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Abstract: Bearing component damage contributes significantly to rotating machinery failures. It is vital for the 

rotor‐bearing system to be in good condition to ensure proper functioning of the machine. Over recent decades, 

extensive research has been devoted  to  the condition monitoring of rotational machinery, with a particular 

focus on bearing health. This paper provides a comprehensive  literature review of recent advancements  in 

intelligent condition monitoring technologies for rolling element bearings. Fundamental monitoring strategies 

are  introduced, covering various sensing, signal processing, and  feature extraction  techniques  for detecting 

defects  in rolling element bearings. While vibration‐based monitoring remains prevalent, alternative sensor 

types  are  also  explored, offering  complementary diagnostic  capabilities or detecting different defect  types 

compared to accelerometers alone. Signal processing and feature extraction techniques, including time domain, 

frequency domain,  and  time‐frequency domain  analysis,  are discussed  for  their  ability  to provide diverse 

perspectives  for  signal  representation,  revealing unique  insights  relevant  to  condition monitoring.  Special 

attention  is  given  to  information  fusion  methodologies  and  the  application  of  intelligent  algorithms. 

Multisensor systems, whether homogeneous or heterogeneous, integrated with information fusion techniques, 

hold promise in enhancing accuracy and reliability by overcoming  limitations associated with single sensor 

monitoring.  Furthermore,  the  adoption  of  AI  techniques,  such  as  machine  learning  and  metaheuristic 

optimisation, has  led  to significant advancements  in condition monitoring, yielding successful outcomes  in 

various studies. Finally, avenues for further advancements to improve monitoring accuracy and reliability are 

identified, offering insights into future research directions.   

Keywords:  review;  condition monitoring;  rolling  element  bearing;  fault  diagnosis;  vibration;  information 

fusion; feature extraction; intelligent algorithms 

 

1. Introduction   

Rolling element bearings (REBs) in rotating machinery are essential for the operation of several 

industries [1]. They facilitate the rotational motion required while reducing friction between moving 

parts.  It  is  common, however,  for  these  components  to naturally develop defects over  time. REB 

defects may  also  occur due  to  a  contribution  of  factors  including  but  not  limited  to  inadequate 

lubrication,  external  contaminants  and use  in  incorrect operating  conditions. Damage of bearing 

components account for about 45% of rotating machinery failures [2] and therefore, ensuring REBs 

in good condition is vital to the proper functioning of the machine.   

Many studies have been conducted on  the condition monitoring of  rotating machinery  for a 

variety of issues including REB defects [3]. The condition monitoring of certain parameters allowed 

for maintenance and replacement of REB  to be conducted when  the defect was  incipient  [4]. This 

allowed for the maximisation of the usage of components and significantly reduced costs associated 

with  the purchase of REB. Additionally,  the  revenue  that may be  lost due  to machine downtime 

during  unnecessary  scheduled  maintenance  can  be  significantly  limited  making  it  a  highly 

economical strategy.   
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There are many common condition monitoring approaches such as vibration, acoustic emission 

(AE), infrared thermography, and wear‐debris based monitoring [4]. Of the various approaches that 

exist,  vibration‐based  monitoring  has  been  researched  extensively  in  the  context  of  condition 

monitoring  of  machinery.  It  utilises  accelerometers  appropriately  positioned  on  or  within  the 

machine  to detect vibrations  that are produced as a result of machine operation and defects. The 

signals obtained in the time series can then be processed in various ways to make the fault extraction 

and classification process easier. Mollasalehi categorises the techniques available for fault diagnosis 

of bearings as being data‐driven or model‐based [5]. Data‐driven or signal‐based techniques include 

the various methods available for the analysis of a signal in the time, frequency, or time‐frequency 

domain. Model‐based  techniques  involve  the  design  of  a model  based  on  various  assumptions, 

relevant theory, and geometrical properties to accurately portray a system’s operation.   

Granted single sensor approaches to condition monitoring have been successful, but it is greatly 

advantageous to utilise multiple sensors. Information fusion is a method in which data from various 

sources are combined to obtain a better  interpretation [6]. Fusion of data has become  increasingly 

common  in various disciplines and has  found  its way  into condition monitoring applications  [7]. 

Depending on  the sensors used and  the application, one or more  levels of  fusion may be used  to 

improve  accuracy  and  reliability  of  condition  monitoring.  Certain  sensor  types  may  also  be 

susceptible to environmental factors causing failure or distortions in the output. The use of a hybrid 

condition monitoring approach is able to overcome this by utilising a heterogeneous sensor system.   

Utilising artificial intelligence (AI) in the condition monitoring of rotational machinery has been 

a highly researched area over the past decade leading to the use of various intelligent algorithms for 

classification and optimisation tasks. The implementation of AI‐ incorporated algorithms is robust, 

highly  adaptable,  and  also  reduces  the  requirement  of  strong  fundamental  knowledge  and 

experience  in  condition monitoring making  it desirable  for many  operators  [8]. Most  intelligent 

algorithms used  to detect defects were focused on  their application  to data‐driven systems. Some 

researchers  have  also  highlighted  the  potential  of  using model‐based  systems  to  train machine 

learning classifiers as it would be impractical to acquire the amount of data required for this purpose 

from the machine [9].   

The condition monitoring of rotational machinery has been extensively researched over the past 

few  decades,  particularly  in  the  realm  of  bearing  condition monitoring. While  several  literature 

review papers have been published in recent years [10–13], certain areas such as information fusion 

approaches  and  intelligent  classifiers  have  not  received  adequate  attention.  This  paper  seeks  to 

address  this  gap  by  offering  a  comprehensive  literature  review  on  the  recent  advancements  in 

intelligent condition monitoring technologies for rolling element bearings. Special emphasis will be 

placed on feature extraction techniques,  information fusion methodologies, and the application of 

intelligent algorithms. 

2. Fundamentals and Sensing Strategies   

2.1. Defect Frequencies of Rolling Element Bearings   

A  typical  rolling  element  bearing  contains  an  inner  race,  outer  race  (usually  fixed),  rolling 

elements and a cage as shown in Figure 1 [14]. As there is constant contact between the rolling element 

and the races during operation, the REB can exhibit signs of wear and develop various defects over 

time, such as spalls, pits and cracks [15]. Defects can occur in any of the components of the REB. The 

frequency in which these defects come into contact with other moving parts can be calculated using 

the geometry of the bearing and the shaft’s rotational frequency. These theoretical defect frequencies 

(TDFs), including the Ball pass frequency of the inner race (BPFI), Ball pass frequency of the outer 

race (BPFO), Ball spin frequency (BSF), and Fundamental train frequency (FTF), can be calculated 

using Equations (1) to (4) below, where  𝑛  is the number of rolling elements,  𝑓௥  is the shaft frequency, 
𝑑  is the rolling element diameter,  𝐷  is the pitch diameter of bearing, and  𝜃  is the contact angle [16]. 
For  special  cases where both  inner  race  and outer  race  are  rotating,  𝑓௥   is  the  relative  frequency 
difference between the inner and outer race. It must also be noted that the ball spin frequency (BSF) 
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represents the frequency in which the ball makes contact with only one of the races and therefore the 

harmonics of this TDF will also need to be observed [17]. 
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The condition monitoring of machinery is of considerable importance to both industry [18] and 

aviation  [19]  sectors due  to  the possible  reduction  in  costs  and  an  increase  in  safety  that  can be 

achieved. Over the past few decades, several notable innovations and general improvements have 

been made to the field.   

 

Figure 1. Main components of an REB (adapted from [14]). 

2.2. Condition Monitoring Approaches 

According  to  Jablonski  [20],  condition monitoring  systems  can  include  a  number  of  tasks 

namely,  fault  detection,  diagnosis,  severity  assessment,  root  cause  analysis,  prognosis  and 

prescription. Fault detection involves determining whether or not a fault is present in a machine. This 

task can sometimes be accomplished through methods as simple as monitoring a statistical indicator’s 

magnitude to see if a set threshold is reached. Fault diagnosis often refers to identifying what type of 

fault  is present  in a machine element.  It  is also used  to describe  the process of  identifying which 

machine  element  is  faulty. Unlike  fault  detection,  the  fault  diagnosis  task more  often  involves 

advanced signal processing techniques. It must be noted that this naming convention is not strictly 

adhered  to by all  researchers and  the  terms detection and diagnosis are used  interchangeably by 

some. Severity assessment, as the name implies, involves attaining additional information regarding 

the prominence of the fault [21]. Root cause analysis tackles another aspect of condition monitoring 

attempting to identify the primary cause inducing the detected fault [20]. Fault prognosis is carried 

out  to  avoid  unexpected  failures  by  estimating  the  remaining  useful  life  of  components  [22]. 

Prescription or prescriptive analytics involves providing recommendations on maintenance actions 

that can be taken for machine condition monitoring [20]. 

Condition monitoring tasks can be achieved through various approaches. Different sensors have 

been employed for the measurement of natural phenomena which can hold valuable information on 

the  equipment  being  monitored.  Some  common  approaches  are  explained  in  the  following 

subsections. 
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2.2.1. Vibration‐Based Monitoring 

Vibration‐based monitoring is considered the most mature condition monitoring approach and 

has  been  widely  used  for  several  decades.  The  presence  of  defective  components  in  rotating 

machinery produces vibrations that are substantially different from what is generated by the machine 

in healthy condition. In REB, the periodic contact of the defective component (i.e. a rolling element, 

inner race, or outer race) with other surfaces during operation typically generates strong impulses at 

a higher frequency compared to other machine vibrations. These vibration signals can be collected 

using  an  accelerometer  mounted  on  the  machine  near  the  component  being  monitored. 

Accelerometer measurements often have a high frequency response typically around 10 kHz to 20 

kHz  [23]. Many  signal processing methods have been utilised  for  the extraction of defect‐related 

features in the different domains.   

2.2.2. Acoustic Emission‐Based Monitoring 

Acoustic emission (AE) is defined as the propagation of transient elastic waves as a result of the 

contact of surfaces during operational motion [24]. Upon direct contact of the defect with another 

component, AEs are  released which can be picked up using  the AE sensor. The signals  from AE 

sensors  have  a much  higher  frequency  response  from  around  100  kHz up  to  several MHz  [25]. 

Choudhury and Tandon [26] investigate the use of AE sensors for the detection of different sizes of 

defects in REB. By counting occurrences of when voltage exceeded a set threshold, also referred to as 

ringdown counts, roller and inner race defects were able to be detected. Elforjani and Mba [27] found 

that AE signals can be used  for  the detection of  incipient defects and  its propagation and also  to 

estimate the size. Caesarendra et al. [28] reported that it was able to detect defects much earlier using 

AE  signals  although  there  was  a  trade‐off  between  accuracy  and  computational  time.  Such 

advantages made the use of AE‐based monitoring a viable alternative to vibration‐based monitoring.   

A common concern in using AE signals is the extreme computation burden due to the very high 

sampling rate required. A time synchronous resampling technique with spectral averaging was used 

in the extraction of condition  indicators  low‐speed bearings using AE signals at a lower sampling 

frequency [29]. A study by Liu et al. [30] utilised a compressive sampling technique on AE signals 

and extracted features based on its energy to assess the state of the bearing. The extracted features 

were consistent with the features from a raw uncompressed signal.   

2.2.3. Temperature‐Based Monitoring 

Temperature‐based monitoring aims to detect abnormal heat patterns caused by malfunction in 

rotating machinery [31]. The sensors used are primarily infrared cameras, but thermocouples can also 

be  utilised.  Infrared  cameras  capture  the  energy  from  the monitored  structure  in  the  infrared 

wavelength of the electromagnetic spectrum allowing for the collection of images indicating surface 

temperature distribution [32]. Condition monitoring using infrared thermography typically involves 

the use of image processing and machine learning methods. This approach is non‐intrusive in nature 

as the infrared cameras can be easily setup while the machine is still in operation, leaving its process 

unaffected. The drawbacks of this approach include high cost of Infrared cameras, requirement of 

additional space and setup, and being sensitive to environmental factors [25].   

Janssens  et  al.  [33]  used  infrared  imaging  to  detect  various  defects  in  rotating machinery 

including  rotor  imbalance,  defects  present  on  the  outer  raceway  of  bearings,  and  also  bearing 

lubrication  levels. The detection of  the  lubrication  levels and outer  raceway  faults were done by 

obtaining the mean of the Gini coefficient, standard deviation, and second‐order moment of pixels 

for all frames. Liu et al. [34] employed a convolutional neural network (CNN) on infrared images for 

the classification of rotor bearing system defects. Mehta et al. [35] used infrared thermography for 

the classification of bearing defects. It was found that the SVM classifier had a better performance in 

comparison to other classifiers tested for this application.   
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2.2.4. Other Approaches 

There are several other sensors which can be utilised for the condition monitoring of bearings 

[7]. Online oil monitoring with oil quality or wear debris sensors has been utilised for the monitoring 

of machine  issues  such  as  lubrication  degradation  and wear  state  [36,37].  Ultrasonic  detection 

involves monitoring sound waves at frequency levels of 20 kHz to 100 kHz [38]. It can be employed 

for early detection of bearing defects and also lubrication levels [39]. Current signature monitoring is 

used for monitoring and detection of bearing defects through the analysis of current and voltage data 

[40]. Microphones have also been employed  for non‐contact acoustic monitoring of bearings with 

success [41]. This is achieved by measuring pressure variations or sound from the environment. 

2.3. Influence of Sensor Integrity 

The  quality  of  sensors  and  signals  used  in  condition monitoring  of machinery  can  greatly 

influence the trustworthiness of detection and diagnosis [42]. It is crucial to ensure the reliability of 

the information acquired from sensors. In many cases, monitoring sensors are installed at harsh and 

difficult‐to‐access  locations,  such  as  on  off‐shore wind  turbines,  thus  physical  inspection  of  the 

sensors on site  is a big challenge. Sensor  issues affecting signal  integrity can occur due to various 

reasons including faulty mounting, background noise, saturation, and sudden impact. Girondin et 

al.  [43] stated  that mechanical shocks and  loosening of accelerometers were  the cause of  random 

peaks and asymmetries in signals affecting helicopter health and usage monitoring systems. While 

the study was unable to detect the occurrence of mechanical shocks, asymmetries were detected using 

enhanced skewness  indicating transducer  looseness. Similarly, Abboud et al. [44]  investigated the 

issue of accelerometer detachment.  It was  found  that asymmetry affected  the  random part of  the 

vibration  signal  so  cepstrum pre‐whitening was used  to  remove  the deterministic  content of  the 

signal. An indicator that compared the number of outliers on the set positive and negative thresholds 

was  used  for  the  detection  of  the  sensor  issue.  An  alternative  approach  for  the  detection  of 

accelerometer mounting  issues was  taken  by Randall  and  Smith  [23] which  involved  the use  of 

multiple sensors mounted on the structure. Discrepancies between accelerometer resonances could 

indicate a problem with mounting. This method, however, requires all other sensors to be mounted 

correctly otherwise it can be difficult to identify faulty mounting. Song et al. [45] developed a method 

for checking signal quality and detection of defective conditions. This involved the use of histograms 

from segments of a signal without any distortions from equipment operating at normal conditions.   

3. Signal Processing and Feature Extraction Techniques   

Signal processing and  feature extraction  techniques are used  to uncover relevant monitoring 

information from a source. Many of the vibration signal processing and feature extraction techniques 

are applicable to most temporal signals such as the AE signal. Alternative methods of analysis are 

needed for different condition monitoring approaches such as temperature‐based monitoring where 

feature extraction typically involves some form of image processing [46].   

Vibration  signals  are  commonly  analysed  in  the  time  domain,  frequency  domain,  or  time‐

frequency domain each presenting their own advantages and drawbacks [12]. When signals recorded 

are visualised with respect to time, it is said to be in the time domain. Alternatively, the frequency 

domain allows for the analysis of the same signals with respect to frequency and appears as impulses. 

The time‐frequency domain allows for a representation capturing signal changes over both time and 

frequency. 

3.1. Time Domain Methods 

Temporal  analysis  techniques  are  typically  used  to  provide  insight  into  the  variation  of 

conditions in the machinery and identify the presence of defects. There are several features, including 

the root mean square (RMS), crest factor, kurtosis, and skewness, that can be extracted from the time‐

domain  to obtain  information on  the signal. These are shown  in Equations  (5)  to  (8)  respectively 

where  𝜇  is the mean,  𝜎  is the standard deviation and  𝑥  is a vector of  𝑛  samples [5]. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 June 2024                   doi:10.20944/preprints202406.0016.v1

https://doi.org/10.20944/preprints202406.0016.v1


  6 

 

𝑀𝑆 ൌ ඩ
1
𝑛
෍𝑥௜

ଶ

௡

௜ୀଵ

  (5)

𝐶𝐹 ൌ
max|𝑥௜|

ට1
𝑛∑ 𝑥௜

ଶ௡
௜ୀଵ   

 
(6)

𝐾 ൌ
∑ ሺ𝑥௜ െ 𝜇ሻସ௡
௜ୀଵ

𝑛𝜎ସ
  (7)

𝑆 ൌ
∑ ሺ𝑥௜ െ 𝜇ሻଷ௡
௜ୀଵ

𝑛𝜎ଷ
  (8)

A faulty bearing compared to one that is in good condition has a higher RMS value which can 

be expected to increase with the development of the fault [47]. The RMS of the vibration signal can 

be used as a basic  indication  technique  for  the presence of  faults. However,  it  is  inferior  to other 

methods for the detection of incipient faults. The impact caused by the contact of the defect to the 

raceway or rolling elements can be calculated using  the crest  factor. The change  in  the pattern of 

vibration on signals due to this defect is reflected in the increase of this feature’s magnitude [48]. The 

equation is simply the ratio of the peak value to RMS. Kurtosis has been identified as a good indicator 

of bearing health as healthy bearings have a Gaussian amplitude distribution with a kurtosis value 

of three regardless of speed or loading conditions [49]. It is much better at detecting incipient faults 

when compared to RMS, however, it has poor stability [50]. The asymmetry of the vibration signal is 

measured using skewness to tell if it is negatively or positively skewed [10]. Bearings in a healthy 

operating condition have signals with a near‐zero skewness. Goyal et al. [51] present several other 

statistical indicators that can be used for condition monitoring. With a reasonably high sampling rate, 

the output of the sensor can be analysed in near‐continuous time making the features extracted more 

accurate. 

The features mentioned above, and many others have been successfully used in identifying the 

presence  and  even  type  of  fault. Heng  and Nor  [52]  used  plots  of  kurtosis  vs.  crest  factor  to 

distinguish the type of fault in the bearing. However, this method did not work for all cases tested 

only giving accurate results for defective REB at a shaft speed of 1000 rpm. Sreejith et al. [53] used 

two features, kurtosis and normal negative log‐likelihood, as inputs to a neural network. From this, 

they were able to distinguish different bearing faults accurately. Fu et al. [50] proposed an adaptive 

fuzzy C‐means clustering method using time domain based features with which bearing health could 

be accurately computed. The clustering algorithm used crest  factor, skewness, kurtosis, RMS and 

variance  as  the  feature matrix  [50]. Samanta and Al‐Balushi  [42] developed a method where  the 

features RMS, kurtosis, variance, skewness and normalised sixth central moment were used as inputs 

for  an  artificial  neural  network  (ANN) with  some  preprocessing.  From  this,  they were  able  to 

determine whether the bearing tested was healthy or defective.   

It is generally agreed that time domain analysis techniques are favoured when a fast result is 

required. It eliminates the need for using complicated signal processing methods and features can be 

extracted from the same domain they are collected in. This makes it a preferred method for use with 

various  intelligent  algorithm‐related  techniques  and  has  helped  achieve  accurate  results. 

Additionally, basic assumptions can also be made on the type of fault present in the REB used based 

on the general shape of the vibration signal in the time domain. In the vibration signal of a bearing 

with outer race fault (ORF) as shown in Figure 2 (a), prominent impulses can be noticed periodically 

with a near‐uniform amplitude. The difference in time between these impulses equals to the inverse 

of the ball pass frequency of the outer race (BPFO). A bearing with an inner race fault (IRF) generates 

a signal which oscillates in amplitude periodically. This period corresponds with the inverse of the 

shaft  frequency and  the distance between  impulses corresponds with  the  inverse of  the ball pass 

frequency of the inner race (BPFI) as shown in Figure 2 (b). A ball fault (BF) in an REB can be expected 
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to have a similar wave pattern as that of an  IRF with  the oscillation of amplitudes. The period at 

which this occurs corresponds to the inverse of the fundamental train frequency (FTF) illustrated in 

Figure 2  (c). The distance between every second  impulse  relates  to  the  inverse of  the BSF as one 

impulse is produced for contact with each raceway (i.e. inner and outer). Therefore, it is also possible 

to visually determine the presence of a fault and the type of defect the bearing may possess. However, 

this would require someone with expertise in the field and the identification of a fault may not always 

be so straightforward. 

 

Figure 2. Typical time domain vibrational signals expected for an REB with a defect in (a) outer race, 

(b) inner race, and (c) a rolling element (adapted from [17]). 

The use of analysis methods in the time domain has the advantage of simplicity in calculations 

and being able to process signals directly as collected thus lowering the time taken for processing 

[50]. Despite  the development  of more  advanced  signal processing  techniques,  these  time‐based 

statistical features are still used for some cases as other domain analysis methods may present some 

disadvantages. Analysis methods in the time domain, however, are still considered inferior to others 

due to its low accuracy and sensitivity [50]. 

3.2. Frequency Domain Methods 

Frequency  domain  analysis  methods  are  common  in  the  fault  diagnosis  of  bearings  and 

extensively used by many researchers [54]. The frequency domain is very useful in identifying the 

occurrence of impulses in periodic intervals. In order to convert the vibration signal from the time 

domain to the frequency domain, the Fourier Transform is computed typically through fast Fourier 

transform (FFT).   

Envelope analysis, also known as high frequency resonance technique (HFRT), is a commonly 

used method for diagnostics of REB that allows for periodic  impulses to be better visualised [16]. 

Envelope analysis works by first obtaining the frequency spectrum for the raw signal. From this, a 

frequency  range  is  chosen  for  the amplitude demodulation process by using a bandpass  filter  to 

remove  the  other  frequencies  present. Hilbert  transform  is  a  prominent  technique  used  for  this 

amplitude demodulation due to the advantages it presents over other analogue methods [17]. The 

Hilbert transform denoted by  𝑥ොሺ𝑡ሻ  is the representation of phase shifting Fourier components on its 
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frequency  spectrum by  േ𝜋/2  [55]. The  signal  𝑥ሺ𝑡ሻ  is  convoluted with  the  function  1/𝜋𝑡,  this  is 
mathematically represented in Equation (9). 
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The band selected  for demodulation  is often  from a higher  frequency range where structural 

resonance  amplifies  the defect  related  impulses  [17].  The  analytic  time  signal  is  found,  and  the 

modulus is computed. Using Fourier transform once again, the envelope spectrum is obtained which 

can be analysed for information pertaining to bearing health. The ideal selection of a demodulation 

range will allow for certain frequencies to be uncovered. These frequencies may correspond to the 

shaft  frequency, TDFs, and  their harmonics as discussed  in Section 2. This process  is depicted  in 

Figure 3. The correlation of the peaks in the envelope spectrum with a TDF and its harmonics can 

confirm the presence of a defect in the REB used. The use of HFRT has been considered by many as 

a common benchmarking method in the identification of bearing health conditions. 

 

Figure 3. HFRT procedure (from [17]). 

There  have  been  several  studies  which  attempt  to  find  an  optimised  demodulation  band 

selection  technique  for use with HFRT. Bechhoefer and Menon  [56]  investigated a helicopter’s oil 

cooler fan bearing damage detection. Various envelope windows were tested manually to identify 

the optimal  frequency band by  incrementally changing  lower  frequency and bandwidth within a 

specified range. A demodulation band range was selected which was optimal for the different defect 

frequencies present in the data. Boškoski and Urevc [57] proposed a two‐step fault detection method 

for bearings. First, the likelihood of a defect was determined using spectral kurtosis. The bandpass 

filter maximising spectral kurtosis value was then used in envelope analysis to isolate defect‐related 

frequencies.  Spectral  kurtosis  and  envelope  kurtosis  were  used  by  Bechhoefer  et  al.  [58]  for 

bandwidth selection in envelope analysis of bearing data. In this study, an average energy algorithm 

was employed to measure the selected window performance. In a recent work, a real‐coded genetic 
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algorithm was developed with a novel fitness function and crossover selection method to automate 

the optimal selection of bandpass filter parameters for envelope analysis [59], which allowed for the 

distinction of defect‐related frequencies for REBs in an automated way.   

In addition to the computational burden for the selection of optimal demodulation band, there 

are also some other drawbacks  that can be expected  in  frequency domain analysis,  including  the 

occurrence  of  slip  causing  variations  in TDF,  interference  from  additional  vibration  sources  like 

bearing  looseness,  and multiple  faults making  it difficult  to discern  certain  frequencies  [60]. The 

popularity  of  developing metrics  for  performance measurement may  have  inspired  the  use  of 

metaheuristic  optimisation  algorithms  in  condition  monitoring.  The  selection  of  optimal 

demodulation  bands without  the  need  for  operator  input  can  be  achieved  using metaheuristic 

optimisation techniques and will be further discussed.   

3.3. Time‐Frequency Domain Methods 

Signals produced by  some machinery can be expected  to operate at varying  speeds and  the 

analysis methods used would need  to  account  for  their nonstationary nature. Some  examples of 

rotational machinery with nonstationary REB signals include helicopters and wind turbines. The time 

and frequency analysis methods discussed above can only show features in their respective domains 

[61]. Signals  that are considered nonstationary require alternate analysis methods known as time‐

frequency analysis, such as short‐time Fourier transform (STFT), Wigner‐Ville distribution (WVD), 

wavelet transform (WT), and Hilbert‐Huang transform (HHT).   

STFT uses Fourier transform in small time windows segmenting the signal as it can be assumed 

that the signal  is stationary  for a short duration [61]. The variation of the signal with time can be 

distinguished by analysing the local Fourier spectrum for each frame. Some benefits of using STFT is 

the lack of cross term interference as can be expected in WVD and its fast implementation. However, 

due to fixed window function and length, STFT is not adaptable. A high time resolution cannot be 

achieved when a fine frequency resolution is and vice versa [62]. It was one of the first time‐frequency 

analysis methods developed and has  therefore been used  in several condition monitoring studies 

[63–65]. 

The WVD is a bilinear time‐frequency method from which many others are based on. Unlike 

STFT, a window function is not used in WVD allowing for a much higher time‐frequency resolution. 

Multi‐component  signals  consist  of  auto  terms  and  cross  terms. Cross  terms  are  the  unwanted 

oscillations  in  the  signal whose  interference  affect  the  effectiveness  of  the  distribution  [66].  The 

presence of  cross  terms  can  cause overlapping on  auto  terms  and make  time‐frequency  features 

appear indistinct [61]. Liu et al. [67] propose the auto term window method based on WVD analysis 

for bearing fault diagnosis where the effects of the cross terms are suppressed and auto terms boosted.   

As the window size is fixed when it slides along the time in STFT, it is not able to provide good 

time  and  frequency  resolution  at  the  same  time. The wavelet  transform  (WT) was developed  to 

overcome the problem [68], which uses windows of different sizes for different frequencies and thus 

is  capable  of  studying  high‐frequency  components with  sharper  time  resolution  than  the  low‐

frequency components[69]. WT converts the time domain signals into a group of wave‐like signals, 

from which the original data can be reassembled using the weighting coefficient of each signal (i.e. 

wavelet  coefficients)  [70].  WT‐based  methods  have  been  widely  used  in  bearing  condition 

monitoring. Zhang et al.  [71]  introduced a  time–frequency analysis method based on  continuous 

wavelet  transform  (CWT)  and  multiple  Q‐factor  Gabor  wavelets  (MQGWs)  to  extract  bearing 

diagnostic  information. They  found  that  the  resolution  of  the CWT  time–frequency map  can  be 

greatly  increased, and the diagnostic  information can be accurately  identified. An  intelligent fault 

diagnosis method of  rolling bearing based on wavelet  transform  (WT) and an  improved  residual 

neural network (IResNet) was reported by Liang et al. [72], which resulted in better robustness under 

noisy labels and environment.   

The HHT is an adaptive non‐parametric analysis method which involves the use of empirical 

mode decomposition (EMD) and Hilbert spectrum. Although the instantaneous frequency for mono‐

component signals can be computed easily, real applications typically deal with multi‐component 
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signals which  need  to  first  be  decomposed  into mono‐components.  These mono‐components  or 

intrinsic mode functions (IMFs) are extracted using EMD through a process called iterative sifting 

[61]. Signals can be approximated by an IMF series. The HHT method calculates the instantaneous 

frequency  from  IMF phase’s  local derivative enhancing signal  local properties,  thereby, making  it 

capable of achieving a high time‐frequency resolution. It is adaptive in the representation of signals 

that are arbitrary and also doesn’t have interference from cross terms making HHT a very effective 

method  [61]. HHT has been widely used  in  the  field of  fault diagnosis and has  specifically been 

applied in the detection of bearing faults [73].   

In addition to those described, many other methods have been used for condition monitoring 

applications  including  local mean  decomposition  [74],  and  energy  separation  algorithm  [75]. A 

detailed review of the time‐frequency analysis methods can be found in [61]. 

4. Information Fusion 

The condition monitoring output obtained from a single source might suffer reliability issues as 

the information could be corrupted due to sensing problems or even sensor failure. This may occur 

because of harsh environmental and operational conditions or by selecting a sensor not well suited 

to the application. Therefore, the use of multiple sensors can allow for the construction of a more 

robust condition monitoring system.   

Researchers  have  explored  the  use  of  homogeneous  and  heterogeneous  sensor  systems  in 

condition monitoring of machinery. The monitoring reliability can be enhanced through information 

fusion what combines information from various sources in order to acquire a better interpretation of 

the data available. According  to Khaleghi et al.  [6],  the  challenges  faced with  information  fusion 

include disparity of data, data correlation, data  imperfection, and data  inconsistency.  Information 

fusion  is commonly categorised  into three  levels of abstraction,  i.e. measurements, characteristics, 

and decisions [76]. These are also known as data‐level fusion, feature‐level fusion, and decision‐level 

fusion, as discussed below.   

4.1. Data‐Level Fusion 

Data‐level fusion involves the direct combination of information from multiple sources before 

feature  extraction  and  classification. Typically,  all  sensors used  in  this  fusion measure  the  same 

phenomena [77]. 

Wang et al. [78] used signals from multiple accelerometers for the fault diagnosis of rotational 

machinery. The signals were initially transformed into a two‐dimensional (2D) image which was a 

combined representation of each sensor’s output. Feature extraction and fault classification were then 

conducted using a bottleneck layer optimised CNN. The proposed method was validated using data 

from  a  wind  power  testrig,  demonstrating  superior  performance  compared  to  a  single  sensor 

approach. Xia et al. [79] also utilised data‐level fusion for machinery fault diagnosis using a CNN. 

This involved extracting one‐dimensional temporal data from each accelerometer mounted on the 

machine and combining them into a matrix. The resulting 2D matrix was then fed to the CNN for 

fault diagnosis. Testing on REB and gearbox data showed very good results. While data‐level fusion 

is typically conducted with homogeneous sensors due to waveform similarity, heterogeneous sensors 

have also been utilized in combination. Jing et al. [80] applied information fusion using a deep CNN 

for  planetary  gearbox  fault  diagnosis.  They  combined  standardized  data  segments  from  an 

accelerometer, microphone, current sensor, and optical encoder into a single data sample before using 

them with the deep CNN. Despite the disparity in physical quantities measured by the sensors, the 

information was fused for a unified input to the classifier, though not in the traditional sense. While 

this means information is combined at the data level, the authors noted that fusion also occurred at 

other  levels,  though  not  explicitly mentioned.  In  addition,  this  approach  notably  surpassed  the 

performance of a single sensor approach in testing. 

Data‐level fusion yields rich information, enabling high accuracy, but it retains a larger volume 

of data compared to other fusion levels [7]. This may pose a challenge when computational efficiency 

and time are critical. However, with the growing availability of more powerful processing units, this 
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concern is less significant for smaller condition monitoring setups. It is also worth noting that fusion 

at the lowest level could compromise the integrity of the condition monitoring decision if the integrity 

of single sensor output is compromised.   

4.2. Feature‐Level Fusion 

In contrast to data‐level fusion, feature‐level fusion entails extracting pertinent characteristics 

from  the  acquired  data.  These  features  from  each  sensor  are  subsequently  amalgamated  at  an 

intermediate level before integration into condition monitoring systems. While the sensors employed 

for  fusion at  this  level need not be commensurate,  the chosen  features must accurately  represent 

crucial aspects of signal responses relevant to conditions. 

Chen and Li [81] collected time and frequency domain features from accelerometers mounted at 

various  locations on  the machinery  tested. These  features were  fused using a multiple  two‐layer 

sparse autoencoder. The resulting fused features were used to train a deep belief network for fault 

classification. This  approach was validated with  test data,  showing  a high  accuracy.  It was  also 

suggested  that  the method could be expanded  for use with different sensor  types. Tao et al.  [82] 

utilised vibration signals from multiple accelerometers for the fault diagnosis of REB. This involved 

the extraction of features from the time domain signals of every accelerometer. A deep belief network 

was then employed with the extracted features as input vectors, resulting in a suitable classifier for 

fault diagnosis. In comparison to a single sensor approach, the method showed a better performance 

in the classification of REB defects. Vanraj et al. [83] employed signals from an accelerometer and 

microphone for classifying gear conditions. Feature extraction involved the use of EMD, the Teager–

Kaiser energy operator, and a  combination of both. The extracted  statistical  features were  sorted 

based on relevance using a sequential floating forward selection algorithm. Using the selected feature 

vectors, k‐nearest neighbour (KNN) was utilised for successful classification of faults. 

While the use of feature‐level fusion does deal with a smaller amount of data in comparison to 

data‐level fusion, the trade‐off is potential loss of other useful information contained in the raw signal 

[7].   

4.3. Decision‐Level Fusion 

Decision‐level  fusion  represents  the  highest  level  of  fusion,  where  sensor  information  is 

acquired, features are extracted, and the condition monitoring system makes a local decision for each 

sensor used. These local decisions are then combined to derive a global decision on the state of the 

machinery. Compared to lower and intermediate levels, fusion at this level results in the greatest loss 

of  information  [7]. Decision‐level  fusion  is often used  for,  though not exclusively, heterogeneous 

sensor systems as a means to interpret sensor data recording various phenomena.   

In a study by Niu et al. [77], both current and vibration signals were employed for motor fault 

diagnosis. Selected features were extracted from these signals and fed into different classifiers. The 

optimal selection of decision vectors was achieved by feature correlation, aiming for the best fusion 

performance with  the  fewest number of classifiers. The decision‐level  fusion was  then conducted 

using a multi‐agent classifier fusion algorithm. Comparisons with fault diagnosis from a single sensor 

demonstrated the superior performance of the proposed method. Safizadeh and Latifi [84] monitored 

REB health through accelerometers and load cell signals. They observed that load cells were good at 

distinguishing healthy bearings from defective ones but struggled to differentiate between different 

types of faults. The accelerometer on the other hand was highly effective in this but faced challenges 

in distinguishing healthy bearings with some outer race defects. To address this, they employed a 

waterfall  fusion process model  for decision‐level  fusion of  the  two  sensors,  achieving  successful 

detection of each tested bearing fault condition.   

Zhong et al. [85] also conducted decision‐level fusion for the fault diagnosis of an automotive 

engine. The feature extraction and individual fault classification were from air ratio, ignition pattern, 

and  engine  sound  signals.  These  classifications were  integrated  using  a  probabilistic  ensemble 

method, with  the varying  reliability  and  sensitivity of different  signals  to defects  considered  by 

assigning  appropriate weighting  to  each  signal. Validation demonstrated  improved performance 
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compared  to  a  single  classifier  approach. Stief  et  al.  [86] utilised vibration,  acoustic,  and  electric 

signals for the diagnosis of mechanical and electrical faults in induction motors. Features from each 

signal were dimensionally reduced using PCA and the principal components were used with a two‐

stage Bayesian method. The local stage involved using Gaussian Naïve Bayes classifiers for the fusion 

and classification of each sensor’s principal components. On the global stage, local decisions were 

integrated  using  a  global  confusion matrix  to  derive  an  overall  diagnosis  result.  This method 

demonstrated  success  in  detecting  various  faults  under  different  environmental  and  loading 

conditions.   

While  fusion  at  the  decision  level  generally  enhances  reliability  and  accuracy  in  fault 

classification,  conflicting  results  can  pose  a  challenge  in  diagnosis.  Although  instances  of 

disagreement are  rare,  they can be more misleading  in condition monitoring systems with  fewer 

sensors. Using a greater number of sensors may provide insight into which sensor classification is 

unreliable  through  a majority  vote,  however,  this  approach  is  not  always  feasible  and does  not 

entirely resolve the issue. Furthermore, external factors that distort sensor signals are likely to affect 

other sensors of the same type, compromising the validity of such an approach. Consequently, this 

remains an ongoing research concern [87]. Mey et al. [88] proposed an approach for monitoring drive 

trains using both vibration and AE sensors. Data from each transducer was fed into a separate multi‐

layer perceptron, and the resulting activations were employed in a combined classifier. This method 

was claimed to remain functional even if one of the sensors fails, as classification results can be based 

on the functioning sensor. 

4.4. Multi‐Level Fusion 

Typically,  information  fusion  occurs  at  a  single  level,  as most  scenarios  do  not  necessitate 

multiple  levels  of  fusion.  However,  despite  its  potential  complexity,  multi‐level  fusion  can 

significantly enhance condition monitoring performance. 

Han et al. [89] introduced a fault diagnosis method for rotational machinery using a dual CNN. 

Data‐level  fusion  of  accelerometer  signals  in  both  the  time  domain  and  frequency  domain was 

performed  separately. Representative  features were  subsequently  extracted  and  fused  to  achieve 

classification.  The  method  was  evaluated  on  bearing  and  gearbox  datasets,  with  enhanced 

performance demonstrated. Zhang et al. [90] used a hierarchical adaptive CNN for fault diagnosis of 

a centrifugal blower testrig. Initially, signal segments of the same sensor type were fused at the data 

level. Subsequently, features were extracted through automatic and manual procedures for the fused 

vibration and other sensor signals,  respectively. Feature‐level  fusion was  then performed using a 

kernel PCA from which fault classification was achieved with a multilayer perceptron. Yan et al. [91] 

proposed a method  for  the multi‐level  fusion of  information  to  facilitate  the  fault diagnosis of  a 

computer  numerical  control  (CNC) machine  tool.  Features were  extracted  in  the  time  domain, 

frequency domain, and from EMD using data from the machine’s internal information source and 

externally mounted sensors. Kernel PCA was used for the fusion of features, from which sensitive 

features were used  as  input  to  separate  classifiers. Classifier  results were  then  integrated  at  the 

decision  level with a  fuzzy comprehensive evaluation. The method was evaluated across various 

defect conditions, demonstrating good performance. 

While the fusion of information across multiple levels may offer certain advantages, it is essential 

to evaluate whether its application is truly necessary, as single‐level fusion approaches often attain 

sufficiently high performance  to be  considered  reliable. Additionally,  the adoption of multi‐level 

fusion  techniques  could  introduce  added  complexities  to  the  condition  monitoring  system, 

potentially yielding only marginal improvements in performance. Although the utilisation of multi‐

level fusion techniques in machinery condition monitoring has not been extensively studied, it may 

be justified in specific use case scenarios where its benefits outweigh the associated complexities.   
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5. Intelligent Algorithms and Applications 

Algorithms  incorporating  artificial  intelligence,  commonly  known  as  intelligent  algorithms, 

offer highly adaptable and robust tools that mitigate the need for extensive fundamental knowledge 

and experience in condition monitoring, rendering them desirable for many operators [8]. According 

to Liu et al. [8], fault diagnostics of rotating machinery primarily involves pattern recognition, a task 

for which AI is particularly well‐suited. The intelligent algorithms discussed in this section for the 

condition monitoring of rotational machinery are categorised as either machine learning classifiers 

or metaheuristic optimisation techniques.   

5.1. Machine Learning Classifiers   

AI has found extensive application in the classification of REB faults. Following the extraction 

of  features using suitable signal processing  techniques, a classifier  is employed  for  the automatic 

identification  of  various  machine  conditions,  eliminating  the  requirement  for  an  experienced 

technician. Machine learning, as a key component of AI, refers to the specific approach of training 

algorithms to  learn patterns and make predictions or decisions from data without being explicitly 

programmed for each task, providing the ability for AI systems to learn and improve from experience 

without human intervention [92].   

There are three main types of machine learning algorithms, namely supervised, unsupervised 

and reinforcement learning algorithms. Supervised learning utilises collected data along with their 

correct  class  labels  to  train  the  algorithm  to  distinguish  between  classes  from  new  data  [93]. 

Unsupervised learning clusters data based on patterns discovered and is typically used to uncover 

previously unknown  information without explicit guidance  [94]. Reinforcement  learning  involves 

learning the behaviour necessary to perform optimally in a dynamic environment [95]. In the context 

of  condition  monitoring,  the  identification  of  different  conditions  in  data  primarily  involves 

supervised learning methods.   

ANNs,  or  artificial  neural  networks,  are  predominantly  utilised  in  supervised  learning 

applications. ANNs  consist  of multiple  interconnected  nodes  arranged  into  three  layers:  input, 

hidden, and output, as depicted  in Figure 4. The nodes  in  the  input  layer relay  information  from 

sensors to the hidden layers and do not perform computation [96]. Nodes that do not deal with the 

input or output of data belong to the hidden layer. ANNs can have multiple hidden layers, where 

computation occurs. The output layer comprises nodes that convey the computational results from 

the ANN as output. The input value of each node is multiplied by the connection, which adjusts the 

input’s impact in the algorithm.   

 

Figure 4. The general structure of an ANN (from [97]). 

Various ANN models have been prominently employed in the fault diagnosis of REBs. Jia et al. 

[98] proposed a method for the automated design of feature extraction algorithms in the bearing fault 

diagnosis using a four‐layer local connection network. Vibration signals from the input layer were 
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analysed by a normalised sparse autoencoder to learn useful features in the local layer. From this, 

shift‐invariant features were  identified in the feature layer, allowing the algorithm to differentiate 

between various conditions in the output layer. Chen et al. [99] recognised that feature extraction can 

be time‐consuming and require a deep understanding of signal processing. They presented a method 

where fault diagnosis of bearings was achieved with a multi‐scale CNN and long short‐term memory 

(LSTM) model. Two CNNs were used for the automatic extraction of features from raw vibration 

signals. A stacked LSTM network was then used for classifying bearing health conditions. Ali et al. 

[2] used a four‐layer ANN for the classification of bearing defects. Features were extracted from the 

time domain, and the EMD method was also employed. Effective IMFs for bearing fault diagnosis 

were selected using a statistic criterion. The selected features were then used to train the ANN for 

fault classification.   

SVM  is another  supervised  learning  technique commonly used  in classification problems.  In 

SVM, data is segregated in a multidimensional space using a hyperplane to classify different machine 

conditions [100]. The SVM aims to maximise the distance between the hyperplane and the support 

vectors of each class  to  find  the best possible  solution. These support vectors are  the data points 

nearest to the hyperplane, which influence its orientation and position to effectively separate data 

classes. It must be noted that not all data can be linearly separated. In such cases, the data is to be 

mapped to a higher dimension where linear separation of the support vectors is possible. Figure 5 

shows an example of two classes, circles and crosses, being separated with an optimal hyperplane. 

The support vectors that define the maximum margin of the two groups are indicated with squares.   

 

Figure 5. Principle of SVM: Segregation of two classes in two‐dimensional space with an optimally 

placed hyperplane (revised according to [101]). 

Although SVM was initially developed for binary classification problems [101], it has since been 

adapted  to  handle multi‐class  classification  tasks  using  approaches  like  one‐versus‐one  or  one‐

versus‐rest  [102]. This adaptability makes SVM suitable  for  fault diagnosis  in rotating machinery, 

where multiple  health  conditions  are  common.  For  instance,  Yang  et  al.  [103]  applied  SVM  to 

diagnose bearing faults using vibration signals. They utilized both fractal dimensions and statistical 

features  extracted  from  the  data  for  SVM  training.  This  method  achieved  better  classification 

performance compared to using only fractal dimensions or statistical features. Wang et al. [104] also 

used SVM for bearing fault diagnosis. They first extracted features from accelerometer signals using 

generalised  refined  composite  multiscale  sample  entropy.  Then,  dimensionality  reduction  was 

performed on the feature set using the supervised isometric mapping algorithm. Finally, the reduced 

feature set was used with an optimized SVM for bearing health classification. 

maximum margin 

optimal hyperplane 
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SVM has also been adapted for the detection of anomalies by training the model on a single class 

that is considered normal. The process is termed one‐class support vector machine (OCSVM) and is 

achieved  by maximising  the margin  between  the  single  data  class  and  the  origin  in  a  higher 

dimensional feature space [105]. This method has been used by some researchers such as Fernández‐

Francos et al. [106] in the context of bearing fault diagnosis. Vibration signals from bearings operating 

under normal  conditions were used  to  train  an OCSVM  for  the  identification of  faulty bearings. 

Subsequently,  fault  type  identification was  achieved  by  employing  envelope  spectrum  analysis. 

Kannan et al. [107] presented a novel information fusion approach to efficiently utilise homogeneous 

and heterogeneous sensor signals in bearing condition monitoring. OCSVM was employed to extract 

features corresponding to signal integrity issues, thus an integrity score can be dynamically assigned 

to data depending on its perceived signal quality. Decision‐level fusion was accomplished through a 

majority voting system using the integrity scores derived and the separate classification results. It 

was demonstrated that a more reliable classification prediction was achieved using this approach.   

Decision trees or classification trees are quite simple in comparison to other supervised learning 

algorithms. They are models which represent the possible outcomes of a test in a tree‐like structure 

and classifies records based on their likelihood of belonging to a certain class [108]. The root node 

representing the whole population is split into multiple sub‐nodes which can be categorised as either 

terminal or nonterminal nodes. Nonterminal nodes are nodes which are further split into sub‐nodes 

representing the outcome of the decision for which the node is responsible and terminal nodes are 

nodes that do not split. A schematic representation of a decision tree is shown in Figure 6. 

 

Figure 6. Decision tree schematic. 

Decision trees are considered as weak learners and because of this, it is common to use them as 

part of an ensemble classification. An ensemble of decision trees is called a random forest (RF) where 

multiple decision  trees  are  used  to make  predictions  independently  of  one  another  [109]. These 

classifications  are  then  combined  through  a voting procedure  to,  ideally,  increase  the predictive 

accuracy  in  comparison  to a  single decision  tree  [110]. Cerrada et al.  [111] monitored vibrational 

behaviour for the diagnosis of faults in spur gears using concepts of RF with a GA. Various features 

were  first extracted  from  the  time and  frequency domain of  the vibration signal. Wavelet packet 

transform was also used on  the  raw  signal getting each wavelet  coefficient’s energy which were 

considered features. A data matrix was constructed from the features and the selection process was 

set to run  iteratively (i.e., one GA  iteration then one RF training phase). Once the optimal feature 

subset was  selected and  the GA execution  terminated,  the  classifier was  then  retrained with  this 

subset. The classifier performance was then tested and a good accuracy was achieved. Seera et al. 

[112] proposed a classification model using RF and a fuzzy min‐max neural network for the diagnosis 

of REB faults. The features for input were extracted from the raw vibration signal using both power 

spectrum and sample entropy methods. Tests showed that using a combination of these features gave 

the highest accuracy compared to each method individually. The proposed model was also compared 
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to other models proving that it had the highest accuracy and lowest standard deviation. Vakharia et 

al.  [113] conducted a  fault diagnosis on a bearing using vibration signals. With a  feature  ranking 

technique called ReliefF, significant features extracted from the time domain and discrete wavelet 

transform were selected for use with the RF classifier. The selected features in combination with the 

classifier performed well in the diagnosis of bearing faults.   

There are  several other  supervised machine  learning  classifiers  that  can be  implemented  for 

machinery health classification  including KNN, Naïve Bayes, and discriminant analysis [114–119]. 

The use of supervised learning in the classification of machinery condition is generally preferred due 

to the model being trained to perform extremely well for a particular application.   

5.2. Metaheuristic Optimisation Techniques 

Another common use for intelligent algorithms is in the optimisation of parameters to obtain a 

suitable solution. Metaheuristic optimisation techniques have been of great interest to researchers in 

the field for tasks that require an ideal solution to be found within a large search space. The ability to 

measure the performance of different combinations of parameters against a certain criterion allows 

for the automatic selection of an optimal solution without the need for significant experience in the 

domain.  This  makes  it  desirable  for  diagnostic  tool  users  who  lack  experience  and  a  deeper 

understanding  of  bearing  fault  behaviour. Many  of  these  optimisation  techniques  are  based  on 

concepts found in nature. 

Evolutionary algorithms are a category of metaheuristic optimisation inspired by the concept of 

natural selection and are often applied to search for an optimal solution to a specific problem. The 

most popular evolutionary algorithm is the GA and its general operation is described in [59]. Some 

studies have explored  the use of GA  for  the optimisation of demodulation band  for  the envelope 

spectrum. In order to optimally demodulate resonance for REB fault diagnosis, Zhang and Randall 

[120]  first  used  fast  kurtogram  to  roughly  estimate  parameters.  GA was  then  used  for  further 

optimisation of the parameters obtained allowing for faster convergence than directly using GA for 

the selection of the ideal bandpass filter. Wang et al. [121] conducted a study involving the detection 

of sun gear crack in a planetary gearbox through envelope analysis. Through the development of an 

index  measuring  fault‐related  components  to  non‐fault‐related  components  in  the  envelope 

spectrum, GA was used to search the frequency range for an optimal subband. Kang et al. [122] also 

used a GA  for  the selection of optimal bandpass  filter parameters  in  the condition monitoring of 

bearings. Unlike other studies, the parameters were coded with real numbers from 0 to 1 as opposed 

to binary values. The use of a real‐coded GA is said to be advantageous for continuous parameter 

space variables  [123]. For  this  reason,  it can be  inferred  that  this approach generally allows  for a 

higher accuracy  in  the  representation of  the optimal bandpass  filter and  that  less storage will be 

needed [124]. The fitness score used was a ratio of residual‐to‐defect frequency components which 

was  said  to give  insight  into  the degree of defectiveness  [122]. The use of  the  fitness  score as an 

indicator to determine defect severity, however, is not ideal. This is because the score for the same 

signal and, by extension, bearing defect size can be expected to vary when the GA converges at a 

local or global optimum which  could cause  confusion. Swarm  intelligence  is another  category of 

metaheuristic  optimisation  that  is  inspired  by  the  collective  behaviour  of  a  population with  no 

centralised structure controlling  individuals. Common types of algorithms that use the concept of 

swarm intelligence are particle swarm optimisation (PSO) and ant colony optimisation. Uses for these 

algorithms are similar to that of GA.   

Metaheuristic optimisation techniques have also been used with classification algorithms for the 

optimisation  of  parameters  or  structure  of  the  classifier.  In  [125],  Yan  and  Jia  conducted  fault 

diagnosis by using an optimised SVM for classification. Features were extracted in multiple domains 

and Laplace score was used to determine which of these were to be used to reduce unnecessary or 

redundant characteristics. The selected features were then used as input to an SVM whose parameters 

were optimised using PSO  for classification of bearing  faults. Unal et al.  [126] used an optimised 

ANN for the fault diagnosis of REB from vibration signals. A GA was used to optimise the structure 

of the ANN increasing performance of fault classification. This was demonstrated by using GA in the 
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optimal selection of hidden  layer number, number of neurons, and mean square error. In a study 

conducted by Li et al. [127], an optimised SVM was used for fault diagnosis in REB. This was achieved 

by  using  an  improved  ant  colony  optimisation  algorithm  for  the  suitable  selection  of  SVM 

parameters. 

6. Conclusions and Future Perspectives   

The  significance of  condition monitoring  in  rotational machinery  is well‐documented  in  the 

literature. Various sensing, signal processing, and feature extraction techniques have been developed 

for  detecting  defects  in  rolling  element  bearings.  While  vibration‐based  monitoring  remains 

prevalent,  the  utilisation  of  other  sensor  types  has  proven  advantageous,  often  offering 

complementary  diagnostic  capabilities  or  detecting  different  types  of  defects  compared  to 

accelerometers  alone.  Techniques  such  as  time  domain,  frequency  domain,  and  time‐frequency 

domain  analysis  provide  different  perspectives  for  signal  representation,  each  revealing  unique 

insights  relevant  to  condition  monitoring.  Multisensor  systems,  whether  homogeneous  or 

heterogeneous, integrated with information fusion techniques, can enhance accuracy and reliability 

by addressing limitations associated with single sensor monitoring. Additionally, the adoption of AI 

techniques,  including machine  learning and metaheuristic optimisation, has  facilitated  significant 

advancements in condition monitoring, yielding successful outcomes in various studies.   

Meanwhile, there are several areas where advancements can be made to improve the monitoring 

accuracy and reliability, such as in the following aspects.   

 Envelope spectrum has proven to be an efficient benchmarking technique in the defect detection 

and diagnosis  of  bearings. The  selection  of  an  optimal  frequency  band  for demodulation  is 

crucial  for  this. While various  techniques have been  explored, many are  time‐consuming or 

require  specialized  expertise.  Further  research  leveraging  metaheuristic  optimisation  for 

automatic demodulation band selection could enhance efficiency in this area. 

 AI‐based fault diagnosis techniques have become prominent due to their rapid development in 

the ability  to  significantly enhance  the accuracy, efficiency, and  reliability. Machine  learning 

classifiers are often used for diagnostic tasks due to their ability to achieve high accuracy without 

extensive domain knowledge. The classifier can be trained well for fault identification through 

extraction of relevant features pertaining to bearing health condition from historic data. It would 

be more practical for a signal integrity assessment technique to work on a variety of issues so it 

can be used as a standard preprocessing step to fault diagnosis. Research in the area will benefit 

from the development of a classification model that accurately captures the nonrigid nature of 

the decision boundary of signals to efficiently segregate anomalies.   

 Multi‐sensor monitoring systems were found to be advantageous as they increased the general 

reliability of fault detection and diagnosis. The use of heterogeneous sensors in conjunction can 

also aid in further increasing the reliability. While information fusion of different sensors has 

been achieved on different  levels,  it  is most  common  for decision‐level  fusion  to  take place. 

However, conflicting results in sensor diagnoses can occur due to misclassification in learning 

models or sensor  integrity  issues, highlighting  the need  for  further research  to address  these 

challenges.   
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