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Abstract: We develop an action principle for producing a single fluid, two-constituent system with dissipation.

The two constituents in the model are particles and entropy. The particle flux creation rate is taken to be zero, while

the entropy creation rate is non-zero. Building on previous work, it is demonstrated that a new term (the proper

time derivative of the matter space “metric”) is required in the Lagrangian in order to produce terms typically

associated with bulk and shear viscosity. Equations of motion, entropy creation rate, and energy-momentum-

stress tensor are derived. Using an Onsager approach of identifying thermodynamic “forces” and “fluxes” a

model is produced which delivers the same entropy creation rate as the standard, relativistic Navier-Stokes

equations. This result is then contrasted with a model generated in the spirit of the action principle, which takes

as its starting point a specific Lagrangian and then produces the equations of motion, entropy creation rate, and

energy-momentum-stress tensor. Unlike the equations derived from Onsager reasoning, where the analogs of the

bulk and shear viscosity coefficients are prescribed “externally”, we find that the form of the coefficients in the

second example are a direct result of the specified Lagrangian. Furthermore, the coefficients are shown to satisfy

evolution equations along the fluid worldline; also a product of the specific Lagrangian.

Keywords: relativistic fluids; dissipation; field theory

1. Introduction

Breakthrough progress in gravitational-wave astronomy prompts us to revisit “old questions” in
relativistic fluid dynamics. In order to provide robust models of binary neutron star mergers (like
the celebrated GW170817 event [1,2]) and mixed binary systems involving a neutron star and a black
hole (like the recently announced GW230529 event [3]) we need to carry out large scale numerical
simulations incorporating as much of the extreme physics as we can manage [4,5]. In addition to the
“live” spacetime of Einstein’s gravity, our simulations need to include the complex matter physics that
comes into play at densities beyond nuclear saturation. These aspects must be represented faithfully in
order to allow reliable parameter extraction from observed signals. Somewhat colloquially, the stated
aim is to “constrain the equation of state” of supranuclear density matter. However, this aim includes
a number of issues associated with the systematics of simulations and the extracted model waveforms.
This, in turn, raises problems which become pressing for the development of the next-generation
of gravitational-wave instruments (the Einstein Telescope in Europe and Cosmic Explorer in the
USA). These instruments will be sensitive at higher frequencies than the current LIGO-Virgo-Kagra
interferometers and are expected to observe the post-merger phase, in addition to the late inspiral
phase currently seen.

State-of-the-art simulations tell us that binary mergers involve high-density matter at temperatures
close to those reached in terrestrial collider experiments (up to 100 MeV) [6]. At these extreme
temperatures, the fluid will be far from thermodynamical equilibrium and the role of neutrinos
is expected to be paramount [6]. Recent numerical relativity experiments [7–9] indicate that out-of-
equilibrium physics (in the form of bulk vicosity and/or neutrino transport) will affect the gravitational-
wave signal at a “detectable” level. In order to explore the relevant physics we evidently need to
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incorporate non-equilibrium aspects in our numerical simulations. In effect, we need to consider
dissipative general relativistic fluid dynamics [10].

The implementation of dissipation in relativistic fluid dynamics is known to be tricky, both
conceptually and practically. While there has been important recent progress on issues relating to
stability and causality [11,12], we still do not have a universally agreed “framework” that would allow
us to consider the complete range of physics that comes into play in neutron star mergers. Mergers
combine a highly-energetic, turbulent flow of beyond nuclear-density matter; strong magnetic fields;
and a dynamical spacetime generating copious amounts of gravitational waves. These events are
unique because they operate over an impressive range of spatial scales. At the smallest scales, they
provide data for the matter equation of state [13–16], while on large scales they may form long-lived
merger remnants (possibly eventually forming black holes [17–19]). Rapid nuclear reactions during
low-density matter outflows may lead to observable kilonova signatures [20]. Observed short gamma-
ray bursts may be explained as the twisting of the stars’ magnetic field which would help collimate
an emerging jet [21]. Multi-messenger observations of these events will—at some level—encode
dissipative aspects (ranging from the bulk viscosity in the merger remnant [6,8] to resistivity affecting
the evolution of the magnetic field [22–24]).

Arguably, the most “complete” framework for modelling the physics we need to consider is the
variational approach reviewed in [10]. Notably, recent developments of the variational strategy include
dissipative effects [25]. This effort, motivated by the requirements from gravitational-wave astronomy1,
provides an action principle for multi-fluid systems for which no explicit reference to an equilibrium
state is required and as a result the field equations are fully non-linear. This is in sharp contrast to all
other models for dissipative relativistic fluid dynamics which build on a phenomenological derivative
expansion (away from a supposed equilibrium state). The main idea of the variational model is that the
dynamical degrees of freedom of fluids are captured by fluxes, and if the flux for a fluid has non-zero
covariant divergence, or, equivalently, its associated dual three-form is not closed, then there will be
dissipation. Conceptually, the idea is clear but we are still quite far from turning this understanding
into a complete “workable” model.

The aim of the present discussion is to take steps to improve the situation by building an explicit
action principle which connects with the familiar Navier-Stokes equations. The discussion will
introduce a number of “simplifications”. Most notably, we will restrict ourselves to a single-fluid
model. In some sense, this is against “better judgement” because we know that issues like heat/entropy
flow require a multi-fluid treatment [10]. Moreover, the variational framework readily allows for multi-
fluid aspects to be incorporated. However, if we want to make contact with numerical simulations
(and we do!) then it must be noted that such efforts reduce the analysis to a single fluid whenever this
is possible. Hence, it makes sense to see how far we can get if we restrict the variational discussion in
this sense from the outset. The obvious caveat to this statement of intent is that we should perhaps
not expect the effort to be completely successful. We are cutting corners and this ought to impact on
the model we arrive at. Having said that, we expect to learn useful lessons from the exercise. The
calculation we present is perhaps mainly interesting from a conceptual perspective, but the derivation

1 We could perhaps claim to be motivated by the old (often paraphased) proverb that necessity is the mother of invention.
Google suggests that one of the earliest statements of this proverb is to be found in the Aesop’s Fable, “The Crow and the
Pitcher” (see, eg., https:// read.gov/aesop/001.html). Alternatively, we can draw inspiration from Plato’s Republic and the
comment “our need will be the real creator” (Benjamin Jowett, Plato’s Republic: The Greek Text, 1894, 3:82 "Notes" Jowett,
Book II, 369c). Staying closer to science, Alfred North Whitehead argued in an address to the Mathematical Association
of England that “the basis of invention is science, and science is almost wholly the outgrowth of pleasurable intellectual
curiosity.” Perhaps curiosity—pleasurable or not—is the main driver for the current effort? Maybe we are just stumbling
around in the dark, with “necessity is the mother of futile dodges” (Julius A. Sigler, Education: Ends and Means. University
Press of America. p. 140.) in mind... There are different possible attitudes, but theoretical, experimental, and observational
investigations of viscous fluids have, at some time or other, embodied the sentiments of each of the above quotes. This
may simply be a reflection of how challenging the problem is. The work presented here provides, we believe, a unique
perspective but we cannot yet say if this is more than a futile dodge.
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also highlights aspects that need to be included in more realistic models. For example, we will show
that a new fluid variable (the proper time derivative of the matter space “metric”) must be included
in the original Lagrangian of [25] in order to recover the expected terms associated with bulk- and
shear-viscosity. This new inclusion, in turn, affects the field equations, the entropy creation rate, and
the energy-momentum-stress tensor. Additionally, we provide an explicit formulation of the matter
space entropy three-form, going beyond the phenomenology explored in previous work. The results
show that evolution equations along world lines naturally arise in the model, as one might expect
from a relativistic formulation.

In Section 2, the generic action is written down and a variation with respect to the field variables
(particle and entropy flux and the spacetime metric) is given. In Section 3, abstract, three-dimensional
“matter” spaces are introduced so that the fluxes can be reformulated in such a way that the action
principle becomes viable. Section 4 uses the same approach as [25] to build the required variations of
the field variables; in particular, the Lagrangian displacement in Section 4.2. While the approach is
the same, derivatives of the matter space metrics are assumed in the generic functional form of the
action. This is because models like traditional Navier-Stokes are not possible without such derivatives
in the Lagrangian. In Section 5, all the ingredients are stirred together and poured back into the initial
variation of Section 2. The fluid field equation, entropy creation rate, and the energy-momentum-stress
tensor are derived. In Section 6, a specific form for the Lagrangian is written down. In the Appendix,
we provide details of the derivations of key elements of the formalism. While the results of the
derivations are essential to delivering the final product, the calculations themselves are not necessary
during a first reading of the paper.

2. The Fluid Action

In the variational approach, the equations of motion are derived from an action principle which has
as its Lagrangian the so-called “master” function Λ (see [10] for an extensive review). For a finite
temperature single-component system (as considered here), the master function is a function of all
the independent scalars which can be built using the spacetime metric gab, the particle flux na, and
the entropy flux sa. However, here we restrict ourselves by only considering n2 = −gabnanb and
s2 = −gabsasb (excluding the quantity gabnasb, known to be associated with entropy entrainment [10]).
The action is then given by

SF =
∫
M

d4x
√
−gΛ

(
n2, s2

)
. (1)

The variation of SF with respect to na, sa, and gab is

δSF =
∫
M

d4xδ
(√

−gΛ
)

=
∫
M

d4x
√
−g
[

µaδna + Θaδsa +
1
2

(
Λgab + µanb + Θasb

)
δgab

]
, (2)

where we have used the fact that
δ
√
−g =

1
2
√
−ggabδgab (3)

and defined

µa = −2
∂Λ
∂n2 na , (4)

Θa = −2
∂Λ
∂s2 sa . (5)

As we restrict our analysis to systems with a single fluid degree of freedom, the two constituents,
particles and entropy, must be comoving. We denote the corresponding unit four-velocity as ua, with
normalization uaua = −1 (in geometric units). The particle flux is now na = nua, and the entropy flux
is sa = sua, where the particle density is given by n = −uana and the entropy density is s = −uasa.
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We also note that the chemical potential is given by µ = −uaµa and the temperature follows from
T = −uaΘa.

The derivation of the equations of motion is complicated by the fact that our variation of the fluxes
δna and δsa must involve, indirectly, the variation of the worldlines given by ua. Because uaua = −1
everywhere, it has only three degrees of freedom. The impact of this can be seen already in δSF above.
The equations of motion result when arbitrary variations of the field degrees of freedom do not change
SF to linear order; i.e. δSF = 0. If we consider arbitrary variations δna and δsa then the equations of
motion are simply µa = Θa = 0, which do not recover the simplest perfect fluid equations.

As shown in [26], building a viable action for two different “particle” constituents, such as matter
and entropy, and one four-velocity, is straight-forward in the non-dissipative (perfect fluid) regime;
even the generalization to a non-dissipative system of, say, M-constituents and N-fluids follows
naturally (see [10] for details). Building on this, Andersson and Comer [25] demonstrated how to take
the basic principles built into these actions and develop a fully non-linear set of field equations for
dissipative fluids. But, as we will demonstrate in the next section, it is not straight-forward, a priori,
to extend single-fluid actions to dissipative systems (as represented by, for example, the traditional
Navier-Stokes equations).

3. Matter Space and Flux Setup

Let us introduce the necessary ingredients of a viable action principle for a single fluid of matter
and entropy which has dissipation. The first step is to introduce two abstract three-dimensional
Riemannian (“matter space”) manifolds, whose individual points correspond to individual fluid
worldlines in spacetime. The second step is to assume that the two manifolds are diffeomorphic to
each other. A fair bit of infrastructure will have to be built before getting to the action principle and
the resulting field equations; in particular, a lot of detail on the so-called matter space metrics must be
included as these were shown in [25] to be essential elements required for dissipation. Some of the
more tedious details of the infrastructure construction are presented in the Appendix.

3.1. The Matter Space Setups

First of all, we introduce the two three-dimensional Riemannian manifolds that are diffeomorphic
to each other. The first of these, the abstract particle space, is labeled by the coordinates XA (A = 1, 2, 3),
and the second, for the abstract entropy space, is labeled by the coordinates X̄A. Because the two
spaces are diffeomorphic to each other, there are two mappings f A and f̄ A whereby

X̄A = f̄ A
(

XB
)

, XA = f A
(

X̄B
)

, (6)

and

MA
B =

∂ f A

∂X̄B , M̄A
B =

∂ f̄ A

∂XB ∋ MA
C M̄C

B = M̄A
C MC

B = δA
B . (7)

Both sets, XA and X̄A, are scalar functions on spacetime, with the property that each unique wordline
of the field ua is mapped to a unique point XA in the matter space and a unique point X̄A in the
entropy space.

Next, spacetime index carrying objects, like na, sa, and the metric gab, can be identified with
objects carrying matter space indices (such as the particle and entropy, respectively, densities nABC
and sABC introduced below) through use of the maps

ΨA
a = ∇aXA (8)

and
Ψ̄A

a = ∇aX̄A . (9)
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The maps are connected to each other via the chain rule; i.e.,

ΨA
a =

∂ f A

∂X̄B ∇aX̄B = MA
B Ψ̄B

a , Ψ̄A
a =

∂ f̄ A

∂XB ∇aXB = M̄A
B ΨB

a . (10)

The four maps
{

ΨA
a , Ψ̄A

a , M̄A
B , MA

B
}

will be shown later to be preserved along the worldlines of ua

(i.e. they are Lie-dragged by the fluid flow).

3.2. The Particle and Entropy Flux, Chemical Potential, Temperature, and Metric Constructs

The ΨA
a and Ψ̄A

a maps allow us to “pull-back/push-forward” index-carrying objects in spacetime
and the matter spaces. To begin, we replace the fluxes na and sa with their respective dual three forms
nabc and sabc; namely,

nabc = ϵdabcnd , na =
1
3!

ϵbcdanbcd ,

sabc = ϵdabcsd , sa =
1
3!

ϵbcdasbcd . (11)

The particle space three-form nABC and the entropy space three-form sABC are then related to the above
as

nabc = ΨA
a ΨB

b ΨC
c nABC , sabc = Ψ̄A

a Ψ̄B
b Ψ̄C

c sABC . (12)

Similarly, we introduce the dual three-forms for µa and Θa; i.e.

µabc = ϵdabcµd , µa =
1
3!

ϵbcdaµbcd ,

Θabc = ϵdabcΘd , Θa =
1
3!

ϵbcdaΘbcd , (13)

to get the matter space chemical potential and temperature three-forms, respectively,

µABC = ΨA
a ΨB

b ΨC
c µabc , ΘABC = Ψ̄A

a Ψ̄B
b Ψ̄C

c Θabc . (14)

The remaining dynamical field is the spacetime metric gab. Using the maps ΨA
a and Ψ̄A

a we may
construct three matter space “metrics” gAB, ḡAB, and ĝAB:2

gAB = ΨA
a ΨB

b gab = gBA , (15)

ḡAB = Ψ̄A
a Ψ̄B

b gab = ḡBA , (16)

ĝAB = ΨA
a Ψ̄B

b gab = Ψ̄B
b ΨA

a gba = ĝBA . (17)

Because of the chain rule, we have

gAB = MA
C MB

DΨ̄C
a Ψ̄D

b gab = MA
C MB

D ḡCD ,

ḡAB = M̄A
C M̄B

DΨC
a ΨD

b gab = M̄A
C M̄B

DgCD ,

ĝAB = ΨA
a M̄B

CΨC
b gab = M̄B

CgAC = M̄B
CgCA . (18)

Locally (on matter space) these objects transform as tensors. However, for our purposes it is better
to view the index carrying objects as matrices and the transformations as matrix products. Note that
the use of multiple matter space metrics (although on different, but linked, manifolds) was the way
that [25] introduced dissipation into a relativistic action principle.

2 We will see later that these fields are essential components of an action-based dissipative system.
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3.3. Mapping gAB, ḡAB, and ĝAB to Spacetime Three-Metrics Perpendicular to ua

Our goal here is to introduce dissipation into the relativistic fluid theory. It is well-established
in the literature that the form ∇aub is the principal object that shows up in the different channels of
dissipation (bulk, shear, etc.). The various channels of dissipation are extracted through the use of a
well-known decomposition of ∇aub; namely,

∇aub = σab +
1
3

Θhab + ϖab − uaab ,

σab =
1
2

(
hac∇cub + hbc∇cua

)
− 1

3
Θhab = σba ,

ϖab =
1
2

(
hac∇cub − hbc∇cua

)
= −ϖba ,

hab = gab + uaub = hba ,

aa = ub∇bua ,

Θ = ∇aua . (19)

The hab here is directly connected with gAB since

ΨA
a ΨB

b gAB = hab . (20)

Obviously habub = hbaub = 0, which means σabub = σbaub = 0 and ϖabub = −ϖbaub = 0, as well. It is
also the case that habσab = 0 and habϖab = 0. Finally, because uaua = −1, we have uaaa = 0.

The pull-back of gAB, ḡAB, and ĝAB leads to five distinct “metric” tensors on spacetime which are
spacelike with respect to the ua worldlines:

hab = ΨA
a ΨB

b gAB = Ψ̄A
a Ψ̄B

b ḡAB = ΨA
a Ψ̄B

b ĝAB = Ψ̄A
a ΨB

b ĝBA ,

h̄(1)ab = Ψ̄A
a Ψ̄B

b gAB , h̄(2)ab = ΨA
a ΨB

b ḡAB ,

ĥ(1)ab = ΨA
a Ψ̄B

b gAB = Ψ̄B
a Ψ̄A

b ĝAB , ĥ(2)ab = ΨA
a ΨB

b ĝAB = Ψ̄A
a ΨB

b ḡAB . (21)

However, because habub = h̄(1)ab ub = ĥ(1)ab ub = . . . = 0, we will simplify the analysis by restricting all of
these objects to be conformal to hab; i.e.

h̄(1)ab = H̄(1)hab , H̄(1) ≡ 1
3

hab h̄(1)ab =
1
3

ḡABgAB ,

h̄(2)ab = H̄(2)hab , H̄(2) ≡ 1
3

hab h̄(2)ab =
1
3

gAB ḡAB ,

ĥ(1)ab = Ĥ(1)hab , Ĥ(1) ≡ 1
3

hab ĥ(1)ab =
1
3

ĝABgAB =
1
3

M̄A
A ,

ĥ(2)ab = Ĥ(2)hab , Ĥ(2) ≡ 1
3

hab ĥ(2)ab =
1
3

gAB ĝAB =
1
3

MA
A . (22)

4. The Nuts and Bolts of the Action Variation

We will now show that the proper-time derivatives ġAB, ˙̄gAB, and ˙̂gAB are directly connected to
σab, Θ, and hab. The implication of this is that any recovery of, say, the Navier-Stokes equations via the
action principle means that ġAB, ˙̄gAB, and ˙̂gAB must be included as independent variables in the field
variations.

The result follows because the master function Λ is commonly left unspecified in the action-
based approach: usually only its existence and the fields/fluxes it depends on are postulated. If an
explicit master function can be provided, then the dependence of this on the fields’ derivatives will
automatically be taken care of by the variational principle. We also note that [27] works around this
issue by considering the dissipative fluxes as functionals of, say, the “metric” gAB. In the present
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context, however, we try to avoid that as this would inevitably make the discussion somewhat
phenomenological.

4.1. Matter Space Maps and Metric Derivatives

In the Appendix A.3, it is shown (in Equation (A28)) that

ua =
1
3!

ϵbcdaΨB
b ΨC

c ΨD
d ϵBCD =

1
3!

ϵbcdaΨ̄B
b Ψ̄C

c Ψ̄D
d ϵ̄BCD . (23)

This leads to the important consistency check that

uaΨA
a = ua∇aXA = LuXA = 0 =⇒ uaΨ̄A

a = LuX̄A = M̄A
B

(
uaΨB

a

)
= 0 , (24)

which must hold because the map ΨA
a is contracted four times on ϵbcda but XA has only three com-

ponents. This means the XA and X̄A are Lie-dragged along the fluid worldlines, which is expected
because the basic role of the maps ΨA

a and Ψ̄A
a is to identify specific wordlines on spacetime with

specific points in the matter spaces.
Because f̄ A is a function of XA then M̄A

B is also a function of XA, and because f A is a function of
X̄A then MA

B is a function of X̄A. Given that LuXA = 0 = LuX̄A, we see

Lu M̄A
B = 0 = Lu MA

B . (25)

Once the maps are specified at a given point on a worldline, they will not change on future points of
the same worldline, which is ultimately due to our assumption that the particle and entropy spaces are
diffeomorphic to each other.

To establish rules for taking derivatives of the matter space metrics we need to develop further
properties of the maps ΨA

a and Ψ̄A
a : First, because the XA are scalars then

∇bΨA
a = ∇aΨA

b . (26)

This and the Lie-dragging of the XA along ua allows us to write

ub∇bΨA
a = ub∇aΨA

b = −ΨA
b ∇aub . (27)

Hence, the Lie-derivative of ΨA
a with respect to ua is

LuΨA
a = ub∇bΨA

a + ΨA
b ∇aub = −ΨA

b ∇aub + ΨA
b ∇aub = 0 , (28)

and similarly
LuΨ̄A

a = 0 ; (29)

therefore, the maps are also Lie dragged along the worldlines. These can be combined to show

uc∇c

(
ΨA

a ΨB
b

)
= −

(
ΨA

c ΨB
b ∇auc + ΨA

a ΨB
c ∇buc

)
. (30)

Using Equation (28), we see that

ġAB ≡ Lu

(
ΨA

a ΨB
b gab

)
= ΨA

a ΨB
b Lugab

= −2ΨA
a ΨB

b ⊥a
c⊥b

d ∇(cud)

= −2ΨA
a ΨB

b

(
σab +

1
3

Θhab
)

, (31)
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where ⊥a
b= ha

b. We also have

˙̄gAB ≡ Lu

(
Ψ̄A

a Ψ̄B
b gab

)
= M̄A

C M̄B
D ġCD , (32)

and

˙̂gAB ≡ Lu

(
ΨA

a Ψ̄B
b gab

)
= M̄B

C ġAC . (33)

If we contract both sides of Equation (31) with gAB, we have

gAB ġAB = −2Θ = ḡAB ˙̄gAB = ĝAB ˙̂gAB . (34)

Later, when we take partial derivatives of Equation (79) as one of the necessary steps of the action
principle, the three quantities gAB, ḡAB, and ĝAB are treated as being independent. This prompts us to
introduce

Θ(1) = −1
2

ḡAB ˙̄gAB ,

Θ(2) = −1
2

gAB ġAB ,

Θ(3) = −1
2

ĝAB ˙̂gAB , (35)

to recognize the independence of gAB, ḡAB, and ĝAB. In the variations that occur in the action, we need
to recognize also that the three Θ(i) are independent of each other. Once the variations are completed,
then the three Θ(i) can be set equal to each other (as in (34)).

The conformal factors Ĥ(1) and Ĥ(2) satisfy ˙̂H(i) = 0 (i = 1, 2) since the first is a function only of
XA and the second depends on only X̄A. The proper time derivative ˙̄H(i) is more complicated; namely,

˙̄H(i) =
1
3

(
˙̄gABgAB + ḡAB ġAB

)
= −2

3

[(
Ψ̄A

a Ψ̄B
b gAB

)
− hcd

(
Ψ̄A

c ΨC
a gAC

)(
Ψ̄B

d ΨD
b gBD

)](
σab +

1
3

Θhab
)

= −2
3

[
H̄(i) −

(
Ĥ(i)

)2
]

hab

(
σab +

1
3

Θhab
)

=
2
3

[
H̄(i) −

(
Ĥ(i)

)2
]

d(ln n)
dτ

, (36)

where we have used the fact that because ∇ana = 0 we can replace Θ with

Θ = −d(ln n)
dτ

. (37)

This implies that if H̄(i)(τ) = 0 for every value τ, and n2/3(τ) does not remain constant, then Ĥ(i) = 0.
Finally, we will work out the proper time derivative of ϵABC. Begin by noting that

ua∇a det
[

gDE
]
= ua∇a

(
1
3!
[ABC]D [DEF]DgADgBEgCF

)
=

1
2
[CAB]D [FDE]DgADgBE ġCF

= det
[

gDE
]

gCF ġCF

= −2 det
[

gDE
]
Θ , (38)
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and therefore
ϵ̇ABC = −ϵABCΘ , ˙̄ϵABC = −ϵ̄ABCΘ . (39)

4.2. The Lagrangian Displacement

The key step to finding the correct equations of motion is to make sure that the variations δna

and δsa incorporate the Lie dragging of XA and X̄A. We do this by using the Lagrangian displacement
∆ = δ + Lξ , where Lξ is the Lie derivative along a spacetime displacement ξa. It is a measure of how
a quantity changes with respect to fluid observers, who ride along with the worldlines. When we
consider the action principle, we are then looking for variations δXA that lead to δSF = 0.

When a worldline is varied it must still be the case that its own XA and X̄A remain fixed. The
implication, then, is that δXA and ξa must be such that they lead to ∆XA = 0; hence, we find

δXA = −Lξ XA = −ξa∂aXA = −ΨA
a ξa ,

δX̄A = M̄A
B δXB = −M̄A

B ΨB
a ξa = −Ψ̄A

a ξa . (40)

Obviously,
∆M̄A

B = ∆MA
B = 0 . (41)

The next thing is to use these to “fix” the variations δna and δsa so that the action principle delivers
viable equations of motion and an energy-momentum-stress tensor that can be inserted into the
Einstein equations to determine the gravitational field.

We will start by deriving ∆gAB, ∆ḡAB, and ∆ĝAB. To facilitate this, we can show

∆Ψ̄A
a = 0 . (42)

Now, we find for ∆gAB, ∆ḡAB, and ∆ĝAB that

∆gAB = ∆
(

ΨA
a ΨB

b gab
)

= ΨA
a ΨB

b ∆gab

= ΨA
a ΨB

b

[
δgab − 2∇(aξb)

]
,

∆ḡAB = M̄A
C M̄B

D∆gCD ,

∆ĝAB = M̄B
C∆gAC , (43)

where we have used the essential relation

∆gab = δgab − 2∇(aξb) . (44)

It will be the case that we need to incorporate ġAB = ua∇agAB into our scheme, meaning we will
have to work out also ∆ġAB. The starting point is

∆ġAB =
(

∂agAB
)

∆ua + ua∆
(

∂agAB
)

. (45)

From Equation (A28) in the Appendix, we can infer that

∆ua = −1
2

(
ubuc∆gbc

)
ua , (46)

where we have used

∆ϵabcd =
1
2

ϵabcdge f ∆ge f , ∆ϵABC = −1
2

ϵABCgDE∆gDE . (47)
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Next (see (A29) in the Appendix for details),

∆
(

∂agAB
)
= ∂a

(
ΨA

b ΨB
c ∆gbc

)
, (48)

Therefore (see Equation (A30) in the Appendix),

∆ġAB = ΨA
a ΨB

b

{
⊥(a

c ⊥b)
d ue∇e

(
∆gcd

)
+
[
⊥(a

e ⊥b)
f

(
∇(eu f )

)
ucud − 2 ⊥(a

c ⊥b)
e ∇due

]
∆gcd

}
, (49)

∆ ˙̄gAB = M̄A
C M̄B

D∆ġCD , (50)

∆ ˙̂gAB = M̄B
C∆ġAC . (51)

5. The Field Equations

The “trick” that incorporates dissipation in the variational formulation is to specify that the
functional dependencies of nABC and sABC are

nABC = nABC

(
XD
)

, sABC = sABC

(
X̄D, ḡDE, gDE, ĝDE, ˙̄gDE, ġDE, ˙̂gDE

)
. (52)

It is clear that ∆nABC = 0, since it only depends on XA. Consequently, the particle flux creation rate Γn

is shown to vanish; i.e. using the fact that ∇[aΨB
b] = 0, etc., we have

∇ana =
1
3!

ϵbcda∇[anbcd]

=
1
3!

ϵbcda∇[a

(
ΨB

b ΨC
c ΨD

d]nBCD

)
= − 1

3!
ϵbcdaΨB

[bΨC
c ΨD

d ΨA
a]

∂nBCD

∂XA ≡ 0 . (53)

However, the extra dependencies for sABC, as we will show below, lead to a non-zero entropy creation
Γs = ∇asa.

5.1. Construction of δna

To work out δna, we first determine ∆nABC, using the form given in Equation (52):

∆nABC =
∂nABC

∂XD ∆XD = 0 . (54)

Since ∆nABC = 0 and ∆ΨA
a = 0, we see ∆nabc = 0 and therefore

δnabc = −Lξ nabc . (55)

Noting that

1
3!

ϵbcdaLξ nbcd = ξb∇bna −
(

nd∇dξa − na∇dξd
)

, (56)

we see

δna = −
[
ξb∇bna −

(
nd∇dξa − na∇dξd

)]
+

1
2

nagbcδgbc , (57)

where we have used
δϵbcda =

1
2

ϵbcdage f δge f . (58)
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Finally, we have

µaδna =
(
−2nb∇[bµa]

)
ξa +

1
2

µanagbcδgbc +∇b

(
µanbξa − µanaξb

)
. (59)

5.2. Construction of δsa

To perform the setup for δsa we note that ∆sABC is

∆sABC =
∂sABC

∂ḡDE ∆ḡDE +
∂sABC

∂gDE ∆gDE +
∂sABC

∂ĝDE ∆ĝDE

+
∂sABC

∂ ˙̄gDE ∆ ˙̄gDE +
∂sABC

∂ġDE ∆ġDE +
∂sABC

∂ ˙̂gDE ∆ ˙̂gDE , (60)

where the form given in Equation (52) has been used. Recalling that ∆Ψ̄A
a = 0, we see

∆sabc = Ψ̄[A
a Ψ̄B

b Ψ̄C]
c ∆sABC , (61)

which implies
δsabc = −Lξsabc + Ψ̄[A

a Ψ̄B
b Ψ̄C]

c ∆sABC . (62)

Now we can rewrite δsa as

δsa = − 1
3!

ϵbcdaLξ sbcd +
1
3!

ϵbcdaΨ̄A
[bΨ̄B

c Ψ̄C
d]∆sABC +

1
2

sagbcδgbc

= −
[
ξb∇bsa −

(
sd∇dξa − sa∇dξd

)]
+

(
1
3!

ϵbcdaΨ̄A
[bΨ̄B

c Ψ̄C
d] ϵ̄ABC

)(
1
3!

ϵ̄DEF∆sDEF

)
+

1
2

sagbcδgbc

= −
[
ξb∇bsa −

(
sd∇dξa − sa∇dξd

)]
+

(
1
3!

ϵ̄ABC∆sABC

)
ua +

1
2

sagbcδgbc , (63)

so that

Θaδsa = −
(

2sb∇[bΘa] + ΓsΘa

)
ξa − 1

3!
ΘBCD∆sBCD − 1

2
Tsgabδgab

+∇b

[(
Θasaδb

c − Θcsb
)

ξc
]

. (64)

When we define, following the notation in [25],

D̄ab =
1
3

ΘABC ∂sABC

∂ḡDE Ψ̄D
a Ψ̄E

b , Dab =
1
3

ΘABC ∂sABC

∂gDE ΨD
a ΨE

b , D̂ab =
1
3

ΘABC ∂sABC

∂ĝDE ΨD
a Ψ̄E

b ,

D̄ab =
1
3

ΘABC ∂sABC

∂ ˙̄gDE Ψ̄D
a Ψ̄E

b , Dab =
1
3

ΘABC ∂sABC

∂ġDE ΨD
a ΨE

b , D̂ab =
1
3

ΘABC ∂sABC

∂ ˙̂gDE ΨD
a Ψ̄E

b , (65)

(where D̄ab = D̄ba, ubD̄ab = ubD̄ba = 0, and likewise for the others), and

DT
ab = D̄ab + Dab + D̂ab ,

DT
ab = D̄ab +Dab + D̂ab , (66)

we find (see (A31) in the Appendix)

1
3!

ΘBCD∆sBCD = ∇b
[

DT
ba +DT

cd

(
∇(cud)

)
ubua − 2DT

c(a∇b)u
c −∇c

(
DT

bauc
)]

ξa

+
1
2

[
DT

ab +DT
cd

(
∇(cud)

)
uaub − 2DT

c(a∇b)u
c −∇c

(
DT

abuc
)]

δgab
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−∇a
{[

DT
ab +DT

cd

(
∇(cud)

)
uaub − 2DT

c(a∇b)u
c −∇c

(
DT

abuc
)]

ξb
}

+∇c

[
1
2
DT

abuc
(

δgab − 2∇(aξb)
)]

. (67)

Therefore

Θaδsa = −
{

2sb∇[bΘa] + ΓsΘa +∇b
[

DT
ba +DT

cd

(
∇(cud)

)
ubua − 2DT

c(a∇b)u
c −∇c

(
DT

bauc
)]}

ξa

− 1
2

[
Tsgab + DT

ab +DT
cd

(
∇(cud)

)
uaub − 2DT

c(a∇b)u
c −∇c

(
DT

abuc
)]

δgab

+∇a
{[

DT
ab +DT

cd

(
∇(cud)

)
uaub − 2DT

c(a∇b)u
c −∇c

(
DT

abuc
)]

ξb
}

−∇c

[
1
2
DT

abuc
(

δgab − 2∇(aξb)
)]

+∇b

[(
Θasaδb

c − Θcsb
)

ξc
]

. (68)

5.3. The General Variation of the Action

Now that both δna and δsa are in place, we find that the variation of the action is

δSF =
∫
M

d4x
√
−g
{
−
(

2nb∇[bµa] + 2sb∇[bΘa] + ΓsΘa +∇b
[

DT
ba +DT

cd

(
∇(cud)

)
ubua

−2DT
c(a∇b)u

c −∇c

(
DT

bauc
)])

ξa +
1
2

[
(Λ + µn + Ts)gab + µanb

+Θasb + Dab
T +DT

cd

(
∇(cud)

)
uaub − 2D(a

T |c|∇b)uc −∇c

(
Dab

T uc
)]

δgab

}
+ B.T . , (69)

where B.T . represents all the “boundary terms” that come from the total derivatives. The equation of
motion is

0 = 2nb∇[bµa] + 2sb∇[bΘa] + ΓsΘa +∇b
[

DT
ba +DT

cd

(
∇(cud)

)
ubua

−2DT
c(a∇b)u

c −∇c

(
DT

bauc
)]

, (70)

the entropy creation rate is (see Equation (A32) in the Appendix)

TΓs = −DT
bauc∇c

[
∇(bua)

]
−
[

DT
ba − 2DT

c(a∇b)u
c
]
∇(bua) , (71)

and the energy-momentum-stress tensor is

Tab = Ψgab + (Ψ − Λ)uaub + Dab
T

+DT
cd

(
∇(cud)

)
uaub − 2D(a

T |c|∇b)uc −∇c

(
Dab

T uc
)

, (72)

with the generalized pressure Ψ defined as

Ψ = Λ − µana − Θasa = Λ + µn + Ts . (73)

6. A Navier-Stokes(-ish) Model

As a direct application of the formal developments we consider a specific model for the functional
dependence of sABC. As a precursor, we look more closely at the generic form of the entropy creation
rate derived above, by inserting the decomposition of ∇aub given in Equation (19) into Equation (71).
We then find

TΓs = −DT
ab

(
σab +

1
3

Θhab
)
− 1

3
DT

ab

(
Θ̇ +

2
3

Θ2
)

hab
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−DT
ab

[
σ̇ab − 2

(
σc

a + ϖc
a +

2
3

Θδa
c

)
σbc
]

. (74)

This is useful because we can use the Onsager technique (in this context, see [28]) of identifying appro-
priate thermodynamic “forces” and “fluxes” in order to ensure that the second law of thermodynamics
is respected; Γs ≥ 0. In this example, one finds that the following gives the usual Navier-Stokes
entropy creation rate, but a different equation of motion and energy-momentum-stress tensor; namely,
the choice

DT
ab = −T

{
(η − 2λ)σab +

[(
ζ +

1
3

η

)
+ λ

(
2
3
+

1
Θ

d(ln Θ)

dτ

)]
Θhab

}
,

DT
ab = Tλhab , (75)

leads to

Γs = ησabσab +

(
ζ +

1
3

η

)
Θ2 . (76)

The corresponding equation of motion is

0 = 2nb∇[bµa] + 2sb∇[bΘa] + ΓsΘa −∇b
{

T
[

ησab +

(
ζ +

1
3

η

)
Θhab

]
+Tλ

[
7
3
+

1
Θ

uc∇c ln(TλΘ)

]
Θhab

}
, (77)

and the energy-momentum-stress tensor is

Tab = Ψgab + (Ψ − Λ)uaub − T
[

ησab +

(
ζ +

1
3

η

)
Θhab

]
− Tλ

[
7
3
+

1
Θ

uc∇c ln(TλΘ)

]
Θhab . (78)

The Onsager construction is well-grounded in both experimental and theoretical chemistry (for
example, when considering systems with many reaction rates [29]) and the same is the case for physics
applications. But this is not all that we are seeking here; for example, in the Onsager strategy the
coefficients η, ζ, and λ are determined “externally” assuming that the system has experienced some
(linear) deviation away from some prescribed equilibrium. In contrast, the variational derivation
involved no notion of equilibrium with everything determined by the action principle.

As a proof of principle and demonstration of how the calculation should proceed, we will consider
a specific form for the entropy density and then push through the formulae given above for the equation
of motion, entropy creation rate, and energy-momentum-stress tensor. We will find that the natural
matter and entropy space elements of such a construct (ḡAB, ˙̄gAB, etc.) have built-in properties for the
otherwise arbitrary coefficients that are used to tie them together in sABC.

6.1. Explicit Model

We now consider a specific form for sABC, which has only linear terms in ˙̄gAB and ġAB. Specifically,
we start from

sABC = s(0)ABC +
2

∑
j=1

2

∑
i=1

s̄(i,j)ABC H̄(i)Θ(j) + s̄(1)ABC ġDE ḡDE + s(1)ABC
˙̄gDEgDE . (79)
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All of the “s̄”, “s”, and “ŝ” coefficients are functions of only X̄A. From this we can construct the entropy
density:

s =
1
3!

ϵ̄ABCsABC

= s(0) +
2

∑
j=1

2

∑
i=1

s̄(i,j)H̄(i)Θ(j) + s̄(1) ġDE ḡDE + s(1) ˙̄gDEgDE . (80)

where

s(0) =
1
3!

ϵ̄ABCs(0)ABC , s̄(i,j) =
1
3!

ϵ̄ABC s̄(i,j)ABC , s̄(1) =
1
3!

ϵ̄ABC s̄(1)ABC , s(1) =
1
3!

ϵ̄ABCs(1)ABC . (81)

Since ˙̄XD = 0, and using Equation (39), we see

ṡ(0) = −s(0)Θ , ˙̄s(i,j) = −s̄(i,j)Θ , ˙̄s(1) = −s̄(1)Θ , ṡ(1) = −s(1)Θ , (82)

or
∇a

(
s(0)ua

)
= 0 , ∇a

(
s̄(i,j)ua

)
= 0 , ∇a

(
s̄(1)ua

)
= 0 , ∇a

(
s(1)ua

)
= 0 . (83)

Using the various derivatives given in Equation (A33) in the Appendix, we can show that

∂sABC

∂ḡDE =
1
3

2

∑
j=1

[
s̄(1,j)

ABCgDE − 1
2

s̄(2,j)
ABCgFG(ḡFD ḡGE + ḡGD ḡFE)

]
Θ

+
1
2

2

∑
i=1

s̄(i,1)ABC H̄(i) ḡFD ḡGE ˙̄gFG − 1
2

s̄(1)ABC ġFG(ḡFD ḡGE + ḡGD ḡFE) ,

∂sABC

∂gDE =
1
3

2

∑
j=1

[
s̄(2,j)

ABC ḡDE − 1
2

s̄(1,j)
ABC ḡFG(gFDgGE + gGDgFE)

]
Θ

+
1
2

2

∑
i=1

s̄(i,2)ABC H̄(i)gFDgGE ġFG − 1
2

s(1)ABC
˙̄gFG(gFDgGE + gGDgFE) ,

∂sABC

∂ ˙̄gDE =

(
−1

2

2

∑
i=1

s̄(i,1)ABC H̄(i) ḡDE + s(1)ABCgDE

)
,

∂sABC

∂ġDE =

(
−1

2

2

∑
i=1

s̄(i,2)ABC H̄(i)gDE + s̄(1)ABC ḡDE

)
. (84)

The four tensors D̄ab, Dab, D̄ab, and Dab are, respectively,

D̄ab =
1
3

ΘABC ∂sABC

∂ḡDE Ψ̄D
a Ψ̄E

b

= −2T
{[

s̄(1,1)H̄(1) + s̄(2,1)H̄(2) − 2s̄(1)
(

Ĥ(2)
)2
]

σab

+
1
3

[
s̄(2,1)H̄(2) − s̄(1,2)H̄(1) +

(
s̄(2,1) + s̄(2,2) − 2s̄(1)

)(
Ĥ(2)

)2
]

Θhab

}
, (85)

Dab =
1
3

ΘABC ∂sABC

∂gDE ΨD
a ΨE

b

= −2T
{[

s̄(1,2)H̄(1) + s̄(2,2)H̄(2) − 2s(1)
(

Ĥ(1)
)2
]

σab

+
1
3

[
s̄(1,2)H̄(1) − s̄(2,1)H̄(2) +

(
s̄(1,1) + s̄(1,2) − 2s(1)

)(
Ĥ(1)

)2
]

Θhab

}
, (86)
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D̄ab =
1
3

ΘABC ∂sABC

∂ ˙̄gDE Ψ̄D
a Ψ̄E

b

= −2T

(
1
2

2

∑
i=1

s̄(i,1)H̄(i) − s(1)H̄(1)

)
hab , (87)

Dab =
1
3

ΘABC ∂sABC

∂ġDE ΨD
a ΨE

b

= −2T

(
1
2

2

∑
i=1

s̄(i,2)H̄(i) − s̄(1)H̄(2)

)
hab . (88)

Finally, the two “dissipation” tensors DT
ab and DT

ab are, respectively,

DT
ab = −2T

{[
2

∑
i=1

(
s̄(i,1) + s̄(i,2)

)
H̄(i) − 2s̄(1)

(
Ĥ(2)

)2
− 2s(1)

(
Ĥ(1)

)2
]

σab

+
1
3

[
2

∑
i=1

(
s̄(i,1) + s̄(i,2)

)(
Ĥ(i)

)2
− 2s(1)

(
Ĥ(1)

)2
− 2s̄(1)

(
Ĥ(2)

)2
]

Θhab

}
= Tc1σab + Tc2Θhab ,

DT
ab = −2T

[
1
2

2

∑
i=1

(
s̄(i,1) + s̄(i,2)

)
H̄(i) −

(
s̄(1)H̄(2) + s(1)H̄(1)

)]
hab

= Tc3hab , (89)

where

c1 = −2
2

∑
i=1

(
s̄(i,1) + s̄(i,2)

)
H̄(i) + 4s̄(1)

(
Ĥ(2)

)2
+ 4s(1)

(
Ĥ(1)

)2
,

c2 = −2
3

[
2

∑
i=1

(
s̄(i,1) + s̄(i,2)

)(
Ĥ(i)

)2
− 2s(1)

(
Ĥ(1)

)2
− 2s̄(1)

(
Ĥ(2)

)2
]

,

c3 = −
2

∑
i=1

(
s̄(i,1) + s̄(i,2)

)
H̄(i) + 2

(
s̄(1)H̄(2) + s(1)H̄(1)

)
. (90)

Note that the coefficients ci, satisfy the following system of linear, first-order differential equations:

ċ1 =

(
2c2 −

5
3

c1

)
Θ , (91)

ċ2 = −c2Θ , (92)

ċ3 =

(
c2 −

5
3

c3

)
Θ ; (93)

therefore, keeping them static along fluid worldlines is not possible. This is a significant differences
with the Onsager model given earlier at the start of this section where, in priniciple, its η, ζ, and λ

coefficients satisfy (up to choice of sign) no constraints or evolution equations.
The equation of motion is

0 = 2nb∇[bµa] + 2sb∇[bΘa] + ΓsΘa +∇b
{

T
[
(c1 − 2c3)σab +

(
c2 −

2
3

c3

)
Θhab

−c3Θgab −
1
T

uc∇c(c3T)hab

]}
, (94)
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while the entropy creation rate is determined to be

Γs = (2c3 − c1)σabσab +

(
2
3

c3 − c2

)
Θ2 − c3Θ̇ , (95)

and the energy-momentum-stress tensor is

Tab = (Ψ − c3Θ)gab + (Ψ − Λ)uaub + T
[
(c1 − 2c3)σ

ab +

(
c2 −

2
3

c3

)
Θhab

− 1
T

uc∇c(c3T)hab
]

. (96)

The set of equations (94)–(96) complete the dissipative fluid model that follows from the varia-
tional principle once we make the chosen simplifications and adopt the prescription in eq. (79). At this
point, all that remains is to examine the results and decide if these equations are “acceptable” or not. A
first hint of the latter follows from a comparison with (76) and (78). The equations we have arrived at
clearly do not replicate the model built using Onsager-style reasoning. Of course, this was not our
intention. We set out to develop an explicit model to illustrate the steps and assumptions required to go
from sABC to the final equation of motion, the entropy creation rate and the energy-momentum-stress
tensor. A notable feature of this model is that—unlike the Onsager approach or, indeed, every other
state of the art model for dissipative relativistic fluids—all functions and parameters (e.g. bulk and
shear viscosity) are determined at the level of the action. In fact, even their evolution along individual
world lines are obtained within the formalism. This is conceptually important and there are valuable
lessons to learn from the derivation. For example, it is evident that the bulk- and shear viscosity should
not be taken to be “constant” in a general nonlinear model. With a governing set of equations like
(91)–(93) it is clear that the model must evolve with the flow. However, despite having some appealing
features it is clear that the specific model we have arrived at is problematic. Most importantly, it is
clear from (95) that the only way to ensure that the second law is enforced (locally) is to insist that c3

vanishes at all times. This then leads to c2 vanishing as well and we are left with a model having only
c1 ̸= 0, representing a system where the only dissipation channel is shear viscosity. This restricted
model may have interesting applications, but it is clearly not the general model we were looking for.
There is more work to do here.

7. Concluding Remarks

Building on the variational approach for dissipative relativistic fluids from [25], we have taken
steps towards formulating an explicit action principle that connects with the familiar Navier-Stokes
equations. In general, the variational approach is built around matter and entropy fluxes (taken to be
the primary degrees of freedom) and dissipation arises if the dual three-form associated with a given
flux is not closed. As discussed in [25], this allows us to represent a number of dissipative channels
but the general model is too “rich” to permit an intuitive interpretation. Given this, we introduced
a number of simplifications aimed at reducing the complexity of the model and highlighting the
key features. Most notably, we restricted ourselves to a single-fluid model. The motivation for this
(somewhat drastic, given that we know that issues like heat/entropy flows require a multi-fluid
approach [10]) assumption was to make contact with numerical simulations which tend to reduce the
analysis to a single fluid for practical reasons.

Given the various simplifications introduced in our derivation of the fluid equations, the fact that
the final result appears somewhat unfinished is perhaps not surprising. Yet, we would argue that the
analysis provides several useful lessons. For example, we have seen that the proper time derivative of
the matter space “metric” must be included in the matter Lagrangian in order to recover the expected
terms associated with bulk- and shear- viscosity. The discussion also shows that evolution equations
along fluid world lines arise naturally in the model, a feature one might expect from a relativistic
description. At the same time, the construction added a less desirable term to the entropy creation rate.
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The upshot is that the final model presented here is satisfactory—in the sense that it is compatible with
the second law (implemented locally)—as long as we only allow for the presence of shear viscosity.
The addition of bulk viscosity requires further thought.

To make progress we may go back to the beginning and relax the simplifying assumptions one by
one. This will make the discussion more involved, but at this point this seems unavoidable. Noting
that, from an implementation point of view, single fluid models are much easier to work with than
multi-fluid ones it would certainly be interesting to see how much closer to a “workable” dissipative
fluid model we can get without relaxing the single-fluid assumption. If we have to account for the
explicit multi-fluid aspects then the framework for this already exists (see [10]) but we need to be
mindful of the fact that we are still quite far from having developed such models to the level where
they are ready for numerical implementations.
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Appendix A. Details Behind the Derivation of Important Relations

Appendix A.1. Metric and Map Inverses

Note that ϵabcd is an essential component of this process of pull-back and push-forward. It and its
inverse ϵabcd satisfy some useful identities:

ϵabcdϵe f gh = −4!δ[ae δb
f δc

gδ
d]
h ,

ϵabcdϵa f gh = −3!δ[bf δc
gδ

d]
h ,

ϵabcdϵabgh = −2!2δ
[c
g δ

d]
h ,

ϵabcdϵabch = −3!δd
h ,

ϵabcdϵabcd = −4! . (A1)

In a similar way, we can introduce the three-forms {ϵABC, ϵ̄ABC} and inverses {ϵABC, ϵ̄ABC}, which
have a similar set of identities:

ϵABCϵDEF = ϵ̄ABC ϵ̄DEF = 3!δ[AD δB
E δ

C]
F , (A2)

ϵABCϵAEF = ϵ̄ABC ϵ̄AEF = 2δ
[B
E δ

C]
F , (A3)

ϵABCϵABF = ϵ̄ABC ϵ̄ABF = 2δC
F , (A4)

ϵABCϵABC = ϵ̄ABC ϵ̄ABC = 3! . (A5)

Using basic Linear Algebra techniques (Cramer’s Rule), it can be shown that the matter space
metric inverses gAB, ḡAB, ĝAB are given by

gACgCB = δA
B =⇒ gAB =

1
2

ϵACEϵBDFgCDgEF ,

ḡAC ḡCB = δA
B =⇒ ḡAB =

1
2

ϵ̄ACE ϵ̄BDF ḡCD ḡEF ,

ĝAC ĝCB = δA
B =⇒ ĝAB =

1
2

ϵ̂ACE ϵ̂BDF ĝCD ĝEF , (A6)
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where

ϵABC =
√

det[gDE][ABC]U , ϵABC =
1√

det[gDE]
[ABC]D ,

ϵ̄ABC =
√

det[ḡDE][ABC]U , ϵ̄ABC =
1√

det[ḡDE]
[ABC]D ,

ϵ̂ABC =
√

det[ĝDE][ABC]U , ϵ̂ABC =
1√

det[ĝDE]
[ABC]D , (A7)

[ABC]U = 3!δ[A1 δB
2 δ

C]
3 , [ABC]D = 3!δ1

[Aδ2
Bδ3

C] , (A8)

and

det
[

gDE
]
=

1
3!
[ABC]D [DEF]DgADgBEgCF ,

det
[

ḡDE
]
=

1
3!
[ABC]D [DEF]D ḡAD ḡBE ḡCF ,

det
[

ĝDE
]
=

1
3!
[ABC]D [DEF]D ĝAD ĝBE ĝCF . (A9)

Because of Equation (A2),
[ABC]U [DEF]D = 3!δ[AD δB

E δ
C]
F . (A10)

It is also the case that
M̄A

B =
1
2

ϵACE
M ϵM

BDF MD
C MF

E , (A11)

where
ϵABC

M =
√

det
[
MD

E
]
[ABC]U , ϵM

ABC =
1√

det
[
MD

E
] [ABC]D , (A12)

and
det
[

MD
E

]
=

1
3!
[ABC]D [DEF]U MA

D MB
E MC

F . (A13)

Appendix A.2. Mappings Between gAB, ḡAB, and ĝAB

In order to establish the rule for mapping gAB to ḡAB, and vice versa, we can show that the
standard rules involving Jacobians apply. To get the idea, we work out det

[
gDE], and the rest follow

similarly:

det
[

gDE
]
=

1
3!
[ABC]D [DEF]DgADgBEgCF

=
1
3!
[ABC]D [DEF]DMA

G MD
J ḡGJ MB

H ME
K ḡHK MC

I MF
L ḡIL

=
1
3!
[ABC]DMA

G MB
H MC

I [DEF]DMD
J ME

K MF
L ḡGJ ḡHK ḡIL

=
1
3!
[ABC]DMA

G MB
H MC

I [DEF]DMD
J ME

K MF
Lδ

[G
M δH

N δ
I]
Oδ

[J
P δK

Qδ
L]
R ḡMP ḡNQ ḡOR

=

(
1
3!
[GHI]U [ABC]DMA

G MB
H MC

I

)(
1
3!
[JKL]U [DEF]DMD

J ME
K MF

L

)
(

1
3!
[MNO]D [PQR]D ḡMP ḡNQ ḡOR

)
=
(

det
[

MA
B

])2
det
[

ḡDE
]

. (A14)
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This means that the inverse gAB is mapped to ḡAB via

MC
A MD

B gCD =
1
2

MC
A MD

B ϵCEGϵDFH ME
I MF

K ḡIK MG
J MH

L ḡJL = ḡAB ; (A15)

that is,
ḡAB = MC

A MD
B gCD , gAB = M̄C

A M̄D
B ḡCD . (A16)

Starting with the fact that det
[
δA

B
]
= 1, and using Equation (6), it can be shown that

det
[

M̄A
B

]
= 1

/
det
[

MA
B

]
. (A17)

Finally, we also determine the connections with det
[
ĝDE]:

det
[

ĝDE
]
= det

[
M̄A

B

]
det
[

gAB
]

. (A18)

With this, it can be shown that

gAB = M̄C
B ĝAC , ĝAB = MC

B gAC . (A19)

Consequently,

gAB ĝAB = gAB MC
B gAC =

(
gBAgAC

)
MC

B = MA
A ,

ĝABgAB = gAC M̄B
CgAB =

(
gACgAB

)
M̄B

C = M̄A
A . (A20)

Appendix A.3. Matter Space Volume Forms

The next step is to establish the rules for identifying the spacetime objects with their matter space
counterparts, and to determine how to connect the particle space objects with the entropy space ones.
Two essential ingredients for this are the completely antisymmetric objects ϵABC and ϵ̄ABC, whose
defining properties are given in Equation (A5).

It must be the case that nABC and sABC are proportional to ϵABC and ϵ̄ABC, respectively, i.e. nABC =

N ϵABC and sABC = S ϵ̄ABC, and that µABC and ΘABC are proportional to ϵABC and ϵ̄ABC, respectively,
i.e. µABC = MϵABC and ΘABC = T ϵ̄ABC. Equation (A5) then implies

N =
1
3!

ϵABCnABC , S =
1
3!

ϵ̄ABCsABC ,

M =
1
3!

ϵABCµABC , T =
1
3!

ϵ̄ABCΘABC . (A21)

It is easy to see that

ϵabc ≡ udϵdabc = ΨA
a ΨB

b ΨC
c nABC/n = Ψ̄A

a Ψ̄B
b Ψ̄C

c sABC/s , (A22)

and

ΨA
a ΨB

b ΨC
c ϵabc ≡ ΨA

a ΨB
b ΨC

c udϵabc
d = µABC/µ ,

Ψ̄A
a Ψ̄B

b Ψ̄C
c ϵabc ≡ Ψ̄A

a Ψ̄B
b Ψ̄C

c udϵabc
d = ΘABC/T . (A23)

From the definitions of µabc and Θabc we have

M =
1
3!

ϵABCµABC = µ

(
1
3!

ϵabcϵABCΨA
a ΨB

b ΨC
c

)
= µ

(
1
3!

ϵabcϵabc

)
= µ ,
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T =
1
3!

ϵ̄ABCΘABC = T
(

1
3!

ϵabc ϵ̄ABCΨ̄A
a Ψ̄B

b Ψ̄C
c

)
= T

(
1
3!

ϵabcϵabc

)
= T . (A24)

This implies

ϵABC = µABC/µ = ΨA
a ΨB

b ΨC
c µabc/µ = ΨA

a ΨB
b ΨC

c ϵabc ,

ϵ̄ABC = ΘABC/T = Ψ̄A
a Ψ̄B

b Ψ̄C
c Θabc/T = Ψ̄A

a Ψ̄B
b Ψ̄C

c ϵabc , (A25)

and therefore N = n and S = s. It is now straightforward to show that

ϵ̄ABC = M̄A
D M̄B

E M̄C
F ϵDEF , ϵABC = MA

D MB
E MC

F ϵ̄DEF , (A26)

and similarly for ϵ̄ABC and ϵABC. Finally, we find

ϵabc = ΨD
a ΨE

b ΨF
c ϵDEF = Ψ̄A

a Ψ̄B
b Ψ̄C

c ϵ̄ABC , (A27)

and therefore
ua =

1
3!

ϵbcdaΨB
b ΨC

c ΨD
d ϵBCD =

1
3!

ϵbcdaΨ̄B
b Ψ̄C

c Ψ̄D
d ϵ̄BCD . (A28)

Appendix A.4. Matter Space Metric Variations

Steps leading to Equation (48) in the main text:

∆
(

∂agAB
)
= δ

(
∂agAB

)
+ Lξ

(
∂agAB

)
= ∂a

(
δgAB

)
+ ξb∇b

(
∂agAB

)
+
(

∂bgAB
)
∇aξb

= ∂a

(
δgAB

)
+ ξb∇a

(
∂bgAB

)
+
(

∂bgAB
)
∇aξb

= ∂a

(
δgAB

)
+ ∂a

(
ξb∂bgAB

)
= ∂a

(
δgAB + Lξ gAB

)
= ∂a

(
∆gAB

)
= ∂a

(
ΨA

b ΨB
c ∆gbc

)
, (A29)

The major steps used to develop the cross-listed Equation (49) in the main text:

∆ġAB = −ġAB
(

1
2

ubuc∆gbc
)
+ ua∂a

(
ΨA

b ΨB
c ⊥(b

d ⊥c)
e ∆gde

)
= ΨA

a ΨB
b ∇

(aub)
(

ucud∆gcd
)

−
(

ΨA
a ΨB

b + ΨA
b ΨB

a

)
(∇cua) ⊥(b

d ⊥c)
e ∆gde + ΨA

a ΨB
b ue∇e

(
⊥(a

c ⊥b)
d ∆gcd

)
= ΨA

a ΨB
b ∇

(aub)
(

ucud∆gcd
)

− ΨA
a ΨB

b

(
⊥b

d ∇cua+ ⊥a
d ∇cub

)
⊥c

e ∆gde + ΨA
a ΨB

b ue∇e

(
⊥(a

c ⊥b)
d ∆gcd

)
= ΨA

a ΨB
b

[
∇(aub)

(
ucud∆gcd

)
− 2
(
⊥(a

c ∇eub)
)
⊥e

d ∆gcd + ue∇e

(
⊥(a

c ⊥b)
d ∆gcd

)]
= ΨA

a ΨB
b

{[(
∇(aub)

)
ucud − 2 ⊥e

d⊥
(a
c ∇eub) + ue∇e

(
⊥(a

c ⊥b)
d

)]
∆gcd

+ ⊥(a
c ⊥b)

d ue∇e

(
∆gcd

)}
= ΨA

a ΨB
b

{
⊥(a

c ⊥b)
d ue∇e

(
∆gcd

)
+
[
⊥(a

e ⊥b)
f

(
∇(eu f )

)
ucud
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−2 ⊥(a
c ⊥b)

e ∇due
]
∆gcd

}
. (A30)

Appendix A.5. Entropy Creation Rate Derivation

The major steps used to develop the cross-listed Equation (A31) in the main text:

1
3!

ΘBCD∆sBCD =
1
2

DT
ab

[
δgab − 2∇(aξb)

]
+

1
2
DT

ab

{
⊥a

c⊥b
d ue∇e

(
δgcd − 2∇(cξd)

)
+
[
⊥a

(e⊥
b
f )

(
∇eu f

)
ucud − 2 ⊥(a

c ⊥b)
e ∇due

](
δgcd − 2∇(cξd)

)}
=

1
2

DT
ab

[
δgab − 2∇(aξb)

]
+

1
2

{
DT

abuc∇c

(
δgab − 2∇(aξb)

)
+
[
DT

cd

(
∇(cud)

)
uaub − 2DT

c(a∇b)u
c
](

δgab − 2∇(aξb)
)}

=
1
2

[
DT

ab +DT
cd

(
∇(cud)

)
uaub − 2DT

c(a∇b)u
c −∇c

(
DT

abuc
)]

[
δgab − 2∇(aξb)

]
+∇c

[
1
2
DT

abuc
(

δgab − 2∇(aξb)
)]

= −
[

DT
ab +DT

cd

(
∇(cud)

)
uaub − 2DT

c(a∇b)u
c −∇c

(
DT

abuc
)]

∇(aξb)

+
1
2

[
DT

ab +DT
cd

(
∇(cud)

)
uaub − 2DT

c(a∇b)u
c −∇c

(
DT

abuc
)]

δgab

+∇c

[
1
2
DT

abuc
(

δgab − 2∇(aξb)
)]

= ∇b
[

DT
ba +DT

cd

(
∇(cud)

)
ubua − 2DT

c(a∇b)u
c −∇c

(
DT

bauc
)]

ξa

+
1
2

[
DT

ab +DT
cd

(
∇(cud)

)
uaub − 2DT

c(a∇b)u
c −∇c

(
DT

abuc
)]

δgab

−∇a
{[

DT
ab +DT

cd

(
∇(cud)

)
uaub − 2DT

c(a∇b)u
c −∇c

(
DT

abuc
)]

ξb
}

+∇c

[
1
2
DT

abuc
(

δgab − 2∇(aξb)
)]

, (A31)

Steps leading to the entropy creation rate Γs start with projecting the equation of motion Equa-
tion (70) onto ua :

(−uaΘa)Γs = ua∇b
[

DT
ba +DT

cd

(
∇(cud)

)
ubua − 2DT

c(a∇b)u
c −∇c

(
DT

bauc
)]

= ∇b
{

ua
[

DT
ba +DT

cd

(
∇(cud)

)
ubua − 2DT

c(a∇b)u
c −∇c

(
DT

bauc
)]}

−
[

DT
ba +DT

cd

(
∇(cud)

)
ubua − 2DT

c(a∇b)u
c −∇c

(
DT

bauc
)]

∇bua

= ∇b
[
DT

cd

(
∇(cud)

)
uauaub − 2uaDT

c(a∇b)u
c − ua∇c

(
DT

bauc
)]

−
[

DT
ba − 2DT

c(a∇b)u
c −∇c

(
DT

bauc
)]

∇bua

= ∇b
[
−DT

cd

(
∇(cud)

)
ub −DT

cbua∇auc −∇c

(
uaDT

bauc
)
+DT

bauc∇cua
]

−
[

DT
ba − 2DT

c(a∇b)u
c −∇c

(
DT

bauc
)]

∇(bua)

= −∇c

[
DT

bauc
(
∇(bua)

)]
+∇c

(
DT

bauc
)
∇(bua) −

[
DT

ba − 2DT
c(a∇b)u

c
]
∇(bua)

= −DT
bauc∇c

[
∇(bua)

]
−∇c

(
DT

bauc
)
∇(bua) +∇c

(
DT

bauc
)
∇(bua)

−
[

DT
ba − 2DT

c(a∇b)u
c
]
∇(bua)

= −DT
bauc∇c

[
∇(bua)

]
−
[

DT
ba − 2DT

c(a∇b)u
c
]
∇(bua) . (A32)
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Appendix A.6. Useful Partial Derivatives

A few useful formulas are

∂gAB

∂gDE = −1
2
(gADgBE + gAEgBD) ,

∂ġAB

∂ġDE =
1
2

(
δA

DδB
E + δB

DδA
E

)
,

∂ϵABC

∂gDE = −1
2

ϵABC gDE

∂Θ
∂gDE = −1

2
∂gAB

∂gDE ġAB =
1
2

gADgBE ġAB

∂Θ
∂ġDE = −1

2
∂ġAB

∂ġDE gAB = −1
2

gDE ,

∂H̄(1)

∂ḡDE =
1
3

∂ḡAB

∂ḡDE gAB =
1
3

gDE ,

∂H̄(1)

∂gDE =
1
3

∂gAB

∂gDE ḡAB = −1
6

ḡAB(gADgBE + gAEgBD) ,

∂H̄(2)

∂gDE =
1
3

∂gAB

∂gDE ḡAB =
1
3

ḡDE ,

∂H̄(2)

∂ḡDE =
1
3

∂ḡAB

∂ḡDE gAB = −1
6

gAB(ḡAD ḡBE + ḡAE ḡBD) . (A33)
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