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* Correspondence: llwang@ldu.edu.cn

Abstract: A class of semi-linear elliptic equations with critical Hardy-Sobolev exponent has been considered.

This model is widely used in hydrodynamics and glaciology, gas combustion in thermodynamics, quantum field

theory and statistical mechanics, as well as gravity balance problems in galaxies. The (PS)c sequence of energy

functional has been investigated, and then the mountain pass lemma was used to prove the existence of at least

one nontrivial solution. Also a multiplicity result has been obtained. Some known results have been generalized.
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1. INTRODUCTION

Consider the problem −∆u − µ u
|x|2

= |u|2
∗(s)−2

|x|s u + f (x, u), x ∈ Ω \ {0},

u = 0, x ∈ ∂Ω.
(1)

Here Ω is an open bounded domain with smooth boundary ∂Ω in RN(N ≥ 3), and 0 ∈ Ω. 0 ≤ µ <

µ̄ :=
(

N−2
2

)2
, 2∗(s) = 2(N − s)/(N − 2)(0 < s < 2) is the Hardy-Sobolev critical exponent and

2∗ = 2∗(0) is the Sobolev critical exponent. f ∈ C(Ω ×R,R), F(x, t) =
∫ t

0 f (x, s)ds. We point out that
(1) is related to the application of hydrodynamics and glaciology ([1]). And it is also used in some
physical or mathematical problems, such as the theory of gas combustion in thermodynamics ([2]),
quantum field theory and statistical mechanics ([3–5]), as well as gravity balance problems in galaxies
([2,6]). For more investigations on solutions for nonlinear equations with Hardy potential, one can see
[7–9] etc.

The modern variational method ([10–13]) plays a significant role in studying PDEs (see [14–18]).
In 1973, the mountain pass lemma was proposed by A. Ambrosetti and P. Rabinwitz in [14], it is a
milestone in the history of the development of critical point theory. However, in the process of studying
the properties for certain equations, there are a lot of phenomena that lose compactness conditions,
such as semilinear elliptic equations that involving Sobolev critical exponent or Hardy-Sobolev critical
exponent on bounded domain. In 1983, H. Brezis and L. Nirenberg first chose special mountain pass
and selected energy estimates to prove the existence of a critical point if the energy functional satisfies
the local (PS) condition (see [15]), they investigated the problem{

−∆u = |u|2
∗−2u + λu, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(2)

and obtained that there exists a λ∗ ∈ (0, λ1) such that for any λ ∈ (λ∗, λ1), problem (2) admits a
positive solution. It is a special case of equation (1) (s = 0, µ = 0 and f (x, u) = λu). Since then, many
excellent results based on the above methods (see [11,19–21]) appeared.
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In the past decades, the semilinear elliptic equation with Hardy term and Sobolev critical exponent
(i.e. when s = 0 and µ ̸= 0) has been investigated by many mathematicians, one can refer to [22–25]
etc. For example, the following elliptic problem{

−∆u − µ u
|x|2

= |u|2
∗−2u + λu, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(3)

is considered in [22–24].
For simplicity, in the following, we denote the condition (H1) and (H2) as follows:
(H1) 0 < λ < λ1(µ) and 0 ≤ µ ≤ µ − 1;
(H2) µ − 1 < µ < µ and λ∗(µ) < λ < λ1(µ).
In [24], by the variational method, E. Jannelli proved that: If (H1) or (H2) holds, then (3) has

at least one positive solution in H1
0(Ω). Later in [26], the authors investigated problem (1) with

f (x, u) = λ|u|q−2u or f (x, u) = λu. And obtained the following conclusion.
Theorem A ([26]). Assume 0 ≤ s < 2, q = 2, and β = 2

(√
µ +

√
µ − µ

)
. If (H1) or (H2) holds, then

problem (1) has a positive solution u in H1
0(Ω).

Also there are some results dealing with the case µ ̸= 0, s ̸= 0 and the general form f (x, u) (see
[27,28]). In [27], M.C. Wang and Q. Zhang showed that problem (1) has at least one nonnegative
solution. In [28], L. Ding and C.L. Tang also investigated problem (1) and obtained the existence
result. Inspired by [26–28], we study the existence of nontrivial solutions for problem (1). Our main
conclusions are
Theorem 1. Suppose that N ≥ 3, 0 ≤ µ < µ̄, β =

√
µ̄ +

√
µ̄ − µ, 0 < s < 2, f (x, t) satisfies

( f1) f ∈ C
(
Ω ×R+,R+

)
and lim

t→0+
f (x,t)

t = λ, lim
t→+∞

f (x,t)
t2∗(s)−1 = η, uniformly for x ∈ Ω, where

λ, η > 0.

( f2) There exists 2 < ρ ≤ 2∗(s), such that 1
ρ f (x, t)t − F(x, t) ≥ −

(
1
2 − 1

ρ

)
λt2, for any x ∈ Ω,

t ∈ R+.
If (H1) or (H2) holds, then (1) has a positive solution u in H1

0(Ω), where

λ∗(µ) = min
φ∈H1

0 (Ω)\{0}

∫
Ω|∇φ|2/|x|2βdx∫

Ω φ2/|x|2βdx
,

and

λ1(µ) = inf
u∈H1

0 (Ω)\{0}

∫
Ω

(
|∇u|2 − µ u2

|x|2

)
dx∫

Ω|u|2dx
.

Theorem 2. Suppose that N ≥ 3, 0 ≤ µ < µ̄, β =
√

µ̄ +
√

µ̄ − µ, 0 < s < 2. f (x, t) satisfies ( f2) and
( f3) f ∈ C

(
Ω ×R,R+

)
, lim
|t|→0+

f (x,t)
t = λ, lim

|t|→+∞

f (x,t)
t2∗(s)−1 = η, uniformly for x ∈ Ω, where λ, η > 0.

If (H1) or (H2) holds, then (1) has at least two distinct nontrivial solutions in H1
0(Ω).

Remark 1.
(i) Let f (x, u) = λu, we can get 1

ρ f (x, u)u − F(x, u) = −
(

1
2 − 1

ρ

)
λu2, thus −

(
1
2 − 1

ρ

)
λ is the best

constant.
(ii) Comparing with [27] and [28], the restrictions on the nonlinear term f (x, u) are weaken.
(iii) If f (x, u) = λu + ηu2∗(s)−1, then it is easy to verify that f (x, u) satisfies ( f1)-( f3).

Remark 2.
To prove Theorem A, when (H1) holds, the authors used the analytical techniques as that in [24].

In this paper, by accurate estimates of ∥uε∥2 and
∫

Ω|uε|2
∗(s)/|x|sdx, we obtain c < 2−s

2(N−s) A(N−s)/(2−s)
µ,s

, thus in this case, the mountain pass lemma could also be used. We unify the methods for proving the
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existence of solutions of equation (1) for both cases (H1) and (H2). The results in this paper integrally
contain all the cases of Theorem A in [26].

2. PROOF OF THEOREMS

Obviously, in Theorem 1, the values of f (x, t) are irrelevant for t < 0, therefore, we define

f (x, t) = 0 for x ∈ Ω and t ≤ 0.

By Hardy inequality and Hardy-Sobolev inequality (see [29]), we define equivalent norm and
inner product in H1

0(Ω)

∥u∥ :=

[∫
Ω

(
|∇u|2 − µ

u2

|x|2

)
dx

] 1
2

, (u, v) :=
∫

Ω

(
∇u∇v − µ

uv

|x|2

)
dx, ∀u, v ∈ H1

0(Ω).

Let

u+ := max{0, u}, F+(x, t) :=
∫ t

0
f+(x, s)ds, f+(x, t) :=

{
f (x, t), t ≥ 0,

0, t < 0.

The energy functional J : H1
0(Ω) → R to (1) is given by

J(u) =
1
2
∥u∥2 − 1

2∗(s)

∫
Ω

(u+)
2∗(s)

|x|s
dx −

∫
Ω

F+(x, u)dx, u ∈ H1
0(Ω).

We can easily obtain that J(u) is well defined with J ∈ C1(H1
0(Ω),R

)
and

〈
J′(u), v

〉
= (u, v)−

∫
Ω

(u+)
2∗(s)−1

|x|s
vdx −

∫
Ω

f+(x, u)vdx, u, v ∈ H1
0(Ω).

When 0 ≤ µ < µ̄, the best constant can be defined as follows (see [30])

Aµ,s := inf
u∈H1

0 (Ω)\{0}

∫
Ω

(
|∇u|2 − µ u2

|x|2

)
dx(∫

Ω
|u|2∗(s)
|x|s dx

) 2
2∗(s)

. (4)

Lemma 1. Suppose ( f1) hold. For any 0 < ε1 < min{λ, η} and α1, α2 ∈ (1, 2∗(s)− 1), there exists ξ > 0
such that

f (x, t) ≥ (λ − ε1)t + (η − ε1)t2∗(s)−1 − ξtα1 , for t ≥ 0 and x ∈ Ω, (5)

and
f (x, t) ≤ (λ + ε1)t + (η + ε1)t2∗(s)−1 + ξtα2 , for t ≥ 0 and x ∈ Ω. (6)

Proof.
It follows from ( f1) that ∀ε1 > 0, ∃δ > 0 and M1 > 0,∣∣∣∣ f (x, t)

t
− λ

∣∣∣∣ ≤ ε1, for (t, x) ∈ [0, δ]× Ω, (7)

and ∣∣∣∣ f (x, t)
t2∗(s)−1

− η

∣∣∣∣ ≤ ε1, for (t, x) ∈ [M1,+∞)× Ω, (8)

from (7), we get
f (x, t) ≥ (λ − ε1)t, for (t, x) ∈ [0, δ]× Ω,
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for α1 ∈ (1, 2∗(s)− 1), if we take ξ ≥ max
{

0, (η − ε1)δ
2∗(s)−1−α1

}
, then for any t ∈ [0, δ], we have

(η − ε1)t2∗(s)−1 − ξtα1 ≤ 0, thus

f (x, t) ≥ (λ − ε1)t + (η − ε1)t2∗(s)−1 − ξtα1 , for (t, x) ∈ [0, δ]× Ω.

From (8), we know

f (x, t) ≥ (η − ε1)t, for (t, x) ∈ [M1,+∞)× Ω,

for α2 ∈ (1, 2∗(s)− 1), if we take ξ ≥ max
{

0, (λ − ε1)M1−α1
1

}
, then for any t ∈ [M1,+∞), we have

(λ − ε1)t − ξtα1 ≤ 0, thus

f (x, t) ≥ (λ − ε1)t + (η − ε1)t2∗(s)−1 − ξtα1 , (t, x) ∈ [M1,+∞)× Ω.

When t ∈ [δ, M1], taking ξ ≥ max
{

0, max
t∈[δ,M1]

{(λ − ε1)t1−α1 + (η − ε1)t2∗(s)−1−α1}
}

, we have

f (x, t) ≥ (λ − ε1)t + (η − ε1)t2∗(s)−1 − ξtα1 , (t, x) ∈ [δ, M1]× Ω.

As mentioned above, if we take

ξ ≥ max
{

0, (λ − ε1)M1−α1
1 , (η − ε1)δ

2∗(s)−1−α1 , max
t∈[δ,M1]

{(λ − ε1)t1−α1 + (η − ε1)t2∗(s)−1−α1}
}

,

then
f (x, t) ≥ (λ − ε1)t + (η − ε1)t2∗(s)−1 − ξtα1 , for t ≥ 0 and x ∈ Ω.

Similarly, we may obtain that there exists ξ > 0 such that

f (x, t) ≤ (λ + ε1)t + (η + ε1)t2∗(s)−1 + ξtα2 , for t ≥ 0 and x ∈ Ω.

The conclusion is proved.
Now we introduced the extremal functions. Let

Cε =

(
2ε(µ̄ − µ)(N − s)√

µ̄

)√
µ̄/(2−s)

, Uε(x) =
yε(x)

Cε
, (9)

define a cut-off function φ ∈ C∞
0 (Ω) such that

φ(x) =

{
1, |x| ≤ R,

0, |x| ≥ 2R,

where B2R(0) ⊂ Ω, 0 ≤ φ(x) ≤ 1, for R < |x| < 2R, set

uε(x) = φ(x)Uε(x), vε(x) =
uε(x)(∫

Ω|uε(x)|2∗(s)|x|−sdx
) 1

2∗(s)
. (10)

Lemma 2 ([26]). Let vε(x) be defined as above, then vε(x) satisfies

∥vε(x)∥2 = Aµ,s + O
(

ε
N−2
2−s

)
, (11)
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∫
Ω
|vε(x)|qdx =



O
(

ε
√

µ̄q
2−s

)
, 1 ≤ q < N√

µ̄+
√

µ̄−µ
,

O
(

ε
√

µ̄q
2−s |ln ε|

)
, q = N√

µ̄+
√

µ̄−µ
,

O
(

ε

√
µ̄(N−q

√
µ̄)

(2−s)
√

µ̄−µ

)
, N√

µ̄+
√

µ̄−µ
< q < 2∗.

(12)

Lemma 3 ([31]). Let uε(x), Uε(x), Aµ,s, Cε be defined as above, then the exact estimates of ∥uε∥2 and∫
Ω

|uε |2
∗(s)

|x|s dx are as follows:

∥uε(x)∥2 = C−2
ε A

N−s
2−s

µ,s + D,
∫

Ω

|uε(x)|2
∗(s)

|x|s
dx = C−2∗(s)

ε A
N−s
2−s

µ,s + E, (13)

where

D =
∫

R≤|x|≤2R

(
|∇uε(x)|2 − µ

u2
ε (x)

|x|2

)
dx −

∫
|x|≥R

(
|∇Uε(x)|2 − µ

U2
ε (x)

|x|2

)
dx,

E = −
∫
|x|≥R

|Uε(x)|2
∗(s)

|x|s
dx +

∫
R≤|x|≤2R

|uε(x)|2
∗(s)

|x|s
dx.

Moreover, ∃ R0 > 0 such that for any R ≤ R0,

lim
ε→0+

D <
∫

Ω

|∇φ(x)|2

|x|2β
dx. (14)

Lemma 4. Suppose ( f1), ( f2) and λ < λ1(µ) hold. Assume {un} ⊂ H1
0(Ω) is a (PS)c sequences, that is,

J(un) → c ∈
(

0,
2 − s

2(N − s)
A

N−s
2−s

µ,s

)
,

and
J′(un) → 0, in

(
H1

0(Ω)
)−1

.

Then there exists u ∈ H1
0(Ω) such that un ⇀ u weakly in H1

0(Ω), or a subsequence unk ⇀ u weakly in
H1

0(Ω), moreover, J′(u) = 0 and u is a nontrivial solution of (1).
Proof.

First, we claim that if ( f1), ( f2) and λ < λ1(µ) hold, then any (PS)c sequence {un} is bounded in
H1

0(Ω). Otherwise, suppose that ∥un∥ → ∞, since J(un) → c, there exists N1 such that when n > N1,
J(un) < c + 1. J′(un) → 0 implies − 1

ρ ⟨J′(un), un⟩ < o(1)∥un∥, thus for any ε1 ∈ (0, λ1(µ)− λ), when
n > N1,

c + 1 + o(1)∥un∥ ≥ J(un)−
1
ρ

〈
J′(un), un

〉
=

(
1
2
− 1

ρ

)
∥un∥2 +

∫
Ω

(
1
ρ

f+(x, un)un − F+(x, un)

)
dx

+

(
1
ρ
− 1

2∗(s)

) ∫
Ω

(u+
n )

2∗(s)

|x|s
dx

≥
(

1
2
− 1

ρ

)
∥un∥2 −

(
1
2
− 1

ρ

)
(λ + ε1)

∫
Ω

u2
ndx

≥
(

1
2
− 1

ρ

)
∥un∥2 −

(
1
2
− 1

ρ

)
λ + ε1

λ1(µ)
∥un∥2

=

(
1
2
− 1

ρ

)(
1 − λ + ε1

λ1(µ)

)
∥un∥2.
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Which shows that {un} is a bounded sequence in H1
0(Ω). By the reflexivity of H1

0(Ω), we know that
there exists u such that un ⇀ u (or a subsequence of un convergence to u). Furthermore, J′(u) = 0
by the weak continuity of J′. From un ∈ H1

0(Ω), un ⇀ u, by the compactness of the embedding,
we have un → u in Lγ(Ω) for any 1 < γ < 2∗(s). Let f1(x, u) = f (x, u)u, from ( f1), we have
| f1(x, un)| ≤ a + b|un|2

∗(s), by the definition of Uryson operator, we know f1 : L2∗(s)(Ω) → L1(Ω) is
a continuous operator. Thus

lim
n→∞

∫
Ω
( f1(x, un)− f1(x, u))dx = 0,

that is,
lim

n→∞

∫
Ω

f (x, un)undx =
∫

Ω
f (x, u)udx. (15)

Similarly,

lim
n→∞

∫
Ω

F(x, un)dx =
∫

Ω
F(x, u)dx.

In addition, by the convergence of ∥un∥, un → u in H1
0(Ω).

Assume that u ≡ 0 in Ω, from ⟨J′(un), un⟩ = o(1) and (15) we know

∥un∥2 −
∫

Ω

(u+
n )

2∗(s)

|x|s
dx = o(1). (16)

By (4),

∥un∥2 ≥ Aµ,s

(∫
Ω

(u+
n )

2∗(s)

|x|s
dx

) 2
2∗(s)

. (17)

From (16) and (17), we have

o(1) ≥ ∥un∥2
(

1 − A− 2∗(s)
2

µ,s ∥un∥2∗(s)−2
)

.

If ∥un∥ → 0, then (16) implies that J(un) → 0, while J(un) → c, which contradicts c > 0. Hence

∥un∥2 ≥ A
N−s
2−s

µ,s + o(1). (18)

By (12), (16) and (18), we obtain

J(un) =
1
2
∥un∥2 − 1

2∗(s)

∫
Ω

(u+
n )

2∗(s)

|x|s
dx + o(1)

=
2 − s

2(N − s)
∥un∥2 + o(1)

≥ 2 − s
2(N − s)

A
N−s
2−s

µ,s + o(1),

which contradicts c < 2−s
2(N−s) A

N−s
2−s

µ,s . Thus, u is not constantly equal to 0 and u is a nontrivial solution of
problem (1).
Lemma 5. If ( f1), ( f2) and λ < λ1(µ) hold, then the functional J admits a (PS) sequence at level

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)),

where
Γ =

{
γ ∈ C

(
[0, 1], H1

0(Ω)
)

; γ(0) = 0, J(γ(1)) < 0
}

.
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Proof.
We need to prove J satisfy all assumptions of the mountain pass lemma except for the (PS)

condition. Obviously, J(0) = 0. Moreover, from the Hardy-Sobolev inequality and the Hardy inequality,
we can easily get

∫
Ω

|u|2
∗(s)

|x|s
dx ≤ C1∥u∥2∗(s), ∥u∥q

q ≤ C2∥u∥q for 1 ≤ q ≤ 2∗, u ∈ H1
0(Ω). (19)

Then, by (6), (19) and Lemma 1, we have

J(u) =
1
2
∥u∥2 − 1

2∗(s)

∫
Ω

(u+)
2∗(s)

|x|s
dx −

∫
Ω

F+(x, u)dx

≥ 1
2
∥u∥2 − C1

2∗(s)
∥u∥2∗(s) − η + ε1

2∗(s)
∥u∥2∗(s)

2∗(s) −
λ + ε1

2
∥u∥2

2 −
ξ

α2 + 1
∥u∥α2+1

α2+1

≥ 1 − (λ + ε1)/λ1(µ)

2
∥u∥2 − C1

2∗(s)
∥u∥2∗(s) − C2

2∗(s)
∥u∥2∗(s) − ξ

α2 + 1
∥u∥α2+1,

which implies that ∃α, ρ > 0 such that

J(u) ≥ α > 0, ∀u ∈
{

u ∈ H1
0(Ω)|∥u∥ = ρ

}
.

Taking u0 ∈ H1
0(Ω) \ {0}, such that

∫
Ω
(u+

0 )
2∗(s)

|x|s dx ≥ C3 > 0, for any t > 0, we have

J(tu0) =
t2

2
∥u0∥2 − t2∗(s)

2∗(s)

∫
Ω

(
u+

0
)2∗(s)

|x|s
dx −

∫
Ω

F+(x, tu0)dx

≤ t2

2
∥u0∥2 − t2∗(s)

2∗(s)
C3,

notice lim
t→+∞

J(tu0) = −∞, then there exists t0 > 0 such that ∥t0u0∥ > ρ and J(t0u0) ≤ 0. By mountain

pass theorem without the (PS) condition (see Theorem 2.2 in [15]), we know that J admits a PS sequence
at the c level.
Lemma 6. Assume ( f1), ( f2) and 0 < s < 2, if (H1) or (H2) holds, then

0 < c <
2 − s

2(N − s)
A

N−s
2−s

µ,s . (20)

Proof.
Define

g(t) := J(tvε) =
t2

2
∥vε∥2 − t2∗(s)

2∗(s)
−
∫

Ω
F+(x, tvε)dx

and

ḡ(t) :=
t2

2
∥vε∥2 − t2∗(s)

2∗(s)
.

It is easy to see that lim
t→+∞

g(t) = −∞, g(0) = 0 and g(t) > 0 when t is small enough, so there exists

some tε > 0, such that g(tε) = sup
t≥0

g(t) > 0, which shows that c > 0. Obviously g′(tε) = 0, that is,

0 = g′(tε) = tε∥vε∥2 − t2∗(s)−1
ε −

∫
Ω

f+(x, tεvε)vεdx,
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thus
∥vε∥2 = t2∗(s)−2

ε +
1
tε

∫
Ω

f+(x, tεvε)vεdx ≥ t2∗(s)−2
ε ,

therefore,

tε := ∥vε∥
2

2∗(s)−2 ≥ tε. (21)

From (7), we know

∫
Ω

f (x, tεvε)vεdx ≤ (λ + ε1)tε

∫
Ω

v2
ε dx + (η + ε1)t

2∗(s)−1
ε

∫
Ω

v2∗(s)
ε dx + ξtα2

ε

∫
Ω

vα2+1
ε dx.

Hence

∥vε∥2 ≤ t2∗(s)−2
ε + (λ + ε1)

∫
Ω
|vε|2dx + (η + ε1)|tε|2

∗(s)−2
∫

Ω
|vε|2

∗(s)dx + ξ|tε|α2−1
∫

Ω
|vε|α2+1dx.

Moreover, from Lemma 2, we have
t2∗(s)−2
ε ≥ Aµ,s − ε2. (22)

On the other hand, ḡ(t) ≤ ḡ
(
tε

)
for any t ∈

[
0, tε

]
. From (5), (11), (12), (21), (22) and Lemma 2, we

get

g(tε) = g
(
tε

)
−
∫

Ω
F(x, tεvε)dx

≤ 2 − s
2(N − s)

∥vε∥
2(N−s)

2−s − λ − ε1

2
t2
ε

∫
Ω
|vε|2dx +

ξ

α + 1
|tε|α1+1

∫
Ω
|vε|α1+1dx

−η − ε1

2∗(s)
|tε|2

∗(s)
∫

Ω
|vε|2

∗(s)dx (23)

≤ 2 − s
2(N − s)

∥vε∥
2(N−s)

2−s −
(λ − ε1)

(
Aµ,s − ε2

) 2
2∗(s)−2

2

∫
Ω
|vε|2dx

+
ξ

α1 + 1
(

Aµ,s − ε2
) α1+1

2∗(s)−2

∫
Ω
|vε|α1+1dx − η − ε1

2∗(s)
(

Aµ,s − ε2
) 2∗(s)

2∗(s)−2

∫
Ω
|vε|2

∗(s)dx.

If (H1) holds, notice that 2 ≥ N√
µ̄+

√
µ̄−µ

, then when ε is sufficiently small, the sign of

− λ−ε1
2 t2

ε

∫
Ω|vε|2dx + ξ

α+1 |tε|α1+1 ∫
Ω|vε|α1+1dx − η−ε1

2∗(s) |tε|2
∗(s) ∫

Ω|vε|2
∗(s)dx is decided by the sign of

−
∫

Ω|vε|2
∗(s)dx.Thus, when ε is small enough, (20) holds true.

If (H2) holds, since α1 > 1 is arbitrary, we can choose α1 > N√
µ̄+

√
µ̄−µ

, then by Lemma 2, we

know that when ε is sufficiently small, the sign of ξ
α+1 |tε|α1+1 ∫

Ω|vε|α1+1dx − η−ε1
2∗(s) |tε|2

∗(s) ∫
Ω|vε|2

∗(s)dx

is decided by the sign of −
∫

Ω|vε|2
∗(s)dx. Thus from (23), when ε, ε1 and ε2 are small enough,

g(tε) <
2 − s

2(N − s)
∥vε∥

2(N−s)
2−s − λ∗(µ)

2
A

2
2∗(s)−2
µ,s

∫
Ω
|vε|2dx.

From (13) we know
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lim
ε→0+

∥vε∥
2(N−s)

2−s − A
N−s
2−s

µ,s

A
N−2
2−s

µ,s
∫

Ω|vε|2dx

= lim
ε→0+

∥uε∥
2(N−s)

2−s − A
N−s
2−s

µ,s

(∫
Ω

|uε |2
∗(s)

|x|s dx
) N−s

2−s

A
N−2
2−s

µ,s

(∫
Ω

|uε |2
∗(s)

|x|s dx
) N−2

2−s
2

2∗(s) ∫
Ω|uε|2dx

= lim
ε→0+

(
D + C−2

ε A
N−s
2−s

µ,s

) N−s
2−s

− A
N−s
2−s

µ,s

(
E + C−2∗(s)

ε A
N−s
2−s

µ,s

) N−2
2−s

A
N−2
2−s

µ,s

(
E + C−2∗(s)

ε A
N−s
2−s

µ,s

) N−2
2−s

2
2∗(s) ∫

Ω|uε|2dx

= lim
ε→0+

(
C2

ε D + A
N−s
2−s

µ,s

) N−s
2−s

− A
N−s
2−s

µ,s

(
EC2∗(s)

ε + A
N−s
2−s

µ,s

) N−2
2−s

C2
ε A

N−2
2−s

µ,s

(
EC2∗(s)

ε + A
N−s
2−s

µ,s

) N−2
2−s

2
2∗(s) ∫

Ω|uε|2dx

(24)

= lim
ε0→0

(
C2Dε0 + A

N−s
2−s

µ,s

) N−s
2−s

− A
N−s
2−s

µ,s

(
EC2∗(s)ε

N−s
N−2
0 + A

N−s
2−s

µ,s

) N−2
2−s

C2ε0 A
(N−s)(N−2)

(2−s)2
µ,s

∫
Ω|uε|2dx

=
N − s
2 − s

lim
ε0→0+

PC2
(

D + ε0
∂D
∂ε0

)
− A

N−s
2−s

µ,s QC2∗(s)
(

Eε
2−s
N−2
0 + ∂E

∂ε0
ε

N−s
N−2
0

)
C2 A

(N−s)(N−2)
(2−s)2

µ,s
∫

Ω|uε|2dx

=
N − s
2 − s

D∫
Ω

|φ(x)|2

|x|2β dx
,

where C =

(
2(µ−µ)(N−s)√

µ

) √
µ

2−s
, ε0 = ε

√
µ

2−s , P =

(
C2Dε0 + A

N−s
2−s

µ,s

) N−2
2−s

, Q =

(
EC2∗(s)ε

N−s
N−2
0 + A

N−s
2−s

µ,s

) N−4+s
2−s

.

By (14), (13) and (24), we have

lim
ε→0+

∥vε∥
2(N−s)

2−s − A
N−s
2−s

µ,s

A
N−2
2−s

µ,s
∫

Ω|vε|2dx
<

N − s
2 − s

∫
Ω

|∇φ(x)|2

|x|2β dx∫
Ω

|φ(x)|2

|x|2β dx
,

so, if ε is small enough, then c ≤ g(tε) <
2−s

2(N−s) A
N−s
2−s

µ,s .
Proof of Theorem 1.

By Lemmas 4, 5 and 6, we can get that equation (1) has a nonnegative solution u ∈ H1
0(Ω), by the

maximum principle, this solution is positive. Which completes the proof.
Proof of Theorem 2.

Since ( f3) contains ( f1), Theorem 1 implies the existence of a positive solution u1 for equation (1).
Let f (x, t) = −h(x,−t) for t ∈ R, h(x, u) satisfies ( f1) and ( f2), then

−∆u − µ
u

|x|2
=

|u|2
∗(s)−2

|x|s
u + h(x, u)
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has at least one nonnegative solution v. Let u2 = −v, then u2 is a solution of

−∆u − µ
u

|x|2
=

|u|2
∗(s)−2

|x|s
u + f (x, u).

Clearly, u1, u2 ̸= 0. So problem (1) has at least two distinct nontrivial solutions.
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