction are our secondary 

metrics for assessing good healthcare management. 

3. Literature Review 

Overbooking is widely employed in the hotel and aviation industries where resources are 

perishable, such as reservations and appointment bookings[7,8]. Appointment overbooking is a 

method to mitigate the impact of no-shows by reducing idle time and increasing the efficiency and 

utilisation rate of the system[9]. Overbooking appointments involves scheduling more patients in a 

session than the number of available service providers[10–12]. An excessive number of appointments 

can compensate for no-shows. Muthuraman and Lawley[13] utilised a Stochastic Model to maximise 

expected profit with overbooking and unimodal no-show rates. Amnon[14] provided advice on 

managing overbooking in endoscopy units. Consequently, patient access times and provider 

productivity can be improved. However, if the overbooking policy is implemented inefficiently, 
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patient waiting times and system overtime may also increase. To determine the optimal overbooking 

policy and achieve the intended objectives, Liu and Ziya[15] used the Single Server Queuing Model, 

Kim and Giachetti[16] adopted the Stochastic Model. LaGanga and Lawrence[17] illustrated 

numerical examples of overbooking strategies that lead to improvements in the performance of 

different service settings and cost structures in hospitals. Kolisch and Sickinger[18]; Zeng et al.[19] 

provided evidence of the efficiency of using overbooking for advanced policy systems. Liu and 

Ziya[15] stated that the overbooking strategy is the best among other strategies when the number of 

patients is comparatively low. Kros et al.[10] demonstrated that large facilities tend to benefit from 

overbooking when no-show rates are high. 

Among all the uncertain factors, patient no-shows and cancellations are the most significant 

issues. Typically, patients cancel their appointments just before the scheduled time, resulting in last-

minute cancellations. If patients cancel their appointments sufficiently in advance, the hospital can 

reallocate the vacancy to new patients. However, according to Liu, Ziya and Kulkarni[20], from the 

patient’s perspective, they might suffer if they later find that the service is needed. Consequently, 

many patients choose not to show up or cancel at the last moment. Parizi and Ghate[21] considered 

multi-class and multi-resource scenarios while Schuetz and Kolisch[22] discussed the demand for 

different customer services and products. Most papers treat late cancellations as no-shows because 

rebooking is required if the cancellation occurs late, necessitating the rearrangement of resources. 

Wang and Gupta[23] demonstrated that the probability of no-shows depends on time, service, and 

patient type, in addition to homogeneous types. Samorani and LaGanga[24] showed that 

appointments can also be affected by weather conditions. Cayirli and Veral[25] as well as Gupta and 

Denton[3] , revealed that shorter appointment intervals and overbooking can mitigate the impact of 

no-shows. 

4. Proposed Model 

4.1. Basic Model 

After examining the operational processes of 27 hospitals in Hong Kong and Mainland China, 

the most critical factors were identified and extracted to reflect the hospital's situation most accurately 

and simplify the complex scenario. The model is developed as follows. 

Considering K types of healthcare services in Ambulatory Care Center, or K departments. The 

planned time frame includes a single session with consecutive time, which is divided into equal 

interval time slots based on the requirement of the situation of Ambulatory Care Center. The 

appointment-scheduling problem involves two crucial decisions: 

• how many consultancy rooms to open on a particular day 

• which appointments to assign to each consultancy room. 

The objective is to minimize the weighted sum of the total cost of opening consultancy rooms 

and the total overtime associated with overbooking a consultancy room. We introduce the following 

variables to develop the model. 

Indexes: 

i: the starting time point i, i = 0, 1, …, T-1 

j: the ending time point j, j= 1, 2, …, T 

k: healthcare department k, k = 1, 2, …, K 

Ck: the available capacity of department or specialty k, k = 1, 2, …, K. 

Ri, j, k: the revenue from an appointment generated from time i to j within department k. 

xi, j, k: the number of accepted appointments from time i to j within department k. 

Ui, j, k: the number of uncertain appointments from time i to j within department k. 

Pi, j, k: the probability of showing up for the accepted appointment from time i to j within 

department k. 

Ok: the number of overbooked appointments within department k. 

At time 0, the assumption can be made that the number of appointments is zero while it can be 

assumed that all the accepted appointments can be fulfilled at the ending time T. In reality, the service 
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hour of the aforementioned hospital is from 9am to 6pm, which will be denoted by 0 to T in the 

research. The other assumption is that the accepted appointment lasts at least one slot, for instance, 

from time 1 to time 2. A network with nodes can be viewed as the starting point and ending points 

of an appointment, which is illustrated in the Figure 1. 

 

Figure 1. Flows of starting point and ending point for an appointment at time t. 

A particular time slot t and t ϵ {1, 2, ...,T - 1} in our planning horizon. The formula below indicates 

the utilization rate of department k, k ϵ {1, 2, …, K} at time t which embraces the existence of no-

shows: 

∑ 

𝑡−1

𝑖=0

∑ 𝑝𝑖,𝑗,𝑘𝑥𝑖,𝑗,𝑘

𝑇

𝑗=𝑡+1

− ∑𝑝𝑖,𝑗,𝑘𝑥𝑖,𝑗,𝑘

𝑡−1

𝑖=0

+ ∑ 𝑝𝑖,𝑗,𝑘𝑥𝑖,𝑗,𝑘

𝑇

𝑗=𝑖+1

(1) 

The capacity of department that has been utilized is represented in the first term. The capacity 

which was occupied previously and vacant again is shown in the second term. Finally, the latest 

accepted appointments which will continue at least one slow will be should in the third term. 

Due to the problem of no-shows after the appointments are made in healthcare, the overbooking 

policy is made to manage the appointment scheduling. For each specialty department k with the 

constraints on their capacities, decision makers in hospitals may choose to invite more patients and 

accept more appointments than the available appointment session to mitigate the effect of no-shows. 

Therefore, the constraints will be modified as follows: 

∑ 

𝑡−1

𝑖=0

∑ 𝑝𝑖,𝑗,𝑘𝑥𝑖,𝑗,𝑘

𝑇

𝑗=𝑡+1

− ∑𝑝𝑖,𝑗,𝑘𝑥𝑖,𝑗,𝑘

𝑡−1

𝑖=0

+ ∑ 𝑝𝑖,𝑗,𝑘𝑥𝑖,𝑗,𝑘

𝑇

𝑗=𝑖+1

≤ 𝐶𝑘 + 𝑂𝑡,𝑘 (2) 

∑ 𝑝0,𝑗,𝑘𝑥0,𝑗,𝑘

𝑇

𝑗=𝑖+1

≤ 𝐶𝑘 + 𝑂0,𝑘 (3) 

The revenue produced by fulfilling the consultation sessions is shown below: 

𝑀𝑎𝑥 ∑  

𝐾

𝑘=1

∑ 

𝑇−1

𝑖=0

∑ 𝑅𝑖,𝑗,𝑘𝑝𝑖,𝑗,𝑘𝑥𝑖,𝑗,𝑘

𝑇

𝑗=𝑡+1

 

𝑠. 𝑡.∑  

𝑡−1

𝑖=0

∑ 𝑝𝑖,𝑗,𝑘𝑥𝑖,𝑗,𝑘

𝑇

𝑗=𝑡+1

− ∑𝑝𝑖,𝑗,𝑘𝑥𝑖,𝑗,𝑘

𝑡−1

𝑖=0

+ ∑ 𝑝𝑖,𝑗,𝑘𝑥𝑖,𝑗,𝑘

𝑇

𝑗=𝑖+1

≤  𝐶𝑘 + 𝑂𝑡,𝑘 , 

∑ 𝑝0,𝑗,𝑘𝑥0,𝑗,𝑘

𝑇

𝑗=𝑖+1

≤ 𝐶𝑘 + 𝑂0,𝑘 (4) 

𝑥𝑖,𝑗,𝑘 ≤ 𝑈𝑖,𝑗,𝑘, 

𝑥𝑖,𝑗,𝑘 ≥ 0 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝑘 

The above equations appear to be a linear programming problem (LPP). However, 𝑝𝑖,𝑗,𝑘 , 𝑈𝑖,𝑗,𝑘 

are the uncertain parameters in equation 4 at the beginning of the time frame. As we are not able to 

remove the uncertainty totally in the complex situation, we should first embrace it and incorporate it 
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in our model. Here, an interval programming based on interval analysis to tackle uncertain 

parameters. A linear interval programming to deal with no-shows of appointments with overbooking 

is presented. 

4.2. Preliminary Foundation 

Lai et al.[26] presented the theoretic principle and framework of linear interval programming. 

First of all, assuming Ω is a set of real number. An ordered pair is defined in a bracket as an interval: 

𝑎 = [ 𝑎, 𝑎 ] = { 𝑥 ∶ 𝑎 ≤ 𝑥 ≤  𝑎 , 𝑥 𝜖 Ω} (5) 

Where 𝑎 refers to the lower bound and 𝑎 refers to the upper bound of interval a, respectively. 

The interval arithmetic is basically an extended version of ordinary arithmetic. The definitions 

of the mathematical operations between a pair of intervals are shown as below. 

Definition 1 (Alefeld & Herzberger[27]): Let ∘ ∈ {+, -, ×, ÷} be a binary operation on Q. If two 

intervals, a and b, are involved, then: 

𝑎 ∘ 𝑏 = { 𝑥 ∘ 𝑦 ∶ 𝑥 ∈ 𝑎 , 𝑦 ∈ 𝑏} (6) 

Equation 6 specifies a binary operation on the set of intervals. When it comes to the case of 

division, the assumption will be made that 0∉b. Based on the above definition, the operations between 

a pair of intervals in this chapter are indicated as below: 

𝑎 + 𝑏 = [ 𝑎 + 𝑏 , 𝑎 + 𝑏 ] (7) 

𝑎 − 𝑏 = [ 𝑎 − 𝑏, 𝑎 − 𝑏 ] (8) 

𝑘𝑎 = {
[𝑘𝑎, 𝑘𝑎], 𝑘 ≥ 0

[𝑘𝑎, 𝑘𝑎] 𝑘 < 0.
(9) 

Where k is any real number.In order to formulate the linear interval programming, the definition 

below is introduced. 

Definition 2 (Alefeld & Herzberger[27]): Let 𝑎 = [𝑎 , 𝑎 ] and 𝑏 = [𝑎 , 𝑏 ] be two different intervals. 

Two ordered relationships ≺1 and ≺2 are defined between two intervals, a and b, as follows: 

1. a ≺1b if and only if 𝑎 ≤ 𝑏 and 
𝑎+𝑎

2
 ≤  

𝑏+𝑏

2
 ; 

2. a ≺1b if and only if a ≺1b and a≠b; 

3. a ≺2b if and only if 𝑎 ≤ 𝑏 and 
𝑎+𝑎

2
 ≤  

𝑏+𝑏

2
 ; 

4. a ≺2b if and only if a ≺2b and a≠b; 

4.3. The Proposed Approach 

With intervals involved, the linear programming problem (ILP) will be converted: 

(𝐼𝐿𝑃)

{
  
 

  
 𝑚𝑎𝑥≺1𝑍(𝑥) =∑[ 𝑟𝑗  , 𝑟𝑗]𝑥𝑗

𝑛

𝑗=1

𝑠. 𝑡. {
∑[ 𝑎𝑖𝑗  , 𝑎𝑖𝑗]𝑥𝑗 ≺2 [ 𝑏𝑗  , 𝑏𝑗] , 𝑖 = 1, 2, … ,𝑚

𝑛

𝑗=1

𝑥𝑗 ≥ 0 , 𝑗 = 1, 2, … , 𝑛.

(10) 

To maximize the return under uncertainty in constraints which is represented as interval 

numbers, the objective of interval linear programming is changed from the ordinary one. 

Trivially, the expected value of any uncertain variable is located in the center of interval. Once 

the uncertain return is presented as an interval, the lower bound value of the interval indicates the 

pessimistic return and the upper bound value of the interval indicates the pessimistic cost. The 
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abovementioned ILP is analogous to a combined model of expected value model with uncertainty 

and the pessimistic decision model. 

The objective function to maximize Z(x) = ∑ [ rj , rj]xj
n
j=1  can be regarded as a variant version of 

max-min problem. The constraint requirements ∑ [ aij , aij]xj ≺2 [ bj , bj] , i = 1, 2, … ,m
n
j=1  specify the 

fact that the feasible solutions to ILP indicated the cost factors in the worst-case scenario. The average 

costs are less or equal to the maximum possible value and the expected average value of the resources 

with uncertainties, respectively. 

Definition 3 (Lai et al.[26]): x is defined as a feasible solution to be a non-inferior solution to ILP if 

and only if no other feasible solution x is present so that 

𝑧(𝑥) ≺1 𝑍(𝑥
′) （11） 

Based on the definition 3, the non-inferior solution to ILP can be derived in the following bi-

objective programming: 

(𝐼𝐿𝑃)

{
 
 
 
 
 

 
 
 
 
 

𝑚𝑎𝑥 {∑𝑟𝑗𝑥𝑗

𝑛

𝑗=1

,∑
𝑟𝑗 + 𝑟𝑗

2

𝑛

𝑗=1

 𝑥𝑗

𝑠. 𝑡.

{
  
 

  
 ∑𝑎𝑖  , 𝑗𝑥𝑗  ≤  𝑏𝑖  ,

𝑛

𝑗=1

∑
𝑎𝑖,𝑗 + 𝑎𝑖,𝑗

2

𝑛

𝑗=1

 𝑥𝑗 ≤ 
𝑏𝑖 + 𝑏𝑖
2

,

𝑥𝑗 ≥ 0.

 （12） 

To tackle multiple objective decision making (MODM) programming, A linear combination of 

objective functions is suggested Chankong and Haimes[28]. Hence, the objective function of BIL can 

be rewritten: 

𝜆∑𝑟𝑗𝑥𝑗

𝑛

𝑗=1

+ (1 − 𝜆)∑
𝑟𝑗 + 𝑟𝑗

2

𝑛

𝑗=1

 𝑥𝑗 = ∑
(𝑟𝑗 + 𝑟𝑗) − 𝜆(𝑟𝑗 − 𝑟𝑗)

2

𝑛

𝑗=1

 𝑥𝑗 （13） 

Eventually, the solution of BIL can be generated from the parametric linear programming (PLP) 

model as follows: 

(𝑃𝐼𝐿(𝜆))

{
 
 
 
 
 

 
 
 
 
 
max {∑

(𝑟𝑗 + 𝑟𝑗) − 𝜆(𝑟𝑗 − 𝑟𝑗)

2

𝑛

𝑗=1

 𝑥𝑗}

𝑠. 𝑡.

{
  
 

  
 ∑𝑎𝑖  , 𝑗𝑥𝑗  ≤  𝑏𝑖 ,

𝑛

𝑗=1

∑
𝑎𝑖,𝑗 + 𝑎𝑖,𝑗

2

𝑛

𝑗=1

 𝑥𝑗 ≤ 
𝑏𝑖 + 𝑏𝑖
2

,

𝑥𝑗 ≥ 0.

 (14) 

where 𝜆 ∈ (0,1) indicates the risk appetite for decision makers. 

The aforementioned equations have some strengths for calculation. The non-inferior solution is 

comparatively easy to be calculated by the suggested interval linear programming (λ) corresponding 

to various values of 𝜆 ∈ (0,1). The distinguished characteristic of the suggested ILP (λ) is that the 

model has been already in linear programming form so that it is able to be solved efficiently by simple 

different linear model packages[29] while 𝜆 ∈ (0,1) can be determined. 

4.4. Robust Optimization Model 

The suggested ILP (λ) can be used to tackle the appointment overbooking problem with no-

shows in Ambulatory Care Center. From the model 4 in the previous section, equations 14 is 
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combined into equation 4 directly. The uncertainty is depicted by the parameters 𝑝𝑖,𝑗,𝑘 and 𝑈𝑖,𝑗,𝑘 in 

objective function and constraints model 4. Eventually, the proposed model to manage no-shows 

with overbooking: 

Max ∑  

𝐾

𝑘=1

∑ 

𝑇−1

𝑖=0

∑
𝑅𝑖,𝑗,𝑘[(𝑝𝑖,𝑗,𝑘 + 𝑝𝑖,𝑗,𝑘) − 𝜆(𝑝𝑖,𝑗,𝑘 − 𝑝𝑖,𝑗,𝑘)]𝑥𝑖,𝑗,𝑘

2

𝑇

𝑗=𝑡+1

− 𝐶𝑜∑∑[𝐶𝑘 + 𝑂𝑡,𝑘 − 𝐴 ]+
𝑇−1

𝑡=1

𝐾

𝑘=1

 

Where 

A =∑ 

𝑡−1

𝑖=0

∑
[(𝑝𝑖,𝑗,𝑘 + 𝑝𝑖,𝑗,𝑘) − 𝜆(𝑝𝑖,𝑗,𝑘 − 𝑝𝑖,𝑗,𝑘)]𝑥𝑖,𝑗,𝑘

2

𝑇

𝑗=𝑡+1

− ∑
[(𝑝𝑖,𝑗,𝑘 + 𝑝𝑖,𝑗,𝑘) − 𝜆(𝑝𝑖,𝑗,𝑘 − 𝑝𝑖,𝑗,𝑘)]𝑥𝑖,𝑗,𝑘

2

𝑡−1

𝑖=0

+ ∑
[(𝑝𝑖,𝑗,𝑘 + 𝑝𝑖,𝑗,𝑘) − 𝜆(𝑝𝑖,𝑗,𝑘 − 𝑝𝑖,𝑗,𝑘)]𝑥𝑖,𝑗,𝑘

2

𝑇

𝑗=𝑖+1

 

𝑠. 𝑡.∑  

𝑡−1

𝑖=0

∑ 𝑝
𝑖,𝑗,𝑘

𝑥𝑖,𝑗,𝑘

𝑇

𝑗=𝑡+1

− ∑𝑝
𝑖,𝑗,𝑘

𝑥𝑖,𝑗,𝑘

𝑡−1

𝑖=0

+ ∑ 𝑝
𝑖,𝑗,𝑘

𝑥𝑖,𝑗,𝑘

𝑇

𝑗=𝑖+1

≤  𝐶𝑘 + 𝑂𝑡,𝑘 , 

∑ 

𝑡−1

𝑖=0

∑
𝑝𝑖,𝑗,𝑘 + 𝑝𝑖,𝑗,𝑘

2
𝑥𝑖,𝑗,𝑘

𝑇

𝑗=𝑡+1

− ∑
𝑝𝑖,𝑗,𝑘 + 𝑝𝑖,𝑗,𝑘

2
𝑥𝑖,𝑗,𝑘

𝑡−1

𝑖=0

 

+ ∑
𝑝𝑖,𝑗,𝑘 + 𝑝𝑖,𝑗,𝑘

2
𝑥𝑖,𝑗,𝑘

𝑇

𝑗=𝑖+1

≤ 𝐶𝑘 + 𝑂𝑡,𝑘 (15)

 

𝑥𝑖,𝑗,𝑘 ≤ 𝑈𝑖,𝑗,𝑘 

𝑥𝑖,𝑗,𝑘 ≤
𝑈𝑖,𝑗,𝑘 + 𝑈𝑖,𝑗,𝑘

2
𝑥𝑖,𝑗,𝑘, 

𝑥𝑖,𝑗,𝑘 ≥ 0 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝑘 . 

In equation 15, the constraint of 
𝑈𝑖,𝑗,𝑘+𝑈𝑖,𝑗,𝑘

2
≤ 𝑈𝑖,𝑗,𝑘 is always true. This means the constraint of 

𝑥𝑖,𝑗,𝑘 ≤ 𝑈𝑖,𝑗,𝑘can be removed to simplify the model (15) as： 

Max ∑  

𝐾

𝑘=1

∑ 

𝑇−1

𝑖=0

∑
𝑅𝑖,𝑗,𝑘[(𝑝𝑖,𝑗,𝑘 + 𝑝𝑖,𝑗,𝑘) − 𝜆(𝑝𝑖,𝑗,𝑘 − 𝑝𝑖,𝑗,𝑘)]𝑥𝑖,𝑗,𝑘

2

𝑇

𝑗=𝑡+1

− 𝐶𝑜∑∑[𝐶𝑘 + 𝑂𝑡,𝑘 − 𝐴 ]+
𝑇−1

𝑡=1

𝐾

𝑘=1

 

Where 

A =∑ 

𝑡−1

𝑖=0

∑
[(𝑝𝑖,𝑗,𝑘 + 𝑝𝑖,𝑗,𝑘) − 𝜆(𝑝𝑖,𝑗,𝑘 − 𝑝𝑖,𝑗,𝑘)]𝑥𝑖,𝑗,𝑘

2

𝑇

𝑗=𝑡+1

− ∑
[(𝑝𝑖,𝑗,𝑘 + 𝑝𝑖,𝑗,𝑘) − 𝜆(𝑝𝑖,𝑗,𝑘 − 𝑝𝑖,𝑗,𝑘)]𝑥𝑖,𝑗,𝑘

2

𝑡−1

𝑖=0

+ ∑
[(𝑝𝑖,𝑗,𝑘 + 𝑝𝑖,𝑗,𝑘) − 𝜆(𝑝𝑖,𝑗,𝑘 − 𝑝𝑖,𝑗,𝑘)]𝑥𝑖,𝑗,𝑘

2

𝑇

𝑗=𝑖+1

 

𝑠. 𝑡.∑  

𝑡−1

𝑖=0

∑ 𝑝
𝑖,𝑗,𝑘

𝑥𝑖,𝑗,𝑘

𝑇

𝑗=𝑡+1

− ∑𝑝
𝑖,𝑗,𝑘

𝑥𝑖,𝑗,𝑘

𝑡−1

𝑖=0

+ ∑ 𝑝
𝑖,𝑗,𝑘

𝑥𝑖,𝑗,𝑘

𝑇

𝑗=𝑖+1

≤  𝐶𝑘 + 𝑂𝑡,𝑘 , 
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∑ 

𝑡−1

𝑖=0

∑
𝑝𝑖,𝑗,𝑘 + 𝑝𝑖,𝑗,𝑘

2
𝑥𝑖,𝑗,𝑘

𝑇

𝑗=𝑡+1

− ∑
𝑝𝑖,𝑗,𝑘 + 𝑝𝑖,𝑗,𝑘

2
𝑥𝑖,𝑗,𝑘

𝑡−1

𝑖=0

+ ∑
𝑝𝑖,𝑗,𝑘 + 𝑝𝑖,𝑗,𝑘

2
𝑥𝑖,𝑗,𝑘

𝑇

𝑗=𝑖+1

≤ 𝐶𝑘 + 𝑂𝑡,𝑘 (16)

 

𝑥𝑖,𝑗,𝑘 ≤
𝑈𝑖,𝑗,𝑘 + 𝑈𝑖,𝑗,𝑘

2
, 

𝑥𝑖,𝑗,𝑘 ≥ 0 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝑘 . 

In the next session, the usefulness and effectiveness of the proposed linear interval programming 

model to manage no-shows with overbooking for appointments in Ambulatory Care Center will be 

shown. 

5. Result and Discussion 

In this session, the usefulness of the model will be demonstrated. Some assumptions have to be 

made for the sake of demonstration: 

1. The number of departments and their capacities cannot be increased within a short timeframe. 

2. The rate of revenue generated from an appointment is likely fixed due to the policy of the Hong 

Kong Hospital Authority. 

3. The probability of showing up for an accepted appointment will not change 

4. The demand is sufficiently high and exceeds capacity, making overbooking beneficial. 

To simplify the numerical example illustration, six sessions are set to be available per day, i.e., T 

= 6. The length of each session can be any value and is defined by the decision-makers. Three 

departments will be involved. The demands for the lower bound and the upper bound are shown in 

Tables 1 and 2, respectively. 

Table 1. The lower bound of the demand for different periods. 

From/ To 1 2 3 4 5 6 

0 60 21 28 30 25 35 

1  30 28 35 25 21 

2   25 35 25 21 

3    25 21 25 

4     25 21 

5      25 

For each period, a show-up probability (equal to 1 minus the no-show probability) can be found 

in Table 2 or Table 3. For simplicity, hospital managers decide to use constant values of 0.95 and 0.8 

for the upper bound and lower bound of the show-up rate (5% and 20% for no-show rates, 

respectively). The revenue for each period is set at 100. These three parameters can be adjusted 

according to the precise information provided by the hospital managers. 

Table 2. The upper bound of the demand for different periods. 

From/ To 1 2 3 4 5 6 

0 120 42 55 60 50 70 

1  60 55 70 50 42 

2   50 70 50 42 

3    50 42 50 

4     50 42 

5      50 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 June 2024                   doi:10.20944/preprints202406.0257.v1

https://doi.org/10.20944/preprints202406.0257.v1


 9 

 

Therefore, other parameters which are made constant are shown in Table 3. 

Table 3. Parameters for overbooking. 

First, the risk parameter λ is examined. This parameter informs decision-makers of the expected 

profit after a designated period, given a certain value of λ. It also influences the configuration of the 

assignment between patients and doctors. The expected profit aids in capacity planning and financial 

management of the hospital. Note that the results of the following graphs are based on the parameters 

mentioned above; the patterns remain similar when the parameters vary. 

In Figure 2, when decision-makers are more confident about their estimation of uncertain 

parameters such as the upper and lower bounds of demand and the no-show probability, the profit 

increases regardless of how the demand is assigned. The confidence of the decision-makers is 

positively correlated with the expected profit. 

 

Figure 2. Relationship between profit and risk parameter λ by the decision maker. 

The overbooking cost affects the upper and lower bounds of profit, the configuration of the 

patient-doctor assignment, and the level of overbooking. In Figure 3, when overbooking is free of 

charge, we will fully rely on overbooking if it is possible to meet the demand for consultation services. 

The profit will reach its maximum value, equivalent to the revenue part of the objective function, 

without deductions for overbooking costs. Note that as the overbooking cost increases, the profit 

decreases significantly. The configuration of the assignment between patients and doctors remains 

similar and full until the overbooking cost reaches 10% of the revenue. At this point, the configuration 

will start to change, and the level of overbooking will decrease, as discussed in Figure 4. When the 

overbooking cost reaches 15% of the revenue, overbooking becomes too expensive, causing the profit 

to decrease if overbooking is still used to meet the demand. The manager should consider not 

fulfilling the demand. The units of overbooking drop to less than 5% when the cost reaches 25% of 

the revenue. Additionally, the more risk the decision-maker is willing to take, the higher the upper 

and lower bounds of the profit, indicating that risk-taking decision-makers will anticipate higher 

profits in any situation. 
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Figure 3. Relationship between the overbooking cost and profit. 

 

Figure 4. Relationship between Overbooking Level and Overbooking Cost. 

The overbooking cost affects the level of overbooking, which is measured by the ratio of total 

overbooking units to total capacity. In Figure 11, the overbooking level is at its maximum when the 

overbooking cost ranges from 0% to around 10% of the total revenue. As mentioned above, 

overbooking is maximized to fulfill all demand. If the demand uncertainty or the range of demand 

increases, the overbooking level will also increase. Ideally, the overbooking level should be around 

1.6 to accommodate the demand. Note that more confident decision-makers will experience a later 

drop in their overbooking level, meaning they adopt full overbooking at a higher cost. 

When the overbooking cost is around 10%, the overbooking level starts to decrease, and not all 

potential patients are accommodated. The configuration of the assignments begins to change until 

the overbooking cost reaches 15% to 18%, depending on the confidence level of the decision-makers. 

More confident decision-makers are able to maintain a higher level of overbooking at the same cost. 

At an overbooking cost of 15%, less confident decision-makers will keep overbooking minimal, while 

more confident decision-makers will utilise around 10% to 20% of the overbooking level until the cost 

rises to 18%. (The shapes of the curves vary with different parameters such as no-show rates, but the 

patterns remain similar.) 

Figure 5 illustrates the relationship between profit and the ratio of overbooking. The 

overbooking cost is set at 14% of revenue, with a risk level of 0.5. The no-show rate remains within 

the boundary of 5% to 20%. Under these settings, revenue increases up to an overbooking level of 
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40%. Extra patients fill the empty consultation slots left by no-show patients. The optimal strategy 

before reaching the 40% overbooking level is to allow the hospital to overbook as much as possible. 

However, beyond 40%, even if a higher overbooking level is permitted, the hospital should aim for 

around 40% as their booking level (Blue line). If hospital managers decide to use a higher overbooking 

level to accommodate all potential patients, the overbooking cost will increase significantly, leading 

to a drop in profit. After deciding on the overbooking level, they will obtain the schedule of 

overbooking and the assignment of the number of consultations for each period, as shown in Tables 

4 and 5. 

 

Figure 5. Relationship between Revenue Increase and Ratio of Overbooking. 

Table 4. Overbooking level at the cost of 14% of the revenue. 

Overbooking t=1 t=2 t=3 t=4 t=5 

Specialty 1 200 198 196 200 198 

Specialty 2 199 200 198 200 200 

Specialty 3 200 200 200 197 199 

Table 5. Assignment of Patient under the scheme of overbooking at 0.4 of the total capacity. 

From/To, Specialty 1 1 2 3 4 5 6 

0 90 31 41 45 37 51 

1  16 12 18 20 31 

2   14 27 16 31 

3    15 30 37 

4     17 31 

5      37 

Specialty 2       

0 40 39 44 49 66 49 

1  9 30 19 10 48 

2   8 26 4 41 

3    7 25 45 

4     7 52 

5      56 

Specialty 3       

0 39 37 41 46 63 50 

1  5 45 15 17 47 

2   3 34 14 39 
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3    10 23 42 

4     8 50 

5      54 

Note that decision-makers will attempt to schedule more patients who may occupy longer 

periods, due to the higher revenue generated when these patients show up. If decision-makers prefer 

a more even distribution of the schedule, the revenue across different periods can be adjusted. For a 

private hospital, this approach can assist in making overbooking decisions to maximise revenue. For 

a public hospital, the optimal solution can reduce the number of vacancies wasted due to no-shows 

and cancellations. 

6. Management Insights 

From the above analysis, hospital managers need to determine two parameters before 

establishing the appointment assignment policy: the risk level and the overbooking cost. The degree 

of risk aversion can be virtually interpreted as the confidence level. In Figure 2, profit is directly 

proportional to the degree of risk aversion of the hospital managers. If managers choose to be more 

prudent about the risk and the consequences of overbooking, a smaller λ should be selected, resulting 

in a lower expected profit. Hospital managers should be clear about their short-term and long-term 

goals to make decisions for the sustainability of the clinics, such as choices of specialty and 

investment. 

Once the risk aversion level is confirmed and chosen, hospital managers should carefully 

measure the cost of overbooking. The cost of overbooking can be tangible or intangible, depending 

on the definition of the managers. Tangible costs are easier to measure and can include overtime 

compensation for doctors, additional utility usage, or compensation for unfulfilled patients. 

Intangible costs may include damage to the hospital's reputation. In Figure 3, hospital managers can 

foresee a drop in profit when the overbooking cost increases, as the wasted slots from overbooking 

will incur costs. When the cost increases to a certain level, managers should reduce the overbooking 

level, and the profit will essentially plateau. As the overbooking level is reduced to a minimum, the 

overbooking cost will not significantly affect profit. If managers consider more compensation for the 

issues arising from overbooking, the expected profit will further decrease. 

Once hospital managers are informed about the potential profit given the risk factors and 

overbooking cost, they can decide on the overbooking level. In Figure 4, managers will adopt a 

strategy with a high overbooking level when the overbooking cost is perceived to be low. Up to a 

certain point, the optimal overbooking level starts to decrease, requiring managers to carefully 

consider how they allocate their overbooking resources. When the overbooking cost is very high, 

managers should reduce the overbooking level to a minimum. Different sets of parameters will lead 

to different decisions at any given overbooking cost. 

Due to hospital policy, a large number of overbookings is not recommended even when the 

overbooking cost is very low. In this case, the hospital manager should carefully consider whether to 

still use the optimal overbooking level. In Figure 5, managers can achieve peak profit with the most 

optimal overbooking level. If they decide to increase or decrease the overbooking level, they will 

experience a decrease in profit due to unfulfilled demand and significant penalties associated with 

overbooking. 

Afterwards, hospital managers should understand the overbooking level for each period as 

shown in Table 4 and assign patients to different sessions as in Table 5. Parameters can be added to 

meet the specific needs of individual hospitals. The entire action plan is outlined below. 
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Figure 6. The decision flow for overbooking. 

7. Conclusions 

The healthcare system is instrumental to societal prosperity, and the efficiency of hospital 

operations depends on the strategy adopted by hospital managers. In this paper, we propose a robust 

optimization model to address no-shows and vacancy problems using the overbooking technique. 

Initially, the operation of clinics has been studied in the literature with practical experience. We then 

established a baseline preliminary model typically used in overbooking problems. Instead of setting 

our parameters deterministically, we proposed a model with robust parameters. When the 

probability of no-shows increases, the model can generate more profit than deterministic models. The 

proposed model suggests that profit will increase with the amount of overbooking and decrease once 

it reaches a certain point. A maximum number of overbooked appointments can be calculated. The 

decision flow for overbooking begins by assessing the cost of overbooking. If the cost of overbooking 

is high, the results indicate that the overbooking level should be adopted, and other methods to 

accommodate no-shows should be considered. If the overbooking cost is low, a high overbooking 

level should be considered, and all types of decision-makers should use overbooking. A medium 

overbooking level should be adopted when the overbooking cost is moderate. Risk aversion is more 

critical in determining which methods to use. The contribution of this paper is pivotal, especially 

during a pandemic with a high level of uncertainty. 
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