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Abstract: A class of semi-linear elliptic equations with critical Hardy-Sobolev exponent has been considered.
This model is widely used in hydrodynamics and glaciology, gas combustion in thermodynamics, quantum field
theory and statistical mechanics, as well as gravity balance problems in galaxies. The (PS), sequence of energy
functional has been investigated, and then the mountain pass lemma was used to prove the existence of at least

one nontrivial solution. Also a multiplicity result has been obtained. Some known results have been generalized.
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1. INTRODUCTION
Consider the problem

. ‘ulz* (s)-2

—Au—yl‘z— o u+ f(x,u), xeQ\{0},
u=0, x € 0Q).

1)

Here Q) is an open bounded domain with smooth boundary 9Q in RN (N > 3),and 0 € Q.0 < u <
2
io= (¥> , 2°(s) = 2(N—5s)/(N—=2)(0 < s < 2)is the Hardy—Sobolev critical exponent and

2* =2%(0) is the Sobolev critical exponent. f € C(Q2 x R, R), fo x,s)ds. We point out that
(1) is related to the application of hydrodynamics and glac1ology ([1]). And it is also used in some
physical or mathematical problems, such as the theory of gas combustion in thermodynamics ([2]),
quantum field theory and statistical mechanics ([3-5]), as well as gravity balance problems in galaxies
([2,6]). For more investigations on solutions for nonlinear equations with Hardy potential, one can see
[7-9] etc.
The modern variational method ([10-13]) plays a significant role in studying PDEs (see [14—-18]).
In 1973, the mountain pass lemma was proposed by A. Ambrosetti and P. Rabinwitz in [14], it is a
milestone in the history of the development of critical point theory. However, in the process of studying
the properties for certain equations, there are a lot of phenomena that lose compactness conditions,
such as semilinear elliptic equations that involving Sobolev critical exponent or Hardy-Sobolev critical
exponent on bounded domain. In 1983, H. Brezis and L. Nirenberg first chose special mountain pass
and selected energy estimates to prove the existence of a critical point if the energy functional satisfies
the local (PS) condition (see [15]), they investigated the problem
—Au=[u* Pu+ru, xeQ, o)
u=020, x € 00

and obtained that there exists a A, € (0, A1) such that for any A € (A4, A1), problem (2) admits a
positive solution. It is a special case of equation (1) (s =0, u = 0 and f(x, u) = Au). Since then, many
excellent results based on the above methods (see [11,19-21]) appeared.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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In the past decades, the semilinear elliptic equation with Hardy term and Sobolev critical exponent
(i.e. when s = 0 and y # 0) has been investigated by many mathematicians, one can refer to [22-25]
etc. For example, the following elliptic problem
—Au—y‘# = |u|2*72u+)\u, x €, 3)
u=0, x € 0Q).

is considered in [22-24].

For simplicity, in the following, we denote the condition (H1) and (H2) as follows:

HDO<A<M(p)and0<pu<u—1;

H)a—1<p<pand A () <A < Aq(p).

In [24], by the variational method, E. Jannelli proved that: If (H1) or (H2) holds, then (3) has
at least one positive solution in H}(Q)). Later in [26], the authors investigated problem (1) with
F(x,u) = Alul"%uor f(x,u) = Au. And obtained the following conclusion.

Theorem A ([26]). Assume 0 < s < 2,9 =2,and = 2(\/fi + \/f — ). If (H1) or (H2) holds, then
problem (1) has a positive solution u in H} (Q).

Also there are some results dealing with the case y # 0, s # 0 and the general form f(x, u) (see
[27,28]). In [27], M.C. Wang and Q. Zhang showed that problem (1) has at least one nonnegative
solution. In [28], L. Ding and C.L. Tang also investigated problem (1) and obtained the existence
result. Inspired by [26-28], we study the existence of nontrivial solutions for problem (1). Our main
conclusions are
Theorem 1. Suppose that N > 3,0 < u < fi, B = /i + /i — 1,0 < s <2, f(x,t) satisfies

(fi) f € C(QxR*,RT) and tlir(%m = A, lim f(i’t_)l = 7, uniformly for x € Q), where

t t—+oot? ()
A > 0.
(f2) There exists 2 < p < 2*(s), such that %f(x,t)t —F(x,t) > — (% - %)/\tz, for any x € Q,
teRT.

If (H1) or (H2) holds, then (1) has a positive solution u in HS (Q)), where

JalVol*/|x|#dx

A*(,u = s
geHNQ\(0) [, ¢/ |x|*Pdx

and

Jo (1702 = % )
A = inf .
1) ueHL(Q)\ {0} Joluldx

Theorem 2. Suppose that N >3, 0 < u < fi, B = /I + /i — 1,0 < s < 2. f(x,t) satisfies (f) and
(fs) f € C(ﬁ x R, R"’), lim £Gh) — A, lim fooh) 17, uniformly for x € O, where A, 1 > 0.

=0+ f ‘f|*>+oot2*(s)_l a
If (H1) or (H2) holds, then (1) has at least two distinct nontrivial solutions in Hé (Q).
Remark 1.
: 1 _ 1_1 1_ 1)y
(i) Let f(x,u) = Au, we can get Ef(x,u)u —F(x,u) =— (j - E)Auz, thus — (j - 5))\ is the best
constant.

(ii) Comparing with [27] and [28], the restrictions on the nonlinear term f(x, 1) are weaken.

(iii) If f(x,u) = Au+nqu® )=, then it is easy to verify that f(x, u) satisfies (f1)-(f3)-
Remark 2.

To prove Theorem A, when (H1) holds, the authors used the analytical techniques as that in [24].
In this paper, by accurate estimates of ||u¢||* and f0|ug|2* =) |x|*dx, we obtain ¢ < Z(i,_fs) A;,I,\slfs)/(%s)
, thus in this case, the mountain pass lemma could also be used. We unify the methods for proving the
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existence of solutions of equation (1) for both cases (H1) and (H2). The results in this paper integrally
contain all the cases of Theorem A in [26].

2. PROOF OF THEOREMS

Obviously, in Theorem 1, the values of f(x,t) are irrelevant for t < 0, therefore, we define
f(x,t) =0forx € Qandt <O0.

By Hardy inequality and Hardy-Sobolev inequality (see [29]), we define equivalent norm and
inner product in H}(Q)

1
lu|| := / |Vu\2 - u—Z dx : (u,0) '—/ VuVo — o dx, Yu,v € Hl(Q)
: Q y|x|2 4 4 : Q ]’l‘x|2 ’ ’ 0 :

Let

ut :=max{0,u}, F"(x,t):= /otf+ (x8)ds, f7(x,1) := { f((;f’t)’t t<20-0,

The energy functional ] : H}(Q) — R to (1) is given by

1 1 +12°(s)
Jw) = 5l = 355 / (u|3|s dx— [ F*(xudx, u e Hy(Q),

We can easily obtain that J(u) is well defined with ] € C!(H}(Q),R) and

(' (w),0) = (w,0) - [

vdx—/ t(x, u)vdx, u,v € HY(Q).
Q |x|5 Qf ( ) O( )

When 0 < p < ji, the best constant can be defined as follows (see [30])

Jo (17 = )
Aps = inf . 4)

ueH}()\{0} >0 . \FO
(fﬂ 5 dx)

Lemma 1. Suppose (f1) hold. Forany 0 < ¢; < min{A, 5} and ay,a; € (1,2*(s) — 1), there exists & > 0

such that

Flx, ) > (A—e)t+ (g —e)2 O — g™, fort >0and x € O, (5)
and

Flx,t) < (A+e)t+ (i +e) 2O~ 4 &%, fort > 0and x € Q. (6)
Proof.

It follows from (f1) that Ve; > 0,36 > 0 and M; > 0,

’f(it) —/\‘ <ey, for(t,x) €[0,6] xQ, @)
and ¢
s —v\ ey, for (t,x) € [My, +o0) x O, ®)

from (7), we get
f(x,t) > (A—e)t, for (t,x) €[0,8] x Q,
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for ay € (1,2%(s) — 1), if we take ¢ > max{O, (7 —€1)6% (G)-1-m }, then for any ¢ € [0, 4], we have
(7 — &) t¥" =1 — & <0, thus

Flx, ) > (A—e)t+ (p —e) 2O =g, for (£ x) € [0,68] x Q.
From (8), we know
f(x,t) > (7 —e1)t, for (t,x) € [My,+00) x Q,

for ay € (1,2%(s) — 1), if we take § > max{O, (A= sl)M}_“l }, then for any t € [Mj, +00), we have
(A —¢eq)t —¢t*1 <0, thus

Fx,8) > (A —e)t+ (p—e)2 "1 2% (t,x) € [My, +00) x Q.

When t € [§, M;], taking ¢ > max{O, r[r(}%( ]{()\ —e)tlmM 4 (g — sl)tz*(s)—l—"‘l}}, we have
te|o,My

Flo ) > (A —e)t+ (i —e) 2 E71— g™, (1,x) € [6, My] x Q.

As mentioned above, if we take

¢ > max{O, (A — el)M}_“l, (n — 81)52*(5)—1—“1,t$% ]{()L _ sl)tl—al +(n— el)tz*(s)_l_"‘l}},
V1]

then
Flet) > (A—e)t+ (7 —e)t? ©) 71 — &%, fort > 0and x € Q.

Similarly, we may obtain that there exists ¢ > 0 such that
F(x,t) < (A+e)t+ (p+e)> O~ 4 &%, fort > 0and x € Q.

The conclusion is proved.
Now we introduced the extremal functions. Let

oo (EE= N =)\ ) ©)
€ \/ﬁ 7 € - Cg 7
define a cut-off function ¢ € C§°(Q) such that
(x) 1, |x| <R,
X)) =
¢ 0, |x| > 2R,
where Bor(0) € Q), 0 < ¢(x) <1, for R < |x| < 2R, set
wlx) = pLx)U(x), we(x) = ) (10

<f0|u£(x)|2*(5)|x|*5dx)2*7(5)

Lemma 2 ([26]). Let v¢(x) be defined as above, then v, (x) satisfies

N-2

loe(x)[1* = Aps +0(7), (11)
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VL] N
Ol ez P 1§L]<\/ﬁ+ﬁﬂ,ﬂ;
Vi
A)|Ug(x)|qu =<¢0lezs |ln€|>, q= ﬁ, (12)
\(/217(1\;*5_\/?) N .
=)V 1t __ N
O(s ), Tirviss <4< 2%,

Lemma 3 ([31]). Let u¢(x), Ue(x), Ays, Ce be defined as above, then the exact estimates of |1, ||2 and

Ju |2 )
Ja T dx are as follows:

R ue(x) 2 ) —2¥(s) , N=s
lue(x)|2 = C- 2475 +D, /O |£(|x)||sdx —CPWAT 1 E, (13)

B 2 uZ(x) . 12 — UZ(x) M
D_/R<|x<2R<|vu8(x>| . x| )d /|x|>R<|vu€( JI=w |x|? )d ’

2% (s) 2%(s)
E = ,/ %dx+/ %dx.
>R x| R<|x|<2R x|

Moreover, 3 Ry > 0 such that for any R < R,

where

: [Vo(x)?
lim D < | 222 gy, 14
ot o) |x|2/3 * (14

Lemma 4. Suppose (f1), (f2) and A < A1(p) hold. Assume {u,} C H}(Q) is a (PS). sequences, that is,

J(un) = c € OiAg:;
" "2(N—s) )

and

T (1) — 0, in <H3(Q))_1

Then there exists u € H}(Q) such that u, — u weakly in H}(Q), or a subsequence u,, — u weakly in
H}(€)), moreover, J'(u) = 0 and u is a nontrivial solution of (1).
Proof.

First, we claim that if (f1), (f2) and A < A;(u) hold, then any (PS). sequence {1, } is bounded in
H{(Q). Otherwise, suppose that ||u,|| — oo, since J(u,) — ¢, there exists Ny such that whenn > Nj,
J(un) < c+ 1. J'(uy) — 0 implies —%(]’(un),un> < 0(1)||un||, thus for any &1 € (0,A1(¢t) — A), when
n> Ny,

1ol > J) = 5 (7 ) )
- (;—;) ||un||2+/0(;f+(x,un)un—F*(x,un)>dx
eas
(o zm) b

1 1 1 1
1t ||* — (2—p)(2\+81)/ﬂu%dx

%

v
7 N N N

| =

|

| —

N—— —— 0

=

=

BN
7N

N —

|
=R
N———

> >
A—i_
=|m
— =

=

BN
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Which shows that {u,} is a bounded sequence in H}(Q)). By the reflexivity of H}(€2), we know that
there exists u such that u, — u (or a subsequence of u, convergence to u). Furthermore, J'(u) = 0
by the weak continuity of J'. From u, € Hé (Q)), uy — u, by the compactness of the embedding,
we have u, — uin L7(Q) for any 1 < v < 2*(s). Let fi(x,u) = f(x,u)u, from (f1), we have
[f1(x,un)| < a4+ bluy |2* ®), by the definition of Ypsicom operator, we know f; : L2 ) (Q) — L1(Q) is
a continuous operator. Thus

lim Q(fl(x, uy) — f1(x,u))dx =0,

n—o0
that is,

’}%/Qf(x,un)undx:/Qf(x,u)udx. (15)
Similarly,

lim F(x,un)dx:/ F(x,u)dx.
O

n—oo Q

In addition, by the convergence of ||u|, uy — u in H}(Q).
Assume that u = 0in Q, from (J' (1), un) = 0(1) and (15) we know

PSEAC)
o~ |, E S = o(1) 6
By (4), .
+12°(s) 2(s)
2 > (”n ) .
il = A ( Jo 17)

From (16) and (17), we have
2 S22
o(1) = flun (1= Ays * lunll :
If ||un|| — O, then (16) implies that J(u,) — 0, while J(u,) — ¢, which contradicts ¢ > 0. Hence

N-—s
[un > > AZS +o(1). (18)

By (12), (16) and (18), we obtain

N-—s
which contradicts ¢ < 5 (i]__ss) AjLs" . Thus, u is not constantly equal to 0 and  is a nontrivial solution of
problem (1).

Lemma 5. If (f1), (f2) and A < Aq(p) hold, then the functional ] admits a (PS) sequence at level

= inf 1),
c ;grtren[g,ﬁl(’r( )

where
r={yec(l01, HQ): v(0) =0, J(x(1) <0}.
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Proof.

We need to prove | satisfy all assumptions of the mountain pass lemma except for the (PS)
condition. Obviously, J(0) = 0. Moreover, from the Hardy-Sobolev inequality and the Hardy inequality,
we can easily get

/ |u| dx<C ]| ) ,ullf < Coffu]|Tfor1 < g <27, u e H(Q). (19)

Then, by (6), (19) and Lemma 1, we have

1 1 +12°(s)
Mw=2wW—z*ﬂ/‘”>sca—/Fwwa

) = BE S 2 A €t
- 7 O - it
1—(A+e)/M(p) 2%(s G 2% (s) g a1
> : P = gl = s ™ = g,
which implies that Ja, p > 0 such that
J(u) >a >0, Vu € {u € HY(Q)|||lu]| = p}.
()2
Taking up € H}(Q) \ {0}, such that [ OI | dx > C3 > 0, for any t > 0, we have
2o B ) ;
J(tug) = E||u0\| ) /Q T dx — /Q F7(x, tug)dx
t ,  12°0)
< -
< ol - 375
notice lim [(tuy) = —oo, then there exists tg > 0 such that ||tgug|| > p and J(tpup) < 0. By mountain
o P y
—+o0

pass theorem without the (PS) condition (see Theorem 2.2 in [15]), we know that | admits a PS sequence
at the c level.
Lemma 6. Assume (f1), (f2) and 0 < s < 2, if (H1) or (H2) holds, then

2—s Ne=s

AL 2

0<C<2(N—s) is (20)

Proof.
Define
; 2o 0 F(x to)d
8(8) = J(00) = g loelP — 35— [, FF (o)

and ) -

I - IR -

3= 5 oelP = 3o
It is easy to see that tlirﬂ g(t) = —oo, g(0) = 0 and g(f) > 0 when ¢ is small enough, so there exists

—+oo

some f. > 0, such that g(t;) = supg(t) > 0, which shows that ¢ > 0. Obviously g'(t¢) = 0, that is,
t>0
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thus 1
ol = 7% + — /Qf*(x, teve)vedx > 12 872,
€

therefore,
2

tg = ||’U£H2* -2 > tg (21)

From (7), we know

/f(x,tgvg)vgdxg (A+£1)t8/ v%dx—%(n—l—el)tg*(s)*l/ vi*(s)dxwttftﬁ”/ o2y,
Q 0 0 Q
Hence
loelP < 8972 4 (At er) [ oot (g ) 1O [ ol D4 glpef= ! [ ool

Moreover, from Lemma 2, we have

fe > Ay,s — €. (22)
On the other hand, (t) < g(f) forany t € [0, f]. From (5), (11), (12), (21), (22) and Lemma 2, we
get
2—s 2(N—s) —€
< givog el T = S5 o+ gl [ o ax
e 2% (s) / (s) 23
2*(5) |t€’ Q|v€| dx (23)
2
2—s N (A=) (Aps —¢ (-2
=y
4 - H / a+1 /. / 2% (s
Ays— 1 A . —
+¢X1—|—1( s 82 Ve dx — 2+(s) ( s 82 |Z)£|
. N . . . .
If (H1) holds, notice that 2 > TR then when e is suff1c1ently small, the sign of
25842 [ oePdx + Lt [ oo dx — Z*(? 162 ®) [ |oe[* @dx is decided by the sign of

- Ja |v¢|* ©)dx. Thus, when ¢ is small enough, (20) holds true.
If (H2) holds, since a; > 1 is arbitrary, we can choose a1 > # then by Lemma 2, we

know that when ¢ is sufficiently small the sign of % [t T [y |oe| 1 dx — g*(‘? |te]? f N
is decided by the sign of — [, |ve | *)dx. Thus from (23), when ¢, €1 and ¢, are small enough,
2—5s A (O 2
8lte) < gy lledl =~ AT T [ Joa

From (13) we know
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v A%
Az’ 2
o |ve|?dx
N—s * 2—s
5 - A2 (fg i)
= lim

5‘>0+ 2—s 2%(s)
( - ) ol
+c?

liI‘fEr |
e—0 A

N—2 2 (24)

C2e0A s C-9* o luelPdx
2=s
PCZ(D—l-SOgTDO) A2 25 QC2 <E£3’2 + g’fsg 2)

25 o0t [CESIED)

2
CZAM(2 ) f0|u8|2dx

— 2—s \/}:t

h C = 2(—p)(N—s) €0 = €25,
where e g =¢
By (14), (13) and (24), we have

Vo)
el A —sfo P
11rrEr N
e—0 AL ? fQ|Us| dx fQ E ‘25‘ dx
N—s
so, if ¢ is small enough, then ¢ < g(t) < 5 N s) Als.

Proof of Theorem 1.

By Lemmas 4, 5 and 6, we can get that equation (1) has a nonnegative solution u € H}(Q), by the
maximum principle, this solution is positive. Which completes the proof.
Proof of Theorem 2.

Since (f3) contains (f1), Theorem 1 implies the existence of a positive solution 14 for equation (1).
Let f(x,t) = —h(x,—t) for t € R, h(x,u) satisfies (f1) and (f2), then

u ‘u|2*(s)72
_Au_yW :7|x|s M+I’l(x,u)
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has at least one nonnegative solution v. Let u; = —v, then uj is a solution of
2% (s)—2
u_ _ |ul
—AU— j—s = u+ f(x,u).
x| kS

Clearly, u1,up # 0. So problem (1) has at least two distinct nontrivial solutions.

Acknowledgments: This work is partially supported by NNSF of China (11201213), NSF of Shandong Province
(ZR2015AMO026).
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