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Abstract: Surface water plays a crucial role in climate change, human production, and life, making accurate 

monitoring and observation of surface water particularly important. However, due to the significant diversity 

and complexity of water distribution in surface space, accurate mapping of surface water faces considerable 

challenges. When extracting water bodies from medium-resolution satellite remote sensing images, CNN 

methods may suffer from limitations in receptive fields and insufficient context modeling capabilities, leading 

to the loss of water body boundary details and poor fusion of multiscale features. Currently, there is relatively 

little research on this issue; therefore, it is necessary to explore new combinations of deep learning networks to 

address these challenges. The purpose of this study is to address the above issues. We propose a new 

combination of deep learning networks that fully utilize multiscale information to enhance water features. 

Specifically, we first combine deformable convolutions with the Swin Transformer to increase effective 

receptive fields while better integrating global semantic information. This combination can capture features of 

water bodies at different scales, improve the accuracy and integrity of water extraction, and provide reliable 

technical support for detailed water body extraction. We tested the newly constructed model using Sentinel-2 

satellite images. Our model achieved results of over 90%, with an average accuracy of 97.89%, average precision 

of 94.98%, average recall of 90.05%, and an average F1 score of 92.33%. In addition, our model achieved an 

accuracy of 98.03% in mountainous areas. Our experiments and results validate the potential of combining the 

Swin Transformer and deformable convolutions in detailed water body extraction. 

Keywords: remote sensing images; water body extraction; deep learning; semantic segmentation; 

transformer 

 

1. Introduction 

Surface water is an indispensable part of the Earth's ecosystem and a significant influencing 

factor in climate change, ecological environmental protection, and human production and life [1]. It 

plays crucial roles in various aspects such as environmental monitoring and management [2], 

ecological protection and restoration, disaster prevention and control, emergency response, 

agricultural production, land use, and people's water safety [3]. By obtaining and analyzing the 

spatial distribution and area information of water bodies, we can guide and support humans to adopt 

better ways of living [4]. Consequently, precise mapping of surface water holds significant 

importance for both environmental surveillance and societal advancement. 

Due to its expansive coverage, relatively high spatial and temporal resolutions, as well as the 

distinct advantage of uninterrupted Earth surface monitoring, Remote Sensing (RS) technology has 

become a ubiquitous tool in the extraction of surface water [5]. The methods utilized for water 

extraction from satellite remote sensing images can be categorized into three principal groups: (1) 

threshold-based methods, (2) machine learning methods, and (3) hybrid methods. During the process 

of water extraction, threshold-based methods primarily depend on the spectral reflectance properties 

of water bodies within specific bands, encompassing both single-band threshold techniques and 
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multi-band threshold methodologies. The former utilizes information from a single band [6] for water 

body identification, while the latter uses a set of multi-band data to detect water bodies through 

mathematical and logical operations, such as Normalized Difference Water Index (NDWI) [7], 

Modified Normalized Difference Water Index (MNDWI) [8], Multi-band Water Index (MBWI) [9], 

Background Difference Water Index (BDWI) [10], Normalized Difference Water Fraction Index 

(NDWFI) [11], Composite Normalized Difference Water Index (CNDWI) [12], etc. Fuzzy C-means, 

K-means clustering, support vector machine, decision tree, random forest and other machine learning 

methods are used to identify and extract water bodies. Hybrid methods integrate water features and 

machine learning classifiers or multi-classifier ensembles to achieve high-precision water body 

extraction. The image processing involved in hybrid methods is complex, with multiple influencing 

factors and high uncertainty. Typically, traditional methods heavily depend on the expertise of 

domain experts and may have limited abilities to express features, which makes it challenging to fully 

grasp intricate semantic details and spatial connections between pixels. 

Compared to traditional water extraction methods, deep learning methods possess the 

capability to learn and explore deep features, enabling the acquisition of more complex and nonlinear 

water characteristics [13]. They can avoid the need for manual adjustment of optimal thresholds, 

adapt to large-scale learning, and exhibit higher flexibility and generality, thus finding widespread 

applications in water extraction research. Isikdogan [14] introduced a unique CNN design named 

DeepWaterMap, utilizing a fully convolutional network structure that minimizes the number of 

parameters requiring training and enables comprehensive, large-scale analysis. The network embeds 

the shape, texture, and spectral features of water bodies to eliminate interfering features such as 

snow, ice, clouds, and terrain shadows. Chen [15] presented a novel approach for detecting open 

surface water in urbanized areas, employing unequal and physical size constraints to recognize water 

bodies in urban environments. This method addresses the serious confusion errors of traditional 

water resource indices in high spatial resolution images. The potential application of the method in 

large-scale water detection tasks is evidenced through experimental verification on spectral libraries 

and genuine high spatial resolution RS imagery. Kang et al. [16] introduced a multi-scale context 

extraction network, MSCENet, aimed at precise and efficient extraction of water bodies from high-

resolution optical RS images. This network incorporates multi-scale feature encoders, feature 

decoders, and context feature extraction modules. Specifically, the feature encoder employs Res2Net 

to capture rich multi-scale details of water bodies, effectively handling variations in their shape and 

size. The context extraction module, comprising an expanded convolutional unit and a sophisticated 

multi-kernel pooling unit, further distills multi-scale contextual information to produce refined high-

level feature maps. Luo et al. [17] proposed an automated method for surface water mapping and 

constructed a novel surface water mapping model called WatNet. This model addresses the issue of 

diminished mapping precision caused by the resemblance of non-water features to water features, 

employing a tailored design for mapping surface water to achieve precise identification of smaller 

water bodies. The study also constructed the Earth Surface Water Knowledge Base (ESWKB), a freely 

available dataset based on Sentinel-2 images. Li et al. [18] proposed a water index-driven deep fully 

convolutional neural network (WIDFCN) method that achieves precise water delineation without 

relying on manually collected samples. WIDFCN effectively handles scale and spectral variations of 

surface water and demonstrates robustness in experiments involving different types of shadows, 

such as those from buildings, mountains, and clouds. The most important aspect of this method is 

the extraction of high-precision but incomplete water membranes from water spectral indices, which 

are then expanded to enhance completeness. This approach realizes an efficient strategy for 

automatically generating training samples without the need for manual labeling, significantly 

reducing economic costs. Zhang et al. [19] proposed an end-to-end CNN water segmentation 

network, MRSE-Net, based on multi-scale residual and squeeze-excitation (SE) attention. The 

network enhances prediction results using the SE-attention module to alleviate water boundary 

ambiguity and reduces the number of model parameters using multi-scale residual modules to 

accurately extract water pixels, addressing the problem of fuzzy boundaries of small river water 

bodies. Yu et al. [20] proposed a network called WaterHRNet, which is composed of multi-branch 
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high-resolution feature extractor (HRNet), feature attention module and segmentation header 

module. It is a hierarchical focus high-resolution network that can provide high-quality, strong 

semantic feature representation for precise segmentation of water bodies in various scenarios. Xin 

Lyu et al. [21] proposed a multi-scale normalized attention network, MSNANet, for accurate water 

body extraction in complex scenes. The network incorporates the Multi-Scale Normalized Attention 

(MSNA) module to fuse multi-scale water body features, highlighting feature representations. It 

utilizes an optimized spatial pyramid pooling (OASPP) module to refine feature representations 

using contextual information, improving segmentation performance. Kang et al. [22] proposed 

WaterFormer, a combination of transformer and convolutional neural network, for accurate water 

detection tasks. The network includes dual-stream CNNs, Cross-Level Visual Transformers (CL-ViT), 

lightweight attention modules (LWA), and sub-pixel upsampling modules (SUS).The network 

includes dual-stream CNNs, Cross-Level Visual Transformers (CL-ViT), lightweight attention 

modules (LWA), and sub-pixel upsampling modules (SUS). The dual-stream network abstracts water 

features from multiple perspectives and levels, embeds cross-level visual transformers in the dual 

stream to capture long-range dependencies between foundational spatial information and high-order 

semantic features, and enhances feature abstraction and generates high-resolution, high-quality 

class-specific representations using lightweight attention modules and sub-pixel upsampling 

modules. 

From the above analysis of the current mainstream water extraction techniques, we can clearly 

understand that most of the methods are based on Convolutional Neural Networks (CNN). Although 

CNNs possess powerful feature extraction capabilities, the diversity of water body spatial 

distributions and the complexity of environmental backgrounds can lead to the loss of boundary 

details and affect the accuracy of water body extraction when using CNNs on medium-resolution 

satellite remote sensing images. Thus, they exhibit certain limitations in water body extraction. In 

recent years, Transformers have attracted attention due to their outstanding semantic representation 

capabilities and advantages in modeling global information relationships. Particularly, the Swin 

Transformer [23] has demonstrated strong feature extraction capabilities, contextual modeling 

capabilities, and multiscale feature fusion capabilities, providing a strategy for precise water body 

extraction from remote sensing images. However, research in this area is currently limited. The aim 

of this research, therefore, is to investigate a novel integration of deep learning networks that 

leverages multiscale information to the fullest extent, thereby enhancing the identification of water 

body features. For the first time, we combine deformable convolutions [24] with the Swin 

Transformer to increase effective receptive fields and better integrate global semantic information. 

This network skillfully combines the powerful local feature extraction capabilities of CNNs with 

the extensive global feature extraction capabilities of Swin Transformers, enabling high-precision 

extraction of water bodies. Our main contributions in this research are outlined as follows: 

(1) We designed a new combination of deep learning networks, which combines CNNs and Swin 

Transformers for the first time. The refined model emphasizes the extraction of water body features, 

particularly the accurate delineation of water body boundaries. To achieve this goal, we capture the 

image's details and edge information through CNNs and model global contextual information using 

Swin Transformers to better capture image semantic information. This hybrid model can consider 

both detailed information in images and global contextual information, thereby improving the 

accuracy and performance of semantic segmentation. 

(2) Considering the complex morphology and size variations of water body boundaries, we use 

deformable convolutions for the precise extraction of water body boundary features. Deformable 

convolutions, by introducing offsets, can adaptively adjust the receptive fields, allowing 

convolutional kernels to adaptively deform on input feature maps according to target shapes, thereby 

capturing water body features more accurately. 

(3) To ascertain the efficacy of our approach, we apply it to water bodies of different sizes and 

in different environments. We utilized the image dataset of Sentinel-2 to conduct tests in both high 

mountainous and cloud-covered areas. The results indicate that the model exhibits a high level of 

accuracy. 
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The content distribution of the remaining sections of this paper is as follows: Section 2 introduces 

the details of the data and methods used in this study. Section 3 analyzes the experimental results 

and provides the experimental configuration. Section 4 discusses the ablation experiments. Finally, 

our conclusions are presented in Section 5. 

2. Materials and Methods 

2.1. Materials 

We utilized the Earth Surface Water Knowledge Base (ESWKB). This dataset is publicly available 

and can be downloaded from Zenodo (https://zenodo.org/records/5205674). The ESWKB dataset 

fully utilizes Sentinel-2 satellite imagery resources, meticulously selecting 95 different scenes. Surface 

water labeling was conducted using six bands: blue, green, red, near-infrared (NIR), mid-infrared 1, 

and mid-infrared 2, covering various types of water bodies under different environmental conditions. 

The Sentinel-2 mission has been designed, constructed, and managed by the ESA's Copernicus 

Programme since 2015 [25]. This mission 's primary objective is to observe the Earth's surface, offering 

crucial services like forest surveillance, detection of alterations in land cover, and effective 

management of natural disasters. The Sentinel-2 satellite is equipped with a Multi-Spectral 

Instrument (MSI) capable of capturing images in 13 bands, with resolutions ranging from 10 meters 

to 60 meters. 

To assess the effectiveness of SwinDefNet, we selected 38 images from the ESWKB dataset as the 

test dataset, using the remaining images for training. We chose six images from the test set to illustrate 

the model's performance (see Figure 1), covering mountainous areas and cloud-covered areas (see 

Table 1). 

 

Figure 1. Representation of Regions in Images (The first line represents mountains, and the second 

line represents cloud regions.). 

Table 1. Characteristics and Challenges of Different Regions. 

Region Characteristics Challenges 

Mountainous Area 

Large undulating terrain, 

complex landforms, scattered 

water bodies, and high-altitude 

Water bodies are often 

obstructed by mountains, 

resulting in incomplete 

extraction information; their 
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areas that may be covered by ice 

and snow. 

scattered distribution leads to a 

small extraction scale range; 

there is also potential 

interference from ice and snow. 

Cloudy Area 

Under conditions of frequent 

clouds, rain, and fog, cloud cover 

areas are large and last for long 

durations. Clouds exhibit 

spectral characteristics similar to 

water bodies in some bands. 

Cloud cover affects the 

transmission and reflection 

characteristics of remote sensing 

images, increasing the difficulty 

of water body extraction. Due to 

their spectral similarities, 

confusion between clouds and 

water bodies is prone to occur. 

2.2. Methods 

2.2.1.  

The encoder-decoder architecture plays an important role in feature extraction, data 

compression, sequence mapping, and multi-level feature fusion. It enables models to handle various 

complex data transformation and generation tasks and is widely used in natural language processing 

(NLP), digital image processing, time series prediction, speech recognition, and more. Modern deep 

learning models such as CNNs, RNNs, and Transformers all originate from this architecture. Many 

semantic segmentation models such as U-net [26], DeeplLabV3 [27], and Pspnet [28] are built based 

on the encoder-decoder architecture. The encoder-decoder architecture consists of two parts: 

(1) Encoder: Maps high-dimensional input images to low-dimensional representations. It 

extracts features from input images and condenses the spatial dimensions of the feature maps. 

(2) Decoder: Reconstructs the low-dimensional representations mapped by the encoder to the 

original input. It restores the spatial scale and target details of the original image. 

The goal of semantic segmentation is to label each pixel in the image with the corresponding 

semantic category. In this study, our aim is to achieve accurate mapping of surface water bodies and 

refine their extraction from remote sensing images. Both tasks essentially involve pixel-level 

understanding of the image and assigning a semantic label to each pixel. Therefore, we adopt the 

encoder-decoder architecture, commonly used in semantic segmentation, to construct the network 

for mapping surface water bodies. The overall framework is illustrated in Figure 2. 
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Figure 2. Use of encoder-decoder architecture in semantic segmentation. (Encoder: the spatial 

dimensions of features gradually decrease while the depth (number of channels) increases. Decoder: 

the spatial dimensions of feature maps gradually increase while the depth decreases). 

Considering the scale of feature extraction and model computational efficiency, we adopt Swin 

Transformer and DeepLabV3+ as the encoder and decoder of the model, respectively. Swin 

Transformer employs a hierarchical structure, using different numbers of transformer layers at 

different stages to capture relationships between various regions through the self-attention 

mechanism, effectively handling image information at different scales. Moreover, by using the 

windowed self-attention mechanism, it reduces the computational cost of the model. DeepLabV3+ is 

a model designed for semantic segmentation, employing dilated convolutions as its core component, 

which enhances segmentation accuracy through multi-scale feature fusion while efficiently 

recovering detailed object boundaries. 

2.2.2. Water Extraction Network Based on Swin Transformer 

The Transformer, originally proposed for natural language processing (NLP), differs from CNNs 

in feature extraction by using self-attention. The Transformer also possesses powerful global 

information relationship modeling capabilities. However, it encounters high computational 

complexity issues with long sequence inputs. In 2021, the Swin Transformer was introduced to 

address the challenges of large-scale visual entities and computational complexity. This technology 

has shown great potential in tackling various visual tasks, such as image classification, object 

detection, and semantic segmentation [29]. In this study, the Swin Transformer is employed to better 

capture water features at different scales and establish contextual global information for the fine 

extraction of water boundaries. The network structure for surface water mapping using Swin 

Transformer for feature extraction is illustrated in Figure 3, employing an encoder-decoder 

architecture. 

The encoder is established based on the Swin Transformer, which directly takes the original 

image size as input. We segment the images into patches and reshape them into feature vectors 

through patch embedding. The Swin Transformer is a hierarchical feature extraction network, 

constructing hierarchical feature mappings with linear computational complexity related to image 

size. It consists of four stages, each composed of patch merging and Swin Transformer blocks. Patch 

merging performs downsampling operations at the beginning of each stage to reduce resolution and 

adjust channel numbers, which helps save computational costs. Each Swin Transformer block 

comprises windowed multi-head self-attention (W-MSA) and shifted window multi-head self-

attention (SW-MSA) layers for local feature extraction. Notably, the Swin Transformer performs both 

intra-window and inter-window attention computations to extract global information. Through the 

shifted window operation, feature maps are shifted with a set mask, solving the issue of the number 

of windows after shifting and obtaining equivalent computational results. It achieves multi-scale 

feature extraction while enhancing model computational efficiency by implementing cross-window 

connections. 

In the encoder section of our model, each stage outputs a feature layer, resulting in four feature 

maps of different sizes, corresponding to 1/16, 1/32, 1/64, and 1/128 of the input size. We designate 

the feature layers output from the first, second, and fourth stages as basic, intermediate, and 

advanced feature layers, forming a group of feature maps representing different scales of water 

features, which are then input into the decoder section. 

In this study, we use Deeplabv3+ to decode the features extracted by the encoder. Deeplabv3+ is 

a semantic segmentation model based on dilated convolutions that, through the setting of dilation 

factors, achieves different-scale receptive fields to freely extract multi-scale information [30]. It 

possesses excellent feature extraction capabilities, aiding the network in distinguishing differences 

between water bodies and backgrounds. Importantly, this model can efficiently recover detailed 

boundary information of targets. Additionally, we introduce deformable convolutions into the ASPP 
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module for water feature extraction in the advanced feature layer. The internal structure of ASPP is 

illustrated in Figure 4. 

 

Figure 3. SwinDefNet's network structure diagram. Normalization and ReLU activation layers follow 

each convolution operation in the network. 

 

Figure 4. Internal details of the ASPP module. 

In this study, we decided on a patch size of 4 and an embedding dimension of 96 for the images. 

We used Swin Transformer blocks in each stage, with a total of 2, 2, 6, and 2 for the different stages. 

Each of the blocks had 3, 6, 12, and 24 multi-head self-attention heads, adding to the complexity of 

the model. The window size was set to 7, creating a sense of unpredictability. These settings were 
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carefully chosen to work smoothly with our processor and deliver excellent accuracy in a relatively 

short timeframe. 

2.2.3. Deformable Convolution 

Remote sensing images contain rich surface information. However, due to their varying 

resolutions and the diversity of water body shapes, significant differences can exist in the information 

captured by remote sensing images. For instance, a lake covering 100 km² may be represented by just 

one pixel in the image, making it difficult for traditional convolution operations to accurately extract 

its features. Traditional convolutional kernels have fixed receptive fields and sizes, making them 

unable to adapt to geometric deformations. They struggle to extract effective features when dealing 

with targets that are too large or too small, although they perform better with regularly shaped water 

bodies subject to human interference. Some studies have used dilated convolutions to overcome this 

issue, aiming to expand the effective receptive field and capture multi-scale information. However, 

this approach may result in the loss of some detailed image features. To better extract features from 

the input remote sensing images, we introduce deformable convolutions. 

Compared to traditional convolution and dilated convolution, deformable convolution predicts 

offsets for feature sampling points, adaptively changes sampling positions, allows target points to 

fall on targets as much as possible, adapts to irregular situations, and better handles geometric 

deformations for feature extraction. Deformable convolution adds a direction vector to each 

convolution kernel, enabling adaptive shape changes, automatically adjusting scale and receptive 

field, and aligning more closely with the shape and size of objects. It introduces an offset parameter 

based on traditional convolution. Firstly, based on the input feature map, it generates X and Y 

direction offset layers (2N), then combines the offset layers to obtain the output feature map through 

deformable convolution. The implementation process of deformable convolution is illustrated in 

Figure 5. 

First, we define a standard convolution kernel R, denoted w as the weighted sum of sampling 

values, obtaining Equation (1), where R represents the regular grid of traditional convolution with a 

3×3 convolution kernel of stride 1. Then, a standard convolution feature y(p_0 ) matrix can be 

obtained as shown in Equation (2). Finally, an offset ∆p_n is introduced into R to realize the offset of 

feature points. The value of ∆p_n is shown in Equation (3), and the eigenmatrix of the deformable 

convolution kernel is obtained as shown in Equation (4). 

R = {(−1, −1), (−1,0), ⋯ , (0,1), (1,1)} (1)

�(��) = � �(��) ∙ �(�� + ��)
��∈�

 (2)

{∆��|� = 1, ⋯ , �}, � = |�| (3)

�(��) = � �(��) ∙ �(�� + �� + ∆��)
��∈�

 (4)

When the feature map from the previous layer undergoes 3×3 convolution, we first define 

another 3×3 convolutional layer (offset field) with the same size as the input feature map and a 

channel number of 2N, representing the offsets in the X and Y directions. Using this offset field for 

interpolation, we then perform standard convolution operations. To address the challenge of 

potentially non-integer offsets, bilinear interpolation is employed, computing the weighted average 

of the four neighboring pixel values around each sample point to estimate the pixel value at the new 

position. For each point in the feature map, we need to consider the four neighboring pixels it may 

correspond to after offsetting. Thus, within the 3×3 convolution kernel range, each sample point may 

be associated with up to 36 different pixel values. Due to the effect of the offset field, these positions 

vary with changes in the offset, thereby achieving feature extraction capabilities for multiscale and 

irregular shapes. This mechanism effectively enlarges the receptive field of the convolution operation, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 June 2024                   doi:10.20944/preprints202406.0084.v1

https://doi.org/10.20944/preprints202406.0084.v1


 9 

 

allowing the network to capture complex structures and subtle changes in remote sensing images 

more finely and accurately. 

 

Figure 5. Using 3×3 convolution as an example, this demonstrates the offset process of deformable 

convolution and shows the corresponding effective receptive field. 

3. Results 

3.1. Experimental Environment and Parameter Settings 

The experiments were conducted on an Intel(R) Core(TM) i7-12700H 2.30 GHz processor with 

16.0 GB of RAM, an NVIDIA GeForce RTX 3060 Laptop GPU, and CUDA 11.2. The input image size 

was set to 256×256, batch size to 2, epochs to 200, and the learning rate to 0.002. 

We trained and validated our model on the ESWKB dataset. We divided the dataset into a 

training set, a test set, and a validation set in a ratio of 6:2:2, with images randomly cropped to the 

specified pixel size of 256×256. Additionally, simple data augmentation techniques were applied to 

the training set, including image flipping and random rotations by multiples of 90°. 

3.2. Evaluation Metrics 

To assess the SwinDefNet performance, we utilized four widely recognized metrics in the field 

of semantic segmentation: accuracy, precision, recall, and the F1 score.  

The fraction of accurately predicted pixels relative to all pixels is known as accuracy.  The 

fraction of accurately predicted water body pixels among all pixels projected to be water bodies is 

expressed as precision.  Out of all actual water body pixels, recall is the proportion of water body 

pixels that were accurately anticipated.  The F1 score, which is a measure of the model's overall 

performance, is the harmonic mean of accuracy and recall. 

In these evaluation metrics, accuracy represents the proportion of pixels that are correctly 

predicted relative to the total number of pixels. The precision quantifies the proportion of pixels that 

are labeled as bodies of water but are also bodies of water. Recall, on the other hand, measures the 

proportion of pixels correctly identified in the actual water body. F1 score is the harmonic average of 

accuracy and recall and can be used as a comprehensive measure of the overall performance of the 

model. 

The calculation methods for accuracy, precision, recall, and F1 score are as follows: 

�������� =
�� + ��

�� + �� + �� + ��
 (5)

��������� =
��

�� + ��
 (6)
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������ =
��

�� + ��
 (7)

�1����� =
2 ∗ ��������� − ������

��������� − ������
 (8)

In the formulas, TP represents true positives, indicating the number of samples where the model 

correctly predicts water body when the actual class is water body; TN represents true negatives, 

indicating the number of samples where the model correctly predicts non-water body when the 

actual class is non-water body; FP represents false positives, indicating the number of samples where 

the model incorrectly predicts water body when the actual class is non-water body; FN represents 

false negatives, indicating the number of samples where the model incorrectly predicts non-water 

body when the actual class is water body. 

3.3. Method Comparison 

To evaluate the performance of the proposed model, we compared it with four commonly used 

methods: U-Net, ResNet, DeepLabv3+, and DeepWaterMapv2. Here are detailed descriptions of 

these methods: 

U-Net: U-Net is a fully convolutional neural network architecture with an encoder-decoder 

structure that is widely used for image segmentation tasks due to its ability to capture contextual 

information and precise localization. The encoder extracts image features through convolutional 

layers, while the decoder progressively restores the spatial resolution of the image. By introducing 

skip connections, it merges the features from the encoder and decoder to improve segmentation 

accuracy. U-Net has been widely applied in remote sensing image segmentation due to its efficient 

and reliable performance. The model explored in this study also adopts an encoder-decoder 

structure, hence we chose this model for comparison. 

ResNet: ResNet (Residual Network) [33] is a CNN designed to address the issues of gradient 

vanishing and representation bottlenecks in deep networks. By introducing Residual Blocks, the 

model allows the network to learn residual representations between input and output, optimizing 

deep networks. This structure enables ResNet to construct deeper network models while maintaining 

lower error rates. ResNet comes in multiple versions, and in this paper, we utilize ResNet-50. 

DeepLabv3+: DeepLabv3+ is an advanced semantic segmentation model that integrates multi-

scale features through an encoder-decoder structure, combined with dilated convolutions and ASPP 

modules to expand the receptive field and capture contextual information. The decoder module 

effectively merges high and low-resolution features to refine segmentation results, particularly 

focusing on object boundaries. 

DeepWaterMapv2: DeepWaterMapv2 focuses on surface water mapping tasks and adopts the 

U-Net network structure. By iteratively applying convolutional and pooling operations, it effectively 

extracts key features from images for the precise identification and extraction of water body regions. 
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Figure 6. Visualization of the loss for U-Net, ResNet, DeepLabv3+, DeepWaterMapv2, and our 

proposed model after 200 epochs of training. 

3.4. Analysis of Experimental Results 

After completing model training, we used 20% of the dataset for validation. In the validation set, 

we selected six images to demonstrate the prediction results (as shown in Figure 7), including 

mountainous regions with large variations in terrain and areas with high cloud cover. To accurately 

evaluate the performance of SwinDefNet ,we compare it with other advanced water body detection 

methods, Table 2 presents the average values of four evaluation metrics for all images in the test set. 

Additionally, compared to other methods, our model achieved results of over 90%, with values of 

97.89% for accuracy, 94.98% for precision, 90.05% for recall, and 92.33% for F1 score, respectively. 

Through comparison and analysis of the four metrics, we found that our model achieved the 

highest accuracy among all methods. This indicates that our model has the best overall predictive 

ability for mapping surface water and can better extract water bodies from remote sensing images. 

Additionally, when compared to other methods, our model also achieved the highest recall, 

indicating that it can capture more water pixels during surface water mapping, with the lowest 

degree of omission in extracting water pixels. 

Analyzing Table 2, we found that in the test, ResNet achieved an F1 score of 92.68%, which is 

0.35% higher than our proposed model, indicating that ResNet has better overall performance. 

However, its recall was 88.96%, indicating that it would miss many water pixels during extraction, 

showing a certain gap in the fine extraction of water bodies. DeepWaterMapv2 achieved a precision 

as high as 99.07%, but with a recall of only 91.89%. This suggests that the DeepWaterMapv2 method 

sacrifices recall for precision in model prediction, indicating room for improvement in the fine 

extraction of water bodies. 

Figure 7 compares the predicted images generated by different methods, while Figure 8 shows 

the true labels of the predicted images. Figures 9 and 10 present partial results of surface water 

mapping in mountainous and cloudy regions, with other result comparisons provided in the 

Appendix at the end of the document. We observe that our proposed model exhibits excellent noise 

suppression in the background (see Figure 9), outperforming ResNet and DeepLabv3+ methods. 

Moreover, satisfactory extraction results are achieved for winding small rivers and complex urban 

areas (see Figure 10). Compared to other methods, the boundaries are clearer, and in regions with 
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higher cloud cover, our model has the lowest probability of misclassifying the background as water, 

compared to U-Net and ResNet methods. 

 

Figure 7. Comparison of predicted results using different methods on test images, with red circles 

indicating areas of comparison between the predicted images generated by each method. 

 

Figure 8. Labels data for illustrating the prediction results. 
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Figure 8. (continued). 

 

Figure 9. Results of water extraction in hilly regions are compared with existing approaches and our 

suggested model in mountainous regions. 
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Figure 10. Comparison of our suggested model's and other approaches' water extraction outcomes in 

cloudy regions. 

Table 2. Evaluation metrics of different methods. Average values for validation set images. 

Method Accuracy(%) Precision(%) Recall(%) f1_score(%) 

Ours 97.89 94.98 90.05 92.33 

Unet 90.79 95.24 72.17 77.03 

Resnet 97.65 97.26 88.96 92.68 

Deeplabv3_plus 97.27 93.80 86.53 89.22 

Deepwatermapv2 97.41 99.07 81.89 88.69 

In order to further confirm the reliability and accuracy of our method, we conducted tests in 

various regions, comparing the performance of U-Net, ResNet, DeepLabv3+, and DeepWaterMapv2 

in cloudy and mountainous areas. The results for accuracy and F1 score are shown in Figures 11 and 

12, respectively. Table 3 provides detailed numerical values of the four evaluation metrics for the five 

methods in the three regions and the entire validation dataset. 
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Figure 11. Comparison of the accuracy of several methods in various geographical areas. 

 

Figure 12. Comparison of the F1 score of several methods in various geographical areas. 

Observing Table 3, we can see that our proposed model performs best in mountainous regions, 

with accuracy, recall, and F1 score values of 98.03%, 96.61%, and 93.52%, respectively. In the 

extraction of water bodies in mountainous regions, except for U-Net, all other methods achieved 

satisfactory results, with accuracy above 97%. Although U-Net's performance in mountainous 

regions is not ideal, it achieved good results in handling elongated and small water bodies in cloudy 

and urban areas. 

Our model achieved an accuracy and F1 score of 98.30% and 93.46%, respectively, in cloudy 

areas. Compared to the best-performing ResNet, the differences are only 0.19% and 1%, respectively. 

Compared to other methods, our recall is highest at 92.22%, indicating that when predicting cloudy 

areas, we sacrificed some accuracy to reduce the omission of water pixels, enabling fine extraction of 

water bodies. This is also evidenced by our predicted images. Meanwhile, by comparing the labeled 

image with the predicted image, we observed that our model exhibits a higher similarity in extracting 

small water bodies' boundaries. This indicates that our experiment has certain advantages in refining 

the processing of small water bodies. 
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Table 3. Accuracy, Precision, Recall, and F1 score results of water mapping in different regions for 

the five methods. 

Method Ours Unet Resnet Deeplabv3+ Deepwatermapv2 

Mountainous Area 

Accuracy 98.03% 86.77% 97.14% 97.88% 97.47% 

Precision 95.99% 89.24% 97.97% 95.42% 99.34% 

Recall 91.61% 49.18% 87.91% 89.18% 85.65% 

f1_score 93.52% 55.56% 92.32% 91.08% 91.46% 

Cloud Area 

Accuracy 98.30% 90.93% 98.49% 97.64% 97.14% 

Precision 94.97% 93.66% 97.12% 93.81% 98.61% 

Recall 92.22% 63.05% 92.12% 89.27% 84.85% 

f1_score 93.46% 67.29% 94.46% 91.33% 88.19% 

4. Discussion 

In this part, we performed ablation tests to evaluate the significance of various components, 

along with discussing the impact of the Swin Transformer and Deformable Convolution on the 

network's performance. The model used the same training set, test set, and validation set in the 

ablation experiments. 

Firstly, to validate the effectiveness of Swin Transformer in land water mapping tasks, we first 

compared the combined Swin Transformer and DeepLabV3+ model (see Model 1 in Table 4) with the 

DeepLabV3+ model using the original Xception backbone (see Model 3 in Table 4). Accuracy, 

Precision, Recall, and f1_score were used as evaluation metrics, the results showed that using Swin 

Transformer improved Accuracy and f1_score by 1.20% and 3.93% respectively. Precision and Recall 

also increased by 6.82% and 0.28% respectively. The analysis indicated that using Swin Transformer 

increased the accuracy of model predictions and improved its reliability. Additionally, there was a 

6.82% increase in Precision which suggests that after incorporating Swin Transformer into the model, 

it became more accurate at predicting water pixels in instances where it is necessary for classification 

tasks while reducing classification errors caused by misjudgments of water pixels. 

Table 4. The results of the ablation experiments. 

Model Swin Transform Deformable Conv Accuracy(%) Precision(%) Recall(%) f1_score(%) 

1   97.89 94.98 90.05 92.33 

2   97.67 94.96 89.04 91.73 

3   96.70 88.17 89.77 88.40 

Secondly, to validate the effectiveness of Deformable Convolutional Networks (Deformable 

Conv), we compared a DeepLabV3+ model with Swin Transformer as its backbone network using 

regular 3×3 convolutions with another one using Deformable Conv (refer to Model 2 in Table 4). The 

results showed that after incorporating Deformable Convolutional Networks into our model's 

architecture led to improvements in Accuracy (+0.22%), Precision (+0.03%), Recall (+1.01%), and 

f1_score (+0.6%). This indicates an enhancement in both accuracy and reliability after integrating 

Deformable Conv into our model's architecture while also improving its ability to identify water 

pixels through an increase of +1 .01 % recall rate. 

Through experimental analysis, we can confirm that both Swin Transformer and Deformable 

Conv are beneficial for water extraction tasks. The combined use of these two components has also 

enhanced the precision of land water mapping to achieve fine-grainedextraction of water bodies. 

5. Conclusions 

To achieve fine-grained extraction of water bodies in remote sensing images, this study explored 

a novel combination of deep learning networks, employing an encoder-decoder structure for 
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extracting multiscale information. The model was developed in a two-step process: (1) the most 

advanced image classification and segmentation model is integrated into the encoder-decoder 

network structure; and (2) utilizing deformable convolution to adaptively adjust the receptive field 

for fine-grained extraction of water body features. More precisely, the model employed the Swin 

Transformer as the encoder to capture multiscale information, and leveraged deformable convolution 

to dynamically adjust the receptive field for the precise extraction of water body characteristics. 

Additionally, to assess the efficacy of our proposed method, we trained the novel integrated 

model on the ESWKB dataset and subsequently utilized it for mapping surface water in diverse 

geographical regions. Comparing with various existing methods, our proposed network combination 

outperformed them, especially in the fine-grained water body segmentation. This provides strong 

assistance for accurate water extraction and offers a strategy for fine-grained water body 

segmentation in remote sensing images. 
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Appendix A: Cloud Area 
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Appendix B: Mountainous Area 
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