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and Leopoldo Altamirano Robles*

Instituto Nacional de Astrofisica, Optica y Electrénica; robles@inaoep.mx

Abstract: Convolutional Neural Networks (CNNs) present drawbacks for modeling geometric transformations,
such as scaling and rotation, caused by the convolution operation’s locality. Deformable convolution (DCON), a
mechanism that substitutes standard convolution, increasing the receptive field to capture relevant features, is a
promising approach to solve this drawback and improve the robustness of CNNs. However, the optimal way to
replace the standard convolution with its deformable counterpart in a CNN model is unclear. In this study, we
clarify this aseveration by conducting several experiments using deformable convolutions applied in the layers
that conform a small four-layer CNN model. We also use deformable convolutions on the four-layers of several
ResNet CNNs with depths 18, 34, 50, and 101. The models were tested in binary balanced classes with 2D data for
image classification: Cats & Dogs, EyesPACS, Spyders & Chickens, and Shapes. After this testing, we evaluated
DCON in 3D data for action recognition: UCF101 and Human2 (a dataset we compiled to control movement,
clothing and background). The contribution of this research lies in a guideline to use DCON. It can be summarized
as follows: if DCON is used on the first layers of the proposal of model (with simple features), the computational
resources expressed as the quantity of Flops will tend to increase and produce bigger misclassification than the
standard CNN. However, if the DCON is used at the end layers, the quantity of Flops used in the training and
testing will decrease, and the classification accuracy will improve by up to 20% about the base model. Moreover,
it gains robustness when using deformable convolutions because it can adapt to the region of interest. Also, the
best kernel size of the DCON is three. It showed better results than size five. In the last case, the quantity of Flops
increase quadratically, but their performance does not increase significantly. With these results, we propose a

guideline to use the DCON and contribute to understanding the impact of DCON on the robustness of CNNs.

Keywords: computer vision; image/video analysis; deformable neural networks

1. Introduction

Convolutional neural networks (CNNs) have dominated the field of computer vision, achieving
superior results to traditional machine learning methods [1]. Its success is due to its capacity to
capture spatial features and patterns in images using a layered hierarchical architecture, where mainly
convolution and pooling operations are performed [2].

The core component of CNNSs is the convolution operation, which extracts features and patterns
from the input image. Each convolutional layer is composed of multiple kernels [3], which, during
the training phase, their weights are learned, turning them into feature extractors, identifying specific
patterns, edges, and textures present in the input data [4].

Despite the astonishing results CNNs have shown, they present an inherent limitation for model-
ing unknown transformations, which originates mainly from the lack of internal elements to model
geometric transformations [5]. As a consequence, the receptive field of the activation units remains the
same in each convolutional layer, and it is limited to the kernel size.

A common technique to increase the capacity to model geometric transformations is to use data
augmentation. However, this operation requires more training time, and if transformations are not
appropriately modeled, the risk of overfitting increases. The approach used to expand the receptive
field is to augment the kernel size, such as in [6,7]. Nevertheless, this change in kernel size increases
the computational cost (due to the quadratic computational complexity).

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Deformable convolution (DCON), proposed in [5], is a mechanism that replaces the standard
convolution of a CNN layer with deformable convolution increasing the receptive field to capture
relevant features (usually called deformable convolutional networks or DCNN). DCON is a promising
approach to give a CNN the capacity to model transformations, such as scale, increasing its robustness.
However, the optimal way to replace the standard convolution with its deformable counterpart is
unclear.

In the state of the art, some works have been proposed that give clues on how to adequately
incorporate DCON. Dai et al. [5] evaluated the effect of DCON using ResNet-101 for feature extraction,
finding that accuracy improves with more DCONs included. However, the improvement gets over-
shaded, when three DCONs for semantic segmentation or six for object detection are used. Chen et al.
[8] found better results in semantic segmentation when including from one to three DCONSs in the
residual block of a ResNet-101, falling the improvement as adding more convolutions. Lai et al. [9]
investigated the performance of the DCON in a C3D model in different layers. Unlike us, they found
that lower layers yield better results.

In this paper, we give a guideline for DCNNSs by investigating the behavior of CNN models
when DCON is introduced. For this purpose, several experiments to analyze DCNNs were conducted,
different from previous works. We start our experiments from 2D models employing a small network
composed of four stages. After that, deeper models such as ResNet-18, ResNet-34, ResNet-50, and
ResNet-101 are tested. To go further in our analysis, we extend the experiments to 3D models using
the 3D ResNet variants.

These models were evaluated in image classification tasks using varied datasets with controlled
conditions. The models should carry on binary decisions (the presence or absence of glaucoma) and
animal identification. Moreover, we applied space-time tests in the field of action recognition. DCONs
perform better when placed in layers containing more complex features rather than using them in
the first layers. Also, it was found that kernels with a 1x1 size learn only local features. In the case
of kernels with size 5x5, the computational cost increases notably without remarkable performance
benefits. Then, kernel 3x3 was left as the best option. These results are also confirmed in [6,10].

The rest of this paper is organized as follows. Section 2 gives the materials and methods involved
in the study. Section 3 presents the methodology. Section 4 offers experiments and results. Sections 5
and 6 present the discussion and conclusions of this work.

2. Materials and Methods

2.1. Standard Convolution (Used in the CNN)

The 2D convolution function works using a fixed grid R that defines both the receptive field size
and dilation sizes. The receptive field is the patch of the total field of view that produces a feature [11].
For example, Equation 1 defines a grid of size 3x3:

R=(-1,-1),(~1,0),..,(0,1),(1,1) 1)

For the sampling point py, the 2-D convolution equation is defined as follows:

y(po) = ZRw(Pn) -x(po + pn), )
pn€

where p, enumerates the locations in R, x is the input feature map, and w(p,) is the weight at a
certain position [5].
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2.2. Deformable Convolutional Network (DCNN)

In deformable convolution, the regular grid is augmented with offsets Ap,, | n = 1,...N, where
N =| R |. Equation 2 becomes

y(po) = Y wpn) - Dimy - x(po + pu + Bp), (3)
pn€R

where Apj, is an offset, which, since it is usually a fractional value, is implemented using a bilinear
interpolation algorithm (Equation 4), Am,, is another trainable modulation parameter between 0 and 1
[12]. Both Ap, and Am,, are obtained via a separate convolution layer applied over the same input
teature maps Ax. The output is of 3K channels, where the first 2K channels correspond to the learnable
offsets and the remaining K channels are further fed to a sigmoid layer to obtain a modulation of
scalars. Below the equation for the bilinear interpolation function

x(p) =) G(q,p)-x(q), (4)
q

where p denotes an arbitrary (fractional) location, and g enumerates all integral spatial locations in the
feature map x, and G(-, -) is the two dimensional bilinear interpolation kernel. It is separated into two
one-dimensional kernels as

G(q,p) = 8(qx,x) - 8(ay, Py), (5)

where g(a,b) = max(0,1— |a —b|).

Each sampling point of the kernel learns an offset to achieve adaptation. In the process of
DCON, additional convolution layers are required to extract the offset fields of the same size. Figure 1
illustrates the difference between the receptive field of standard convolution operation (Figure 1a) and
the deformable convolution operation (Figure 1b), employing 3x3 kernel size. In standard convolution,
the receptive field is limited to the kernel window, whereas in its deformable counterpart, the receptive
field is irregular as a result of the displacement p,, + Ap,,.

(@) (b)

Figure 1. Receptive field (represented in red). (a) Limited in standard convolution; (b) Irregular and
expanded by py + Apy displacement [13].

The implementations of DCONSs applied in this study are listed below. These implementations
can be used to replace a standard convolution layer with the deformable counterpart:

e Tvdcn [14]: Torchvision-like package of the DCNN with both 1D, 2D, and 3D operators.
¢ PyTorch-Deformable-Convolution-v2 [15]: Developed and published by Y. Kwon, this library
implements a DCNN model based on the Pytorch operator deform_conv2d.

2.3. Models Tested
2.3.1. Small Model

The small model used in this research comprises four convolution stages and a classifier. As
shown in Figure 2, each stage is composed of a convolution layer with kernel size 3x3 (except during
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the comparison of kernels 1x1, 3x3, and 5x5 in Section 4.1.2) and ReLU activation function, followed by
a MaxPooling layer with a window size of 2x2. The classifier is a fully connected architecture with two
hidden layers, composed of 6x6x128 units in the input layer, 64 and 32 units in the first and second
hidden layers, respectively, with linear activation function and one neuron in the output layer, with a
sigmoid activation function.

100x100x3

Conv -

MaxPool(2) |----""

Figure 2. Graphical description of the CNN small model implemented during the experiments of
Section 4.1.

2.3.2. ResNet

The ResNet model proposed by He et al. [16] is constituted of five stages, as shown in Figure 3
(left), where the first stage, named convl, is composed of one convolution layer with kernel 7x7, stride
two, followed by a MaxPooling layer with window size three and stride two. The following, conv2_x
to convb_x stages, are composed of stacked residual blocks organized in a sequential manner, where x
indicates the number of repetitions that the residual block will take in each stage.

Basic block Bottleneck block

224x224x3

112x112x64

conv2_x

56x56x64*4 -

conv3_x

28x28x128*4 |~ -

conv4_x

14x14x256*4

convb_x

TX7x512*4

Figure 3. The ResNet model is shown on the left side. ResNet’s residual block types are the basic and
bottleneck blocks, shown on the right side of the figure. C means the respective channel (derived from

[16]).

The idea behind the residual block is to reduce the gradient vanishing, thus establishing a shortcut
to avoid losing the input information. This process is done by adding the input signal to the output
of the last convolutional layer of each residual block. In a residual block, the input is called residual
information.

Each residual block can be replicated x times in a stage. Therefore, deeper networks can be built
to preserve the input information. Common ResNet architectures are ResNet-18, ResNet-34, ResNet-50,
ResNet-101, and ResNet-152. The residual block for ResNet-18 and ResNet-34 architectures is called
basic block, and consists of two convolution layers with a 3x3 kernel without a MaxPooling layer.
Whereas the residual block for ResNet-50 and ResNet-101 is named bottleneck block, which comprises
three convolution layers, where the first and last layers use 1x1 kernel size, and the intermediate layer


https://doi.org/10.20944/preprints202405.2124.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2024 doi:10.20944/preprints202405.2124.v1

50f 20

employs 3x3 kernel size. In addition, in case the input size does not match (spatially or in number of
filters), the residual block incorporates a mechanism to project the input to the required dimensions.
ResNet-18, ResNet-34, ResNet-50, and ResNet-101 architectures were considered in this research.

2.4. Metrics
The metrics used in this study are explain below.
* Accuracy: In this study, we have balanced classes for all the data sets. Accuracy is defined as

the sum of the number of true positives and true negatives (correct observations) divided by the
total number of examples [17], it’s computed as follows.

TP+ FP
TP+FP+TN+FN

Accuracy = (6)
where TP is a correct observation put in class 1; FP is an incorrect observation put in class 1; TN
is a correct observation put in class 2; FN is an incorrect observation put in class 2. Then, the
accuracy describes how the model performs across all classes.

* Validation accuracy with transformation: A scale transformation is applied to evaluate the
robustness of the model.

* Flops: Denotes the number of floating point operations executed per second. Essentially, the
Flops measure the processing speed of models, thereby serving as an indicative benchmark for
assessing their computational cost. We used it as a measure of training and testing time in our
research. It is measured through one image or per batch conformed of a group of images.

¢ Parameters: The internal variables learned by the model from the training data.

¢ Time execution: Amount of time that the process takes to execute.

2.5. Image Datasets

The image classification data sets are shown in Figure 4 and listed bellow.

* Cats & Dogs [18]: Two classes of mammals with some characteristics in common, but at the same
time, differences that are very clear to the human eye. Cats & Dogs images were collected by the
Visual Geometry Group (VGG) at the University of Oxford.

* EyePACS-AIROGS-light-V2 [19]: This is an improved machine-learning-ready glaucoma dataset
using a balanced subset of standardized fundus images from the Rotterdam EyePACS AIROGS
divided into referable glaucoma (RG) and non-referable glaucoma (NRG). A binary classification
where the change between the classes is focused on the presence or absence of specific details.

* Spyders & Chickens [20]: Taken from Animals10 conformed of quality animal images where
two radically different animals were selected to analyze a complex spatial scenario.

¢ Triangle & Square [21]: Geometric shapes drawn randomly on a 200 x 200 RGB image. The
perimeter, the position of each shape, the rotation angle (between 0° and 360°), the background
color and the filling color are selected randomly and independently for each image. Shapes
is a dataset with controllable differences between each class. We expect to reflect better the
deformable impact in a controllable scenario like this.

(h)

Figure 4. Classes on Cats & Dogs, EyePACS, Spyders & Chickens, and Triangle & Square datasets,
respectively. (a) Cat, (b) Dog; (c) NRG, (d) RG; (e) Spyder, (f) Chicken; (g)Triangle (h) Square
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2.6. Video Datasets

The video data sets used mainly for action recognition are shown in Figure 5 and explained below.

¢ Apply Makeup [22]: Two classes with little movement were taken from UCF101; Eye Makeup
& Apply Lipstick. These classes were selected because there is no background movement, and
although both activities are very close to each other, the characteristics that determine their label
are based on spatial and temporal information, the spatial objects and locations in the image,
and the hand movement.

* Human2: We collected 15 videos per class of a human walking forward and turning to the
left. The background, clothes, and light conditions are fully controlled. The speed at which the
activity is performed, and the body position varies between the instances.

(a) (b) (c) (d)

Figure 5. Video class frames from UCF101 [22] and Human?2, respectively: (a) Apply Eye Makeup, (b)
Apply Lipstick; (c) Forward, (d) Turn left

2.7. DCON in ResNet Models

To answer the question of where it is more suitable to use a deformable convolution layer in a
deeper model, the ResNet model with architectures from ResNet-18 to ResNet-101 were tested. The
switching of a standard convolution by its deformable counterpart (DCON) was conducted in the
following configurations:

¢ Stage by stage: Refers to exchanging the standard convolution layer for its counterpart only in
one stage at a time, i.e., swapping the standard convolution in the blocks (basic, bottleneck) of
conv2 stage for its counterpart and the other stages (conv3, conv4, convs) remain intact.

* Combining two successive stages: The same as above, but in two successive stages, i.e., swap-
ping the standard convolution by its counterpart in conv4 and conv5, the stages conv2 and conv3
remain unchanged.

* Combining all stages: Here, all stages that are composed of basic or bottleneck blocks (conv2,
conv3, conv4 and convb), include the deformable convolution instead of the standard one.

For architectures involving the basic block, the standard convolution layer was replaced by its
deformable counterpart within each block. On the other hand, the standard 3x3 kernel convolution
located in the middle was replaced by its deformable counterpart for the architectures involving
bottleneck blocks.

In 3D ResNet, deformable convolution is applied only in convolutions with kernel size three
(because with size one we already saw there was no benefit). This experiment, includes some executions
with strides one or two. Stride two is present in all stages but only in the first block due to the bottleneck.
On the other hand, stride one is in all the blocks that contain the stage. The stride size affects the output
spatial dimension and the computation load. More importantly, a more significant stride will capture
more global features but can also overlook helpful information. The choice of stride is a trade-off that
needs to be carefully considered based on the specific task and dataset.

3. Methodology

This work is inspired by the studies presented by Dai et al. in [5] and Zhu et al. in [12], where they
propose a mechanism to increase the receptive field of a convolution layer by deforming its kernel,
referred to as DCON. These studies have reported that replacing the standard convolution layer with a
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deformable one improves the performance of well-known convolutional neural networks for feature
extraction, such as the ResNet-50 and ResNet-101 models. However, they do not go further into the
study of other architectures of the ResNet model, such as ResNet-18 and ResNet-34. Different from
that research, in this work, we go further into the DCON evaluation for feature extraction, extending it
to different architectures of the ResNet model, starting from ResNet-18 up to ResNet-101. In addition,
to better understand the behavior of the DCNN, we incorporate a shallow convolutional network
architecture called a small network. With the use of this small network, it was possible to realize
several experiments.

To identify the potential of a DCON to improve a model for feature extraction, different config-
urations were generated to replace the standard convolution layer with its deformable counterpart
according to each model type. The standard convolution layer was replaced by its deformable counter-
part in the small model stage by stage. On the other hand, in the ResNet architectures, the residual
blocks were replaced stage by stage by their deformable counterpart (Section 2.6). This substitution
was done to identify when a deformable layer can improve the model’s performance and when it can
be counterproductive.

Each configuration was trained from scratch for each dataset, and validated. A scaling trans-
formation was applied to the test images to assess the generalization of geometric transformations
when using DCON layers. Figure 6 illustrates the multiple-image scales applied during testing. The
validation accuracy, time, and the quantity of Flops achieved for each configuration were evaluated.

(d)

Figure 6. Image scale applied to validate models (from scale 1 to 1.6 in steps of 0.1). Cats & Dogs (a);
Spyders & Chickens (b); EyePACS (c); Triangle & Square (d).

4. Results
4.1. Small Model Analysis

The model performance using DCON was assessed by developing several configurations to
incorporate DCON layers in the model. These configurations are shown in Table 1. The accuracy
reflects the robustness of Triangle & Square classes.
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Table 1. The table shows the configurations that incorporate DCON into the model. Also, the number
of parameters and the quantity of Flops (per batch) for each variation of DCON are listed (tvden
implementation).

Config.  Total parameters Training Flops Validation Flops Accuracy

Vanilla 394769 1.244 G 1273 G 0.87
Stagel 395498 1.339 G 1.368 G 091
Stage2 398657 1.186 G 1.215G 0.92
Stage3 402545 1.031 G 1.059 G 0.93
Stage4 410321 0.976 G 1.004 G 0.96
Stagel,2 399386 1.281G 131G 0.89
Stagel,3 403274 1126 G 1154 G 0.90
Stage2,3 406433 0973 G 1.002 G 0.95
Stage2,4 414209 0918 G 0.947 G 0.96
Stage3-4 418097 0.763 G 0.791 G 0.96

4.1.1. Performance

When DCON is in the first layer, the quantity of Flops and the number of parameters increment
(Tables 1 and 2, and Figure 8). Despite using DCON, accuracy often remains the same or even decreases.
On the other hand, it achieves lower quantity of Flops and better performance when working with
more complex features (from higher layers). In Tables 1 and 2, it is observed that even though the
number of parameters can increment (caused by the DCONSs), also can be beneficial if it works with
more complex features. Applying DCON will increase the number of parameters without necessarily
reflecting an improvement; if applied in the first layer, the model performance will also increment,
no matter the dataset analyzed. This implies that the first features obtained through convolution
are still so uninformative that they confuse the deformable ones. In other words, DCONSs require
pre-processing before learning their parameters. The model with DCONSs that achieves the best relation
between accuracy and the quantity of Flops is conv3-4 (Figure 9). Nonetheless, it is also illustrated
that applying DCON in the first layer is not as convenient as applying it in the latter stages where the
features are more complex. It is better to work with standard convolution than a DCON in the first
layer. Also, the validation accuracy (Figure 7) that uses scale transformation is better when the model
is a DCNN, denoting gained robustness in the model. This performance improvement is due to the
capability of modeling geometric transformation once the best location of DCON is found.

Table 2. The quantity of Flops (per image and batch) and parameters in Vanilla model and with
DCNNSs implemented with DCv2 and tvden.

Flops Flops Parameters Parameters

perimage perbatch DCv2 tvden
Vanilla 38.87M 1.244 G 0.395 M 0.395 M
Stagel 41.84 M 1.339 G 0.395 M 0.395 M
Stage2 37.07M 1.186 G 0.394 M 0.397 M
Stage3 3221 M 1.031 G 0.384 M 0.403 M
Stage4 3049 M 0.976 G 0.337 M 041 M
Stage3,4 23.83 M 0.763 G 0.326 M 0.418 M

Stagel,2,3,4 25.00M 0.829 G 0.326 M 0418 M
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Figure 9. The figure overlaps the accuracy and the quantity of Flops to observe the best cases. We

expect the accuracies to reach high values and the quantity of Flops to reach low ones.
DCNNSs show advantages because of their inherent adaptability. Nonetheless, DCONSs can also

become harmful or indifferent if we use them without previous knowledge acquired with standard
convolution. Figure 10 compares the standard CNN (base model) and the best model with DCNN5s
(conv3-4). The DCNN with transformation is always over the one without deformable convolution,
adding evidence that the DCNN generalizes geometric transformations. We confirm that using the
DCON to calculate the most superficial features will have lower results than using complex features.
The model tends to be more robust when placing the DCON in the last layers (Table 3). Although the
base model reaches the best time execution, the time with DCONs increments only by 0.02 or 0.04
min. The increments are not too far. These numbers are considering the experiments with best relation
between accuracy and execution time from Vanilla model (Table 4).
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Figure 10. DCNN vs. Vanilla during training (thin lines) and validation, without transformation (thin
dotted lines), and with transformation(thick lines). (a) Spyders & Chickens (from Animal-10 dataset);
(b) Cats & Dogs; (c) EyePACS; (d) Shapes.

Table 3. Validation accuracies with scale transformation in the implementations DCv2 and tvden.

Config. Datasets
Cats & Dogs EyePACS Spyders & Chickens Shapes

Acc Acc Acc Acc Acc Acc Acc Acc

DCv2 tdven DCv2 tdven DCv2 tdven DCv2 tdven
Vanilla 0.73 0.70 0.73 0.73 0.86 0.84 0.91 0.87
Stagel 0.72 0.66 0.75 0.74 0.85 0.84 0.90 0.91
Stage2 0.74 0.67 0.76 0.77 0.86 0.89 0.91 0.92
Stage3 0.75 0.76 0.77 0.76 0.86 0.86 0.92 0.93
Stage4 0.75 0.71 0.76 0.76 0.86 0.82 0.90 0.96
Stage3,4 0.77 0.76 0.77 0.75 0.88 0.87 0.93 0.96
Stagel,2,3,4 0.77 0.80 0.77 0.67 0.87 0.87 0.93 0.78

Table 4. Time execution in image classification datasets.

Config. Datasets
Cats & Dogs EyePACS Spyders & Chickens Shapes
time(min) time(min) time(min) time(min)

Vanilla 0.33 0.52 0.12 0.27
Stagel 0.41 0.6 0.17 0.33
Stage2 0.41 0.59 0.16 0.33
Stage3 0.37 0.55 0.15 0.31
Stage4 0.35 0.54 0.14 0.29
Stage3-4 0.39 0.58 0.15 0.32

Stagel-2-3-4 0.52 0.71 0.24 0.43
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4.1.2. Kernels

Common choices of kernel sizes are three or five. The kernel size is related to the number of
parameters and the capability of generalizing. Table 5 shows the parameters and the quantity of
Flops of the best DCNN models already discussed. The increase in parameters means not necessarily
decreasing the processing speed involved, probably because the added parameters are the ones that
help the DCNN learn better representations. The standard convolutions require fewer parameters but
higher quantity of Flops.

Table 5. DCNN parameters and the quantity of Flops (per batch) for the small model with different
kernel sizes.

Parameters Training quantity of Flops Validation quantity of Flops

1x1 3x3 5x5 1x1 3x3 5x5 1x1 3x3 5x5
Vanilla  0.833M 0395M 0568M 0291G 1.244G 3404G 0.329G 1273G 3433G
Stage2,3 0.833M 0406M 0658M 0.181G 0973G 4956G 0.218G 1.002G 4.985G
Stage2,4 0.833M 0414M 0718M 0142G 0918G 439G 018G 0947G 4418G
Stage3,4 0.833M 0418M 0748M 0.125G 0.763G 319G 0.162G 0.791G 3.218G
Stage4 0.833M 041M 0.688M 018G 0976G 3.014G 0226G 1.004G 3.042G

Figure 11 illustrates that kernel 5x5 has similar accuracies to the ones with kernel 3x3. But, as
shown in Table 5, the quantity of Flops drastically increases with kernel 5x5. On the other hand, a
kernel 1x1 always obtains less accuracy because no matter the flexibility DCONs should bring, this
kernel ‘s size lacks context and only generates local features.

Cats & Dogs EyePACS
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Figure 11. Validation accuracies without transformation (blue) and with scale transformation (red)
using different kernel sizes.

4.2. DCNN in ResNet Models for Image Classification

To further investigate the DCON performance in deeper models, we use the ResNet architectures
to test the DCON, starting from ResNet-18 to ResNet-101. As in the small model, to evaluate the quality
of the features, binary classification was conducted using the datasets: Cats & Dogs, EyePACS, Sypder
& Chickens, and Shapes. We evaluated the accuracy achieved, the training time, and the quantity of
Flops for each configuration. The results are presented in the following subsections.
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4.2.1. Accuracy Test

The ResNet-18 architecture performance is shown in Table 6. In the stage-by-stage configuration,
we observed that when using the deformable convolution in conv2, the poorest accuracy was achieved.
The accuracy is lower even than the vanilla configuration; for all datasets except Shapes, where
this configuration obtained the highest accuracy. It was found, conversely, that when applying
the deformable convolution in conv4, the accuracy results are better than with the stage-by-stage
configurations, except in the Shapes dataset.

Combining the subsequent stages, conv4, and conv5, the DCNN achieves higher accuracy in all
datasets except EyePACS. The best accuracy was achieved in the Spyer & Chickens dataset, using this
combination. Furthermore, by combining all stages, the best accuracy is achieved in the Cats & Dogs,
and EyePACS datasets.

Table 6. Accuracy using ResNet-18 vanilla model and DCNN configurations.

Config. Datasets
Cats & Dogs Spyders & Chickens EyePACS Shapes

Vanilla 0.756 0.907 0.772 0.936
Conv2 0.753 0.901 0.771 0.951
Conv3 0.794 0.904 0.772 0.929
Conv4 0.841 0.935 0.804 0.935
Convb 0.785 0.931 0.773 0.949
Conv4,5 0.857 0.940 0.804 0.944
Conv2,3,4,5 0.869 0.934 0.830 0.942

The performance of the ResNet-34 architecture is shown in Table 7. A similar behavior as the
ResNet-18 architecture was observed here. The best result using the stage-by-stage configuration is
obtained using conv4, reaching the highest accuracy for the Cats & Dogs dataset. Whereas combining
two consecutive stages, conv4, and conv5, achieved the best accuracy on the Spyders & Chickens data
set. Combining all stages achieved the best accuracy for the remaining two data sets.

Table 7. Accuracy using ResNet-34 vanilla model and DCNN configurations.

Config. Datasets
Cats & Dogs Spyders & Chickens EyePACS Shapes

Vanilla 0.755 0.907 0.781 0.964
Conv2 0.770 0.912 0.785 0.968
Conv3 0.808 0.916 0.794 0.936
Conv4 0.852 0.932 0.836 0.934
Convb 0.818 0.920 0.792 0.958
Conv4,5 0.842 0.935 0.817 0.967
Conv2,34,5 0.847 0.934 0.849 0.979

Contrary to the ResNet-18 and ResNet-34 architectures, the performance of the ResNet-50 architec-
ture exhibited better performance by replacing standard convolution for its deformable counterpart in
the stage-by-stage configurations in Cats & Dogs and Shapes datasets and combining the consecutive
stages conv4 and conv5 in the EyePACS dataset. Combining all stages delivers the poorest performance
of all configurations, even the vanilla configuration, except for the Spyders & Chickens dataset, where
this configuration presents the highest accuracy. These results are shown in Table 8.
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Table 8. Accuracy using ResNet-50 vanilla model and DCNN configurations.

Config. Datasets
Cats & Dogs Spyders & Chickens EyePACS Shapes

Vanilla 0.725 0.897 0.787 0.727
Conv2 0.745 0.904 0.795 0.947
Conv3 0.769 0.916 0.808 0.949
Conv4 0.789 0.917 0.798 0.621
Convb 0.764 0.908 0.804 0.970
Conv4,5 0.645 0.914 0.806 0.917
Conv2,3,4,5 0.688 0.932 0.666 0.513

In ResNet-101, the conv4 configuration in layer-by-layer basis exhibits the highest accuracy than
the other layer-by-layer configurations. Combining the two stages conv4 and conv5, good results are
achieved in the Spyders & Chickens and Shapes datasets. However, the accuracy achieved is very low
in the Cats & Dogs and EyePACS datasets. In contrast to the above, combining all stages, high-accuracy
results were obtained in the Spyders & Chickens and EyePACS datasets, where this configuration
presented the best accuracy.

Table 9. Accuracy using ResNet-101 vanilla model and DCNN configurations.

Config. Datasets
Cats & Dogs Spyders & Chickens EyePACS Shapes

Vanilla 0.768 0.911 0.790 0.869
Conv2 0.768 0.919 0.795 0.871
Conv3 0.762 0.912 0.773 0.925
Conv4 0.788 0.917 0.816 0.585
Convb 0.723 0.913 0.721 0.766
Conv4,5 0.682 0.920 0.652 0.934
Conv2,3,4,5 0.705 0.928 0.816 0.815

4.2.2. Training Time and the Quantity of Flops

In addition to accuracy, we also took into account the training time and computational resources
needed for model execution. The aim is to determine the optimal stage and configuration for replacing
the standard convolution with its deformable counterpart. For this purpose, we measure the training
time and the quantity of Flops. The results obtained along these experiments are shown in Table 10 for
ResNet-18, Table 11 for ResNet-34, Table 12 for ResNet-50 and Table 13 for ResNet-101.

Training time is the lowest in the vanilla model for all architectures and all datasets. In the
stage-by-stage configuration, starting from conv2, the training time is higher than the vanilla model,
as the deformable convolution is introduced in deeper stages, the training time decreases but is not
able to be lower than the vanilla model. Conv5 configuration generally has the lowest training time of
all the configurations, where the deformable convolution is applied.

When combining two consecutive stages, conv4 and conv5, the training time increases slightly,
greater than the convb configuration of the stage-by-stage mode. When combining all stages, the
training time is significantly higher than all other configurations.

Contrary to the training time, the processing speed increases as the deformable convolution is
introduced in more layers. In the case of ResNet-18, using the vanilla configuration, 3.670 GFlops
are reached, while in the conv5 configuration, 3.068 GFlops are achieved, and when all stages are
combined, 0.794 GFlops are attained.
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Table 10. Training time, Flops (per image), and parameters in ResNet-18 configurations.

Config. Training Time in Datasets (min)
Cats & Spyders EyePACS Shapes Flops Parameters
& Dogs & Chickens

Vanilla 1.003 0.533 1.322 1.532 1.818 G 1117 M
Conv2 1.570 0.883 1.930 2.550 1.551 G 11.23 M
Conv3 1.248 0.716 1.605 2.002 1.499 G 11.28M
Conv4 1.122 0.644 1.467 1.754 1.456 G 11.39 M
Conv5 1.053 0.606 1.436 1.639 1.435 G 11.61 M
Conv4,5 1.197 0.701 1.532 1.931 1.073 G 11.83 M
Conv2,34,5 2.005 1.204 2.309 3.515 0.486 G 12.00 M

Table 11. Training time, Flops (per image), and parameters in ResNet-34 configurations.

Config. Training Time in Datasets (min)
Cats Spyders EyePACS Shapes Flops Parameters
& Dogs & Chickens

Vanilla 1.346 0.639 1.407 1.713 3.670 G 2128 M
Conv2 2.200 1.150 2.230 3.440 3.269G 21.37M
Conv3 1.873 0.982 1.974 2.854 2986 G 21.51M
Conv4 1.802 0.925 1.858 2,675 2481G 22.00M
Conv5b 1.488 0.715 1.527 2.039 3.068G 21.96 M
Conv4,5 1.885 1.035 1.986 2954 1.879G 22.68 M
Conv2,3,4,5 3.287 1.897 3.435 5771  0.794G 23.01M

Table 12. Training time, Flops (per image), and in ResNet-50 configurations.

Config. Training Time in Datasets (min)
Cats Spyders EyePACS Shapes Flops Parameters
& Dogs & Chickens

Vanilla 1.727 0.987 2.037 2.937 4.109 G 23.51M
Conv2 2.120 1.26 2.500 3.780  3.908 G 23.55M
Conv3 1.987 1.186 2.383 3.538  23.63G 23.74 M
Conv4 1.951 1.168 2.307 3.435  3.488G 23.88 M
Convb 1.799 1.059 2.119 3.051 3.780G 23.88 M
Conv4,5 2.013 1.238 2.350 3.551  3.160 G 2425M
Conv2,3,4,5 2.699 1.665 3.054 4954  2595G 2442 M

Table 13. Training time, Flops (per image), and parameters in ResNet-101 configurations.

Config. Training Time in Datasets (min)
Cats Spyders EyePACS Shapes Flops Parameters
& Dogs & Chickens

Vanilla 2.462 1.399 2.586 4188 7.831G 42.50 M
Conv2 2.85 1.680 3.030 5100 7.631G 42.54 M
Conv3 2.707 1.604 2.900 4820 7.467G 42.62M
Conv4 3.228 2.036 3.537 6.104 5453G 43.93 M
Conv5 2.496 1.426 2.629 4302 7.503G 42.87M
Conv4,5 3.311 2.023 3.546 6.258  5.124G 4430 M
Conv2,3,4,5 4.055 2.489 4.281 7.628  4559G 44.47 M

4.3. DCNN's through Time Dimension

In this section, 3D ResNets with depths 18, 34, 50, and 101 were analyzed using controlled
videos where the person is walking forward and turning to the left. The controlled conditions will
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permit the model to focus on the movement, thus allowing us to analyze the behavior of deformable
convolutions over time. Also, the models were analyzed in two similar activities of applying makeup.
The activities were taken from UCF101 video dataset to observe the behavior of the DCON under
real-world conditions.

The improvement comes when the DCNNSs are used with stride two (which are in the first block
in layers 3-4-5) and when using the convolutions with stride one but in the last layers. In Tables 14 and
15, compared with the original CNN, the parameters increment. In the cases with better accuracy, their
quantity of Flops diminished during training and validation. In other words, the increase in model
parameters is not equivalent to worse performance. If the DCONSs help to increase the accuracy, extra
parameters are used to find better representations. Also, using deformable convolutions combining
stages tends to saturate the model and not give a good result.

Table 14. Parameters, the quantity of Flops, and Accuracy in ResNet-18. The number of parameters
increases when using DCNNs but the number of Flops diminishes.

Parameters Training quantity Apply Makeup Human2

of Flops Accuracy Accuracy
Vanilla 33.21M 25.00 G 0.526 0.666
Str 1 Conv3 3432 M 24.51G 0.500 0.833
Str 1 Conv4 35.44 M 24.103 G 0.552 0.8333
Str 1 Convb 37.68 M 2420G 0.487 1
Str 1 Conv4,5 39.92M 23.25 G 0.395 0. 666
Str 1 Conv3,4,5 - - - -
Str 1 Conv2,3,4,5 41.79M 28.53 G 0.474 1
Str 2 Conv3,4,5 3451 M 24.64 G 0.552 0.833

Table 15. Parameters, the quantity of Flops, and Accuracy in ResNet-34. The number of parameters
increases when using DCNNs but the number of Flops diminishes.

Parameters Training quantity Apply Makeup Human2

of Flops Accuracy Accuracy

Vanilla 63.52 M 38.19G 0.368 0.833
Str 1 Conv3 66.127 M 36.992 G 0.5 0.5
Str 1 Conv4 71.726 M 34.884 G 0.4737 0.5
Str 1 Convb 7098 M 36.85 G 0.513 0.833
Str 1 Conv4,5 79.19M 33.54 G 0.421 0.666
Str 1 Conv3,4,5 - - - -

Str 1 Conv2,3,4,5 - - - -

Str 2 Conv4,5 82.92M 40.99 G 0.487 0.666

With deeper ResNets, the accuracy showed different behavior. During Apply Makeup, the
accuracy can be improved by applying the deformable convolution in layer three (only for ResNet 101)
or in the layer five (for both depths) (Table 16 and 17). But, in Human2 the deformable convolution
should be in the first layers (Table 16) or not be applied at all.
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Table 16. Total parameters, the quantity of Flops, and Accuracy for ResNet-50. With Stride 1 the
parameters and the quantity of Flops are not improving.

Parameters Training quantity Apply Makeup Human2

of Flops Accuracy Accuracy

Vanilla 46.20 M 30.46 G 0.513 0.833
Str 1 Conv3 47.32M 2997 G 0.474 1

Str 1 Conv4 49.94 M 28.96 G 0.474 0.833
Str 1 Convb 49.19M 29.92G 0.618 0.500
Str 1 Conv4,5 52.92 M 28.42 G 0.566 0.666
Str 1 Con3,4,5 - - - -

Str 1 Conv2,3,4,5 54.60 M 3222G 0.421 0.500
Str 2 Conv3,4,5 48.82 M 29.73G 0.500 0.333

Table 17. Parameters, the quantity of Flops, and Accuracy in ResNet-101.

Parameters Training quantity Apply Makeup Human2

of Flops Accuracy Accuracy

Vanilla 85.249 M 41962 G 0.355 0.833
Str 1 Conv3 86.37 M 4148 G 0.697 0.666
Str 1 Conv4 102M 35.35G 0.421 0.5
Str 1 Conv5 88.24 M 4143 G 0.605 0.666
Str 1 Conv4,5 - - - -

Str 1 Conv3,4,5 - -
Str2 Conv34,5  87.862M 41.231G 0.592 0.5
Str 2 Conv4,5 87.489 M 41.394 G 0.474 0.666

5. Discussion

Based on standard convolutions, DCNNs employ deformation to the sampling grid with learnable
offsets and weights of sampling points. Standard convolution sampling position is limited to the tradi-
tional rectangular shape without adapting to the shape of an irregular object. In this study, we focused
on studying how to use the DCON. First, on a small CNN model applied to image classification. After
that, to a ResNet with different depths, extending the study to 3D-ResNet. From image classification to
action recognition, we analyzed the feasibility of DCNNs. The implementation of DCONs applied
in this study where tvdcn and Pytorch-Deformable-Convolution-v2. Bot implementations produce
similar results.

In the small model, the highest accuracy was reached by replacing the last layer standard convolu-
tion with its deformable counterpart, where the Stage4, Stage2,4, and Stage3,4 configurations reached
0.96, while the vanilla model reached 0.87. During training, it was identified that when deformable
convolution is employed in the last layers, the model can converge faster, as shown in Figure 10. The
execution time is shorter when using the vanilla model, which reaches 0.33 min, while when combining
the deformable in all stages, the execution time increases to 0.52 min. In the Stage 4 configuration, 0.35
min is consumed, which is the shortest time achieved when incorporating the deformable convolution
into the small model.

When introducing the deformable convolution to the small model in the first stage, the computa-
tional cost is higher than the vanilla model, as the deformable convolution is introduced in deeper
stages, the computational cost decreases. The lowest computational cost is obtained by combining
stage 3,4, where 0.763 GFlops is achieved.

Based on the experiments in the small model, the validation accuracy that uses transformations
is better when the model includes DCONSs, denoting gained robustness in the model. Nonetheless,
DCON operations are hyper-resource-thirsty; paying attention to its implementation will be a key to
acquiring benefits.
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The kernel with dimension 3x3 suits to be the optimal to use for deformable convolution. The
accuracy decreases if the kernel size is reduced to size 1x1, because the receptive field displace-
ment mechanism is nullified while increasing the kernel to size 5x5 does not present a significant
improvement in accuracy. On the contrary, the computational cost increases.

When introducing deformable convolution in deeper models using ResNet architectures, we
noticed that the behavior is similar to the small model, as the best accuracy results were generated by
introducing deformable convolution in deeper stages. In ResNet-18 and ResNet-34, for all datasets,
better accuracy results are achieved by combining two consecutive stages, conv4 and conv5, and by
combining all stages.

Extending the research to video action recognition tasks using the 3D ResNet models, we noticed
that the behavior is similar to that of their 2D counterparts but with some differences. The introduc-
tion of deformable convolution in the last layers helped to increase the accuracy. Nevertheless, the
combination of consecutive stages in 3D ResNet models tends to get saturated.

The best accuracy results in all evaluated datasets were obtained in the smaller depth models,
ResNet-18 and ResNet-34. Poor performance was observed in deeper models, such as ResNet-50
and ResNet-101 in both 2D and 3D, as the accuracy was lower than in smaller architectures, such
as ResNet-18 and ResNet-34. We hypothesize that this drawback is caused by accumulating many
deformable layers at very deep levels, where probably the bottleneck mechanism may contribute to
the poor performance of these deeper architectures.

It is also observed that the depth of the network does not necessarily imply better representations
(as indicated by [23]). Only a few blocks learn relevant information, while the other blocks and stages
may just be confusing the network and decreasing its performance.

As deformable convolution is incorporated into the evaluated ResNet architectures, the training
time increases. The highest training time using the stage-by-stage configuration is obtained when
deformable convolution is incorporated in the conv1 stage; as deformable convolution is incorporated
in deeper layers, the training time decreases. When incorporating deformable convolution at all stages,
the training time exceeds the training time of the vanilla configuration by up to three times.

The computational cost required to execute the modified ResNet models with the deformable
convolution measured in the quantity of Flops is lower than that of the vanilla models. The lowest
number of Flops is achieved by combining all stages, while the worst case is when deformable
convolution is incorporated in the conv2 stage, where the number of Flops is marginally lower than
the vanilla configuration. DCNN helps to focus on significant information. Then, the quantity of Flops
will decrease when the accuracy increases, regardless of whether the parameters increase. Therefore,
their flexibility helps to focus the resources automatically.

We colected evidence that more layers of DCNNs do not necessarily lead to better results. The
accumulation of deformable convolutional layers will slow down the network and may even saturate
the network, preventing it from achieving any result. Then, before applying the DCNN to improve the
model features maps, we suggest that the model uses a standard convolution layer.

6. Conclusions

The implementation of deformable convolution can help to improve the performance of a model,
allowing the generalization of geometrical transformations such as scaling. As DCNNs alleviate
geometric transformations, we encourage the readers to use DCNNs mainly if their resources are
limited to work with data augmentation.

According to the obtained accuracy, training time, and the model performance results, it is optimal
to introduce the deformable convolution in the last stages of the CNN since the training time and
computational cost are lower than the ones obtained with vanilla models, and the accuracy is superior.
When working with 3D-ResNets, the same trend can be observed. Nevertheless, we believe that the
DCNN may lose its advantages with greater depth; therefore, more experiments are required.
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In future work, we are seeking more experiments using DCNNSs in the field of action recognition,
which is a promising branch of computer vision where the application of deformable networks has
not been explored as much. DCNNs improve the feature extraction capability and adapt to complex
changes in the input, which is becoming a fundamental part of a recognition system. However, we
propose to measure datasets quantitatively to evaluate the opportunities that deformable networks
can offer for action recognition.
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