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Abstract: Bearing component damage contributes significantly to rotating machinery failures. It is vital for the
rotor-bearing system to be in good condition to ensure proper functioning of the machine. Over recent decades,
extensive research has been devoted to the condition monitoring of rotational machinery, with a particular
focus on bearing health. This paper provides a comprehensive literature review of recent advancements in
intelligent condition monitoring technologies for rolling element bearings. Fundamental monitoring strategies
are introduced, covering various sensing, signal processing, and feature extraction techniques for detecting
defects in rolling element bearings. While vibration-based monitoring remains prevalent, alternative sensor
types are also explored, offering complementary diagnostic capabilities or detecting different defect types
compared to accelerometers alone. Signal processing and feature extraction techniques, including time domain,
frequency domain, and time-frequency domain analysis, are discussed for their ability to provide diverse
perspectives for signal representation, revealing unique insights relevant to condition monitoring. Special
attention is given to information fusion methodologies and the application of intelligent algorithms.
Multisensor systems, whether homogeneous or heterogeneous, integrated with information fusion techniques,
hold promise in enhancing accuracy and reliability by overcoming limitations associated with single sensor
monitoring. Furthermore, the adoption of Al techniques, such as machine learning and metaheuristic
optimisation, has led to significant advancements in condition monitoring, yielding successful outcomes in
various studies. Finally, avenues for further advancements to improve monitoring accuracy and reliability are
identified, offering insights into future research directions.

Keywords: review; condition monitoring; rolling element bearing; fault diagnosis; vibration; information
fusion; feature extraction; intelligent algorithms

1. Introduction

Rolling element bearings (REBs) in rotating machinery are essential for the operation of several
industries [1]. They facilitate the rotational motion required while reducing friction between moving
parts. It is common, however, for these components to naturally develop defects over time. REB
defects may also occur due to a contribution of factors including but not limited to inadequate
lubrication, external contaminants and use in incorrect operating conditions. Damage of bearing
components account for about 45% of rotating machinery failures [2] and therefore, ensuring REBs
in good condition is vital to the proper functioning of the machine.

Many studies have been conducted on the condition monitoring of rotating machinery for a
variety of issues including REB defects [3]. The condition monitoring of certain parameters allowed
for maintenance and replacement of REB to be conducted when the defect was incipient [4]. This
allowed for the maximisation of the usage of components and significantly reduced costs associated
with the purchase of REB. Additionally, the revenue that may be lost due to machine downtime
during unnecessary scheduled maintenance can be significantly limited making it a highly
economical strategy.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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There are many common condition monitoring approaches such as vibration, acoustic emission
(AE), infrared thermography, and wear-debris based monitoring [4]. Of the various approaches that
exist, vibration-based monitoring has been researched extensively in the context of condition
monitoring of machinery. It utilises accelerometers appropriately positioned on or within the
machine to detect vibrations that are produced as a result of machine operation and defects. The
signals obtained in the time series can then be processed in various ways to make the fault extraction
and classification process easier. Mollasalehi categorises the techniques available for fault diagnosis
of bearings as being data-driven or model-based [5]. Data-driven or signal-based techniques include
the various methods available for the analysis of a signal in the time, frequency, or time-frequency
domain. Model-based techniques involve the design of a model based on various assumptions,
relevant theory, and geometrical properties to accurately portray a system’s operation.

Granted single sensor approaches to condition monitoring have been successful, but it is greatly
advantageous to utilise multiple sensors. Information fusion is a method in which data from various
sources are combined to obtain a better interpretation [6]. Fusion of data has become increasingly
common in various disciplines and has found its way into condition monitoring applications [7].
Depending on the sensors used and the application, one or more levels of fusion may be used to
improve accuracy and reliability of condition monitoring. Certain sensor types may also be
susceptible to environmental factors causing failure or distortions in the output. The use of a hybrid
condition monitoring approach is able to overcome this by utilising a heterogeneous sensor system.

Utilising artificial intelligence (Al) in the condition monitoring of rotational machinery has been
a highly researched area over the past decade leading to the use of various intelligent algorithms for
classification and optimisation tasks. The implementation of Al- incorporated algorithms is robust,
highly adaptable, and also reduces the requirement of strong fundamental knowledge and
experience in condition monitoring making it desirable for many operators [8]. Most intelligent
algorithms used to detect defects were focused on their application to data-driven systems. Some
researchers have also highlighted the potential of using model-based systems to train machine
learning classifiers as it would be impractical to acquire the amount of data required for this purpose
from the machine [9].

The condition monitoring of rotational machinery has been extensively researched over the past
few decades, particularly in the realm of bearing condition monitoring. While several literature
review papers have been published in recent years [10-13], certain areas such as information fusion
approaches and intelligent classifiers have not received adequate attention. This paper seeks to
address this gap by offering a comprehensive literature review on the recent advancements in
intelligent condition monitoring technologies for rolling element bearings. Special emphasis will be
placed on feature extraction techniques, information fusion methodologies, and the application of
intelligent algorithms.

2. Fundamentals and Sensing Strategies

2.1. Defect Frequencies of Rolling Element Bearings

A typical rolling element bearing contains an inner race, outer race (usually fixed), rolling
elements and a cage as shown in Figure 1 [14]. As there is constant contact between the rolling element
and the races during operation, the REB can exhibit signs of wear and develop various defects over
time, such as spalls, pits and cracks [15]. Defects can occur in any of the components of the REB. The
frequency in which these defects come into contact with other moving parts can be calculated using
the geometry of the bearing and the shaft’s rotational frequency. These theoretical defect frequencies
(TDFs), including the Ball pass frequency of the inner race (BPFI), Ball pass frequency of the outer
race (BPFO), Ball spin frequency (BSF), and Fundamental train frequency (FTF), can be calculated
using Equations (1) to (4) below, where n is the number of rolling elements, f, is the shaft frequency,
d is the rolling element diameter, D is the pitch diameter of bearing, and 6 is the contact angle [16].
For special cases where both inner race and outer race are rotating, f. is the relative frequency
difference between the inner and outer race. It must also be noted that the ball spin frequency (BSF)
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represents the frequency in which the ball makes contact with only one of the races and therefore the
harmonics of this TDF will also need to be observed [17].
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The condition monitoring of machinery is of considerable importance to both industry [18] and
aviation [19] sectors due to the possible reduction in costs and an increase in safety that can be
achieved. Over the past few decades, several notable innovations and general improvements have
been made to the field.

Outer race
Rolling element

Inner race

Cage

Figure 1. Main components of an REB (adapted from [14]).

2.2. Condition Monitoring Approaches

According to Jablonski [20], condition monitoring systems can include a number of tasks
namely, fault detection, diagnosis, severity assessment, root cause analysis, prognosis and
prescription. Fault detection involves determining whether or not a fault is present in a machine. This
task can sometimes be accomplished through methods as simple as monitoring a statistical indicator’s
magnitude to see if a set threshold is reached. Fault diagnosis often refers to identifying what type of
fault is present in a machine element. It is also used to describe the process of identifying which
machine element is faulty. Unlike fault detection, the fault diagnosis task more often involves
advanced signal processing techniques. It must be noted that this naming convention is not strictly
adhered to by all researchers and the terms detection and diagnosis are used interchangeably by
some. Severity assessment, as the name implies, involves attaining additional information regarding
the prominence of the fault [21]. Root cause analysis tackles another aspect of condition monitoring
attempting to identify the primary cause inducing the detected fault [20]. Fault prognosis is carried
out to avoid unexpected failures by estimating the remaining useful life of components [22].
Prescription or prescriptive analytics involves providing recommendations on maintenance actions
that can be taken for machine condition monitoring [20].

Condition monitoring tasks can be achieved through various approaches. Different sensors have
been employed for the measurement of natural phenomena which can hold valuable information on
the equipment being monitored. Some common approaches are explained in the following
subsections.
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2.2.1. Vibration-Based Monitoring

Vibration-based monitoring is considered the most mature condition monitoring approach and
has been widely used for several decades. The presence of defective components in rotating
machinery produces vibrations that are substantially different from what is generated by the machine
in healthy condition. In REB, the periodic contact of the defective component (i.e. a rolling element,
inner race, or outer race) with other surfaces during operation typically generates strong impulses at
a higher frequency compared to other machine vibrations. These vibration signals can be collected
using an accelerometer mounted on the machine near the component being monitored.
Accelerometer measurements often have a high frequency response typically around 10 kHz to 20
kHz [23]. Many signal processing methods have been utilised for the extraction of defect-related
features in the different domains.

2.2.2. Acoustic Emission-Based Monitoring

Acoustic emission (AE) is defined as the propagation of transient elastic waves as a result of the
contact of surfaces during operational motion [24]. Upon direct contact of the defect with another
component, AEs are released which can be picked up using the AE sensor. The signals from AE
sensors have a much higher frequency response from around 100 kHz up to several MHz [25].
Choudhury and Tandon [26] investigate the use of AE sensors for the detection of different sizes of
defects in REB. By counting occurrences of when voltage exceeded a set threshold, also referred to as
ringdown counts, roller and inner race defects were able to be detected. Elforjani and Mba [27] found
that AE signals can be used for the detection of incipient defects and its propagation and also to
estimate the size. Caesarendra et al. [28] reported that it was able to detect defects much earlier using
AE signals although there was a trade-off between accuracy and computational time. Such
advantages made the use of AE-based monitoring a viable alternative to vibration-based monitoring.

A common concern in using AE signals is the extreme computation burden due to the very high
sampling rate required. A time synchronous resampling technique with spectral averaging was used
in the extraction of condition indicators low-speed bearings using AE signals at a lower sampling
frequency [29]. A study by Liu et al. [30] utilised a compressive sampling technique on AE signals
and extracted features based on its energy to assess the state of the bearing. The extracted features
were consistent with the features from a raw uncompressed signal.

2.2.3. Temperature-Based Monitoring

Temperature-based monitoring aims to detect abnormal heat patterns caused by malfunction in
rotating machinery [31]. The sensors used are primarily infrared cameras, but thermocouples can also
be utilised. Infrared cameras capture the energy from the monitored structure in the infrared
wavelength of the electromagnetic spectrum allowing for the collection of images indicating surface
temperature distribution [32]. Condition monitoring using infrared thermography typically involves
the use of image processing and machine learning methods. This approach is non-intrusive in nature
as the infrared cameras can be easily setup while the machine is still in operation, leaving its process
unaffected. The drawbacks of this approach include high cost of Infrared cameras, requirement of
additional space and setup, and being sensitive to environmental factors [25].

Janssens et al. [33] used infrared imaging to detect various defects in rotating machinery
including rotor imbalance, defects present on the outer raceway of bearings, and also bearing
lubrication levels. The detection of the lubrication levels and outer raceway faults were done by
obtaining the mean of the Gini coefficient, standard deviation, and second-order moment of pixels
for all frames. Liu et al. [34] employed a convolutional neural network (CNN) on infrared images for
the classification of rotor bearing system defects. Mehta et al. [35] used infrared thermography for
the classification of bearing defects. It was found that the SVM classifier had a better performance in
comparison to other classifiers tested for this application.
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2.2.4. Other Approaches

There are several other sensors which can be utilised for the condition monitoring of bearings
[7]. Online oil monitoring with oil quality or wear debris sensors has been utilised for the monitoring
of machine issues such as lubrication degradation and wear state [36,37]. Ultrasonic detection
involves monitoring sound waves at frequency levels of 20 kHz to 100 kHz [38]. It can be employed
for early detection of bearing defects and also lubrication levels [39]. Current signature monitoring is
used for monitoring and detection of bearing defects through the analysis of current and voltage data
[40]. Microphones have also been employed for non-contact acoustic monitoring of bearings with
success [41]. This is achieved by measuring pressure variations or sound from the environment.

2.3. Influence of Sensor Integrity

The quality of sensors and signals used in condition monitoring of machinery can greatly
influence the trustworthiness of detection and diagnosis [42]. It is crucial to ensure the reliability of
the information acquired from sensors. In many cases, monitoring sensors are installed at harsh and
difficult-to-access locations, such as on off-shore wind turbines, thus physical inspection of the
sensors on site is a big challenge. Sensor issues affecting signal integrity can occur due to various
reasons including faulty mounting, background noise, saturation, and sudden impact. Girondin et
al. [43] stated that mechanical shocks and loosening of accelerometers were the cause of random
peaks and asymmetries in signals affecting helicopter health and usage monitoring systems. While
the study was unable to detect the occurrence of mechanical shocks, asymmetries were detected using
enhanced skewness indicating transducer looseness. Similarly, Abboud et al. [44] investigated the
issue of accelerometer detachment. It was found that asymmetry affected the random part of the
vibration signal so cepstrum pre-whitening was used to remove the deterministic content of the
signal. An indicator that compared the number of outliers on the set positive and negative thresholds
was used for the detection of the sensor issue. An alternative approach for the detection of
accelerometer mounting issues was taken by Randall and Smith [23] which involved the use of
multiple sensors mounted on the structure. Discrepancies between accelerometer resonances could
indicate a problem with mounting. This method, however, requires all other sensors to be mounted
correctly otherwise it can be difficult to identify faulty mounting. Song et al. [45] developed a method
for checking signal quality and detection of defective conditions. This involved the use of histograms
from segments of a signal without any distortions from equipment operating at normal conditions.

3. Signal Processing and Feature Extraction Techniques

Signal processing and feature extraction techniques are used to uncover relevant monitoring
information from a source. Many of the vibration signal processing and feature extraction techniques
are applicable to most temporal signals such as the AE signal. Alternative methods of analysis are
needed for different condition monitoring approaches such as temperature-based monitoring where
feature extraction typically involves some form of image processing [46].

Vibration signals are commonly analysed in the time domain, frequency domain, or time-
frequency domain each presenting their own advantages and drawbacks [12]. When signals recorded
are visualised with respect to time, it is said to be in the time domain. Alternatively, the frequency
domain allows for the analysis of the same signals with respect to frequency and appears as impulses.
The time-frequency domain allows for a representation capturing signal changes over both time and
frequency.

3.1. Time Domain Methods

Temporal analysis techniques are typically used to provide insight into the variation of
conditions in the machinery and identify the presence of defects. There are several features, including
the root mean square (RMS), crest factor, kurtosis, and skewness, that can be extracted from the time-
domain to obtain information on the signal. These are shown in Equations (5) to (8) respectively
where u is the mean, o is the standard deviation and x is a vector of n samples [5].
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A faulty bearing compared to one that is in good condition has a higher RMS value which can
be expected to increase with the development of the fault [47]. The RMS of the vibration signal can
be used as a basic indication technique for the presence of faults. However, it is inferior to other
methods for the detection of incipient faults. The impact caused by the contact of the defect to the
raceway or rolling elements can be calculated using the crest factor. The change in the pattern of
vibration on signals due to this defect is reflected in the increase of this feature’s magnitude [48]. The
equation is simply the ratio of the peak value to RMS. Kurtosis has been identified as a good indicator
of bearing health as healthy bearings have a Gaussian amplitude distribution with a kurtosis value
of three regardless of speed or loading conditions [49]. It is much better at detecting incipient faults
when compared to RMS, however, it has poor stability [50]. The asymmetry of the vibration signal is
measured using skewness to tell if it is negatively or positively skewed [10]. Bearings in a healthy
operating condition have signals with a near-zero skewness. Goyal et al. [51] present several other
statistical indicators that can be used for condition monitoring. With a reasonably high sampling rate,
the output of the sensor can be analysed in near-continuous time making the features extracted more
accurate.

The features mentioned above, and many others have been successfully used in identifying the
presence and even type of fault. Heng and Nor [52] used plots of kurtosis vs. crest factor to
distinguish the type of fault in the bearing. However, this method did not work for all cases tested
only giving accurate results for defective REB at a shaft speed of 1000 rpm. Sreejith et al. [53] used
two features, kurtosis and normal negative log-likelihood, as inputs to a neural network. From this,
they were able to distinguish different bearing faults accurately. Fu et al. [50] proposed an adaptive
fuzzy C-means clustering method using time domain based features with which bearing health could
be accurately computed. The clustering algorithm used crest factor, skewness, kurtosis, RMS and
variance as the feature matrix [50]. Samanta and Al-Balushi [42] developed a method where the
features RMS, kurtosis, variance, skewness and normalised sixth central moment were used as inputs
for an artificial neural network (ANN) with some preprocessing. From this, they were able to
determine whether the bearing tested was healthy or defective.

It is generally agreed that time domain analysis techniques are favoured when a fast result is
required. It eliminates the need for using complicated signal processing methods and features can be
extracted from the same domain they are collected in. This makes it a preferred method for use with
various intelligent algorithm-related techniques and has helped achieve accurate results.
Additionally, basic assumptions can also be made on the type of fault present in the REB used based
on the general shape of the vibration signal in the time domain. In the vibration signal of a bearing
with outer race fault (ORF) as shown in Figure 2 (a), prominent impulses can be noticed periodically
with a near-uniform amplitude. The difference in time between these impulses equals to the inverse
of the ball pass frequency of the outer race (BPFO). A bearing with an inner race fault (IRF) generates
a signal which oscillates in amplitude periodically. This period corresponds with the inverse of the
shaft frequency and the distance between impulses corresponds with the inverse of the ball pass
frequency of the inner race (BPFI) as shown in Figure 2 (b). A ball fault (BF) in an REB can be expected
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to have a similar wave pattern as that of an IRF with the oscillation of amplitudes. The period at
which this occurs corresponds to the inverse of the fundamental train frequency (FTF) illustrated in
Figure 2 (c). The distance between every second impulse relates to the inverse of the BSF as one
impulse is produced for contact with each raceway (i.e. inner and outer). Therefore, it is also possible
to visually determine the presence of a fault and the type of defect the bearing may possess. However,
this would require someone with expertise in the field and the identification of a fault may not always

be so straightforward.
lsl—1/8PFO
(a)

(c)

Figure 2. Typical time domain vibrational signals expected for an REB with a defect in (a) outer race,
(b) inner race, and (c) a rolling element (adapted from [17]).

The use of analysis methods in the time domain has the advantage of simplicity in calculations
and being able to process signals directly as collected thus lowering the time taken for processing
[50]. Despite the development of more advanced signal processing techniques, these time-based
statistical features are still used for some cases as other domain analysis methods may present some
disadvantages. Analysis methods in the time domain, however, are still considered inferior to others
due to its low accuracy and sensitivity [50].

3.2. Frequency Domain Methods

Frequency domain analysis methods are common in the fault diagnosis of bearings and
extensively used by many researchers [54]. The frequency domain is very useful in identifying the
occurrence of impulses in periodic intervals. In order to convert the vibration signal from the time
domain to the frequency domain, the Fourier Transform is computed typically through fast Fourier
transform (FFT).

Envelope analysis, also known as high frequency resonance technique (HFRT), is a commonly
used method for diagnostics of REB that allows for periodic impulses to be better visualised [16].
Envelope analysis works by first obtaining the frequency spectrum for the raw signal. From this, a
frequency range is chosen for the amplitude demodulation process by using a bandpass filter to
remove the other frequencies present. Hilbert transform is a prominent technique used for this
amplitude demodulation due to the advantages it presents over other analogue methods [17]. The
Hilbert transform denoted by %(t) is the representation of phase shifting Fourier components on its
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frequency spectrum by +m/2 [55]. The signal x(t) is convoluted with the function 1/mt, this is
mathematically represented in Equation (9).

1 oo
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The band selected for demodulation is often from a higher frequency range where structural
resonance amplifies the defect related impulses [17]. The analytic time signal is found, and the
modulus is computed. Using Fourier transform once again, the envelope spectrum is obtained which
can be analysed for information pertaining to bearing health. The ideal selection of a demodulation
range will allow for certain frequencies to be uncovered. These frequencies may correspond to the
shaft frequency, TDFs, and their harmonics as discussed in Section 2. This process is depicted in
Figure 3. The correlation of the peaks in the envelope spectrum with a TDF and its harmonics can
confirm the presence of a defect in the REB used. The use of HFRT has been considered by many as
a common benchmarking method in the identification of bearing health conditions.
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Figure 3. HFRT procedure (from [17]).

There have been several studies which attempt to find an optimised demodulation band
selection technique for use with HFRT. Bechhoefer and Menon [56] investigated a helicopter’s oil
cooler fan bearing damage detection. Various envelope windows were tested manually to identify
the optimal frequency band by incrementally changing lower frequency and bandwidth within a
specified range. A demodulation band range was selected which was optimal for the different defect
frequencies present in the data. Boskoski and Urevc [57] proposed a two-step fault detection method
for bearings. First, the likelihood of a defect was determined using spectral kurtosis. The bandpass
filter maximising spectral kurtosis value was then used in envelope analysis to isolate defect-related
frequencies. Spectral kurtosis and envelope kurtosis were used by Bechhoefer et al. [58] for
bandwidth selection in envelope analysis of bearing data. In this study, an average energy algorithm
was employed to measure the selected window performance. In a recent work, a real-coded genetic
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algorithm was developed with a novel fitness function and crossover selection method to automate
the optimal selection of bandpass filter parameters for envelope analysis [59], which allowed for the
distinction of defect-related frequencies for REBs in an automated way.

In addition to the computational burden for the selection of optimal demodulation band, there
are also some other drawbacks that can be expected in frequency domain analysis, including the
occurrence of slip causing variations in TDF, interference from additional vibration sources like
bearing looseness, and multiple faults making it difficult to discern certain frequencies [60]. The
popularity of developing metrics for performance measurement may have inspired the use of
metaheuristic optimisation algorithms in condition monitoring. The selection of optimal
demodulation bands without the need for operator input can be achieved using metaheuristic
optimisation techniques and will be further discussed.

3.3. Time-Frequency Domain Methods

Signals produced by some machinery can be expected to operate at varying speeds and the
analysis methods used would need to account for their nonstationary nature. Some examples of
rotational machinery with nonstationary REB signals include helicopters and wind turbines. The time
and frequency analysis methods discussed above can only show features in their respective domains
[61]. Signals that are considered nonstationary require alternate analysis methods known as time-
frequency analysis, such as short-time Fourier transform (STFT), Wigner-Ville distribution (WVD),
wavelet transform (WT), and Hilbert-Huang transform (HHT).

STFT uses Fourier transform in small time windows segmenting the signal as it can be assumed
that the signal is stationary for a short duration [61]. The variation of the signal with time can be
distinguished by analysing the local Fourier spectrum for each frame. Some benefits of using STFT is
the lack of cross term interference as can be expected in WVD and its fast implementation. However,
due to fixed window function and length, STFT is not adaptable. A high time resolution cannot be
achieved when a fine frequency resolution is and vice versa [62]. It was one of the first time-frequency
analysis methods developed and has therefore been used in several condition monitoring studies
[63-65].

The WVD is a bilinear time-frequency method from which many others are based on. Unlike
STFT, a window function is not used in WVD allowing for a much higher time-frequency resolution.
Multi-component signals consist of auto terms and cross terms. Cross terms are the unwanted
oscillations in the signal whose interference affect the effectiveness of the distribution [66]. The
presence of cross terms can cause overlapping on auto terms and make time-frequency features
appear indistinct [61]. Liu et al. [67] propose the auto term window method based on WVD analysis
for bearing fault diagnosis where the effects of the cross terms are suppressed and auto terms boosted.

As the window size is fixed when it slides along the time in STFT, it is not able to provide good
time and frequency resolution at the same time. The wavelet transform (WT) was developed to
overcome the problem [68], which uses windows of different sizes for different frequencies and thus
is capable of studying high-frequency components with sharper time resolution than the low-
frequency components[69]. WT converts the time domain signals into a group of wave-like signals,
from which the original data can be reassembled using the weighting coefficient of each signal (i.e.
wavelet coefficients) [70]. WT-based methods have been widely used in bearing condition
monitoring. Zhang et al. [71] introduced a time-frequency analysis method based on continuous
wavelet transform (CWT) and multiple Q-factor Gabor wavelets (MQGWs) to extract bearing
diagnostic information. They found that the resolution of the CWT time—frequency map can be
greatly increased, and the diagnostic information can be accurately identified. An intelligent fault
diagnosis method of rolling bearing based on wavelet transform (WT) and an improved residual
neural network (IResNet) was reported by Liang et al. [72], which resulted in better robustness under
noisy labels and environment.

The HHT is an adaptive non-parametric analysis method which involves the use of empirical
mode decomposition (EMD) and Hilbert spectrum. Although the instantaneous frequency for mono-
component signals can be computed easily, real applications typically deal with multi-component
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signals which need to first be decomposed into mono-components. These mono-components or
intrinsic mode functions (IMFs) are extracted using EMD through a process called iterative sifting
[61]. Signals can be approximated by an IMF series. The HHT method calculates the instantaneous
frequency from IMF phase’s local derivative enhancing signal local properties, thereby, making it
capable of achieving a high time-frequency resolution. It is adaptive in the representation of signals
that are arbitrary and also doesn’t have interference from cross terms making HHT a very effective
method [61]. HHT has been widely used in the field of fault diagnosis and has specifically been
applied in the detection of bearing faults [73].

In addition to those described, many other methods have been used for condition monitoring
applications including local mean decomposition [74], and energy separation algorithm [75]. A
detailed review of the time-frequency analysis methods can be found in [61].

4. Information Fusion

The condition monitoring output obtained from a single source might suffer reliability issues as
the information could be corrupted due to sensing problems or even sensor failure. This may occur
because of harsh environmental and operational conditions or by selecting a sensor not well suited
to the application. Therefore, the use of multiple sensors can allow for the construction of a more
robust condition monitoring system.

Researchers have explored the use of homogeneous and heterogeneous sensor systems in
condition monitoring of machinery. The monitoring reliability can be enhanced through information
fusion what combines information from various sources in order to acquire a better interpretation of
the data available. According to Khaleghi et al. [6], the challenges faced with information fusion
include disparity of data, data correlation, data imperfection, and data inconsistency. Information
fusion is commonly categorised into three levels of abstraction, i.e. measurements, characteristics,
and decisions [76]. These are also known as data-level fusion, feature-level fusion, and decision-level
fusion, as discussed below.

4.1. Data-Level Fusion

Data-level fusion involves the direct combination of information from multiple sources before
feature extraction and classification. Typically, all sensors used in this fusion measure the same
phenomena [77].

Wang et al. [78] used signals from multiple accelerometers for the fault diagnosis of rotational
machinery. The signals were initially transformed into a two-dimensional (2D) image which was a
combined representation of each sensor’s output. Feature extraction and fault classification were then
conducted using a bottleneck layer optimised CNN. The proposed method was validated using data
from a wind power testrig, demonstrating superior performance compared to a single sensor
approach. Xia et al. [79] also utilised data-level fusion for machinery fault diagnosis using a CNN.
This involved extracting one-dimensional temporal data from each accelerometer mounted on the
machine and combining them into a matrix. The resulting 2D matrix was then fed to the CNN for
fault diagnosis. Testing on REB and gearbox data showed very good results. While data-level fusion
is typically conducted with homogeneous sensors due to waveform similarity, heterogeneous sensors
have also been utilized in combination. Jing et al. [80] applied information fusion using a deep CNN
for planetary gearbox fault diagnosis. They combined standardized data segments from an
accelerometer, microphone, current sensor, and optical encoder into a single data sample before using
them with the deep CNN. Despite the disparity in physical quantities measured by the sensors, the
information was fused for a unified input to the classifier, though not in the traditional sense. While
this means information is combined at the data level, the authors noted that fusion also occurred at
other levels, though not explicitly mentioned. In addition, this approach notably surpassed the
performance of a single sensor approach in testing.

Data-level fusion yields rich information, enabling high accuracy, but it retains a larger volume
of data compared to other fusion levels [7]. This may pose a challenge when computational efficiency
and time are critical. However, with the growing availability of more powerful processing units, this
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concern is less significant for smaller condition monitoring setups. It is also worth noting that fusion
at the lowest level could compromise the integrity of the condition monitoring decision if the integrity
of single sensor output is compromised.

4.2. Feature-Level Fusion

In contrast to data-level fusion, feature-level fusion entails extracting pertinent characteristics
from the acquired data. These features from each sensor are subsequently amalgamated at an
intermediate level before integration into condition monitoring systems. While the sensors employed
for fusion at this level need not be commensurate, the chosen features must accurately represent
crucial aspects of signal responses relevant to conditions.

Chen and Li [81] collected time and frequency domain features from accelerometers mounted at
various locations on the machinery tested. These features were fused using a multiple two-layer
sparse autoencoder. The resulting fused features were used to train a deep belief network for fault
classification. This approach was validated with test data, showing a high accuracy. It was also
suggested that the method could be expanded for use with different sensor types. Tao et al. [82]
utilised vibration signals from multiple accelerometers for the fault diagnosis of REB. This involved
the extraction of features from the time domain signals of every accelerometer. A deep belief network
was then employed with the extracted features as input vectors, resulting in a suitable classifier for
fault diagnosis. In comparison to a single sensor approach, the method showed a better performance
in the classification of REB defects. Vanraj et al. [83] employed signals from an accelerometer and
microphone for classifying gear conditions. Feature extraction involved the use of EMD, the Teager—
Kaiser energy operator, and a combination of both. The extracted statistical features were sorted
based on relevance using a sequential floating forward selection algorithm. Using the selected feature
vectors, k-nearest neighbour (KNN) was utilised for successful classification of faults.

While the use of feature-level fusion does deal with a smaller amount of data in comparison to
data-level fusion, the trade-off is potential loss of other useful information contained in the raw signal

[7].

4.3. Decision-Level Fusion

Decision-level fusion represents the highest level of fusion, where sensor information is
acquired, features are extracted, and the condition monitoring system makes a local decision for each
sensor used. These local decisions are then combined to derive a global decision on the state of the
machinery. Compared to lower and intermediate levels, fusion at this level results in the greatest loss
of information [7]. Decision-level fusion is often used for, though not exclusively, heterogeneous
sensor systems as a means to interpret sensor data recording various phenomena.

In a study by Niu et al. [77], both current and vibration signals were employed for motor fault
diagnosis. Selected features were extracted from these signals and fed into different classifiers. The
optimal selection of decision vectors was achieved by feature correlation, aiming for the best fusion
performance with the fewest number of classifiers. The decision-level fusion was then conducted
using a multi-agent classifier fusion algorithm. Comparisons with fault diagnosis from a single sensor
demonstrated the superior performance of the proposed method. Safizadeh and Latifi [84] monitored
REB health through accelerometers and load cell signals. They observed that load cells were good at
distinguishing healthy bearings from defective ones but struggled to differentiate between different
types of faults. The accelerometer on the other hand was highly effective in this but faced challenges
in distinguishing healthy bearings with some outer race defects. To address this, they employed a
waterfall fusion process model for decision-level fusion of the two sensors, achieving successful
detection of each tested bearing fault condition.

Zhong et al. [85] also conducted decision-level fusion for the fault diagnosis of an automotive
engine. The feature extraction and individual fault classification were from air ratio, ignition pattern,
and engine sound signals. These classifications were integrated using a probabilistic ensemble
method, with the varying reliability and sensitivity of different signals to defects considered by
assigning appropriate weighting to each signal. Validation demonstrated improved performance
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compared to a single classifier approach. Stief et al. [86] utilised vibration, acoustic, and electric
signals for the diagnosis of mechanical and electrical faults in induction motors. Features from each
signal were dimensionally reduced using PCA and the principal components were used with a two-
stage Bayesian method. The local stage involved using Gaussian Naive Bayes classifiers for the fusion
and classification of each sensor’s principal components. On the global stage, local decisions were
integrated using a global confusion matrix to derive an overall diagnosis result. This method
demonstrated success in detecting various faults under different environmental and loading
conditions.

While fusion at the decision level generally enhances reliability and accuracy in fault
classification, conflicting results can pose a challenge in diagnosis. Although instances of
disagreement are rare, they can be more misleading in condition monitoring systems with fewer
sensors. Using a greater number of sensors may provide insight into which sensor classification is
unreliable through a majority vote, however, this approach is not always feasible and does not
entirely resolve the issue. Furthermore, external factors that distort sensor signals are likely to affect
other sensors of the same type, compromising the validity of such an approach. Consequently, this
remains an ongoing research concern [87]. Mey et al. [88] proposed an approach for monitoring drive
trains using both vibration and AE sensors. Data from each transducer was fed into a separate multi-
layer perceptron, and the resulting activations were employed in a combined classifier. This method
was claimed to remain functional even if one of the sensors fails, as classification results can be based
on the functioning sensor.

4.4. Multi-Level Fusion

Typically, information fusion occurs at a single level, as most scenarios do not necessitate
multiple levels of fusion. However, despite its potential complexity, multi-level fusion can
significantly enhance condition monitoring performance.

Han et al. [89] introduced a fault diagnosis method for rotational machinery using a dual CNN.
Data-level fusion of accelerometer signals in both the time domain and frequency domain was
performed separately. Representative features were subsequently extracted and fused to achieve
classification. The method was evaluated on bearing and gearbox datasets, with enhanced
performance demonstrated. Zhang et al. [90] used a hierarchical adaptive CNN for fault diagnosis of
a centrifugal blower testrig. Initially, signal segments of the same sensor type were fused at the data
level. Subsequently, features were extracted through automatic and manual procedures for the fused
vibration and other sensor signals, respectively. Feature-level fusion was then performed using a
kernel PCA from which fault classification was achieved with a multilayer perceptron. Yan et al. [91]
proposed a method for the multi-level fusion of information to facilitate the fault diagnosis of a
computer numerical control (CNC) machine tool. Features were extracted in the time domain,
frequency domain, and from EMD using data from the machine’s internal information source and
externally mounted sensors. Kernel PCA was used for the fusion of features, from which sensitive
features were used as input to separate classifiers. Classifier results were then integrated at the
decision level with a fuzzy comprehensive evaluation. The method was evaluated across various
defect conditions, demonstrating good performance.

While the fusion of information across multiple levels may offer certain advantages, it is essential
to evaluate whether its application is truly necessary, as single-level fusion approaches often attain
sufficiently high performance to be considered reliable. Additionally, the adoption of multi-level
fusion techniques could introduce added complexities to the condition monitoring system,
potentially yielding only marginal improvements in performance. Although the utilisation of multi-
level fusion techniques in machinery condition monitoring has not been extensively studied, it may
be justified in specific use case scenarios where its benefits outweigh the associated complexities.
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5. Intelligent Algorithms and Applications

Algorithms incorporating artificial intelligence, commonly known as intelligent algorithms,
offer highly adaptable and robust tools that mitigate the need for extensive fundamental knowledge
and experience in condition monitoring, rendering them desirable for many operators [8]. According
to Liu et al. [8], fault diagnostics of rotating machinery primarily involves pattern recognition, a task
for which Al is particularly well-suited. The intelligent algorithms discussed in this section for the
condition monitoring of rotational machinery are categorised as either machine learning classifiers
or metaheuristic optimisation techniques.

5.1. Machine Learning Classifiers

Al has found extensive application in the classification of REB faults. Following the extraction
of features using suitable signal processing techniques, a classifier is employed for the automatic
identification of various machine conditions, eliminating the requirement for an experienced
technician. Machine learning, as a key component of Al, refers to the specific approach of training
algorithms to learn patterns and make predictions or decisions from data without being explicitly
programmed for each task, providing the ability for Al systems to learn and improve from experience
without human intervention [92].

There are three main types of machine learning algorithms, namely supervised, unsupervised
and reinforcement learning algorithms. Supervised learning utilises collected data along with their
correct class labels to train the algorithm to distinguish between classes from new data [93].
Unsupervised learning clusters data based on patterns discovered and is typically used to uncover
previously unknown information without explicit guidance [94]. Reinforcement learning involves
learning the behaviour necessary to perform optimally in a dynamic environment [95]. In the context
of condition monitoring, the identification of different conditions in data primarily involves
supervised learning methods.

ANNSs, or artificial neural networks, are predominantly utilised in supervised learning
applications. ANNs consist of multiple interconnected nodes arranged into three layers: input,
hidden, and output, as depicted in Figure 4. The nodes in the input layer relay information from
sensors to the hidden layers and do not perform computation [96]. Nodes that do not deal with the
input or output of data belong to the hidden layer. ANNs can have multiple hidden layers, where
computation occurs. The output layer comprises nodes that convey the computational results from
the ANN as output. The input value of each node is multiplied by the connection, which adjusts the
input’s impact in the algorithm.

Input layer Hidden layer Output layer
X, u

[

.,> )

Figure 4. The general structure of an ANN (from [97]).

Various ANN models have been prominently employed in the fault diagnosis of REBs. Jia et al.
[98] proposed a method for the automated design of feature extraction algorithms in the bearing fault
diagnosis using a four-layer local connection network. Vibration signals from the input layer were
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analysed by a normalised sparse autoencoder to learn useful features in the local layer. From this,
shift-invariant features were identified in the feature layer, allowing the algorithm to differentiate
between various conditions in the output layer. Chen et al. [99] recognised that feature extraction can
be time-consuming and require a deep understanding of signal processing. They presented a method
where fault diagnosis of bearings was achieved with a multi-scale CNN and long short-term memory
(LSTM) model. Two CNNs were used for the automatic extraction of features from raw vibration
signals. A stacked LSTM network was then used for classifying bearing health conditions. Ali et al.
[2] used a four-layer ANN for the classification of bearing defects. Features were extracted from the
time domain, and the EMD method was also employed. Effective IMFs for bearing fault diagnosis
were selected using a statistic criterion. The selected features were then used to train the ANN for
fault classification.

SVM is another supervised learning technique commonly used in classification problems. In
SVM, data is segregated in a multidimensional space using a hyperplane to classify different machine
conditions [100]. The SVM aims to maximise the distance between the hyperplane and the support
vectors of each class to find the best possible solution. These support vectors are the data points
nearest to the hyperplane, which influence its orientation and position to effectively separate data
classes. It must be noted that not all data can be linearly separated. In such cases, the data is to be
mapped to a higher dimension where linear separation of the support vectors is possible. Figure 5
shows an example of two classes, circles and crosses, being separated with an optimal hyperplane.
The support vectors that define the maximum margin of the two groups are indicated with squares.

maximum margin

~ optimal hyperplane

v

Figure 5. Principle of SVM: Segregation of two classes in two-dimensional space with an optimally
placed hyperplane (revised according to [101]).

Although SVM was initially developed for binary classification problems [101], it has since been
adapted to handle multi-class classification tasks using approaches like one-versus-one or one-
versus-rest [102]. This adaptability makes SVM suitable for fault diagnosis in rotating machinery,
where multiple health conditions are common. For instance, Yang et al. [103] applied SVM to
diagnose bearing faults using vibration signals. They utilized both fractal dimensions and statistical
features extracted from the data for SVM training. This method achieved better classification
performance compared to using only fractal dimensions or statistical features. Wang et al. [104] also
used SVM for bearing fault diagnosis. They first extracted features from accelerometer signals using
generalised refined composite multiscale sample entropy. Then, dimensionality reduction was
performed on the feature set using the supervised isometric mapping algorithm. Finally, the reduced
feature set was used with an optimized SVM for bearing health classification.
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SVM has also been adapted for the detection of anomalies by training the model on a single class
that is considered normal. The process is termed one-class support vector machine (OCSVM) and is
achieved by maximising the margin between the single data class and the origin in a higher
dimensional feature space [105]. This method has been used by some researchers such as Fernandez-
Francos et al. [106] in the context of bearing fault diagnosis. Vibration signals from bearings operating
under normal conditions were used to train an OCSVM for the identification of faulty bearings.
Subsequently, fault type identification was achieved by employing envelope spectrum analysis.
Kannan et al. [107] presented a novel information fusion approach to efficiently utilise homogeneous
and heterogeneous sensor signals in bearing condition monitoring. OCSVM was employed to extract
features corresponding to signal integrity issues, thus an integrity score can be dynamically assigned
to data depending on its perceived signal quality. Decision-level fusion was accomplished through a
majority voting system using the integrity scores derived and the separate classification results. It
was demonstrated that a more reliable classification prediction was achieved using this approach.

Decision trees or classification trees are quite simple in comparison to other supervised learning
algorithms. They are models which represent the possible outcomes of a test in a tree-like structure
and classifies records based on their likelihood of belonging to a certain class [108]. The root node
representing the whole population is split into multiple sub-nodes which can be categorised as either
terminal or nonterminal nodes. Nonterminal nodes are nodes which are further split into sub-nodes
representing the outcome of the decision for which the node is responsible and terminal nodes are
nodes that do not split. A schematic representation of a decision tree is shown in Figure 6.

Root Node

Termina/ \Nonterminal
Node Node

Terminal Terminal
Node Node

Figure 6. Decision tree schematic.

Decision trees are considered as weak learners and because of this, it is common to use them as
part of an ensemble classification. An ensemble of decision trees is called a random forest (RF) where
multiple decision trees are used to make predictions independently of one another [109]. These
classifications are then combined through a voting procedure to, ideally, increase the predictive
accuracy in comparison to a single decision tree [110]. Cerrada et al. [111] monitored vibrational
behaviour for the diagnosis of faults in spur gears using concepts of RF with a GA. Various features
were first extracted from the time and frequency domain of the vibration signal. Wavelet packet
transform was also used on the raw signal getting each wavelet coefficient’s energy which were
considered features. A data matrix was constructed from the features and the selection process was
set to run iteratively (i.e., one GA iteration then one RF training phase). Once the optimal feature
subset was selected and the GA execution terminated, the classifier was then retrained with this
subset. The classifier performance was then tested and a good accuracy was achieved. Seera et al.
[112] proposed a classification model using RF and a fuzzy min-max neural network for the diagnosis
of REB faults. The features for input were extracted from the raw vibration signal using both power
spectrum and sample entropy methods. Tests showed that using a combination of these features gave
the highest accuracy compared to each method individually. The proposed model was also compared
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to other models proving that it had the highest accuracy and lowest standard deviation. Vakharia et
al. [113] conducted a fault diagnosis on a bearing using vibration signals. With a feature ranking
technique called ReliefF, significant features extracted from the time domain and discrete wavelet
transform were selected for use with the RF classifier. The selected features in combination with the
classifier performed well in the diagnosis of bearing faults.

There are several other supervised machine learning classifiers that can be implemented for
machinery health classification including KNN, Naive Bayes, and discriminant analysis [114-119].
The use of supervised learning in the classification of machinery condition is generally preferred due
to the model being trained to perform extremely well for a particular application.

5.2. Metaheuristic Optimisation Techniques

Another common use for intelligent algorithms is in the optimisation of parameters to obtain a
suitable solution. Metaheuristic optimisation techniques have been of great interest to researchers in
the field for tasks that require an ideal solution to be found within a large search space. The ability to
measure the performance of different combinations of parameters against a certain criterion allows
for the automatic selection of an optimal solution without the need for significant experience in the
domain. This makes it desirable for diagnostic tool users who lack experience and a deeper
understanding of bearing fault behaviour. Many of these optimisation techniques are based on
concepts found in nature.

Evolutionary algorithms are a category of metaheuristic optimisation inspired by the concept of
natural selection and are often applied to search for an optimal solution to a specific problem. The
most popular evolutionary algorithm is the GA and its general operation is described in [59]. Some
studies have explored the use of GA for the optimisation of demodulation band for the envelope
spectrum. In order to optimally demodulate resonance for REB fault diagnosis, Zhang and Randall
[120] first used fast kurtogram to roughly estimate parameters. GA was then used for further
optimisation of the parameters obtained allowing for faster convergence than directly using GA for
the selection of the ideal bandpass filter. Wang et al. [121] conducted a study involving the detection
of sun gear crack in a planetary gearbox through envelope analysis. Through the development of an
index measuring fault-related components to non-fault-related components in the envelope
spectrum, GA was used to search the frequency range for an optimal subband. Kang et al. [122] also
used a GA for the selection of optimal bandpass filter parameters in the condition monitoring of
bearings. Unlike other studies, the parameters were coded with real numbers from 0 to 1 as opposed
to binary values. The use of a real-coded GA is said to be advantageous for continuous parameter
space variables [123]. For this reason, it can be inferred that this approach generally allows for a
higher accuracy in the representation of the optimal bandpass filter and that less storage will be
needed [124]. The fitness score used was a ratio of residual-to-defect frequency components which
was said to give insight into the degree of defectiveness [122]. The use of the fitness score as an
indicator to determine defect severity, however, is not ideal. This is because the score for the same
signal and, by extension, bearing defect size can be expected to vary when the GA converges at a
local or global optimum which could cause confusion. Swarm intelligence is another category of
metaheuristic optimisation that is inspired by the collective behaviour of a population with no
centralised structure controlling individuals. Common types of algorithms that use the concept of
swarm intelligence are particle swarm optimisation (PSO) and ant colony optimisation. Uses for these
algorithms are similar to that of GA.

Metaheuristic optimisation techniques have also been used with classification algorithms for the
optimisation of parameters or structure of the classifier. In [125], Yan and Jia conducted fault
diagnosis by using an optimised SVM for classification. Features were extracted in multiple domains
and Laplace score was used to determine which of these were to be used to reduce unnecessary or
redundant characteristics. The selected features were then used as input to an SVM whose parameters
were optimised using PSO for classification of bearing faults. Unal et al. [126] used an optimised
ANN for the fault diagnosis of REB from vibration signals. A GA was used to optimise the structure
of the ANN increasing performance of fault classification. This was demonstrated by using GA in the
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optimal selection of hidden layer number, number of neurons, and mean square error. In a study
conducted by Li et al. [127], an optimised SVM was used for fault diagnosis in REB. This was achieved
by using an improved ant colony optimisation algorithm for the suitable selection of SVM
parameters.

6. Conclusions and Future Perspectives

The significance of condition monitoring in rotational machinery is well-documented in the
literature. Various sensing, signal processing, and feature extraction techniques have been developed
for detecting defects in rolling element bearings. While vibration-based monitoring remains
prevalent, the utilisation of other sensor types has proven advantageous, often offering
complementary diagnostic capabilities or detecting different types of defects compared to
accelerometers alone. Techniques such as time domain, frequency domain, and time-frequency
domain analysis provide different perspectives for signal representation, each revealing unique
insights relevant to condition monitoring. Multisensor systems, whether homogeneous or
heterogeneous, integrated with information fusion techniques, can enhance accuracy and reliability
by addressing limitations associated with single sensor monitoring. Additionally, the adoption of Al
techniques, including machine learning and metaheuristic optimisation, has facilitated significant
advancements in condition monitoring, yielding successful outcomes in various studies.

Meanwhile, there are several areas where advancements can be made to improve the monitoring
accuracy and reliability, such as in the following aspects.

e  Envelope spectrum has proven to be an efficient benchmarking technique in the defect detection
and diagnosis of bearings. The selection of an optimal frequency band for demodulation is
crucial for this. While various techniques have been explored, many are time-consuming or
require specialized expertise. Further research leveraging metaheuristic optimisation for
automatic demodulation band selection could enhance efficiency in this area.

e  Al-based fault diagnosis techniques have become prominent due to their rapid development in
the ability to significantly enhance the accuracy, efficiency, and reliability. Machine learning
classifiers are often used for diagnostic tasks due to their ability to achieve high accuracy without
extensive domain knowledge. The classifier can be trained well for fault identification through
extraction of relevant features pertaining to bearing health condition from historic data. It would
be more practical for a signal integrity assessment technique to work on a variety of issues so it
can be used as a standard preprocessing step to fault diagnosis. Research in the area will benefit
from the development of a classification model that accurately captures the nonrigid nature of
the decision boundary of signals to efficiently segregate anomalies.

e  Multi-sensor monitoring systems were found to be advantageous as they increased the general
reliability of fault detection and diagnosis. The use of heterogeneous sensors in conjunction can
also aid in further increasing the reliability. While information fusion of different sensors has
been achieved on different levels, it is most common for decision-level fusion to take place.
However, conflicting results in sensor diagnoses can occur due to misclassification in learning
models or sensor integrity issues, highlighting the need for further research to address these
challenges.
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