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Abstract: Surface water plays a crucial role in climate change, human production, and life, making accurate
monitoring and observation of surface water particularly important. However, due to the significant diversity
and complexity of water distribution in surface space, accurate mapping of surface water faces considerable
challenges. When extracting water bodies from medium-resolution satellite remote sensing images, CNN
methods may suffer from limitations in receptive fields and insufficient context modeling capabilities, leading
to the loss of water body boundary details and poor fusion of multiscale features. Currently, there is relatively
little research on this issue; therefore, it is necessary to explore new combinations of deep learning networks to
address these challenges. The purpose of this study is to address the above issues. We propose a new
combination of deep learning networks that fully utilize multiscale information to enhance water features.
Specifically, we first combine deformable convolutions with the Swin Transformer to increase effective
receptive fields while better integrating global semantic information. This combination can capture features of
water bodies at different scales, improve the accuracy and integrity of water extraction, and provide reliable
technical support for detailed water body extraction. We tested the newly constructed model using Sentinel-2
satellite images. Our model achieved results of over 90%, with an average accuracy of 97.89%, average precision
of 94.98%, average recall of 90.05%, and an average F1 score of 92.33%. In addition, our model achieved an
accuracy of 98.03% in mountainous areas. Our experiments and results validate the potential of combining the
Swin Transformer and deformable convolutions in detailed water body extraction.

Keywords: remote sensing images; water body extraction; deep learning; semantic segmentation;
transformer

1. Introduction

Surface water is an indispensable part of the Earth's ecosystem and a significant influencing
factor in climate change, ecological environmental protection, and human production and life [1]. It
plays crucial roles in various aspects such as environmental monitoring and management [2],
ecological protection and restoration, disaster prevention and control, emergency response,
agricultural production, land use, and people's water safety [3]. By obtaining and analyzing the
spatial distribution and area information of water bodies, we can guide and support humans to adopt
better ways of living [4]. Consequently, precise mapping of surface water holds significant
importance for both environmental surveillance and societal advancement.

Due to its expansive coverage, relatively high spatial and temporal resolutions, as well as the
distinct advantage of uninterrupted Earth surface monitoring, Remote Sensing (RS) technology has
become a ubiquitous tool in the extraction of surface water [5]. The methods utilized for water
extraction from satellite remote sensing images can be categorized into three principal groups: (1)
threshold-based methods, (2) machine learning methods, and (3) hybrid methods. During the process
of water extraction, threshold-based methods primarily depend on the spectral reflectance properties
of water bodies within specific bands, encompassing both single-band threshold techniques and
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multi-band threshold methodologies. The former utilizes information from a single band [6] for water
body identification, while the latter uses a set of multi-band data to detect water bodies through
mathematical and logical operations, such as Normalized Difference Water Index (NDWI) [7],
Modified Normalized Difference Water Index (MNDWI) [8], Multi-band Water Index (MBWI) [9],
Background Difference Water Index (BDWI) [10], Normalized Difference Water Fraction Index
(NDWEF]) [11], Composite Normalized Difference Water Index (CNDWI) [12], etc. Fuzzy C-means,
K-means clustering, support vector machine, decision tree, random forest and other machine learning
methods are used to identify and extract water bodies. Hybrid methods integrate water features and
machine learning classifiers or multi-classifier ensembles to achieve high-precision water body
extraction. The image processing involved in hybrid methods is complex, with multiple influencing
factors and high uncertainty. Typically, traditional methods heavily depend on the expertise of
domain experts and may have limited abilities to express features, which makes it challenging to fully
grasp intricate semantic details and spatial connections between pixels.

Compared to traditional water extraction methods, deep learning methods possess the
capability to learn and explore deep features, enabling the acquisition of more complex and nonlinear
water characteristics [13]. They can avoid the need for manual adjustment of optimal thresholds,
adapt to large-scale learning, and exhibit higher flexibility and generality, thus finding widespread
applications in water extraction research. Isikdogan [14] introduced a unique CNN design named
DeepWaterMap, utilizing a fully convolutional network structure that minimizes the number of
parameters requiring training and enables comprehensive, large-scale analysis. The network embeds
the shape, texture, and spectral features of water bodies to eliminate interfering features such as
snow, ice, clouds, and terrain shadows. Chen [15] presented a novel approach for detecting open
surface water in urbanized areas, employing unequal and physical size constraints to recognize water
bodies in urban environments. This method addresses the serious confusion errors of traditional
water resource indices in high spatial resolution images. The potential application of the method in
large-scale water detection tasks is evidenced through experimental verification on spectral libraries
and genuine high spatial resolution RS imagery. Kang et al. [16] introduced a multi-scale context
extraction network, MSCENet, aimed at precise and efficient extraction of water bodies from high-
resolution optical RS images. This network incorporates multi-scale feature encoders, feature
decoders, and context feature extraction modules. Specifically, the feature encoder employs Res2Net
to capture rich multi-scale details of water bodies, effectively handling variations in their shape and
size. The context extraction module, comprising an expanded convolutional unit and a sophisticated
multi-kernel pooling unit, further distills multi-scale contextual information to produce refined high-
level feature maps. Luo et al. [17] proposed an automated method for surface water mapping and
constructed a novel surface water mapping model called WatNet. This model addresses the issue of
diminished mapping precision caused by the resemblance of non-water features to water features,
employing a tailored design for mapping surface water to achieve precise identification of smaller
water bodies. The study also constructed the Earth Surface Water Knowledge Base (ESWKB), a freely
available dataset based on Sentinel-2 images. Li et al. [18] proposed a water index-driven deep fully
convolutional neural network (WIDFCN) method that achieves precise water delineation without
relying on manually collected samples. WIDFCN effectively handles scale and spectral variations of
surface water and demonstrates robustness in experiments involving different types of shadows,
such as those from buildings, mountains, and clouds. The most important aspect of this method is
the extraction of high-precision but incomplete water membranes from water spectral indices, which
are then expanded to enhance completeness. This approach realizes an efficient strategy for
automatically generating training samples without the need for manual labeling, significantly
reducing economic costs. Zhang et al. [19] proposed an end-to-end CNN water segmentation
network, MRSE-Net, based on multi-scale residual and squeeze-excitation (SE) attention. The
network enhances prediction results using the SE-attention module to alleviate water boundary
ambiguity and reduces the number of model parameters using multi-scale residual modules to
accurately extract water pixels, addressing the problem of fuzzy boundaries of small river water
bodies. Yu et al. [20] proposed a network called WaterHRNet, which is composed of multi-branch
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high-resolution feature extractor (HRNet), feature attention module and segmentation header
module. It is a hierarchical focus high-resolution network that can provide high-quality, strong
semantic feature representation for precise segmentation of water bodies in various scenarios. Xin
Lyu et al. [21] proposed a multi-scale normalized attention network, MSNANet, for accurate water
body extraction in complex scenes. The network incorporates the Multi-Scale Normalized Attention
(MSNA) module to fuse multi-scale water body features, highlighting feature representations. It
utilizes an optimized spatial pyramid pooling (OASPP) module to refine feature representations
using contextual information, improving segmentation performance. Kang et al. [22] proposed
WaterFormer, a combination of transformer and convolutional neural network, for accurate water
detection tasks. The network includes dual-stream CNNs, Cross-Level Visual Transformers (CL-ViT),
lightweight attention modules (LWA), and sub-pixel upsampling modules (SUS).The network
includes dual-stream CNNs, Cross-Level Visual Transformers (CL-ViT), lightweight attention
modules (LWA), and sub-pixel upsampling modules (SUS). The dual-stream network abstracts water
features from multiple perspectives and levels, embeds cross-level visual transformers in the dual
stream to capture long-range dependencies between foundational spatial information and high-order
semantic features, and enhances feature abstraction and generates high-resolution, high-quality
class-specific representations using lightweight attention modules and sub-pixel upsampling
modules.

From the above analysis of the current mainstream water extraction techniques, we can clearly
understand that most of the methods are based on Convolutional Neural Networks (CNN). Although
CNNs possess powerful feature extraction capabilities, the diversity of water body spatial
distributions and the complexity of environmental backgrounds can lead to the loss of boundary
details and affect the accuracy of water body extraction when using CNNs on medium-resolution
satellite remote sensing images. Thus, they exhibit certain limitations in water body extraction. In
recent years, Transformers have attracted attention due to their outstanding semantic representation
capabilities and advantages in modeling global information relationships. Particularly, the Swin
Transformer [23] has demonstrated strong feature extraction capabilities, contextual modeling
capabilities, and multiscale feature fusion capabilities, providing a strategy for precise water body
extraction from remote sensing images. However, research in this area is currently limited. The aim
of this research, therefore, is to investigate a novel integration of deep learning networks that
leverages multiscale information to the fullest extent, thereby enhancing the identification of water
body features. For the first time, we combine deformable convolutions [24] with the Swin
Transformer to increase effective receptive fields and better integrate global semantic information.

This network skillfully combines the powerful local feature extraction capabilities of CNNs with
the extensive global feature extraction capabilities of Swin Transformers, enabling high-precision
extraction of water bodies. Our main contributions in this research are outlined as follows:

(1) We designed a new combination of deep learning networks, which combines CNNs and Swin
Transformers for the first time. The refined model emphasizes the extraction of water body features,
particularly the accurate delineation of water body boundaries. To achieve this goal, we capture the
image's details and edge information through CNNs and model global contextual information using
Swin Transformers to better capture image semantic information. This hybrid model can consider
both detailed information in images and global contextual information, thereby improving the
accuracy and performance of semantic segmentation.

(2) Considering the complex morphology and size variations of water body boundaries, we use
deformable convolutions for the precise extraction of water body boundary features. Deformable
convolutions, by introducing offsets, can adaptively adjust the receptive fields, allowing
convolutional kernels to adaptively deform on input feature maps according to target shapes, thereby
capturing water body features more accurately.

(3) To ascertain the efficacy of our approach, we apply it to water bodies of different sizes and
in different environments. We utilized the image dataset of Sentinel-2 to conduct tests in both high
mountainous and cloud-covered areas. The results indicate that the model exhibits a high level of
accuracy.
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The content distribution of the remaining sections of this paper is as follows: Section 2 introduces
the details of the data and methods used in this study. Section 3 analyzes the experimental results
and provides the experimental configuration. Section 4 discusses the ablation experiments. Finally,
our conclusions are presented in Section 5.

2. Materials and Methods
2.1. Materials

We utilized the Earth Surface Water Knowledge Base (ESWKB). This dataset is publicly available
and can be downloaded from Zenodo (https://zenodo.org/records/5205674). The ESWKB dataset
fully utilizes Sentinel-2 satellite imagery resources, meticulously selecting 95 different scenes. Surface
water labeling was conducted using six bands: blue, green, red, near-infrared (NIR), mid-infrared 1,
and mid-infrared 2, covering various types of water bodies under different environmental conditions.

The Sentinel-2 mission has been designed, constructed, and managed by the ESA's Copernicus
Programme since 2015 [25]. This mission 's primary objective is to observe the Earth's surface, offering
crucial services like forest surveillance, detection of alterations in land cover, and effective
management of natural disasters. The Sentinel-2 satellite is equipped with a Multi-Spectral
Instrument (MSI) capable of capturing images in 13 bands, with resolutions ranging from 10 meters
to 60 meters.

To assess the effectiveness of SwinDefNet, we selected 38 images from the ESWKB dataset as the
test dataset, using the remaining images for training. We chose six images from the test set to illustrate
the model's performance (see Figure 1), covering mountainous areas and cloud-covered areas (see
Table 1).

Figure 1. Representation of Regions in Images (The first line represents mountains, and the second
line represents cloud regions.).

Table 1. Characteristics and Challenges of Different Regions.

Region Characteristics Challenges

. . Water bodies are often
Large undulating terrain,

Mountainous Area complex landforms, scattered
water bodies, and high-altitude

obstructed by mountains,
resulting in incomplete
extraction information; their
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areas that may be covered by ice scattered distribution leads to a

and snow. small extraction scale range;

there is also potential
interference from ice and snow.
Cloud cover affects the

Under conditions of frequent transmission and reflection
clouds, rain, and fog, cloud cover characteristics of remote sensing
areas are large and last for long images, increasing the difficulty

Cloudy Area
Y durations. Clouds exhibit ~ of water body extraction. Due to
spectral characteristics similar to their spectral similarities,
water bodies in some bands.  confusion between clouds and
water bodies is prone to occur.
2.2. Methods

2.2.1.

The encoder-decoder architecture plays an important role in feature extraction, data
compression, sequence mapping, and multi-level feature fusion. It enables models to handle various
complex data transformation and generation tasks and is widely used in natural language processing
(NLP), digital image processing, time series prediction, speech recognition, and more. Modern deep
learning models such as CNNs, RNNs, and Transformers all originate from this architecture. Many
semantic segmentation models such as U-net [26], DeeplLabV3 [27], and Pspnet [28] are built based
on the encoder-decoder architecture. The encoder-decoder architecture consists of two parts:

(1) Encoder: Maps high-dimensional input images to low-dimensional representations. It
extracts features from input images and condenses the spatial dimensions of the feature maps.

(2) Decoder: Reconstructs the low-dimensional representations mapped by the encoder to the
original input. It restores the spatial scale and target details of the original image.

The goal of semantic segmentation is to label each pixel in the image with the corresponding
semantic category. In this study, our aim is to achieve accurate mapping of surface water bodies and
refine their extraction from remote sensing images. Both tasks essentially involve pixel-level
understanding of the image and assigning a semantic label to each pixel. Therefore, we adopt the
encoder-decoder architecture, commonly used in semantic segmentation, to construct the network
for mapping surface water bodies. The overall framework is illustrated in Figure 2.

Encoder Decoder

|- (e

(Multispectral image)

Stage _7¥_1‘“-7—7&_¥¥_7¥ @ Feature maps 7_7_7_,_.,-—-*-"""_7-7-7-Cou\' Trans ‘

Input

Stage s oo Concatenation

Stage Concatenation
Stage Aspp
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Figure 2. Use of encoder-decoder architecture in semantic segmentation. (Encoder: the spatial
dimensions of features gradually decrease while the depth (number of channels) increases. Decoder:
the spatial dimensions of feature maps gradually increase while the depth decreases).

Considering the scale of feature extraction and model computational efficiency, we adopt Swin
Transformer and DeepLabV3+ as the encoder and decoder of the model, respectively. Swin
Transformer employs a hierarchical structure, using different numbers of transformer layers at
different stages to capture relationships between various regions through the self-attention
mechanism, effectively handling image information at different scales. Moreover, by using the
windowed self-attention mechanism, it reduces the computational cost of the model. DeepLabV3+ is
a model designed for semantic segmentation, employing dilated convolutions as its core component,
which enhances segmentation accuracy through multi-scale feature fusion while efficiently
recovering detailed object boundaries.

2.2.2. Water Extraction Network Based on Swin Transformer

The Transformer, originally proposed for natural language processing (NLP), differs from CNNs
in feature extraction by using self-attention. The Transformer also possesses powerful global
information relationship modeling capabilities. However, it encounters high computational
complexity issues with long sequence inputs. In 2021, the Swin Transformer was introduced to
address the challenges of large-scale visual entities and computational complexity. This technology
has shown great potential in tackling various visual tasks, such as image classification, object
detection, and semantic segmentation [29]. In this study, the Swin Transformer is employed to better
capture water features at different scales and establish contextual global information for the fine
extraction of water boundaries. The network structure for surface water mapping using Swin
Transformer for feature extraction is illustrated in Figure 3, employing an encoder-decoder
architecture.

The encoder is established based on the Swin Transformer, which directly takes the original
image size as input. We segment the images into patches and reshape them into feature vectors
through patch embedding. The Swin Transformer is a hierarchical feature extraction network,
constructing hierarchical feature mappings with linear computational complexity related to image
size. It consists of four stages, each composed of patch merging and Swin Transformer blocks. Patch
merging performs downsampling operations at the beginning of each stage to reduce resolution and
adjust channel numbers, which helps save computational costs. Each Swin Transformer block
comprises windowed multi-head self-attention (W-MSA) and shifted window multi-head self-
attention (SW-MSA) layers for local feature extraction. Notably, the Swin Transformer performs both
intra-window and inter-window attention computations to extract global information. Through the
shifted window operation, feature maps are shifted with a set mask, solving the issue of the number
of windows after shifting and obtaining equivalent computational results. It achieves multi-scale
feature extraction while enhancing model computational efficiency by implementing cross-window
connections.

In the encoder section of our model, each stage outputs a feature layer, resulting in four feature
maps of different sizes, corresponding to 1/16, 1/32, 1/64, and 1/128 of the input size. We designate
the feature layers output from the first, second, and fourth stages as basic, intermediate, and
advanced feature layers, forming a group of feature maps representing different scales of water
features, which are then input into the decoder section.

In this study, we use Deeplabv3+ to decode the features extracted by the encoder. Deeplabv3+ is
a semantic segmentation model based on dilated convolutions that, through the setting of dilation
factors, achieves different-scale receptive fields to freely extract multi-scale information [30]. It
possesses excellent feature extraction capabilities, aiding the network in distinguishing differences
between water bodies and backgrounds. Importantly, this model can efficiently recover detailed
boundary information of targets. Additionally, we introduce deformable convolutions into the ASPP
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module for water feature extraction in the advanced feature layer. The internal structure of ASPP is
illustrated in Figure 4.

Encoder
Stage 1 Stage 2 . '. Stage 3 . Stage 4
K
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< o2 Transformer {2 | Transformer ;_._' g | Transformer _',_,__ = Transformer
»§ = Block = Black - Block T Black
g [ [+ £ £
Input e ;. | \ S .'-_ i < =t L I -
x2 ALY x2 AN X0 X

.Dmm ﬂ ﬂ : ﬂ in,

/ J

Basic Feature Middle Feature Advanced Feature

! .
!V ; . | 355 o | | 1%1 Coav | ASPP
AR 2 |
( .
. Concatenation Iq__—‘ Up sample |

output

Figure 3. SwinDefNet's network structure diagram. Normalization and ReLU activation layers follow

each convolution operation in the network.
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Figure 4. Internal details of the ASPP module.

In this study, we decided on a patch size of 4 and an embedding dimension of 96 for the images.
We used Swin Transformer blocks in each stage, with a total of 2, 2, 6, and 2 for the different stages.
Each of the blocks had 3, 6, 12, and 24 multi-head self-attention heads, adding to the complexity of
the model. The window size was set to 7, creating a sense of unpredictability. These settings were
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carefully chosen to work smoothly with our processor and deliver excellent accuracy in a relatively
short timeframe.

2.2.3. Deformable Convolution

Remote sensing images contain rich surface information. However, due to their varying
resolutions and the diversity of water body shapes, significant differences can exist in the information
captured by remote sensing images. For instance, a lake covering 100 km? may be represented by just
one pixel in the image, making it difficult for traditional convolution operations to accurately extract
its features. Traditional convolutional kernels have fixed receptive fields and sizes, making them
unable to adapt to geometric deformations. They struggle to extract effective features when dealing
with targets that are too large or too small, although they perform better with regularly shaped water
bodies subject to human interference. Some studies have used dilated convolutions to overcome this
issue, aiming to expand the effective receptive field and capture multi-scale information. However,
this approach may result in the loss of some detailed image features. To better extract features from
the input remote sensing images, we introduce deformable convolutions.

Compared to traditional convolution and dilated convolution, deformable convolution predicts
offsets for feature sampling points, adaptively changes sampling positions, allows target points to
fall on targets as much as possible, adapts to irregular situations, and better handles geometric
deformations for feature extraction. Deformable convolution adds a direction vector to each
convolution kernel, enabling adaptive shape changes, automatically adjusting scale and receptive
field, and aligning more closely with the shape and size of objects. It introduces an offset parameter
based on traditional convolution. Firstly, based on the input feature map, it generates X and Y
direction offset layers (2N), then combines the offset layers to obtain the output feature map through
deformable convolution. The implementation process of deformable convolution is illustrated in
Figure 5.

First, we define a standard convolution kernel R, denoted w as the weighted sum of sampling
values, obtaining Equation (1), where R represents the regular grid of traditional convolution with a
3x3 convolution kernel of stride 1. Then, a standard convolution feature y(p_0 ) matrix can be
obtained as shown in Equation (2). Finally, an offset Ap_n is introduced into R to realize the offset of
feature points. The value of Ap_n is shown in Equation (3), and the eigenmatrix of the deformable
convolution kernel is obtained as shown in Equation (4).

R = {(_1' _1)' (_1'0)' Tt (0'1)' (Ll)} (1)
Y@ =), wle) o+ ) @
(Apaln =1, N} N = IR| ®)

Yo =) wle) 2o+ bt Apy) @)

When the feature map from the previous layer undergoes 3x3 convolution, we first define
another 3x3 convolutional layer (offset field) with the same size as the input feature map and a
channel number of 2N, representing the offsets in the X and Y directions. Using this offset field for
interpolation, we then perform standard convolution operations. To address the challenge of
potentially non-integer offsets, bilinear interpolation is employed, computing the weighted average
of the four neighboring pixel values around each sample point to estimate the pixel value at the new
position. For each point in the feature map, we need to consider the four neighboring pixels it may
correspond to after offsetting. Thus, within the 3x3 convolution kernel range, each sample point may
be associated with up to 36 different pixel values. Due to the effect of the offset field, these positions
vary with changes in the offset, thereby achieving feature extraction capabilities for multiscale and
irregular shapes. This mechanism effectively enlarges the receptive field of the convolution operation,
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allowing the network to capture complex structures and subtle changes in remote sensing images
more finely and accurately.

(Post-offset)

Offset field (2N)

)2

deformable convolution

Figure 5. Using 3x3 convolution as an example, this demonstrates the offset process of deformable
convolution and shows the corresponding effective receptive field.

3. Results
3.1. Experimental Environment and Parameter Settings

The experiments were conducted on an Intel(R) Core(TM) i7-12700H 2.30 GHz processor with
16.0 GB of RAM, an NVIDIA GeForce RTX 3060 Laptop GPU, and CUDA 11.2. The input image size
was set to 256x256, batch size to 2, epochs to 200, and the learning rate to 0.002.

We trained and validated our model on the ESWKB dataset. We divided the dataset into a
training set, a test set, and a validation set in a ratio of 6:2:2, with images randomly cropped to the
specified pixel size of 256x256. Additionally, simple data augmentation techniques were applied to
the training set, including image flipping and random rotations by multiples of 90°.

3.2. Evaluation Metrics

To assess the SwinDefNet performance, we utilized four widely recognized metrics in the field
of semantic segmentation: accuracy, precision, recall, and the F1 score.

The fraction of accurately predicted pixels relative to all pixels is known as accuracy. The
fraction of accurately predicted water body pixels among all pixels projected to be water bodies is
expressed as precision. Out of all actual water body pixels, recall is the proportion of water body
pixels that were accurately anticipated. The F1 score, which is a measure of the model's overall
performance, is the harmonic mean of accuracy and recall.

In these evaluation metrics, accuracy represents the proportion of pixels that are correctly
predicted relative to the total number of pixels. The precision quantifies the proportion of pixels that
are labeled as bodies of water but are also bodies of water. Recall, on the other hand, measures the
proportion of pixels correctly identified in the actual water body. F1 score is the harmonic average of
accuracy and recall and can be used as a comprehensive measure of the overall performance of the
model.

The calculation methods for accuracy, precision, recall, and F1 score are as follows:

p ~ TP + TN
CeUracy =Tpb ¥ TN + FN + FP

©)

Precision = TP ©)
recision = mp——p
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Recall = —F @)
CCAt = TP Y FN

2 * precision — recall

flscore = 8)

prscision — recall

In the formulas, TP represents true positives, indicating the number of samples where the model
correctly predicts water body when the actual class is water body; TN represents true negatives,
indicating the number of samples where the model correctly predicts non-water body when the
actual class is non-water body; FP represents false positives, indicating the number of samples where
the model incorrectly predicts water body when the actual class is non-water body; FN represents
false negatives, indicating the number of samples where the model incorrectly predicts non-water
body when the actual class is water body.

3.3. Method Comparison

To evaluate the performance of the proposed model, we compared it with four commonly used
methods: U-Net, ResNet, DeepLabv3+, and DeepWaterMapv2. Here are detailed descriptions of
these methods:

U-Net: U-Net is a fully convolutional neural network architecture with an encoder-decoder
structure that is widely used for image segmentation tasks due to its ability to capture contextual
information and precise localization. The encoder extracts image features through convolutional
layers, while the decoder progressively restores the spatial resolution of the image. By introducing
skip connections, it merges the features from the encoder and decoder to improve segmentation
accuracy. U-Net has been widely applied in remote sensing image segmentation due to its efficient
and reliable performance. The model explored in this study also adopts an encoder-decoder
structure, hence we chose this model for comparison.

ResNet: ResNet (Residual Network) [33] is a CNN designed to address the issues of gradient
vanishing and representation bottlenecks in deep networks. By introducing Residual Blocks, the
model allows the network to learn residual representations between input and output, optimizing
deep networks. This structure enables ResNet to construct deeper network models while maintaining
lower error rates. ResNet comes in multiple versions, and in this paper, we utilize ResNet-50.

DeepLabv3+: DeepLabv3+ is an advanced semantic segmentation model that integrates multi-
scale features through an encoder-decoder structure, combined with dilated convolutions and ASPP
modules to expand the receptive field and capture contextual information. The decoder module
effectively merges high and low-resolution features to refine segmentation results, particularly
focusing on object boundaries.

DeepWaterMapv2: DeepWaterMapv2 focuses on surface water mapping tasks and adopts the
U-Net network structure. By iteratively applying convolutional and pooling operations, it effectively
extracts key features from images for the precise identification and extraction of water body regions.
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Figure 6. Visualization of the loss for U-Net, ResNet, DeepLabv3+, DeepWaterMapv2, and our
proposed model after 200 epochs of training.

3.4. Analysis of Experimental Results

After completing model training, we used 20% of the dataset for validation. In the validation set,
we selected six images to demonstrate the prediction results (as shown in Figure 7), including
mountainous regions with large variations in terrain and areas with high cloud cover. To accurately
evaluate the performance of SwinDefNet ,we compare it with other advanced water body detection
methods, Table 2 presents the average values of four evaluation metrics for all images in the test set.
Additionally, compared to other methods, our model achieved results of over 90%, with values of
97.89% for accuracy, 94.98% for precision, 90.05% for recall, and 92.33% for F1 score, respectively.

Through comparison and analysis of the four metrics, we found that our model achieved the
highest accuracy among all methods. This indicates that our model has the best overall predictive
ability for mapping surface water and can better extract water bodies from remote sensing images.
Additionally, when compared to other methods, our model also achieved the highest recall,
indicating that it can capture more water pixels during surface water mapping, with the lowest
degree of omission in extracting water pixels.

Analyzing Table 2, we found that in the test, ResNet achieved an F1 score of 92.68%, which is
0.35% higher than our proposed model, indicating that ResNet has better overall performance.
However, its recall was 88.96%, indicating that it would miss many water pixels during extraction,
showing a certain gap in the fine extraction of water bodies. DeepWaterMapv2 achieved a precision
as high as 99.07%, but with a recall of only 91.89%. This suggests that the DeepWaterMapv2 method
sacrifices recall for precision in model prediction, indicating room for improvement in the fine
extraction of water bodies.

Figure 7 compares the predicted images generated by different methods, while Figure 8 shows
the true labels of the predicted images. Figures 9 and 10 present partial results of surface water
mapping in mountainous and cloudy regions, with other result comparisons provided in the
Appendix at the end of the document. We observe that our proposed model exhibits excellent noise
suppression in the background (see Figure 9), outperforming ResNet and DeepLabv3+ methods.
Moreover, satisfactory extraction results are achieved for winding small rivers and complex urban
areas (see Figure 10). Compared to other methods, the boundaries are clearer, and in regions with
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higher cloud cover, our model has the lowest probability of misclassifying the background as water,
compared to U-Net and ResNet methods.

Image Deepwatermapv2  Deeplabv3+ Unet Resnet Ours

Figure 7. Comparison of predicted results using different methods on test images, with red circles
indicating areas of comparison between the predicted images generated by each method.

Figure 8. Labels data for illustrating the prediction results.
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Figure 8. (continued).

Image Deepwatermapv2 Deeplabv3+
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Figure 9. Results of water extraction in hilly regions are compared with existing approaches and our
suggested model in mountainous regions.
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Figure 10. Comparison of our suggested model's and other approaches' water extraction outcomes in
cloudy regions.

Table 2. Evaluation metrics of different methods. Average values for validation set images.

Method Accuracy(%) Precision(%) Recall(%) f1_score(%)
Ours 97.89 94.98 90.05 92.33
Unet 90.79 95.24 72.17 77.03
Resnet 97.65 97.26 88.96 92.68
Deeplabv3_plus 97.27 93.80 86.53 89.22
Deepwatermapv2 97.41 99.07 81.89 88.69

In order to further confirm the reliability and accuracy of our method, we conducted tests in
various regions, comparing the performance of U-Net, ResNet, DeepLabv3+, and DeepWaterMapv2
in cloudy and mountainous areas. The results for accuracy and F1 score are shown in Figures 11 and
12, respectively. Table 3 provides detailed numerical values of the four evaluation metrics for the five
methods in the three regions and the entire validation dataset.
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Figure 11. Comparison of the accuracy of several methods in various geographical areas.
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Figure 12. Comparison of the F1 score of several methods in various geographical areas.

Observing Table 3, we can see that our proposed model performs best in mountainous regions,
with accuracy, recall, and F1 score values of 98.03%, 96.61%, and 93.52%, respectively. In the
extraction of water bodies in mountainous regions, except for U-Net, all other methods achieved
satisfactory results, with accuracy above 97%. Although U-Net's performance in mountainous
regions is not ideal, it achieved good results in handling elongated and small water bodies in cloudy
and urban areas.

Our model achieved an accuracy and F1 score of 98.30% and 93.46%, respectively, in cloudy
areas. Compared to the best-performing ResNet, the differences are only 0.19% and 1%, respectively.
Compared to other methods, our recall is highest at 92.22%, indicating that when predicting cloudy
areas, we sacrificed some accuracy to reduce the omission of water pixels, enabling fine extraction of
water bodies. This is also evidenced by our predicted images. Meanwhile, by comparing the labeled
image with the predicted image, we observed that our model exhibits a higher similarity in extracting
small water bodies' boundaries. This indicates that our experiment has certain advantages in refining
the processing of small water bodies.
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Table 3. Accuracy, Precision, Recall, and F1 score results of water mapping in different regions for
the five methods.
Method Ours Unet Resnet Deeplabv3+ Deepwatermapv2
Mountainous Area
Accuracy 98.03% 86.77% 97.14% 97.88% 97.47%
Precision 95.99% 89.24% 97.97% 95.42% 99.34%
Recall 91.61% 49.18% 87.91% 89.18% 85.65%
f1_score 93.52% 55.56% 92.32% 91.08% 91.46%
Cloud Area
Accuracy 98.30% 90.93% 98.49% 97.64% 97.14%
Precision 94.97% 93.66% 97.12% 93.81% 98.61%
Recall 92.22% 63.05% 92.12% 89.27% 84.85%
f1_score 93.46% 67.29% 94.46% 91.33% 88.19%

4. Discussion

In this part, we performed ablation tests to evaluate the significance of various components,
along with discussing the impact of the Swin Transformer and Deformable Convolution on the
network's performance. The model used the same training set, test set, and validation set in the
ablation experiments.

Firstly, to validate the effectiveness of Swin Transformer in land water mapping tasks, we first
compared the combined Swin Transformer and DeepLabV3+ model (see Model 1 in Table 4) with the
DeepLabV3+ model using the original Xception backbone (see Model 3 in Table 4). Accuracy,
Precision, Recall, and f1_score were used as evaluation metrics, the results showed that using Swin
Transformer improved Accuracy and f1_score by 1.20% and 3.93% respectively. Precision and Recall
also increased by 6.82% and 0.28% respectively. The analysis indicated that using Swin Transformer
increased the accuracy of model predictions and improved its reliability. Additionally, there was a
6.82% increase in Precision which suggests that after incorporating Swin Transformer into the model,
it became more accurate at predicting water pixels in instances where it is necessary for classification
tasks while reducing classification errors caused by misjudgments of water pixels.

Table 4. The results of the ablation experiments.

Model Swin Transform Deformable Conv Accuracy(%) Precision(%) Recall(%) f1_score(%)

1 v v 97.89 94.98 90.05 92.33
2 v 97.67 94.96 89.04 91.73
3 v 96.70 88.17 89.77 88.40

Secondly, to validate the effectiveness of Deformable Convolutional Networks (Deformable
Conv), we compared a DeepLabV3+ model with Swin Transformer as its backbone network using
regular 3x3 convolutions with another one using Deformable Conv (refer to Model 2 in Table 4). The
results showed that after incorporating Deformable Convolutional Networks into our model's
architecture led to improvements in Accuracy (+0.22%), Precision (+0.03%), Recall (+1.01%), and
f1_score (+0.6%). This indicates an enhancement in both accuracy and reliability after integrating
Deformable Conv into our model's architecture while also improving its ability to identify water
pixels through an increase of +1 .01 % recall rate.

Through experimental analysis, we can confirm that both Swin Transformer and Deformable
Conv are beneficial for water extraction tasks. The combined use of these two components has also
enhanced the precision of land water mapping to achieve fine-grainedextraction of water bodies.

5. Conclusions

To achieve fine-grained extraction of water bodies in remote sensing images, this study explored
a novel combination of deep learning networks, employing an encoder-decoder structure for
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extracting multiscale information. The model was developed in a two-step process: (1) the most
advanced image classification and segmentation model is integrated into the encoder-decoder
network structure; and (2) utilizing deformable convolution to adaptively adjust the receptive field
for fine-grained extraction of water body features. More precisely, the model employed the Swin
Transformer as the encoder to capture multiscale information, and leveraged deformable convolution
to dynamically adjust the receptive field for the precise extraction of water body characteristics.

Additionally, to assess the efficacy of our proposed method, we trained the novel integrated
model on the ESWKB dataset and subsequently utilized it for mapping surface water in diverse
geographical regions. Comparing with various existing methods, our proposed network combination
outperformed them, especially in the fine-grained water body segmentation. This provides strong
assistance for accurate water extraction and offers a strategy for fine-grained water body
segmentation in remote sensing images.
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Appendix A: Cloud Area
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Appendix B: Mountainous Area
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