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Abstract: Diabetes mellitus (DM) is the most common metabolic disease in humans, and its prevalence is 

increasing worldwide in parallel with the obesity pandemic. A lack of insulin or insulin resistance, and 

consequently hyperglycemia, leads to many systemic disorders, among which diabetic encephalopathy (DE) is 

a long-term complication of the central nervous system (CNS), characterized by cognitive impairment and 

motor dysfunctions. The role of oxidative stress and neuroinflammation in the pathomechanism of DE has 

been proven. Fractalkine (CX3CL1) has unique properties as an adhesion molecule and chemoattractant, and 

by acting on its only receptor, CX3CR1, it regulates the activity of microglia in physiological states and 

neuroinflammation. Depending on the clinical context, CX3CL1-CX3CR1 signaling may have neuroprotective 

effects by inhibiting the inflammatory process in microglia or, conversely, maintaining/intensifying 

inflammation and neurotoxicity. This review discusses the evidence supporting that the CX3CL1-CX3CR1 pair 

is neuroprotective and other evidence that it is neurotoxic. Interrupting the vicious cycle within neuron-

microglia interactions may be a therapeutic goal in DE by limiting the inflammatory response. 
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1. Introductory Overview – Diabetes as a Risk Factor for Encephalopathy  

Diabetes mellitus (DM) is a heterogeneous, chronic metabolic disease characterized by elevated 

blood glucose levels. Hyperglycemia in DM is a consequence of defects in insulin secretion, tissue 

resistance to insulin or a combination of both of these factors [1]. Over time, individuals with glucose 

metabolism disorders, especially poorly controlled diabetes, are predisposed to serious 

complications, including cardiovascular disease, kidney disease, blindness, neuropathy, lower-

extremity amputation, and diabetic encephalopathy (DE), which is the subject of this review [2,3]. DE 

is a chronic complication of DM that affects the central nervous system (CNS) and is characterized 

by cognitive impairment and motor dysfunctions [4]. Therefore, patients with DE are at greater risk 

of both dementia and postural perturbations (e.g., balance disorders) [5,6]. Moreover, considering the 

prevalence of diabetes, mainly type 2 diabetes, which is largely influenced by the obesity pandemic, 

DE has become a common CNS complication of DM, with no effective therapies currently available  

[7–9]. Recent studies have indicated that damage to synaptic mitochondria may play an important 

role in the pathomechanism of DE, but the nature of this phenomenon remains unclear [10]. 

1.1. Consequences of the Lack of or Insufficient Action of Insulin 

The central actions of insulin appear to support cognitive functions by regulating 

neurotransmitter release, synaptic transmission, and neuronal glucose uptake [11–13]. Disturbed 

brain glucose metabolism and hippocampal insulin resistance may impair cognitive functions and 

contribute to neurodegeneration [14,15]. In addition, deficiency of central insulin may reduce cerebral 
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blood flow and blood supply to the cerebral cortex, which can also result in cognitive impairment 

[16]. Moreover, such deficiency of insulin, resulting either from absolute insulin deficiency or from 

brain insulin resistance, may promote the accumulation of Aβ aggregates and hyperphosphorylation 

of tau proteins because the physiological effects of insulin can oppose these processes [17–21]. 

Advanced glycation end products (AGEs) can stimulate receptors for advanced glycation end 

products (RAGE) and Toll-like receptor 4 (TLR4), which may result in neuroinflammation, 

stimulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-dependent 

signaling pathways and the release of proinflammatory cytokines [22–27]. Therefore, 

neuroinflammation is a constant component of the pathophysiology of DE [28,29]. 

1.2. The damaging Effects of Chronic Hyperglycemia 

Moreover, chronic hyperglycemia may damage the blood‒brain barrier, mainly through its pro-

oxidative effects [24,30]. All these effects cause diabetes, a pathological condition associated with 

insulin deficiency, to promote neurodegeneration and the occurrence of cognitive deficits, 

recapitulating to some extent the same pathomechanisms that underlie other neurodegenerative 

diseases, such as Alzheimer's disease [31–36]. This may justify the introduction of DE, defined as the 

sum of the effects of insufficient insulin on the CNS. The pathomechanisms of cognitive deficits 

occurring in DE largely overlap with the pathomechanisms of other neurodegenerative diseases, 

resulting in neuronal loss [37]. The duration of diabetes increases the incidence of both diabetic 

neuropathy and DE, which do not immediately appear at the onset of the disease, especially when 

patients' blood glucose levels are well stabilized [38]. In patients with diabetes diagnosed less than 

12 months prior, the incidence of diabetic neuropathy equals approximately 10%, increasing to 50% 

25 years after diagnosis [39]. The most common symptoms of diabetic peripheral neuropathy include 

paresthesia, numbness, and a burning sensation [40]. 

2. Chemokine CX3CL1 (Fractalkine) 

2.1. Structure 

C-X3-C motif chemokine ligand 1 (CX3CL1), also known as fractalkine or neurotactin, is the only 

member of the δ subfamily of chemokines and seems to bind to only one receptor, CX3CR1, a 

transmembrane Gi protein-coupled receptor [41]. Many other substances belonging to the chemokine 

family show less specific binding activity than CX3CL1 [55]. The full-length CX3CL1 molecule is 

larger than most other chemokines [42] and has two forms. The 95-kDa full-length membrane-bound 

molecule contains a 76-amino-acid N-terminal chemokine domain, a 241-amino-acid mucin-like 

glycosylated stalk, a 19-amino-acid hydrophobic transmembrane region (α helix), and a 37-amino-

acid intracellular C-terminal domain [42,43]. Another form is a soluble molecule of approximately 70 

kDa that contains an N-terminal chemokine domain and an extracellular mucin-like stalk [42,43]. The 

soluble domain of CX3CL1 acts as a signaling molecule (chemoattractant) and can bind to CX3CR1 

receptors expressed on microglia [44]. In contrast, its transmembrane mucin-like stalk may act as an 

adhesion molecule for microglia and infiltrate leukocytes during the inflammatory response [45,46]. 

The molecular structures of both forms of FKN are shown in Figure 1. 
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Figure 1. Schematic structure of the C-X3-C motif chemokine ligand 1 (CX3CL1), also known as 

fractalkine or neurotactin. Both forms of the chemokine are shown: membrane-bound 

(transmembrane) CX3CL1 and soluble CX3CL1. The soluble CX3CL1, containing an N-terminal 

chemokine domain and an extracellular mucin-like stalk, is generated by cleavage of the membrane-

bound molecule near the outer surface of the membrane (marked symbolically with scissors and 

crossed red lines). Release of soluble CX3CL1 may occur upon exposure to a disintegrin and 

metalloproteinase domain-containing protein 10 (ADAM10), tumor necrosis factor alpha (TNF-α) 

converting enzyme (TACE or ADAM17), matrix metalloproteinase-2 (MMP-2) or cathepsins (CTS). 

Adapted from [47]. 

2.2. CX3CL1 in the CNS 

In the CNS, CX3CL1 is constitutively expressed in neurons, especially in hippocampal neurons 

[48], while in astrocytes, its expression can be induced by TNF-α and interferon gamma (IFN-γ) [49]. 

CX3CR1 receptor activation is associated with several intracellular second messengers. In the brain, 

CX3CR1 expression is limited to microglia [48].  

Activation of the CX3CL1-CX3CR1 signaling pathway in microglia, both by the soluble form of 

CX3CL1 and by its membrane-bound form, inhibits lipopolysaccharide (LPS)-induced major 

histocompatibility complex class II (MHC2) and cluster of differentiation 40 (CD40) mRNA 

biosynthesis and the level of interleukin-1 beta (IL-1β) expression, and these anti-inflammatory 

effects depend on the activation of protein kinase B (Akt) and phosphoinositide 3-kinase (PI3K) [50].  

Activation of the CX3CL1-CX3CR1 axis also stimulates Akt activation in microglia in a dose- 

and time-dependent manner. Treatment of primary cocultures of glial cells and neurons with 

fractalkine results in transient phosphorylation of Akt within 10 minutes and extracellular signal-

regulated kinase 1/2 (ERK1/2) within 1 minute of exposure to CX3CL1 [51]. Moreover, CX3CL1 

significantly inhibits neuronal calcium influx induced by N-methyl-D-aspartate (NMDA) receptor 

activation, and this effect can be abrogated by inhibition of the ERK1/2-dependent signaling pathway. 

CX3CL1 also inhibits NMDA-dependent apoptosis through Akt- and ERK1/2-dependent signaling 

pathways [51]. This effect is likely mediated by the activation of microglia rather than by a direct 

effect of CX3CL1 on neurons. Treatment of hippocampal neuron cultures with the soluble form of 

CX3CL1 activates cyclic adenosine monophosphate (cAMP)/Ca2+ response element binding protein 

(CREB), a transcription factor, and ERK1/2 kinase but not kinases such as cJun NH(2)-terminal kinase 

(JNK) or mitogen-activated protein kinases P38 (P38 MAPK) [52].  
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In addition, it induces the translocation of the NF-κB p65 subunit to the cell nucleus. A specific 

PI3K inhibitor abrogated the translocation of the NF-κB p65 subunit to the cell nucleus, suggesting 

that CX3CL1-CX3CR1-dependent signaling activates NF-κB via Akt [53]. These results, however, 

have not been confirmed in other experimental models and could have been due the specific cell 

culture system used, e.g., contamination of the culture with microglia.  

By acting on the CX3CR1 receptor, CX3CL1 modulates α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptor phosphorylation, increasing calcium influx and inhibiting 

excitatory postsynaptic potentials and long-term potentiation (LTP) [54].  

CX3CL1 may also enhance inhibitory postsynaptic currents, possibly by increasing neuronal 

responsiveness to γ-aminobutyric acid (GABA) and GABA-dependent chloride anion influx into cells 

[55]. CX3CL1 can activate the CX3CR1 receptor on microglia with the subsequent release of 

adenosine, which may, in turn, activate adenosine (A)3 (R) receptors on neurons, inducing a signaling 

cascade that results in the modulation of GABA-A receptors, increasing their sensitivity to GABA 

[56]. Adenosine may also activate adenosine A2AR receptors on microglia, inducing the release of D-

serine, which acts as a coagonist of the NMDA receptor, increasing calcium influx into cells through 

NMDA receptor activation [57]. Microglia-derived adenosine may also exert a neuroprotective effect 

by activating the A1R adenosine receptor in neurons [58].  

Several studies have shown that CX3CL1 inhibits LPS-induced microglial activation by reducing 

the production of nitric oxide (NO), interleukin-6 (IL-6) and TNF-α [50,59] and inhibits the neurotoxic 

effects of LPS-activated microglia in vitro by limiting the release of proinflammatory mediators [59]. 

These data suggest that high levels of endogenous CX3CL1 expressed in adult CNS neurons lead to 

tonic activation of CX3CR1 on microglia and act as a neuronal signal maintaining microglia in a 

quiescent state [60,61], thus contributing to the neuroprotective role of CX3CL1-CX3CR1-dependent 

signaling. In contrast, in mixed cultures of neuronal and glial cells collected from CX3CR1-/- mice, as 

well as in microglial murine BV-2 cells with silenced CX3CR1 production, the LPS-induced release of 

TNF-α, NO and superoxide molecules is reduced in comparison to cells from wild-type (WT) mice 

[62], suggesting that CX3CL1 is also involved in the release of proinflammatory mediators from 

activated microglia. 

3. Physiological Role of the CX3CL1-CX3CR1 Signaling Pathway in the CNS 

3.1. Main CX3CL1-CX3CR1 Signaling Pathways 

The attachment of the CX3CL1 molecule to the extracellular determinants of CX3CR1 causes 

conformational rearrangements preceding the activation of heterotrimeric G proteins (the Gαβγ 

heterotrimer) of the G protein complex associated with CX3CR1 [63–65]. The Gα subunit interacts 

with G protein regulatory (GPR) domain-containing proteins and synembryn (RIC8), a nonreceptor 

guanine-nucleotide exchange factor for Gα subunits, to exchange the guanosine-5'-triphosphate 

(GTP) molecule for guanosine-5'-diphosphate (GDP) [66,67]. The presence of active GTP-bound Gα 

in the G protein complex leads to its dissociation into Gαi-GTP and a GβGγ dimer. Activated Gαi 

interacts with downstream effectors [68]. 

The emerging CX3CL1-CX3CR1 signaling axis utilizes several well-described pathways to 

activate numerous transcription factors, such as signal transducer and activator of transcription 

protein (STAT), NF-κβ and CREB, while inhibiting other factors (e.g., members of the class O 

forkhead box transcription factor [FOXO]) [69–71]. 

Most CX3CR1-related signaling pathways have been shown to involve other chemokine 

receptors. These include, among others: 

1. stimulating the mobilization of calcium ions from intracellular resources   

through the phospholipase C (PLC)/protein kinase C (PKC) pathway [72,73]; 

2. activation of appropriate kinases with subsequent downstream signaling    

      within 

 

a.) the Janus kinase (JAK)/STAT pathway 

b.) phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/IkappaBeta (Iκβ) ki-  

      nase (IKK)/Iκβ/NF-κβ pathway 

c.) Ras kinases (Ras)/Raf kinases (Raf)/mitogen-activated protein kinase kinase    
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      (MEK)/extracellular signal-regulated kinase (ERK) 

d.) MEK kinase (MEKK)/cJun NH(2)-terminal kinase (JNK)/CREB or MEKK/mito-  

      gen-activated protein kinase (P38)/CREB pathways [50,74–76]. 

The above signaling pathways are shown in Figure 2. 

 

Figure 2. Downstream signaling pathways (A., B., C., D.) after activation of  the CX3C motif 

chemokine receptor 1 (CX3CR1) caused by the attachment of the only endogenous ligand, chemokine  

CX3CL1 (fractalkine), released in a soluble form (sCX3CL1) from neurons. Gene transcription changes 

are a consequence of the signal transducer and activator of the transcription protein (STAT), nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-kB) and cAMP/Ca2+ response element 

binding protein (CREB) activation, while inhibiting the members of the class O of forkhead box 

transcription factors (FOXO). To keep the figure clear, the interaction of CX3CR1 with other receptors 

has been omitted. 

The sCX3CL1 molecule is created by cutting off (marked with scissors) extracellular structures 

(N-terminal chemokine domain and mucin-like stalk) from the membrane form of fractalkine 

(mCX3CL1) after the action of a disintegrin and metalloproteinase domain-containing protein 10 

(ADAM10), tumor necrosis factor alpha (TNF-α) converting enzyme (TACE or ADAM17), matrix 

metalloproteinase-2 (MMP-2) or cathepsins (CTS). Neuronal sCX3CL1 stimulates transmembrane 

metabotropic CX3CR1 on microglial cells, causing conformational changes with subsequent G 

protein activation. During the nucleotide exchange of the guanosine-5'-triphosphate (GDP) for the 

guanosine-5'-diphosphate (GTP), the activated alpha subunit (Gαi) dissociates from the G protein 

Gαβγ heterotrimer. Changes in gene transcription after CX3CR1 activation are accompanied by the 

release of intracellularly stored calcium ions (Ca2+) due to the activation of the phospholipase C (PLC)/ 

inositol-1,4,5-triphosphate (IP3)/protein kinase C (PKC) pathway. 

Other abbreviations: Akt – protein kinase B; ERK – extracellular signal-regulated kinase; IkB – 

inhibitory protein of NF-kB; IKK – IkappaBeta (Iκβ) kinase; JAK – Janus kinase; MEK – mitogen-

activated protein kinase kinase; MEKK – MEK kinase; P38 – mitogen-activated protein kinases; PI3K 

– phosphoinositide 3-kinase; Raf – Raf kinases; Ras – Ras kinases. 

3.2. Physiological Action of CX3CL1-CX3CR1 Signaling in Brain Tissue 

Under physiological conditions, the CX3CL1-CX3CR1 signaling pathway is involved in various 

brain functions during development and adulthood. Recently, a key role was attributed to synaptic 

pruning dependent on microglia, which phagocytize inactive synapses during postnatal maturation 
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of the brain [77]. CX3CR1GFP/GFP mice, in which microglia synthesize green fluorescent protein (GFP) 

instead of the CX3CR1 receptor, have more synapses than WT mice, at least until the third week of 

life [77]. In the hippocampal CA1 region, CX3CR1-deficient (CX3CR1-/-) mice also exhibit reduced 

numbers of microglia during postnatal development, suggesting that CX3CL1-dependent signaling 

may exert a chemotactic effect on microglia in the brain [77]. Therefore, genetic ablation of the 

CX3CR1 receptor may cause microglia to become unresponsive to the chemotactic effects of CX3CL1, 

thereby reducing the number of microglia in the brain. As a result, a greater density of synapses in 

CX3CR1-/- mice can be explained by a lower number of microglia. 

CX3CL1 also inhibits neuronal migration by increasing neuronal binding to the extracellular 

matrix [78]. However, CX3CL1 has the opposite effect on microglia. Blocking CX3CR1 inhibits 

microglial cell migration in response to CX3CL1 [79]. This finding supports the hypothesis that 

CX3CL1-CX3CR1 signaling may act as a pathway guide for microglia, promoting their colonization 

of the CNS. Moreover, the migration of microglia into the centers of the developing somatosensory 

cortex, which usually occurs around postnatal day 5, is delayed by several days in CX3CR1-/-/GFP/GFP 

mice, even if no differences are detected at postnatal day 9 [80]. The absence of CX3CR1 also delays 

the maturation of functional glutamate receptors [80]. Microglia affect synapse maturation during 

individual development, which is generally promoted by the CX3CL1-CX3CR1 signaling pathway. 

CX3CL1 produced by neurons in the adult brain likely maintains microglia in a quiescent, inactivated 

state. Microglial activation occurs when CX3CL1 release is reduced, e.g., in the hippocampus of aging 

rats [64]. Such "homeostatic" effects on microglia may play a significant role in the CX3CL1-CX3CR1 

signaling pathway. 

Strong activation of microglia in response to intraperitoneal administration of LPS in CX3CR1-/-

/GFP/GFP mice has been observed, and apart from that, transplantation of such activated microglia into 

WT mice produces completely different effects than transplantation of microglia collected from 

CX3CR1+/- mice [66]. Microglia from CX3CR1+/- mice rapidly migrate from the administration site and 

mainly infiltrate white matter tracts, whereas microglia from CX3CR1-/- mice remain at the site of 

administration. Moreover, neuronal loss surrounding activated GFP+ microglia collected from 

CX3CR1-/- mice is more significant and more persistent than that in the brains of WT mice that 

received microglia collected from CX3CR1+/- mice, probably due to increased IL-1β release from 

microglia collected from CX3CR1-/- mice [81]. In a mouse model of Parkinson's disease, CX3CR1-/- 

mice showed more pronounced cell death in the pars compacta of the substantia nigra than did 

CX3CR1+/+ mice, and similar results were obtained for CX3CL1-/- mice. These findings suggest that 

the CX3CL1-CX3CR1 signaling pathway modulates the activity of microglia and that disruptions in 

this pathway may result in their impaired function [81]. 

In another rat model of Parkinson's disease [82], CX3CL1 was shown to have a neuroprotective 

effect and prevented neuronal death in the striatum. Indeed, administration of CX3CL1 to the 

striatum of rats is neuroprotective and causes a significant decrease in activated microglia. Similarly, 

when glial cells and hippocampal neurons were cocultured in vitro, neuronal death was detected 

when microglia were previously exposed to LPS, and this effect was partially abrogated by the 

administration of CX3CL1 [83]. The activation of microglia with LPS changes their phenotype from 

quiescent to phagocytic and neurotoxic. 

4. The role of CX3CL1-CX3CR1 Signaling in CNS Pathology 

The CX3CL1-CX3CR1-dependent signaling pathway plays a vital role in autoimmune and 

inflammatory CNS diseases. Multiple sclerosis is a typical autoimmune CNS disease characterized 

by inflammation and focal demyelination within the spinal cord and brain [84]. An animal model of 

experimentally induced autoimmune encephalomyelitis represents a disease closely related to 

multiple sclerosis [85], in which the expression of CX3CL1 and CX3CR1 changes within the sites of 

demyelination. Indeed, the accumulation of microglia expressing CX3CR1 receptors has been found 

in brain damage and inflammation in rats with experimentally induced autoimmune 

encephalomyelitis without any alterations in the neuronal expression of CX3CL1 [86]. However, an 

increase in CX3CL1 expression has been found in astrocytes located near regions affected by 
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inflammation, which may indicate that astrocytes are the source of excessive CX3CL1 release and 

attract microglia to these regions [86]. Another aspect refers to the increased expression of CX3CL1 

in microglia of rats with experimentally induced encephalomyelitis [57]. In this context, the increase 

in CX3CL1 expression may be a process by which microglia attempt to return to a quiescent 

phenotype and inhibit their excessive activation. 

Moreover, the disease course of CX3CR1-/- mice with experimentally induced encephalomyelitis 

is more severe than that of WT mice. These mice also show more significant expression of 

proinflammatory cytokines, such as TNF-α and IL-17, than do WT mice [87]. Conversely, 

concentrations of the anti-inflammatory cytokine IL-10 are significantly greater in WT mice affected 

by experimentally induced encephalomyelitis than in CX3CR1-/- mice affected by this disease [87]. 

These results indicate a close correlation between CX3CL1 and CX3CR1 in the regulation of the 

autoimmune response. An autoimmune response within the CNS may result in excessive activation 

of microglia. However, while there is considerable evidence that microglial activation contributes to 

neuronal damage in multiple sclerosis, there is also evidence that microglia also have essential 

reparative functions. Microglia can increase the expression of CX3CL1 and CX3CR1, which may 

constitute a mechanism by which they attempt to prevent hyperactivation and restore the quiescent 

phenotype in adjacent microglia. Depending on the effectiveness of this autoregulation, microglia 

may generally acquire a neurotoxic or neuroprotective phenotype. Consistent with this, in the course 

of multiple sclerosis, one of the polymorphic variants of CX3CR1, namely, CX3CR1I249/T280 [88], affects 

the affinity of CX3CL1 for its receptor and the expression of the receptor itself. 

Spinal cord injury significantly damages neurons and completely disrupts axonal continuity, 

leading to inflammation and neurodegeneration at and around the site of injury [89], which then 

results in the recruitment of microglia and monocyte-derived macrophages [90]. Microglia and 

macrophages promote the formation of the glial scar, which reduces the chance of recovering the 

function of damaged neurons and, thus, the chance of survival of the organism as a whole [91]. 

CX3CR1-/- mice have a specific subpopulation of macrophages that are not present in WT mice. These 

macrophages infiltrate the damaged spinal cord and possess unique properties compared to those of 

macrophages found in WT mice. Microglia in CX3CR1-/- mice produce lower amounts of inducible 

nitric oxide synthase (iNOS) and IL-6 mRNA after spinal cord injury. 

Moreover, in CX3CR1-/- mice, functional recovery after spinal cord injury occurs faster and to a 

greater extent, suggesting that the relationship between neurons and microglia is in dynamic 

equilibrium during neuronal regeneration. Therefore, after spinal cord injury, microglia in CX3CR1+/+ 

(WT) mice may release factors that activate astrocytes and promote glial scar formation, inhibiting 

functional axonal regeneration. Pharmacological blockade of CX3CR1 in an appropriate time window 

after spinal cord injury may serve as a novel method to inhibit microglial activation and promote 

neural regeneration. Despite the undoubtedly neuroprotective functions of the CX3CL1-CX3CR1 

signaling pathway in the CNS, CX3CL1 may do more harm than good under certain circumstances. 

Studies conducted in CX3CL1-/- mice to investigate the role of CX3CL1 immediately after ischemic 

injury suggest that CX3CL1 expression inhibits recovery from ischemic CNS injury [92]. Similar 

studies in CX3CL1-/- and CX3CR1-/- mice have shown that in both strains of mice, the volume of 

infarcted tissue after ischemia is lower, and the administration of exogenous CX3CL1 to WT mice 

reduces the total volume of tissue affected by ischemic infarction. CX3CL1 administration has no 

effect on CX3CR1-/- mice. 

Furthermore, in an in vitro glucose and oxygen deprivation model that reflects in vivo ischemic 

conditions, CX3CL1 reduced TNF-α release from CX3CR1-/- microglia. These results may explain why 

administering exogenous CX3CL1 to CX3CR1-/- mice increases the total volume of infarcted tissues, 

considering the neuroprotective effects of TNF-α [93]. CX3CL1 did not affect TNF-α release in 

microglia collected from WT mice. Moreover, in CX3CR1-/- mice, the infarct area after ischemia was 

smaller than that in the WT and heterozygous mice. Greater IL-1β expression has been observed in 

the astrocytes of CX3CR1+/- mice than in those of CX3CR1-/- mice. This finding suggests that, under 

stressful conditions, such as during an ischemic episode, CX3CR1-/- microglia acquire an astrocyte 

function-altering phenotype by default [94]. 
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Studies on the sex-specific effects of CX3CL1-CX3CR1 signaling have shown that, within 12 

weeks of an ischemic event in WT and CX3CR1-/- mice, female WT mice recover more functions than 

female CX3CR1-/- mice [95], while no difference has been found in males. This finding suggests that, 

for unknown reasons, signaling dependent on the activation of the CX3CR1 receptor has a more 

significant neuroprotective effect in the event of ischemic episodes in females than in males. 

4.1. CX3CL1-CX3CR1 Pathway in Aging Microglia 

Increasing amounts of data are emerging regarding the role of CX3CL1/CX3CR1 signaling in the 

aged brain. A significant amount of data suggest that the expression of CX3CL1 in the brain of young 

rodents is high and decreases with age, which reduces the number of ramified microglia and 

promotes the release of neuroinflammation markers [96]. Moreover, in old mice exposed to 

peripheral LPS, the microglial response is enhanced [64,96,97], which may confirm the anti-

inflammatory and neuroprotective effects of CX3CL1 in young mice. Interestingly, LPS exposure also 

reduces CX3CR1 expression in old brains more than in young brains, resulting in a long-term 

decrease in the expression of these receptors on microglia [98]. Recent studies have confirmed these 

results and have shown that, while the expression of CX3CR1 on microglia returns to normal within 

24 hours of exposure to LPS in young mice, this does not occur in old mice [97]. This failure to return 

regular CX3CR1 expression is accompanied by increased IL-1β release, often exacerbating existing 

CNS diseases. Taken together, reduced expression of CX3CL1, CX3CR1, or both proteins in aged 

brains significantly alters the effectiveness of the signaling axis dependent on these proteins, resulting 

in both morphological and functional alterations in microglial cell phenotypes, as well as impairment 

of microglial function. It is known that neurogenesis in the hippocampus decreases during aging. 

Pharmacological blockade or genetic ablation of CX3CR1 [70,96] has a similar effect on the dentate 

gyrus of the mouse hippocampus, with a subsequent IL-1β-dependent decrease in the survival and 

proliferation rate of neuronal stem cells [96]. In this context, attenuation of CX3CL1-dependent 

signaling may contribute to excessive activation of microglia [96]. It remains to be determined 

whether the same phenomenon occurs in humans. Considering the reduced neurogenesis in the 

hippocampus during cognitive impairment and aging, further studies are recommended to 

determine the involvement of the CX3CL1/CX3CR1 signaling pathway in the pathologies mentioned 

above in humans. Activation of the CX3CR1 receptor in microglia regulates PI3K activity, reducing 

IL-1β production [99]. Since aging is characterized by a chronic increase in IL-1β levels in the 

hippocampus [100] and IL-1β inhibits the cell cycle in neuronal progenitor cells [101], impaired 

activation of CX3CR1 receptor-dependent signaling may contribute to the reduced rate of 

neurogenesis in aged brains, especially because blockade of IL-1β abrogates these effects [96]. 

Recent studies have also clarified the role of IL-1β. Sirtuin 1 (SIRT1), a nicotinamide adenine 

dinucleotide (NAD+)-dependent protein deacetylase, has been associated with neuroprotective 

effects, which are partially dependent on the inactivation of the p65 subunit of NF-κB by SIRT1 and, 

therefore, on the inhibition of the expression of IL-1β, a protein upregulated by NF-κB [102]. 

However, the activated CX3CR1 receptor can inhibit the activity of protein kinase A (PKA); thus, 

deletion of this receptor may facilitate the activation of PKA and, therefore, the activation of NF-κB, 

which is also dependent on this kinase [103]. In CX3CR1-/- microglia, SIRT1 activity increases, which 

likely helps to prevent excessive activation of NF-κB, but in old brains, it is insufficient to prevent 

excessive expression of genes promoted by NF-κB, including the IL-1β-encoding gene [104,105]. 

Previous studies on various animal models of neurodegeneration have shown that the loss of 

neuronal interactions with microglia caused by damage to the CX3CL1-CX3CR1 signaling pathway 

results in more significant neurotoxic activity of microglia and, therefore, in a more severe course of 

neurodegenerative diseases [81]. However, it is unknown whether impaired functioning of the 

CX3CL1-CX3CR1 signaling pathway occurs as a result or as a cause of increased activation of 

microglia, while both scenarios may occur during brain aging or diabetic encephalopathy. No 

differences in CX3CL1 mRNA expression were detected in hippocampal neurons collected from old 

rats compared with those collected from young rats, which indicates that posttranslational 

mechanisms are responsible for the decreased CX3CL1 activity [96]. Administration of exogenous 
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CX3CL1 restores physiological levels of neurogenesis. Moreover, a slight decrease in CX3CL1 

expression was observed in middle-aged rats. However, they do not have such an inhibitory effect 

on the function of the CX3CL1-CX3CR1-dependent signaling axis, as observed in old rats, proving 

the direct role of aging in the significant inhibition of CX3CL1 expression. In other words, the 

apparent physiological decline in CX3CL1 expression that occurs during aging may be compensated 

for during the early but not late stage of this process. 

When looking at the interindividual genetic variation in the CX3CR1 coding regions, two single 

nucleotide polymorphisms (SNPs) can be detected. Interestingly, these polymorphisms are 

associated with an increased risk of age-related macular degeneration (AMD) [106,107] and a reduced 

risk of atherosclerosis [108]. Moreover, plasma soluble CX3CR1 levels are significantly greater in 

people with mild to moderate Alzheimer's disease than in people with severe disease. If we assume 

that the severity of Alzheimer's disease progresses with age, such observations are consistent with 

the hypothesis that CX3CL1-CX3CR1 signaling plays a neuroprotective role [109]. Notably, in old 

mice, voluntary physical exercise increases the CX3CL1 concentration in the brain and, therefore, 

neurogenesis in the hippocampus [110], which leads to improved hippocampal function [111,112]. 

Combined, this suggests that decreased physical activity with age may contribute to a decrease in 

CX3CL1 levels in the brain. 

4.2. Common Denominators of Brain Aging, Alzheimer's Disease and Diabetic Encephalopathy 

In the course of both Alzheimer's disease and untreated diabetes, microglia may be excessively 

activated by factors such as oxidative stress and neuroinflammation. In Alzheimer's disease, 

microglia may be directly activated by extracellular deposits of Aβ aggregates, while in diabetic 

encephalopathy, they can be activated by AGEs. Furthermore, damage to the blood–brain barrier 

occurring in the course of diabetes makes it permeable to substances not generally found in the brain, 

which may promote neuroinflammation. The pattern of microglial cell activation depends on 

microglial interactions with neurons, while CX3CL1-CX3CR1 signaling plays a significant role in 

these interactions. Many studies have indicated that CX3CL1-CX3CR1 signaling may exert a 

neuroprotective effect by preventing the hyperactivation of microglia and thus the 

neuroinflammatory response [64,73–75]. However, other studies have suggested that CX3CL1-

CX3CR1 activation can be harmful in slightly different contexts [92,93,113]. Therefore, the modulation 

of CX3CL1-CX3CR1 signaling may have different effects depending on the metabolic context [114]. 

However, much evidence indicates that, in the course of diabetic encephalopathy, activation of this 

pathway can exert a neuroprotective effect since it takes part in the inhibition of microglial 

hyperactivation by neurons, which can prevent neuroinflammation, thus lowering the risk of 

dementia as a long-term complication of diabetes. 

4.3. Neuroinflammation and Neurodegeneration in Diabetic Encephalopathy 

The symptoms of DE consist mainly of cognitive deficits resulting from neuroinflammation and 

neurodegeneration. One of the possible mechanisms underlying these complications of diabetes is 

persistent inflammation resulting from the pronounced secretion of proinflammatory mediators and 

pro-oxidant substances [115]. Proinflammatory mediators are predominantly released from glia, 

including microglia, astrocytes, and oligodendroglia, in the brain [116,117]. The most common 

microglia-related function is immune surveillance—both in the healthy brain and in the brain affected 

by various diseases. Microglia constantly explore their microenvironment by extending and 

retracting their highly motile processes [118,119]. This property is essential for achieving a rapid 

response to infections or injuries that lead to the activation of microglia, changing their phenotype 

from quiescent to activated. At the same time, however, chronic excessive activation of microglia in 

the course of diabetes, e.g., due to hyperglycemia, may adversely affect the brain, leading to chronic 

neuroinflammation. Activation of microglia may occur in response to disruption of neuronal 

function, e.g., by excess glycation end products or reactive oxygen species (ROS), and is associated 

with immunoreactive, morphological, proliferative and migratory changes in microglial phenotypes 

[118,120]. The activation of microglia allows the elimination of pathogens and debris from other cells 
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during acute inflammatory reactions, which is a beneficial phenomenon. However, the same 

activation may have an unfavorable effect on chronic inflammatory reactions, contributing to 

neurodegeneration [121]. Chronic inflammation within the CNS may result in excessive activation of 

microglia, which, under such conditions, may excessively release proinflammatory cytokines and 

undergo oxidative and nitrosative stress [122]. Activated microglia can proliferate and migrate to 

sites of brain tissue damage, where they undergo morphological changes and alterations in gene 

expression resulting from interactions among various signaling pathways [123]. 

Diabetic Encephalopathy – Focus on Microglia 

Much evidence indicates that microglia-dependent inflammation within the CNS plays an 

important role in the pathogenesis of DE. For example, extracellular nucleotides, particularly 

adenosine triphosphate (ATP), which act through purinergic metabotropic (e.g., P2Y) and purinergic 

ionotropic (e.g., P2X) receptors, are critical modulators of microglia–neuron communication [124]. 

Therefore, microglia may affect the course of DE, among other processes, through interactions with 

neurons. First, neurons become hyperactive in response to neurotoxic factors, hyperglycemia and 

hyperlipidemia, after which they release slow-acting microglial activators, such as matrix 

metalloproteinase-9 (MMP-9), ATP and chemokines, mainly monocyte chemoattractant protein-1 

(MCP-1, also known as chemokine CCL2), and CX3CL1 (fractalkine). Second, activation of p38 

mitogen-activated protein kinases, a class of MAPKs in microglia, produces mediators such as 

neurotrophins and substances that regulate synaptic transmission and the intensity of inflammation. 

Microglial inflammation may also result from blocking the interaction between the 

immunomodulatory molecule CD200 and its receptor CD200R. The CD200/CD200R signaling 

pathway is responsible for immunosuppressive mechanisms involving the inhibition of 

macrophages, induction of regulatory T cells, switching of cytokine profiles from Th1 to Th2, 

inhibition of tumor-specific T-cell immunity and induction of myeloid-derived suppressor cells 

(MDSCs) [125]. The inflammatory response in microglia also occurs due to the activation of signaling 

pathways related to pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), a 

microglial receptor-adaptor complex known as triggering receptor expressed on myeloid cells 2 

(TREM2) and DNAX-activating protein of 12 kDa (DAP12), as well as AGE-RAGE signaling [126–

130]. Despite having transporters for the three main energy substrates (glucose, fatty acids, and 

glutamine), during an acute inflammatory response, microglia may experience an energy deficit 

because microglial energy consumption is dependent on their degree of activity [130]. Because 

neuronal hyperactivity caused by neurotoxic factors has a feedback-activating effect on microglia, 

including through the production of CX3CL1, the microglia-neuron interaction in the DE is a vicious 

cycle (Figure  3). 
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Figure 3. The importance of microglia and CX3CL1/CX3CR1 signaling in the vicious cycle of 

microglia-neuron interaction during neuroinflammation in diabetic encephalopathy. 

Microglia activation in diabetic encephalopathy occurs as a result of the action of signaling 

pathways related to: ❶ pattern recognition receptors (PRRs), including toll-like receptors (TLRs), 

triggering receptor expressed on myeloid cells 2/DNAX-activating protein of 12 kDa (TRM2/DAP12) 

and advanced glycation end products/receptor for advanced glycation end-products (AGE-RAGE), 

❷ activation of p38 mitogen-activated protein kinases, a class of mitogen-activated protein kinases 

(MAPKs) p38 MAPK and ❸ purinergic signaling. Microglial inflammation may also develop as a 

consequence of blocking the interaction of the immunomodulatory protein CD200 with its receptor 

CD200R (marked with crossed out red lines) ❹, because the CD200/CD200R signaling provides 

immunosuppression due to the inhibition of macrophages, induction of regulatory T cells, switching 

of cytokine profiles from T helper-1 (Th1) to T helper-2 (Th2), inhibition of tumor-specific T cell 

immunity and induction of myeloid-derived suppressor cells (MDSC) [125]. Neuronal hyperactivity 

in diabetic encephalopathy may be caused by both neurotoxic factors outside microglia and an 

inflammatory response within microglia. Neurotoxic agents increase the risk of cognitive deficits due 

to impaired synaptic plasticity. Whatever the cause, neuronal hyperactivity has a feedback activating 

effect on microglia by releasing slow-acting microglial activators, such as matrix metalloproteinase-

9 (MMP-9), adenosine triphosphate (ATP), monocyte chemoattractant protein-1 (MCP-1) and 

fractalkine (CX3CL1) ❺. The soluble form of CX3CL1 (sCX3CL1) has a pro-inflammatory effect by 

stimulating metabotropic CX3CR1 receptors expressed in microglial cells ❻. 

Therefore, regulating the activity of some signaling pathways within microglia by inhibiting the 

activation of receptors for ATP (e.g., the purinergic ionotropic receptors P2X4 and P2X7), MMP-9, 

chemokines (CX3CL1 and CCL2), p38 mitogen-activated protein kinases—a class of mitogen-

activated protein kinases (MAPKs), interleukins (IL-1β, IL-6) and tumor necrosis factor alpha (TNF-

α) may contribute to the development of novel treatments for DE [130,131]. 

5. Concluding Remarks 

DE is a common long-term and chronic complication of DM. Therefore, with the high and 

constantly increasing incidence of diabetes, DE contributes significantly to cognitive impairment and 

motor dysfunctions. A constant component of the DE pathomechanism is neuroinflammation, which 

is caused by a complete lack of insulin (e.g., in type 1 diabetes [T1D]) or ineffective action of insulin 

due to insulin resistance (e.g., in type 2 diabetes [T2D], which most often co-occurs with obesity). In 

addition to the lack of homeostatic glucose and the anti-inflammatory effects of insulin, which limit 

NF-κB activation and subsequent proinflammatory cytokine expression, chronic hyperglycemia also 

contributes to neurodegenerative processes mainly through its pro-oxidative effects, which damage 

blood‒brain barrier integrity and increase neuronal loss. The observed clinical diversity of DE forms 

can be explained by the fact that aging is the primary factor for most neurodegenerative diseases and 

that in many cases, the pathomechanisms of several neurodegenerative diseases overlap (e.g., 

Alzheimer's disease and Parkinson’s disease). 

Fractalkine is an intriguing chemokine with the unique properties of an adhesion molecule 

(mCX3CL1) and chemoattractant (sCX3CL1) that plays a central role in the nervous system. While 

neurons constitutively express CX3CL1 in the CNS and, it can be induced by TNF-α and IFN-γ in 

astrocytes, CX3CR1 expression in the brain is limited to microglia. This finding highlights the 

direction of action of the CX3CL1-CX3CR1 signaling axis, which regulates the level of microglial 

activity in response to brain injury or inflammation. However, knowledge about the role of CX3CL1 

in DE, as well as in other neurodegenerative diseases, remains surprisingly incomplete and 

controversial. Depending on the clinical context, CX3CL1 may have neuroprotective effects by 

inhibiting the inflammatory process in microglia or, conversely, maintaining/intensifying 

inflammation and neurotoxicity. The impact of comorbidities, including CNS aging, should be 

considered because, as mentioned above, DE does not occur in an isolated form. Therapeutic actions 

in DE aimed at limiting neuronal hyperactivity, causing impaired synaptic plasticity, should focus 
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on interrupting the vicious cycle within the microglia–neuron interaction involving the CX3CL1–

CX3CR1 signaling pathway. This can be achieved both by restoring neural homeostasis and by 

limiting the inflammatory response of microglia. 
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A2AR – adenosine A2A receptor, a G protein-coupled receptor that binds adenosine 

ADAM10 – a disintegrin and metalloproteinase domain-containing protein 10 

AGEs – advanced glycation end products 

Akt – protein kinase B 

AMD – age-related macular degeneration 

AMPA receptor – α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

ATP – adenosine triphosphate 

BV-2 – immortalized murine microglial cell line 

CCL2 – chemokine, also known as monocyte chemoattractant protein-1 (MCP-1) 

CD40 – cluster of differentiation 40 also known as—tumor necrosis factor receptor  

        superfamily member 5 (TNFRSF5) 

CNS – central nervous system  

CREB – cyclic adenosine monophosphate(cAMP)/Ca2+ response element binding protein  

CTS – cathepsins 

CX3CL1 – C-X3-C motif chemokine ligand 1, also known as fractalkine or neurotactin 

CX3CR1 – high-affinity fractalkine (FKN) receptor or chemokine (C-X3-C motif) ligand 1   

          (CX3CL1) receptor, also known as G protein-coupled receptor 13 (GPR13),  

          previously known as V28 

DAP12 – DNAX-activating protein of 12 kDa 

DE – diabetic encephalopathy 

DM – diabetes mellitus 

ERK1/2 – extracellular signal-regulated kinase 1/2 

FOXO – member of the class O of forkhead box transcription factors 

Gα, Gβ, Gγ – subunits of the heterotrimeric G proteins (G protein complex) 

Gαi – activated Gα subunit of the G protein complex 

GABA – γ-aminobutyric acid 

GDP – guanosine-5'-diphosphate  

GFP – green fluorescent protein 

GPR domain – G protein regulatory domain-containing specific protein 

GTP – guanosine-5'-triphosphate 

IFN-γ – interferon gamma  

IKK – IkappaBeta (Iκβ) kinase 

IL-1β, IL-6, IL-10, IL-17 – interleukin-1 beta, -6, -10 and -17, respectively 

iNOS – inducible nitric oxide synthase 
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JNK – cJun NH(2)-terminal kinase 

LPS – lipopolysaccharide  

LTP – long-term potentiation  

MAPK – mitogen-activated protein kinase 

MCP-1 – monocyte chemoattractant protein-1, also known as chemokine CCL2 

mCX3CL1 – membrane form of fractalkine (acts as an adhesion molecule) 

MDSC – myeloid-derived suppressor cells 

MEK – mitogen-activated protein kinase kinase 

MEKK – mitogen-activated protein kinase kinase (MEK) kinase 

MHC2 – major histocompatibility complex class II 

MMP-2, MMP-9 – matrix metalloproteinase-2 and -9, respectively   

NAD+ – a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase                 

        (an oxidized form) 

NF-κB – nuclear factor kappa-light-chain-enhancer of activated B cells 

NMDA receptor – N-methyl-D-aspartate receptor 

NO – nitric oxide 

P2X, P2X4, P2X7 –  purinergic ionotropic receptors 

P2Y – purinergic metabotropic receptor 

P38 – mitogen-activated protein kinases, also known as P38 MAPK 

PI3K – phosphoinositide 3-kinase 

PKA – protein kinase A 

PKC – protein kinase C 

PLC – phospholipase C 

PRRs – pattern recognition receptors 

Raf – Raf kinases 

RAGE – receptors for advanced glycation end-products 

Ras – Ras kinases 

RIC8 – a non-receptor guanine-nucleotide exchange factor for Gα subunits, also known as synembryn  

ROS – reactive oxygen species 

sCX3CL1 – soluble form of fractalkine (acts as a chemoattractant) 

SIRT1 – sirtuin 1, a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase 

SNPs – single nucleotide polymorphisms 

STAT – signal transducer and activator of transcription protein  

T1D, T2D – diabetes type 1 and diabetes type 2, respectively 

TACE – tumor necrosis factor alpha (TNF-α) converting enzyme, also called ADAM17 

Th1, Th2 – CD4+ T helper-1 and T helper-2 cells, respectively 

TLR4 – toll-like receptor  4 

TLRs – toll-like receptors 

TNF-α – tumor necrosis factor alpha 

TREM2 – triggering receptor expressed on myeloid cells 2  

WT mice – wild-type mice 
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