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Abstract: The objective of this study was to identify genomic regions and genes associated with 
resistance to gastrointestinal nematodes in Australian Merino sheep in Uruguay, using the single-
step GWAS methodology (ssGWAS), which is based on genomic estimated breeding values 
(GEBVs) obtained from a combination of pedigree, genomic and phenotypic data. This 
methodology converts GEBVs into SNP effects. Analysis included 26,638 animals with fecal egg 
count (FEC) records obtained in two independent parasitic cycles (FEC1 and FEC2), and 1,700 50K 
SNP genotypes. Comparison of genomic regions was based on genetic variances (gVar(%)) 
explained by non-overlapping regions of 20 SNPs. For FEC1 and FEC2, 18 and 22 genomic windows 
exceeded the significance threshold (gVar(%) ≥ 0.22%), respectively. The genomic regions with 
strong associations with FEC1 were located on chromosomes OAR 2, 6, 11, 21 and 25, and for FEC2 
on OAR 5, 6 and 11. The proportion of genetic variance attributed to the top windows was 0.83% 
and 1.9% for FEC1 and FEC2, respectively. The 33 candidate genes shared between the two traits 
were subjected to enrichment analysis, revealing a marked enrichment in biological processes 
related to immune system functions. These results contribute to the understanding of the genetics 
underlying gastrointestinal parasite resistance and its implications for other productive and welfare 
traits in animal breeding programs. 
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1. Introduction 

The Australian Merino breed is a wool breed traditionally bred in Uruguay in extensive 
production systems, mainly located in the basalt region. Currently, this breed represents about 40% 
of the country’s sheep stock and is the main breed in fine and superfine wool production. One of the 
main problems affecting sheep production is infection by gastrointestinal parasites (GIP) [1]. The 
decrease in production is a consequence of growth retardation, decreased weight gain, fleece weight 
and wool quality, and increased mortality [2,3], with Haemonchus contortus and Trichostrongylus 
colubriformis being the most prevalent parasites in Uruguay [4]. 

Given the problem of parasitism and the reported anthelmintic resistance [5–7], one alternative 
control method involves the breeding of animals genetically resistant to GIP. The selection criterion 
used to assess resistance is the parasite fecal egg count (FEC), which is a moderately heritable trait 
[8] included in the National Genetic Evaluations (NGE) in Uruguay. Currently, the NGE protocol 
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includes the recording of two counts: the initial FEC (FEC1) shortly after weaning (7-9 months of age), 
and the subsequent FEC (FEC2) at 10-14 months of age [3]. 

Genome-wide association studies (GWAS) have been implemented in sheep populations to 
identify genes potentially associated with GIP resistance [9–13]. Unlike other methodologies that are 
limited to using genomic information exclusively from phenotyped animals, ssGWAS integrates 
genomic, pedigree and phenotypic data from both genotyped and non-genotyped animals [14], thus 
considering population structure [15]. The ssGWAS procedure combines traditional pedigree 
relationships with those derived from genetic markers, and by conversion of GEBVs to marker effects 
and weights[14] .  

The objectives of our study were: (1) to estimate variance and heritability components for FEC1 
and FEC2 traits in the Australian Merino sheep population in Uruguay; (2) to identify genomic 
regions and candidate genes associated with each trait by ssGWAS; and (3) to explore genes 
associated with FEC1 and FEC2, providing insight into the biological mechanisms underlying 
resistance to GIP in sheep. 

2. Materials and Methods 

2.1. Phenotypic Data 

FEC determination was conducted according to the current protocol used for recording 
phenotypes in the NGE [3]. Fecal samples were collected from two independent natural parasitic 
cycles separated by an anthelmintic treatment (Figure 1). Samples were collected post-weaning, the 
mean age at recording (days) for FEC1 and FEC2 was 273 (± 69) and 341 (± 62), respectively. This 
scheme allowed collecting samples in two seasons with climatic conditions that favor the prevalence 
of different GPI. A fecal sample was obtained from each individual directly from the rectum and the 
modified Mc Master technique with a sensitivity of 100 eggs per gram of feces was used to estimate 
the FEC [16].  

To establish the optimal time for individual FEC1 and FEC2 sampling, FEC was monitored in a 
sample of animals until an average load of 500 was obtained. Counts were transformed to natural 
logarithm as described by Ciappesoni et al. [8] due to their non-normal distribution (LogFEC = Loge 
(FEC+100)). In this study, we refer to logFEC1 and logFEC2 as FEC1 and FEC2, respectively. 

A total of 26,638 animals born between 2001 and 2020 and belonging to 13 farms had FEC1 
records. Among these, 18,971 animals also had FEC2 records (Table 1). 

 

Figure 1. Sampling scheme for fecal egg counts (FEC) in two independent parasitic cycles and in 
different seasonal periods. 
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Table 1. Descriptive statistics for fecal egg counts (LogFEC1 and LogFEC2). 

Trait N Mean SDa Minb Maxc 

LogFEC1 26,638 6.63 1.14 4.60 10.51 

LogFEC2 18,971 6.64 1.13 4.60 10.87 
a SD: standard deviation; b Min: minimum; c Max: maximum. 

2.2. Genomic and Pedigree Data 

Genomic DNA was extracted from blood samples as described by Carracelas et al. [10] . A total 
of 1702 individuals were genotyped with the GeneSeek® Genomic Profiler™ Ovine 50K panel (GGP, 
43,705 SNPs). Genomic data quality control was performed using preGSf90 (Aguilar et al., 2014). 
SNPs with call rate below 90%, with minor allele frequency (MAF) less than 1%, monomorphic SNPs 
and animals with call rate less than 90% were removed. Finally, 38,268 SNPs for 1697 sheep were 
used in the analysis. 

The pedigree file was corrected using SeekParentF90 [17], which detects incompatibilities based 
on Mendelian conflict counts, as described in Wiggans et al. [18].  

2.3. Statistical Analysis 

Genetic parameters were estimated using methods based on pedigree relationships (BLUP) and 
pedigree-genomic models (ssGBLUP) [19]. A univariate model was conducted to estimate the 
variance components and heritabilities for FEC1 and FEC2 employing the AIREMLF90 software from 
the BLUPF90 family of programs [17]. Additionally, genetic correlations between FEC1 and FEC2 
were estimated.  

The following univariate model was used: 𝑦 = 𝑋𝑏 + 𝑍𝑢 + 𝑒 

Where y is the vector of phenotypes for FEC1 or FEC2; X and Z are incidence matrices for fixed 
and random effects, respectively; b is the vector of fixed effects including 494 contemporary groups 
(year of birth, sex, flock), dam age (three levels: 2, 3, and > 4 years), type of birth (two levels: single or 
multiple), and lamb age at FEC1 or FEC2 recording as a covariate; u is the vector of random additive 
genetic effects, e is the vector of residual effects. 

In BLUP estimates, the random effects were modeled as u ~ N(0, A𝜎௔ଶ) and e ~ N(0, I𝜎௘ଶ), where 𝐴 represents the numerator relationship matrix, I is the identity matrix, 𝜎௔ଶ stands for the additive 
genetic variance, and 𝜎௘ଶ is the residual variance. In the ssGBLUP model, the numerator relationship 
matrix (𝐴ିଵ) utilized in BLUP is substituted with the 𝐻ିଵmatrix. 

𝐻ିଵ =  𝐴ିଵ + ൤0 00 𝐺ିଵ − 𝐴ଶଶିଵ൨ 

Where 𝐴ିଵand 𝐴ଶଶିଵ are the inverse of the pedigree relationship matrix for all animals and for 
genotyped animals, respectively, and 𝐺ିଵ is the inverse of the genomic relationship matrix. The 
matrix 𝐺 was constructed as described by Van Raden [20]: 𝐺 = 𝑍𝐷𝑍′𝑞 

Where 𝑍 is the SNP incidence matrix adjusted for allele frequencies, 𝐷 is a weight matrix for 
SNP (initially D = I), and q is a weighting factor. The SNP effects and weighting factor were derived 
using an iterative process described by Wang et al. [14]. In this study, a single iteration was used as 
there was no significant change in SNP effects with additional iterations. 

The percentage of genetic variance explained by region was calculated as: 
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𝑉𝑎𝑟(𝑎௜)𝜎௔ଶ 𝑥 100% = 𝑉𝑎𝑟൫𝛴௝ୀଵଶ଴ 𝑍௝𝑢ො௝൯𝜎௔ଶ 𝑥 100% 

where 𝑎௜ is the genetic value of the i-th region (20 contiguous SNPs), 𝜎௔ଶis the total genetic 
variance, 𝑍௝ is the gene content vector of the j-th SNP for all individuals, and 𝑢ො௝  is the effect of the 
j-th SNP marker within the i-th region [21]. 

Variance components and heritabilities were estimated by AIREMLF90. Heritability (ℎଶ) was 
calculated as ℎଶ = ఙమೌఙ೛మ  and the total phenotypic variance (𝜎௣ଶ ) as the sum of the additive genetic 

variance (𝜎௔ଶ) and the residual variance (𝜎௘ଶ).  

2.4. Single-Step GWAS Analysis 

ssGWAS is a two-step iterative procedure: 1) prediction of GEBVs using ssGBLUP, and 2) 
prediction of SNP effects based on GEBV. The detailed algorithm was described by Wang et al. [14]. 

The ssGWAS analysis was done independently for each trait and was done sequentially using 
RENUMF90 for general dataset preparation, PREGSF90 for quality control and generation of clean 
genotypes, BLUPF90, and POSTGSF90 for the prediction of breeding values and SNP effects, 
respectively. These programs are part of the BLUPF90 software family, and for this study, the step-
by-step tutorial reported by Masuda [22] was followed.  

2.5. Identification of Candidate Genes and Functional Enrichment Analysis 

Assuming that all windows explain the same proportion of genetic variance, the proportion of 
genetic variance explained by each of the 2519 1-Mb windows, including the 38,268 SNPs in the sheep 
genome, was 0.04%. Therefore, windows that explained at least 0.22% of the genetic variance, which 
is 5 times higher than expected (0.045%*5 = 0.22%), were considered to contain putative QTL [23,24]. 
Regions representing 0.22% or more of the genetic variance 𝜎௔ଶ  were defined as significant regions. 
SNPs within these regions were identified and mapped onto the Oar_v3.1 sheep genome assembly 
using the Ensembl database [25]. A range of 5kb upstream and downstream of the variant position 
were considered to identify candidate genes. 

Functional enrichment analysis was conducted on the set of common candidate genes for both 
traits using DAVID (https://david.ncifcrf.gov/tools.jsp accessed on 10 February 2024) [26]. Gene 
Ontology (GO) terms with a p-value ≤ 0.05 were reported as significant terms. 

3. Results 

3.1. Variance Components and Heritabilities  

The variance components and heritabilities for GIP resistance in Australian Merino sheep are 
presented in Table 2. BLUP and ssGBLUP estimates of the heritabilities for FEC1 and FEC2 were close 
to 0.19. On the other hand, the genetic correlation between both traits was 0.88 (±0.03). 

Table 2. Additive genetic variances, residuals, and heritability for FEC1 and FEC2 in Australian 
Merino sheep. 

Trait Method 𝝈𝒂𝟐 𝝈𝒆𝟐 h2 

FEC1 BLUP 0.15 ± 0.01 0.66 ± 0.01 0.19 ± 0.01 

 SSGBLUP 0.16 ± 0.01 0.66 ± 0.01 0.20 ± 0.01 

FEC2 BLUP 0.15 ± 0.01 0.66 ± 0.01 0.19 ± 0.02 

 SSGBLUP 0.16 ± 0.01 0.66 ± 0.01 0.19 ± 0.02 𝜎௔ଶ = additive genetic variance; 𝜎௘ଶ=residual variance; ℎଶ= heritability. 
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3.2. Genome-Wide Association Analysis  

Figure 2 shows the Manhattan plots for GIP resistance traits. The genomic regions that explained 
the largest genetic variance for FEC1 were located on chromosomes 2, 6, 11, 21 and 25, and for FEC2 
they were on chromosomes 5, 6 and 11. The top windows (most significant) explained 0.9% and 2% 
of the genetic variance for FEC1 and FEC2, respectively (Table 3). 

Eighteen and 22 windows with genetic variance greater than the significance threshold of 0.22 
gVar(%) were identified, which included 316 and 376 SNPs related to FEC1 and FEC2 traits, 
respectively. Positional candidate genes close to SNPs (≤ 0.5 Mbps) were identified using the Ovis 
aries 3.1. reference genome map and a total of 67 and 63 genes were mapped for FEC 1 and FEC 2, 
respectively. In total, 33 genes were shared between both traits (Figure 3). Details of the common 
positional candidate genes for the FEC 1 and FEC 2 traits are summarized in Table 4. 

 

 
Figure 2. Manhattan plots depict the genetic variance explained (%) by 20 adjacent SNP windows for 
FEC1 (a) and FEC2 (b) in Australian Merino sheep. Each dot represents a window, with the percentage 
of additive genetic variance explained by each window. The horizontal line indicates the suggestive 
threshold of 0.22 of the gVar(%). 

Table 3. Chromosome, location, proportion of genetic variance, and candidate genes within the top 
10 windows associated with the FEC 1 and FEC 2 traits in Australian Merino sheep. 

Trait Chr a gVar(%) b Windows Bounds (pb) Candidate Genes 

FEC1 6 0.83 35,429,074 - 35,554,875 GPRIN3 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 June 2024                   doi:10.20944/preprints202406.0134.v1

https://doi.org/10.20944/preprints202406.0134.v1


 6 

 

 
6 0.73 37,072,532 - 37,134,706 LAP3, MED28, FAM184B 

 
11 0.61 26,119,722 - 26,407,016 MINK1, PLD2, ZMYND15, CXCL16, 

MED11, ARRB2, PELP1, ALOX15 
 

11 0.57 27,002,322 - 27,807,356 DNAH2, LOC101121185, SLC25A35, 
ODF4, NDEL1, MYH10 

 
25 0.49 21,324,145 - 22,654,093 CTNNA3 

 
11 0.36 25,298,833 - 25,633,178 WSCD1 

 
6 0.30 36,066,911 - 36,197,551 HERC3, PYURF, PIGY, HERC5 

 
21 0.30 42,654,067 - 42,734,621 SYVN1, SPDYC, CAPN1 

 
2 0.29 112,528,931 - 113,355,547 HERC2, NIPA1, NIPA2, CYFIP1, 

TUBGCP5, PTPN18, AMER3 
 

11 0.28 27,811,348 - 28,475,634 CCDC42, PIK3R5, STX8, USP43 

FEC2 11 1.94 26,119,722 - 26,407,016 MINK1, PLD2, ZMYND15, CXCL16, 
MED11, ARRB2, PELP1, ALOX15 

 
5 1.13 93,463,383 - 93,482,724 CAST 

 
11 0.90 27,002,322 - 27,807,356 DNAH2, LOC101121185, SLC25A35, 

ODF4, NDEL1, MYH10 
 

11 0.77 27,811,348 - 28,475,634 CCDC42, PIK3R5, STX8, USP43 

 
11 0.76 25,298,833 - 25,633,178 WSCD1 

 
5 0.68 93,437,720 - 93,463,383 CAST 

 
6 0.64 37,072,532 - 37,134,706 LAP3, MED28, FAM184B 

 
6 0.53 35,429,074 - 35,554,875 GPRIN3 

 
11 0.52 25,744,499 - 26,098,771 C1QBP, RPAIN, NUP88, RABEP1, ZFP3, 

KIF1C, INCA1, CAMTA2, SPAG7 
 

6 0.51 37,483,582 - 37,665,116 - 

aChr = chromosome number. bgVar(%) = proportion of genetic variance represented by each region comprising 
20 SNPs. 
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Figure 3. List of positional candidate genes identified in genomic regions that explain >0.22 gVar(%) 
for FEC1 and FEC2 (a). The black dot represents that this gene was identified in the analysis for each 
trait. The bar plot shows the number of candidate genes in common for both traits at the intersection 
(b). 

Table 4. Positional candidate genes in common for FEC1 and FEC2. 

Chr Pos (bp) Candidate genes 

6 35,511,497 - 37,257,065 FAM184B, MED28, LAP3, GPRIN3 

11 25,298,833 - 28,475,634 USP43, STX8, PIK3R5, CCDC42, MYH10, NDEL1, ODF4, SLC25A35, 

LOC101121185, DNAH2, ALOX15, PELP1, ARRB2, CXCL16, MED11, 

ZMYND15, PLD2, MINK1, CAMTA2, SPAG7, INCA1, KIF1C, ZFP3, 

RABEP1, NUP88, C1QBP, RPAIN, WSCD1 

25 22,143,113 - 22,654,093 CTNNA3 
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3.3. Enrichment Analysis 

The ssGWAS results were complemented with a gene ontology (GO) enrichment analysis, which 
revealed 17 significantly enriched GO terms (p ≤ 0.05). Among these, ten were related to biological 
processes, two to molecular functions and five to cellular components. The KEGG pathway 
enrichment analysis revealed three enriched metabolic pathways for the set of analyzed genes (Figure 
4). Details of the enriched GO categories and the metabolic pathways involved are shown in Table 5. 

 
Figure 4. Gene ontology (GO) term enrichment analysis of genes in common associated with FEC1 
and FEC2 traits in Australian Merino sheep. Categories included biological process (BP), cellular 
component (CC), molecular function (MF). On the x-axis the -log10 of the adjusted p-value (<0.05) and 
on the y-axis the GO term. 

Table 5. Gene ontology (GO) terms such as biological processes, molecular functions, and KEGG 
pathways of candidate genes associated to FEC 1 and FEC 2 traits in Australian Merino sheep. 

Category Term Genes p-value -log10(p-value) 

GOTERM_BP GO:2001303~lipoxin A4 
biosynthetic process 

ALOX15, LOC101121185 0.005 2.289 

GOTERM_BP GO:0001764~neuron 
migration 

NDEL1, 
ENSOARG00000002682, 
MYH10 

0.007 2.140 

GOTERM_BP GO:0019372~lipoxygenase 
pathway 

ALOX15, LOC101121185 0.010 1.989 

GOTERM_BP GO:0043651~linoleic acid 
metabolic process 

ALOX15, LOC101121185 0.010 1.989 

GOTERM_BP GO:0007097~nuclear 
migration 

ENSOARG00000002682, 
MYH10 

0.014 1.865 

GOTERM_BP GO:0032695~negative 
regulation of interleukin-12 
production 

ARRB2, C1QBP 0.020 1.690 

GOTERM_BP GO:0019369~arachidonic acid 
metabolic process 

ALOX15, LOC101121185 0.020 1.690 

GOTERM_BP GO:0030334~regulation of 
cell migration 

MINK1, 
ENSOARG00000002682 

0.075 1.128 
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GOTERM_BP GO:0007286~spermatid 
development 

CCDC42, ZMYND15 0.082 1.084 

GOTERM_BP GO:0007018~microtubule-
based movement 

DNAH2, KIF1C 0.093 1.029 

GOTERM_CC GO:0070847~core mediator 
complex 

MED11, MED28 0.020 1.690 

GOTERM_CC GO:0005737~cytoplasm NDEL1, LOC101121185, 
CTNNA3, 
ENSOARG00000002682, 
PELP1, INCA1, ZMYND15, 
ENSOARG00000007066 

0.037 1.427 

GOTERM_CC GO:0030139~endocytic 
vesicle 

RABEP1, ARRB2 0.049 1.313 

GOTERM_CC GO:0005819~spindle NDEL1, MYH10 0.081 1.092 
GOTERM_CC GO:0005829~cytosol ALOX15, LOC101121185, 

PIK3R5, STX8, LAP3, 
ARRB2, C1QBP, MYH10 

0.082 1.086 

GOTERM_MF GO:0050473~arachidonate 15-
lipoxygenase activity 

ALOX15, LOC101121185 0.005 2.301 

GOTERM_MF GO:0016165~linoleate 13S-
lipoxygenase activity 

ALOX15, LOC101121185 0.007 2.176 

KEGG_PATHWAY oas04062:Chemokine 
signaling pathway 

PIK3R5, ARRB2, CXCL16 0.033 1.486 

KEGG_PATHWAY oas04814:Motor proteins DNAH2, MYH10, KIF1C 0.033 1.478 
KEGG_PATHWAY oas04144:Endocytosis RABEP1, PLD2, ARRB2 0.055 1.260 

4. Discussion 

Variance component estimates obtained using the traditional pedigree-based approach (BLUP) were 
like those obtained using the ssGBLUP procedure, as well as the estimated heritability values (0.19 vs. 
0.20). Medium to low heritabilities for resistance to GIP in sheep [27,28] and for Australian Merino [8] 
have already been reported. Genetic parameter estimates obtained using ssGBLUP are known to be less 
biased and more accurate [29–31] since relationships between animals are better estimated [32]. In our 
case, the results were similar and because there were no changes in the genetic base, the same additive 
variance is expected when including the genomic coefficients, as reported by Forni et al. [29]. 

The strong genetic correlation between FEC1 and FEC2 (0.88) suggests that they can be 
considered as the same trait genetically, even when these traits were measured at different ages and 
correspond to two different parasitic cycles and seasons of the year (Figure 1), in which animals could 
have been exposed to different parasites. This high estimate is in agreement with other studies that 
explored the genetic association between FEC recorded at different ages in different breeds (i.e. 0.85 
Romney; 0.82 Katahdin) [33,34]. A high genetic correlation of 0.74 between FEC by Strongyles and 
Nematodirus was also reported by Pacheco et al. [35].   

On the other hand, ssGWAS revealed that the genomic regions reported as significant explain 
only 7 and 6% of the genetic variance for FEC1 and FEC2, respectively. These small variances suggest 
that resistance to GIP is a polygenic trait with a large number of variants involved in the resistance 
mechanism [10,36,37]. Significant regions associated with GIP resistance have been previously 
reported on chromosomes 2, 6, 18 and 24 in several Australian sheep populations including the 
Merino breed [38] and GIP-related QTL regions are also known [39]. 

In this study, seventeen positional candidate genes were identified on the OAR 2 for the FEC1 
trait: AMER3, BMP1, CCAR2, CYFIP1, FAM160B2, HERC2, HR, NIPA1, NIPA2, PDLIM2, PIWIL2, 
POLR3D, PPP3CC, PTPN18, SORBS3, TUBGCP5, XPO7. Among these, several are involved in the 
mechanisms of innate and adaptive immunity in mammals, such as HERC2 and CYFIP1 that are also 
involved in cytokine signaling [38,40]. The PDLIM2 gene has been associated in transcriptomic 
studies with the immune system and reproduction in sheep [41]. PTPN18 is involved in the B-cell 
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receptor signaling pathway, being involved in differentiation, proliferation and immunoglobulin (Ig) 
production [38], while other reports relate it to pigmentation in Merino sheep [42]. The SORBS3, 
PPP3CC and PIWIL2 genes have been linked to growth and wool quality traits [43]. PPP3CC has been 
associated with heat tolerance in cattle [44], while PIWIL2 has been linked to reproductive traits in 
pigs [45]. In addition, these genes have been reported in selection signature studies, revealing their 
involvement in parasite resistance of Slovakian sheep populations [46]. Al Kalaldeh et al. [38] also 
reported the association of the HERC2, NIPA1, NIPA2, CYFIP1, TUBGCP5, PTPN18 and AMER3 
genes with GIP resistance in sheep and their involvement in immune system mechanisms. In 
addition, the CAST gene (OAR 5) was identified in the ssGWAS for FEC2 and it is known to have 
relevance to traits such as muscle production, carcass and meat quality in sheep [47,48].  

On the other hand, 12 candidate genes significantly associated with the FEC1 or FEC2 traits were 
identified in OAR 6: DCAF16, FAM184B, GPRIN3, HERC3, HERC5, IBSP, LAP3, LCORL, MED28, 
NCAPG, PIGY and PYURF, all of them except LAP3 were detected by Al Kalaldeh et al. [38] in 
significant genomic regions for GIP resistance in sheep. Particularly the FAM184B gene has also been 
reported to be strongly associated with body size and weight in livestock [49–51], milk production 
[52] and reproductive traits in sheep [53].  

The MED28 gene is involved in milk production in ewes [43,52] and is also related to liveweight [54]. 
In addition, this gene has been linked to both pre and postnatal body weights in ewes [49,54]. On the other 
hand, LAP3 also contributes to growth, milk production and feed efficiency traits in sheep [55]. The 
GPRIN3 gene has been linked to prolificacy, litter size [56] and temperament in sheep [57]. 

Five candidate genes were identified on OAR 8: FAM120B, SMOC2, TBP, THBS2, WDR27, and 
WDR27. The THBS2 gene is related to growth and development traits [58] and high prolificacy in 
sheep [59], while the WDR27 gene has been associated with the cow milk fat trait [60]. 

On chromosome 11, a total of 43 candidate genes for FEC1 and FEC2 were identified, including 
ACADVL, ACAP1, ALOX12, ALOX15, ARRB2, ASGR1, BCL6B, C11H17orf49, C1QBP, AMTA2, 
CCDC42, CD68, CXCL16, DLG4, DNAH2, DVL2, INCA1, KIF1C, LOC101115381, LOC101121185, 
MED11, MINK1, MPDU1, MYH10, NDEL1, NUP88, ODF4, PELP1, PIK3R5, PLD2, RABEP1, RPAIN, 
SENP3, SLC16A13, SLC25A35, SPAG7, STX8, TNFSF12, USP43, WRAP53, WSCD1, ZFP3 and 
ZMYND15. The ALOX15 gene is known to play a role in Haemonchus contortus infection in sheep [61]. 
Other studies have reported QTLs for Trichostrongylus colubriformis egg count in the Merino breed in 
this genomic region [62], as well as QTLs for height, weight and parasite resistance in the region 
between 32.13 and 32.19 Mbp [63]. In addition, selection signatures for resistance to Haemonchus 
contortus in sheep and goats have been reported by Estrada-Reyes et al. [64]. While the CTNNA gene, 
located on chromosome 25, was significantly associated with FEC1 and FEC2 traits and is related to 
growth traits [65] and brucellosis resistance in sheep [66].  

The GO analysis (Figure 4) revealed multiple GO terms related to host defense mechanisms 
against pathogen including lipoxin A4 biosynthetic process (GO:2001303). Lipoxins have been 
reported to be endogenous anti-inflammatory molecules involved in reducing excessive tissue 
damage and chronic inflammation [67]. These lipoxins can be synthesized from arachidonic acid, 
which justifies the overrepresentation of biological processes such as lipoxygenase pathway 
(GO:0019372) and arachidonic acid metabolic process (GO:0019369), as well as arachidonate 15-
lipoxygenase activity and linoleate 13S-lipoxygenase activity molecular functions (GO:0050473, 
GO:001616). 

Cytokines, such as IL-12, are critical for host resistance to many pathogens but can also be 
detrimental when expressed in an uncontrolled manner [68,69], so it makes biological sense that GO 
term negative regulation of interleukin-12 production (GO:0032695) is overrepresented. The role of 
lipoxins in mediating the immune response has been studied against parasitic pathogens [70] and in 
other diseases [67]. Another GO term related to host defense against pathogens is the GO term linoleic 
acid metabolic process (GO:0043651). The activation of linoleic acid metabolism in macrophages in 
bacterias promotes pathogen killing [71]. In that sense, one of the most overrepresented genes is the 
ALOX15 gene, which is related to the oxidation of arachidonic acid and the production of anti-
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inflammatory lipoxins [72] and it was identified as a differentially expressed gene associated with 
sheep resistance to the nematode Teladorsagia circumcincta [73]. 

As with all infections, parasites cause inflammation, involving mobilization, proliferation and 
recruitment of leukocytes to the affected area. This trafficking of immune cells and the effector 
functions of these cells can serve to control the pathogen or exacerbate the pathology [74]. In this 
regard, one of the most overrepresented metabolic pathways is the oas04062: Chemokine signaling 
pathway. Two of the functions of Chemokines are to attract immune cells to sites of inflammation 
[75] and to guide the migration of neurons and other migratory cells [76]. 

In summary, the enrichment analysis shows that the candidate genes enriched biological 
processes and molecular functions related to the metabolism of linoleic acid, which is a metabolic 
precursor of arachidonic acid. Free arachidonic acid and its metabolites promote and modulate the 
type 2 immune response, playing a crucial role in GIP resistance through the action of eosinophils, 
basophils and mast cells [77]. 

5. Conclusions 

In this study, genetic parameters were estimated to evaluate resistance to GIP in two 
independent parasite cycles, each separated by anthelmintic treatment. A total of 18 and 22 genomic 
regions were identified that showed significant association with FEC1 and FEC2, respectively. We 
report positional candidate genes for both cycles using ssGWAS in Australian Merino sheep, some 
of which are novel for these traits. Our study reveals a set of candidate genes that share mechanisms 
related to immune response, body size and weight, as well as genes associated with reproductive 
traits. In summary, our findings provide a basis for future genomic research and could contribute 
significantly to breeding programs. 
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