Pre prints.org

Article Not peer-reviewed version

Robust Overbooking for No-shows and
Cancellations in Healthcare

Feng Xiao, Kin Keung_Lai i , Chun Kit Lau , Bhagwat Ram

Posted Date: 5 June 2024
doi: 10.20944/preprints202406.0257v1

Keywords: Robust optimization; Overbooking; No-shows; Healthcare

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3591794
https://sciprofiles.com/profile/449174
https://sciprofiles.com/profile/1463583

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2024 d0i:10.20944/preprints202406.0257.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Robust Overbooking for No-Shows and
Cancellations in Healthcare

Feng Xiao !, Chun Kit Lau ? Kin Keung Lai »* and Bhagwat Ram 3

! International Business School, Shaanxi Normal University, Xi’an 710119, China

2 Faculty of Business and Management, Beijing Normal University —Hong Kong Baptist University United
International College, Zhu Hai 519000, China

3 Delhi School of Analytics, Institution of Eminence, University of Delhi, Delhi 110007, India

Correspondence: mskklai@outlook.com

Abstract: The healthcare system is crucial to the development, standard of living, and sustainability of any
country. Amid the pandemic, most developed countries are experiencing varying levels of difficulty managing
their healthcare systems. Overloading of healthcare services is common, leading to prolonged waiting times
for medical services; thus, the wastage of hospital resources must be addressed seriously. In this paper, we
examine the problem of no-shows in outpatient clinics. Through a review of the literature and practical
industrial experience, we identify the processes of these clinics. We then propose a robust optimisation
approach for overbooking using a traditional overbooking model and a robust system. This model aims to
mitigate the significant parameter uncertainties encountered during the pandemic. Considering risk aversion,
the optimal policy for overbooking can be established while accounting for the costs associated with
overbooking. The main contribution of this paper is the introduction of an alternative method to address the
uncertainty of no-shows using an overbooking technique.

Keywords: Robust optimization; overbooking; No-shows; Healthcare
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1. Introduction

Under the influence of the pandemic, hospitals worldwide are facing unprecedented challenges
in resource management, including outpatient doctors, nurses, and ambulances. In pre-pandemic
healthcare systems, hospital managements struggled with demand uncertainties as they typically
had to plan their resources months in advance. Doctors needed to be recruited ahead of time, and
medicines and medical equipment had to be deployed well before patients required treatment.
During the pandemic, saturated hospitals in most countries, whether public or private, have
struggled to serve patients on time. The consequences of resource mismatches can lead to untreated
patients and delayed hospital admissions. Overall, healthcare significantly contributes to sustainable
economic growth, alongside other essential government spending areas such as technology and
infrastructure. Some believe that efforts to improve healthcare can significantly impact an
individual’s likelihood of success, studies have shown a positive relationship between healthcare
spending and GDP in OECD countries[1,2].

In this paper, we aim to address one of the problems facing hospitals in outpatient clinics.
Hospital resource planning is crucial for outpatients. Typically, managers must decide how many
doctors should be available for outpatient clinics and how many nurses should assist. They also
determine the number of rooms available for treatment. The overall efficiency and profitability of
clinics largely depend on how accurately managers match patient appointments with the number of
doctors assigned. However, patients often change their plans at the last minute or cancel their
appointments, creating challenges for managers in dealing with appointment demand uncertainties,
which can result in idle doctors or untreated patients. One solution is overbooking, commonly used
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in industries with a high number of no-shows and replenishable products, such as the aviation
industry. Nevertheless, existing overbooking methods with deterministic approaches impose
restrictions on the assumptions about parameter distributions. Therefore, we propose an alternative
method to manage no-shows and cancellations in healthcare systems.

2. Background

Gupta & Denton[3] investigated the primary issues related to the operational design and patient
appointment systems for Ambulatory Care Center services. They considered complex factors and
various processes to develop an optimisation model aimed at minimising the costs of waiting,
tardiness, and idling. In other words, when all factors are incorporated, revenue and profit can be
maximised. The model addresses three types of arrival patterns: Periodic Process, Unit Process, and
Single Batch Process, which define how patients arrive within a specific timeframe. This model can
be applied to groups, clusters, or individuals. In our study, we have considered additional factors
beyond those incorporated by Gupta and Denton, including the cost of error, which is a significant
issue in Hong Kong.

Stanciu, Vargas and May[4] addressed the problems of revenue management in operating
theatres using a modified version of Lobaba’s famous EMSRDb algorithm. Their main objective was to
determine the optimal levels of various patients for different services. For a particular timeframe, the
model calculates the time required to meet the demand based on the type of surgical procedure and
patient reimbursement. This model addresses issues that previous models scarcely managed to
resolve. Penalties were added to identify the cost of surgical errors, which degrade service quality
and prolong medical care. These penalties can be realised in both monetary and non-monetary terms
and will eventually be incorporated into the model.

Ratcliffe, Gilland and Marucheck[5] indicated that revenue management in outpatient
appointment clinics resembles that of the airline industry, particularly in terms of overbooking and
no-shows. When a reservation is made, both doctors and patients are expected to arrive at the
designated time and place. If either party fails to show up on time, the clinic will suffer a loss in profit
as the doctors cannot utilise their time efficiently and become idle.

Given the specific information regarding bookings, researchers can derive a straightforward
deterministic formula for optimising booking requests based on historical data. If the constraints are
removed, the upper and lower bounds of the limits and optimal booking strategies must be redefined.
Ten different policies are proposed in their sensitivity analysis to explore the relationship between
model variables and expected profit. In addition to the aforementioned paper, valuable insights can
be obtained from the American Health Information Management Association concerning
Ambulatory Care Centres, such as Hospital-Based and Community-Based Ambulatory Care. This
research can extend the model to incorporate features of Hospital-Based Ambulatory Care.

Roski and Gregory[6] discussed numerical performance measurement metrics such as the
effectiveness of care, healthcare choices, accessibility or availability of services, and patient
satisfaction with medical care. The efficiency of care is our primary measurement factor, as it can
impact many dimensions. Meanwhile, service quality and patient satisfaction are our secondary
metrics for assessing good healthcare management.

3. Literature Review

Overbooking is widely employed in the hotel and aviation industries where resources are
perishable, such as reservations and appointment bookings[7,8]. Appointment overbooking is a
method to mitigate the impact of no-shows by reducing idle time and increasing the efficiency and
utilisation rate of the system[9]. Overbooking appointments involves scheduling more patients in a
session than the number of available service providers[10-12]. An excessive number of appointments
can compensate for no-shows. Muthuraman and Lawley[13] utilised a Stochastic Model to maximise
expected profit with overbooking and unimodal no-show rates. Amnon[14] provided advice on
managing overbooking in endoscopy units. Consequently, patient access times and provider
productivity can be improved. However, if the overbooking policy is implemented inefficiently,
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patient waiting times and system overtime may also increase. To determine the optimal overbooking
policy and achieve the intended objectives, Liu and Ziya[15] used the Single Server Queuing Model,
Kim and Giachetti[16] adopted the Stochastic Model. LaGanga and Lawrence[17] illustrated
numerical examples of overbooking strategies that lead to improvements in the performance of
different service settings and cost structures in hospitals. Kolisch and Sickinger[18]; Zeng et al.[19]
provided evidence of the efficiency of using overbooking for advanced policy systems. Liu and
Ziya[15] stated that the overbooking strategy is the best among other strategies when the number of
patients is comparatively low. Kros et al.[10] demonstrated that large facilities tend to benefit from
overbooking when no-show rates are high.

Among all the uncertain factors, patient no-shows and cancellations are the most significant
issues. Typically, patients cancel their appointments just before the scheduled time, resulting in last-
minute cancellations. If patients cancel their appointments sufficiently in advance, the hospital can
reallocate the vacancy to new patients. However, according to Liu, Ziya and Kulkarni[20], from the
patient’s perspective, they might suffer if they later find that the service is needed. Consequently,
many patients choose not to show up or cancel at the last moment. Parizi and Ghate[21] considered
multi-class and multi-resource scenarios while Schuetz and Kolisch[22] discussed the demand for
different customer services and products. Most papers treat late cancellations as no-shows because
rebooking is required if the cancellation occurs late, necessitating the rearrangement of resources.
Wang and Gupta[23] demonstrated that the probability of no-shows depends on time, service, and
patient type, in addition to homogeneous types. Samorani and LaGanga[24] showed that
appointments can also be affected by weather conditions. Cayirli and Veral[25] as well as Gupta and
Denton[3], revealed that shorter appointment intervals and overbooking can mitigate the impact of
no-shows.

4. Proposed Model

4.1. Basic Model

After examining the operational processes of 27 hospitals in Hong Kong and Mainland China,
the most critical factors were identified and extracted to reflect the hospital's situation most accurately
and simplify the complex scenario. The model is developed as follows.

Considering K types of healthcare services in Ambulatory Care Center, or K departments. The
planned time frame includes a single session with consecutive time, which is divided into equal
interval time slots based on the requirement of the situation of Ambulatory Care Center. The
appointment-scheduling problem involves two crucial decisions:

¢  how many consultancy rooms to open on a particular day
e  which appointments to assign to each consultancy room.

The objective is to minimize the weighted sum of the total cost of opening consultancy rooms
and the total overtime associated with overbooking a consultancy room. We introduce the following
variables to develop the model.

Indexes:

i: the starting time pointi, i=0, 1, ..., T-1

j: the ending time pointj,j=1,2, ..., T

k: healthcare departmentk, k=1, 2, ..., K

Ck: the available capacity of department or specialty k, k=1, 2, ..., K.

Ri j x: the revenue from an appointment generated from time i to j within department k.

xi,j, k: the number of accepted appointments from time i to j within department k.

Ui j x: the number of uncertain appointments from time i to j within department k.

P; j « the probability of showing up for the accepted appointment from time i to j within
department k.

Ox: the number of overbooked appointments within department k.

At time 0, the assumption can be made that the number of appointments is zero while it can be
assumed that all the accepted appointments can be fulfilled at the ending time T. In reality, the service
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hour of the aforementioned hospital is from 9am to 6pm, which will be denoted by 0 to T in the
research. The other assumption is that the accepted appointment lasts at least one slot, for instance,
from time 1 to time 2. A network with nodes can be viewed as the starting point and ending points
of an appointment, which is illustrated in the Figure 1.

- ‘ ‘T

Ending at t

Figure 1. Flows of starting point and ending point for an appointment at time t.

A particular time slottand t € {1, 2, ..., T - 1} in our planning horizon. The formula below indicates
the utilization rate of department k, k € {1, 2, ..., K} at time t which embraces the existence of no-

shows:
T
Z pz]kxz]k zpl]kxl]k+ Z pl]kxl]k (1)
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The capacity of department that has been utilized is represented in the first term. The capacity
which was occupied previously and vacant again is shown in the second term. Finally, the latest
accepted appointments which will continue at least one slow will be should in the third term.

Due to the problem of no-shows after the appointments are made in healthcare, the overbooking
policy is made to manage the appointment scheduling. For each specialty department k with the
constraints on their capacities, decision makers in hospitals may choose to invite more patients and
accept more appointments than the available appointment session to mitigate the effect of no-shows.
Therefore, the constraints will be modified as follows:

t—-1 T
2 Z pl}kxl}k Zpl}kxl]k+ z pl]kxl]k< Ck Otk (2)
i=0 j=t+1 j=i+1
> Pojutosu < CF+ 0% ®)
j=i+1

The revenue produced by fulfilling the consultation sessions is shown below:

K T-1
Max Z Z Z R,]kpl,]k i)k
i=0 j=t+1
t-1 T t-1 T
s.t iikXiik — PikXiik T iikXii <Ck+0t’k
i pz,),k i,jk pl,],k i,j,k pl,j,k i,jk = ’
i=0 j=t+1 i=0 j=i+1
T
k 0,k
> Pojutou < €k +0 @)
j=i+1

Xijk < Uije
Xijk =0, foralli,jk
The above equations appear to be a linear programming problem (LPP). However, p; ;,U;

are the uncertain parameters in equation 4 at the beginning of the time frame. As we are not able to
remove the uncertainty totally in the complex situation, we should first embrace it and incorporate it
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in our model. Here, an interval programming based on interval analysis to tackle uncertain
parameters. A linear interval programming to deal with no-shows of appointments with overbooking
is presented.

4.2. Preliminary Foundation

Lai et al.[26] presented the theoretic principle and framework of linear interval programming.
First of all, assuming Q is a set of real number. An ordered pair is defined in a bracket as an interval:

a=[aa]l={x:a<x <a,xeq} (5)
Where a refers to the lower bound and a refers to the upper bound of interval a, respectively.

The interval arithmetic is basically an extended version of ordinary arithmetic. The definitions
of the mathematical operations between a pair of intervals are shown as below.

Definition 1 (Alefeld & Herzberger[27]): Let = € {+, -, x, +} be a binary operation on Q. If two
intervals, a and b, are involved, then:
aocb={xoy:x€a,y €b} (6)

Equation 6 specifies a binary operation on the set of intervals. When it comes to the case of
division, the assumption will be made that 0¢b. Based on the above definition, the operations between
a pair of intervals in this chapter are indicated as below:

a+b=[a+b,a+b] )
a-b=[a-ba-b] ®)
ra = {[kg,ka],k >0 9
“ k@ ka] k < 0. ©)

Where k is any real number.In order to formulate the linear interval programming, the definition
below is introduced.

Definition 2 (Alefeld & Herzberger[27]): Let a =[a,a] and b = [Q,E] be two different intervals.
Two ordered relationships <; and <, are defined between two intervals, a and b, as follows:

1. ax;bifandonlyif a <b and %E < in;
2. a xjbifandonlyifa <;b and a#b;
3. axybifandonlyif a <b and %ra < Ezi;
4

a <,bif and only if a <,b and a#b;

4.3. The Proposed Approach

With intervals involved, the linear programming problem (ILP) will be converted:

n
max., Z(x) = Z[g er]xj

=1
(ILP) n ~ _ (10)
St Z[Qij'aij]xj <2 [bj.bj].i=1,2,..,m

Jj=1

X 20,j=12,.,n

To maximize the return under uncertainty in constraints which is represented as interval
numbers, the objective of interval linear programming is changed from the ordinary one.

Trivially, the expected value of any uncertain variable is located in the center of interval. Once
the uncertain return is presented as an interval, the lower bound value of the interval indicates the
pessimistic return and the upper bound value of the interval indicates the pessimistic cost. The
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abovementioned ILP is analogous to a combined model of expected value model with uncertainty
and the pessimistic decision model.

The objective function to maximize Z(x) = XL 1[ I ,F]]X] can be regarded as a variant version of
max-min problem. The constraint requirements Z] 1[3” ,a,]]x <, [b], ]] i=1,2,..,m specify the
fact that the feasible solutions to ILP indicated the cost factors in the worst-case scenario. The average

costs are less or equal to the maximum possible value and the expected average value of the resources
with uncertainties, respectively.

Definition 3 (Lai et al.[26]): x is defined as a feasible solution to be a non-inferior solution to ILP if
and only if no other feasible solution x is present so that

z(x) <1 Z(x") (11D

Based on the definition 3, the non-inferior solution to ILP can be derived in the following bi-
objective programming:

(ILP) ! zai'jxf < by, (12)

n —
s L. Zgi,j‘*'ai,j b; +b;
2

&
IA

To tackle multiple objective decision making (MODM) programming, A linear combination of
objective functions is suggested Chankong and Haimes[28]. Hence, the objective function of BIL can

be rewritten:
n n n
i+ +7;) — A1y —
Angj+(1—/1)Z'] > J Z( j) @ )x]- (13)
j=1 =1 1

j=

Eventually, the solution of BIL can be generated from the parametric linear programming (PLP)
model as follows:

( n — —
ri+71)— A —T
max (—] ]) (_] ]) xj}
2
n
(PIL(Y)) Zawfxf < b, (14)
j=1
n —_
s.t. Zg j+a;; 5 < Ql-+bi’
: 2 2
=1
% = 0.

where 4 € (0,1) indicates the risk appetite for decision makers.

The aforementioned equations have some strengths for calculation. The non-inferior solution is
comparatively easy to be calculated by the suggested interval linear programming (A) corresponding
to various values of 1 € (0,1). The distinguished characteristic of the suggested ILP (A) is that the
model has been already in linear programming form so that it is able to be solved efficiently by simple
different linear model packages[29] while 4 € (0,1) can be determined.

4.4. Robust Optimization Model

The suggested ILP (A) can be used to tackle the appointment overbooking problem with no-
shows in Ambulatory Care Center. From the model 4 in the previous section, equations 14 is
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combined into equation 4 directly. The uncertainty is depicted by the parameters p; ;, and U, in

objective function and constraints model 4. Eventually, the proposed model to manage no-shows
with overbooking:

K T-1
Maxz Z Z l]k[(pl]k-l_pl]k) A(pt]k ”k)] i,jk COZZ[Ck+Ot’k —A]+
k=1t=1

i=0 j=t+1
Where
t-1 T — —
Ao Z (@i +D; i) = A@ijse — Py )Xk
N 2
i=0 j=t+1
t—1
_ Z [(pl] k + pl] k) A(plj k i_j‘k)]xi,j,k
; 2
l=T0
Z (@i +P; 40 = Aijke = Py j )Xk
+
s ] 2
j=i+1
t-1 T t-1
s. t. pl] kx” Kk~ 511 kxi’j‘k + Z 5i’j’kxi’j‘k < Ck + Ot'k )
i=0 j=t+1 i=0 j=i+1
t— T t— 1
j.k + pl} k Jj.k + pl] k
i,j,k
i=0 j=t+1 i=0
Bi,j,k + pi,j,k
+ fxi‘j’k S Ck + Ot'k (15)
j=i+1
xl] k < Ul] k
Uijre + Ui jie
xl} k = 2 xl] 4]

Xije =0, foralli,jk.

_L]k+Ul]k

IA

In equation 15, the constraint of U, ;x is always true. This means the constraint of

xijx < U;jrcan be removed to simplify the model (15) as:

K T-1 T K T-1
Maxz Z l}k[(pl]k+pl]k) 2/1(pl]k l]k)] i,j,k COZZ[CR Otk A]+
k=1 i=0 j=t+1 k=1t=
Where
e Z (@i + Py i) = 2Pijic = By 1y X je
L 2
=0 j=t+1

o~
[y

B 2 [@ijse + Py jp) = AWijk = Dy j )X gk
2

=0
T — _
Z [@ijse + Py jp) = AWijk = Dy j )X gk
2
t-1 T
pieXiik t Z Py Xije < Ck+ 0%,

i=0 j=t+1 i=0 j=i+1
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o
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I
=
=
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t-1 T t-1
Bi,j,k+pl]k Bl]k+pl]k
2 i,jk — 2 i,j,k
i=0 j=t+1 =0
S Pijk+P
i,j,k ijk
+ Z %xi_j-‘k < Ck+0b* (16)
j=i+1
Ui +U
~i,j.k i,j,k
xl,j,k < 2 y

Xijk =0, foralli,jk.

In the next session, the usefulness and effectiveness of the proposed linear interval programming
model to manage no-shows with overbooking for appointments in Ambulatory Care Center will be
shown.

5. Result and Discussion

In this session, the usefulness of the model will be demonstrated. Some assumptions have to be
made for the sake of demonstration:

1.  The number of departments and their capacities cannot be increased within a short timeframe.
2. The rate of revenue generated from an appointment is likely fixed due to the policy of the Hong
Kong Hospital Authority.
3.  The probability of showing up for an accepted appointment will not change
The demand is sufficiently high and exceeds capacity, making overbooking beneficial.

To simplify the numerical example illustration, six sessions are set to be available per day, i.e., T
= 6. The length of each session can be any value and is defined by the decision-makers. Three
departments will be involved. The demands for the lower bound and the upper bound are shown in
Tables 1 and 2, respectively.

Table 1. The lower bound of the demand for different periods.

From/ To 1 2 3 4 5 6
0 60 21 28 30 25 35
1 30 28 35 25 21
2 25 35 25 21
3 25 21 25
4 25 21
5 25

For each period, a show-up probability (equal to 1 minus the no-show probability) can be found
in Table 2 or Table 3. For simplicity, hospital managers decide to use constant values of 0.95 and 0.8
for the upper bound and lower bound of the show-up rate (5% and 20% for no-show rates,
respectively). The revenue for each period is set at 100. These three parameters can be adjusted
according to the precise information provided by the hospital managers.

Table 2. The upper bound of the demand for different periods.

From/ To 1 2 3 4 5 6
0 120 42 55 60 50 70
1 60 55 70 50 42
2 50 70 50 42
3 50 42 50
4 50 42
5 50
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Therefore, other parameters which are made constant are shown in Table 3.

Table 3. Parameters for overbooking.

Denotation Rij Pijk Pijk ck c,
Value 100 0.8 0.95 500 10

First, the risk parameter A is examined. This parameter informs decision-makers of the expected
profit after a designated period, given a certain value of A. It also influences the configuration of the
assignment between patients and doctors. The expected profit aids in capacity planning and financial
management of the hospital. Note that the results of the following graphs are based on the parameters
mentioned above; the patterns remain similar when the parameters vary.

In Figure 2, when decision-makers are more confident about their estimation of uncertain
parameters such as the upper and lower bounds of demand and the no-show probability, the profit
increases regardless of how the demand is assigned. The confidence of the decision-makers is
positively correlated with the expected profit.

Profit against risk

300000
290000
280000
270000
260000
250000
0 0.2 0.4 0.6 0.8 1 1.2

Profit

Confidence level

Figure 2. Relationship between profit and risk parameter A by the decision maker.

The overbooking cost affects the upper and lower bounds of profit, the configuration of the
patient-doctor assignment, and the level of overbooking. In Figure 3, when overbooking is free of
charge, we will fully rely on overbooking if it is possible to meet the demand for consultation services.
The profit will reach its maximum value, equivalent to the revenue part of the objective function,
without deductions for overbooking costs. Note that as the overbooking cost increases, the profit
decreases significantly. The configuration of the assignment between patients and doctors remains
similar and full until the overbooking cost reaches 10% of the revenue. At this point, the configuration
will start to change, and the level of overbooking will decrease, as discussed in Figure 4. When the
overbooking cost reaches 15% of the revenue, overbooking becomes too expensive, causing the profit
to decrease if overbooking is still used to meet the demand. The manager should consider not
fulfilling the demand. The units of overbooking drop to less than 5% when the cost reaches 25% of
the revenue. Additionally, the more risk the decision-maker is willing to take, the higher the upper
and lower bounds of the profit, indicating that risk-taking decision-makers will anticipate higher
profits in any situation.
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Profit againt Overbooking Cost

300000
280000
260000
240000
220000
200000
180000
160000
140000
120000
100000

Profit

0 2 4 ) 6 8 0 12 14 15 16 17 18 20 25
Overbooking cost in % of revenue

—A&—A=D —%—A=0.5 A=1

Figure 3. Relationship between the overbooking cost and profit.

Overbooking Level against Overbooking Cost
1.5

0.5

0 2 4 5 6 8 10 12 13 14 15 16 17 18 20 25

Overbooking Level

Overbooking Cost in % of revenue

—&—A=0 —%—A=0.5 —@—A=1

Figure 4. Relationship between Overbooking Level and Overbooking Cost.

The overbooking cost affects the level of overbooking, which is measured by the ratio of total
overbooking units to total capacity. In Figure 11, the overbooking level is at its maximum when the
overbooking cost ranges from 0% to around 10% of the total revenue. As mentioned above,
overbooking is maximized to fulfill all demand. If the demand uncertainty or the range of demand
increases, the overbooking level will also increase. Ideally, the overbooking level should be around
1.6 to accommodate the demand. Note that more confident decision-makers will experience a later
drop in their overbooking level, meaning they adopt full overbooking at a higher cost.

When the overbooking cost is around 10%, the overbooking level starts to decrease, and not all
potential patients are accommodated. The configuration of the assignments begins to change until
the overbooking cost reaches 15% to 18%, depending on the confidence level of the decision-makers.
More confident decision-makers are able to maintain a higher level of overbooking at the same cost.
At an overbooking cost of 15%, less confident decision-makers will keep overbooking minimal, while
more confident decision-makers will utilise around 10% to 20% of the overbooking level until the cost
rises to 18%. (The shapes of the curves vary with different parameters such as no-show rates, but the
patterns remain similar.)

Figure 5 illustrates the relationship between profit and the ratio of overbooking. The
overbooking cost is set at 14% of revenue, with a risk level of 0.5. The no-show rate remains within
the boundary of 5% to 20%. Under these settings, revenue increases up to an overbooking level of
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40%. Extra patients fill the empty consultation slots left by no-show patients. The optimal strategy
before reaching the 40% overbooking level is to allow the hospital to overbook as much as possible.
However, beyond 40%, even if a higher overbooking level is permitted, the hospital should aim for
around 40% as their booking level (Blue line). If hospital managers decide to use a higher overbooking
level to accommodate all potential patients, the overbooking cost will increase significantly, leading
to a drop in profit. After deciding on the overbooking level, they will obtain the schedule of
overbooking and the assignment of the number of consultations for each period, as shown in Tables
4 and 5.

Profit aginst the overbooking contraints
130000
125000
120000

115000

Profit

110000

105000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overbooking level

—&— <= overbooking level - - -- =overbooking (exactly equal)

Figure 5. Relationship between Revenue Increase and Ratio of Overbooking.

Table 4. Overbooking level at the cost of 14% of the revenue.

Overbooking t=1 t=2 =3 t= t=
Specialty 1 200 198 196 200 198
Specialty 2 199 200 198 200 200
Specialty 3 200 200 200 197 199

Table 5. Assignment of Patient under the scheme of overbooking at 0.4 of the total capacity.

From/To, Specialty 1 1 2 3 4 5 6

0 90 31 41 45 37 51

1 16 12 18 20 31

2 14 27 16 31

3 15 30 37

4 17 31

5 37
Specialty 2

0 40 39 44 49 66 49

1 9 30 19 10 48

2 8 26 4 41

3 7 25 45

4 7 52

5 56
Specialty 3

0 39 37 41 46 63 50

1 5 45 15 17 47

2 3 34 14 39
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3 10 23 42
4 8 50
5 54

Note that decision-makers will attempt to schedule more patients who may occupy longer
periods, due to the higher revenue generated when these patients show up. If decision-makers prefer
a more even distribution of the schedule, the revenue across different periods can be adjusted. For a
private hospital, this approach can assist in making overbooking decisions to maximise revenue. For
a public hospital, the optimal solution can reduce the number of vacancies wasted due to no-shows
and cancellations.

6. Management Insights

From the above analysis, hospital managers need to determine two parameters before
establishing the appointment assignment policy: the risk level and the overbooking cost. The degree
of risk aversion can be virtually interpreted as the confidence level. In Figure 2, profit is directly
proportional to the degree of risk aversion of the hospital managers. If managers choose to be more
prudent about the risk and the consequences of overbooking, a smaller A should be selected, resulting
in a lower expected profit. Hospital managers should be clear about their short-term and long-term
goals to make decisions for the sustainability of the clinics, such as choices of specialty and
investment.

Once the risk aversion level is confirmed and chosen, hospital managers should carefully
measure the cost of overbooking. The cost of overbooking can be tangible or intangible, depending
on the definition of the managers. Tangible costs are easier to measure and can include overtime
compensation for doctors, additional utility usage, or compensation for unfulfilled patients.
Intangible costs may include damage to the hospital's reputation. In Figure 3, hospital managers can
foresee a drop in profit when the overbooking cost increases, as the wasted slots from overbooking
will incur costs. When the cost increases to a certain level, managers should reduce the overbooking
level, and the profit will essentially plateau. As the overbooking level is reduced to a minimum, the
overbooking cost will not significantly affect profit. If managers consider more compensation for the
issues arising from overbooking, the expected profit will further decrease.

Once hospital managers are informed about the potential profit given the risk factors and
overbooking cost, they can decide on the overbooking level. In Figure 4, managers will adopt a
strategy with a high overbooking level when the overbooking cost is perceived to be low. Up to a
certain point, the optimal overbooking level starts to decrease, requiring managers to carefully
consider how they allocate their overbooking resources. When the overbooking cost is very high,
managers should reduce the overbooking level to a minimum. Different sets of parameters will lead
to different decisions at any given overbooking cost.

Due to hospital policy, a large number of overbookings is not recommended even when the
overbooking cost is very low. In this case, the hospital manager should carefully consider whether to
still use the optimal overbooking level. In Figure 5, managers can achieve peak profit with the most
optimal overbooking level. If they decide to increase or decrease the overbooking level, they will
experience a decrease in profit due to unfulfilled demand and significant penalties associated with
overbooking.

Afterwards, hospital managers should understand the overbooking level for each period as
shown in Table 4 and assign patients to different sessions as in Table 5. Parameters can be added to
meet the specific needs of individual hospitals. The entire action plan is outlined below.
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Assess Risk Factors
Indicate overbooking cost

v
High medium Low
overbooking cost overbooking cost overbooking cost
v

low overbooking level,
Fewer changes in
configuration, used for a
longer period, risk-averse
managers avoid overbooking

Determine the overbooking level at each t

High overbooking level,
Fewer changes in configuration,
used for a longer period, all types
of decision makers can overbook

medium overbooking level,
frequent adjustments made on
configuration, risk-averseness has
significant effect on the profit

Determine schedule or configuration and find the profit

Figure 6. The decision flow for overbooking.

7. Conclusions

The healthcare system is instrumental to societal prosperity, and the efficiency of hospital
operations depends on the strategy adopted by hospital managers. In this paper, we propose a robust
optimization model to address no-shows and vacancy problems using the overbooking technique.
Initially, the operation of clinics has been studied in the literature with practical experience. We then
established a baseline preliminary model typically used in overbooking problems. Instead of setting
our parameters deterministically, we proposed a model with robust parameters. When the
probability of no-shows increases, the model can generate more profit than deterministic models. The
proposed model suggests that profit will increase with the amount of overbooking and decrease once
it reaches a certain point. A maximum number of overbooked appointments can be calculated. The
decision flow for overbooking begins by assessing the cost of overbooking. If the cost of overbooking
is high, the results indicate that the overbooking level should be adopted, and other methods to
accommodate no-shows should be considered. If the overbooking cost is low, a high overbooking
level should be considered, and all types of decision-makers should use overbooking. A medium
overbooking level should be adopted when the overbooking cost is moderate. Risk aversion is more
critical in determining which methods to use. The contribution of this paper is pivotal, especially
during a pandemic with a high level of uncertainty.
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