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Abstract: The type of fertilization used influences plant compounds and pest infestation. We
measured, through chemical stimuli, the preference of Melanaphis sacchari for sorghum plants
fertilized by means of conventional fertilization (CF) or organic fertilization (OF). Leaves were
collected from sorghum plants fertilized with 200 kg N ha' using ammonium sulfate and poultry
manure. Extracts were obtained using Soxhlet extraction, and the compounds were identified using
a gas chromatograph coupled with mass spectrometry (GC/MS). Sorghum extracts were
individually tested through bioassays to determine M. sacchari preference. The abundance and
number of compounds in sorghum differed depending on the type of fertilization used. M. sacchari
showed a preference for the extract from CF sorghum plants (76.66%) over the extract from OF
plants (23.34%). Therefore, the type of fertilization can be used as a tactic to prevent higher
infestations of M. sacchari. The biological activity of the compounds identified here with M. sacchari
should be determined for future pest management strategies using allelochemicals, given that the
sugarcane aphid uses chemical signals to locate its host plant.

Keywords: alellochemicals; bioassays; chemical stimuli; fertilization; plant extracts; sorghum;
yellow aphid

1. Introduction

Sorghum bicolor (L.) Moench, commonly called sorghum, belongs to the family Poaceae. Mexico
contributes 10.6% of the world’s production and imports 5.01 million tons of this grain utilized
mainly as feed for cattle, pigs, and poultry [1]. The sugarcane aphid (Melanaphis sacchari) poses a
persistent challenge in sorghum cultivation; it is distributed globally and, specifically in Mexico, is
found in 27 states [2]. This insect negatively affects sorghum and other important crops. Sugarcane
aphids are economically important; they feed on plant sap, leading to reduced yields and, in some
cases, total sorghum losses [2,3]. Pest management strategies proposed for M. sacchari include
biological control, determination of optimal planting dates, elimination of alternative hosts, and the
use of pesticides, with the latter being the primary control measure for this insect [4]. Pesticides can
potentially enter the environment, contaminating both the environment and food, thereby affecting
biodiversity and human health [5]. Therefore, it is crucial to implement new strategies, such as
utilizing insect behavior to compounds emitted by plants or also called allelochemicals. [6]. These
compounds serve as chemical signals for insects to identify their host plants, yet their potential
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benefits in M. sacchari management remain poorly explored [7]. Nitrogen (N) fertilization, mainly
synthetic or conventional N, is essential for obtaining high crop yields. However, this practice causes
contamination, similar to the use of pesticides, and has been associated with a higher incidence of
pest and aphid species, such as Brachycaudus cardui, which has shown increased attraction to fertilized
host plants [8,9]. In addition, there is evidence that insects have a lower preference for organically
fertilized (OF) plants. Organic fertilization has recently gained importance because it shows less
nutrient loss and is more environmentally friendly than conventional fertilization (CF) [10]. In line
with the above, it has been reported that the type of fertilization used affects plant chemical
compounds [11,12].

The aim of the present study was to determine whether the type of fertilization affects the
compounds found in sorghum plants and the preference of the sugarcane aphid. To do this,
compounds from S. bicolor were identified and bioassays were conducted to assess the behavior of
M. sacchari in response to chemical stimuli, which could serve as another important factor in the
management of this pest.

2. Materials and Methods

2.1. Plant Material

S. bicolor seeds were sown in 4 L polyethylene bags in a greenhouse of the Colegio de
Postgraduados (COLPOS), Campus Puebla (19°04'26.5"'N; 98°15'41.3""W). Plants were grown for 60
days at 20-25 °C and 60 * 10% humidity, and watered every 3 days. The experiment followed a
completely randomized design consisting of 3 treatments, with 3 replicates (Table 1).

Table 1. Fertilization treatments in S. bicolor.

Treatments Description
FO Soil (4.4% organic material; nitrogen 100 ppm; phosphorus 0.80 ppm;
potassium 5.50 ppm and pH 7.4)
CF 200 kg ha' N (ammonium sulfate) + soil
OF 200 kg ha'' N (poultry manure) + soil

FO: Zero fertilization; CF: Conventional fertilization; OF: Organic fertilization.

2.2. Insect Breeding

Sugarcane aphid nymphs were obtained from sorghum plots in the municipality of Iztcar de
Matamoros, Puebla (18°36'10"'N; 98°27'5""W). The nymphs were transported to the greenhouse and
maintained on healthy sorghum plants (under the above-mentioned conditions) for reproduction
until their use in bioassays using extracts.

2.3. Extraction and ldentification of Compounds

The third and fourth alternate leaves of sorghum plants (300 g) were ground using a mill,
wrapped in filter paper, and then placed in a Soxhlet extractor mounted atop a distillation flask
containing 150 mL of 90% ethanol (Sigma Aldrich). The extraction process was carried out for 3 h.
Then, 1 pL of the extract was injected into an Agilent Technologies 7890A gas chromatograph coupled
with an Agilent Technologies 5975C mass spectrometer (Santa Clara, CA, USA). The system was
equipped with a 30 m x 0.25 mm HP-5MS column with a film thickness of 0.50 um (Agilent J&W,
Santa Clara, CA, USA). The GC-MS parameters were as follows: helium as the carrier gas, injector
temperature of 250 °C in splitless mode, initial oven temperature of 36 °C for 1 min and then increased
by 10 °C per min until reaching 250 °C, which was maintained for 3 min. Compounds were identified
through comparison with mass spectra from the National Institute of Standards and Technology
library (NIST 8 and NIST 11).
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2.4. Bioassays Using Extracts from S. bicolor

Healthy-looking 1.2 mm-long, 13-day-old females of M. sacchari were fasted for 1 h prior to
individual bioassays. A glass Petri dish (10 cm in diameter) was used as the behavioral arena (Figure
1). Bioassays were carried out under laboratory conditions (22 + 3 °C and 60 + 10% RH). Briefly, 10
pL of extract were placed on 1 cm x 1 cm filter paper pieces (Whatman No. 1) and allowed to
evaporate for 30 s. For the control (C), an equivalent volume of solvent (ethanol) was used, following
the same procedure. Each piece of filter paper was placed end to end of the Petri dish randomly in
each bioassay. A 5 min response time was given, or until it moved towards the extract (past the
response line). A total of 30 individual bioassays were conducted. After 3 bioassays, the Petri dish
used was replaced by a clean one. The extracts tested were C, FO (unfertilized plant), CF, and OF. Six
combinations of extracts were made, as described in Table 2.

| 10 cm |

Behavioral arena

Figure 1. Behavioral arena for bioassays with sorghum extracts. RL: Response line; E: Extract.

Table 2. Combinations for behavioral bioassays.

Bioassay Combinations extracts
1 CF vs. OF
2 FO vs. OF
3 FO vs. CF
4 Cvs. OF
5 Cvs. CF
6 Cvs. FO

C: Control (etanol); FO: Zero fertilization; CF: Conventional fertilization; OF: Organic fertilization.

2.5. Statistical Analysis
The frequencies of behavioral responses were analyzed through an exact binomial test using the
R Studio software.
3. Results
3.1. Extraction and ldentification of Compounds

The number of compounds identified in sorghum leaf extracts were 12 in F0, 34 in CF, and 16 in
OF. Butanedioic acid, 1-tetradecene, (Z)-7-hexadecene, and phenol were found in leaves from all
three treatments. Butanedioic acid and 1-tetradecene were most abundant in F0, followed by CF and
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OF. In contrast, phenol was most abundant in CF (23.35%), followed by F0 (22.64%) and OF (14.01%).
The abundances of (E)-5-octadecene and benzophenone were higher in CF than in OF. On the other
hand, 1,2-benzenedicarboxylic acid was more abundant in OF (1.62%) than in CF (0.77%). The most
abundant compound in FO and OF was (4-methoxy-phenyl)-(5-p-tolyl-furan-2-ylmethylene)-amine
(46.89% and 68.02%, respectively). In CF, 5-[[[3,4,5-trimethoxyphenyl]limino]methyl]-2,4-
pyrimidinediamine was the most abundant compound (37.73%). The least abundant compounds
were (2,2-dichlorocyclopropyl) methanol in F0 (0.06%), 5,6-dihydro-2-(4-nitrophenyl)-4H-1,3-oxazin-
5-one in CF (0.11%), and 3-methyl-1-(4-toluidino)pyrido [1,2 -a]benzimidazole-4-carbonitrile in OF
(0.2%). A total of 28 compounds were found exclusively in CF sorghum plants.

Table 3. Area of compounds detected in S. bicolor leaves.

Area CF  Area OF

Number Compound Area F0 (%)
(%) (%)

1 Butyric acid ND 0.33 ND
2 Tridecyl trifluoroacetate ND 0.15 ND
3 (R)-2-octanol ND 0.21 ND
4 Propanoic acid ND 0.36 ND
5 1-Methyldecylamine 1.43 ND ND
6 Ethylamine ND 0.28 ND
7 4-methyl-2-Pentanamine ND 0.33 ND
8 4-fluorohistamine ND 0.61 ND
9 1-undecanol 7 ND 2.69
10 2H-pyran-2-one ND 5.48 ND
11 2-heptanol ND 0.35 ND
12 Acetic acid ND 0.63 ND
13 (2,3-dimethyloxiranyl) methanol ND 0.39 ND
14 2,3-diethoxy-propionic acid, ethyl ester ND 0.42 ND
15 2-nonanol ND 0.24 ND
16 Butanedioic acid 2.24 1.83 1.09
17 1-tetradecene 6.36 5.47 2.5

18 1-(1-propynyl)-cyclohexene ND 0.42 ND
19 (Z)-7-hexadecene 34 2.85 1.46
20 Phenol 22.64 23.35 14.01
21 4-(2-methylamino)ethyl)pyridine ND 0.04 ND
22 2-fluoro-2',4,5-trihydroxy-N-methyl-benzenethanamine ND 0.89 ND
23 (E)-5-octadecene ND 0.93 0.55
24 N,N’-dimethyl-2-butene-1,4-diamine 0.68 ND ND
25 1-dodecanamine ND 1.53 ND
26 4-hydroxy-benzeneacetonitrile ND 5.29 ND
27 N,N-dimethyl-dimethylphosphoric amide ND 0.39 ND
28 2-Octyl benzoate ND 0.72 ND
29 Benzophenone ND 1.06 0.69
30 N-(3-pyridinylmethylene)benzenamine 1.09 ND ND
31 4-amino-2-oxy-furazan-3-carboxylic acid ND 0.20 ND
32 Piperidin-4-ol, 1,3,3-trimethyl-4phenyl ND 0.37 ND
3 Benzene, 4-bromo-1,3-dimethoxy-6-(4- ND ND 0.93

acetylphenyliminomethyl)
34 Phthalic acid, isobutyl 4-isopropylpheny]l ester ND 0.24 ND
35 9-hydroxy-3,4-dihydro-2H-1,4-ethanoquinoline-9-carboxylic ND ND 1.14
acid
36 5,6-dihydro-2-(4-nitrophenyl)-4H-1,3-oxazin-5-one ND 0.11 ND
1H-pyrrolo [1,2-a]benzimidazolium,2,3-dihydro-4-(1,2,3,4- ND ND
37 tetrahydro-6-hydroxy-1,3-dimethyl-2,4-dioxo-5-pyrimidinyl)- 1.07
, hydroxide
18 5-[[[3,4,5-trimethoxyphenyl]imino]methyl]-2,4- ND 37.73 ND
pyrimidinediamine

39 (4-methoxy-phenyl)-(5-p-tolyl-furan-2-ylmethylene)-amine 46.89 ND 68.02
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5
40 1,2-benzenedicarboxylic acid ND 0.77 1.62
41 2-methyl-benzothiazole 0.55 ND ND
42 2-bromo-N-methyl-2-propen-1-amine ND 0.35 ND
43 4-methyl-2-pentanamine 0.83 ND ND
44 (2,2-dichlorocyclopropyl)methanol 0.06 ND ND
45 1,3-benzenedicarboxylic acid ND 0.34 ND
46 4-phenoxy-2-phenyl-1-naphthalenol ND ND 1.06
47 3-methyl-1-(4-toluidino)pyrido [1,2-a]benzimidazole-4- ND ND 0.2
carbonitrile

48 5-(p-aminophenyl)-4-(p-nitrophenyl)-2-thiazolamin ND ND 0.3

ND ND .68
49 2-oxo0-1,4,5-triphenyl-4-imidazolin 0

Number of compounds detected per treatment 12 34 16

ND: Not detected.

3.2. Bioassays Using Extracts from S. bicolor

M. sacchari females showed a preference for S. bicolor extracts compared to the control (C), with
higher response in F0 (93.34%), CF (86.66%), and OF (76.66%). However, bioassays comparing FO
(20%) with CF (80%) and FO (26.67%) with OF (73.33%), exhibited preference for extracts from
fertilized S. bicolor (CF and OF). Finally, when comparing CF (76.66%) with OF (23.34%) extracts, CF
was preferred (Figure 2).

[ 1c 1 ro Hl Cr 3 orF

*76.66

73.33*

80 %
76.66 *
86.66 **
6.66 93.34 **
100 80 6I0 40 ZIO 0 20 40 6I0 80 1(I)O

(%) Response of M. sacchari

Figure 2. Behavioral bioassays of M. sacchari in response to S. bicolor extracts. C (control), FO
(unfertilized plant), CF (plant fertilized with ammonium sulfate), and OF (plant fertilized with
poultry manure). * denotes significant differences (Binomial test: p < 0.05); ** denotes significant
differences (Binomial test: p < 0.0001).

4. Discussion

The type of fertilization affected the abundance and number of compounds found in sorghum
plants. This is in agreement with observations in Rubus idaeus plants, where the type of fertilization
had both qualitative and quantitative effects on the compounds emitted [13]. In other plants such as
willow, strawberry, and tomato, the compounds were affected by CF with N [12-14]. In addition, OF
has been shown to modify the abundance of compounds compared to unfertilized tomato plants [14].
In line with previous reports for other species, we found that the number of compounds in S. bicolor
was higher in CF, followed by OF and FO. These results are attributed to the availability of N, which
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leads to increased protein synthesis and, therefore, increased synthesis of secondary metabolites that
affect plant defense [15]. CF has been associated with a higher abundance of compounds [12,16], as
evinced by the results here obtained for (E)-5-octadecene, benzophenone, and phenol. However, said
trend was not observed when comparing FO with CF. Butanedioic acid, 1-tetradecene, and (Z)-7-
hexadecene were more abundant in F0. In this regard, it has been reported that compounds exhibit
individual responses to fertilization, which could be attributed to different biosynthetic pathways
and environmental factors [12]. Eleven of the compounds exclusively identified in CF were mostly
aromatic compounds, which act as chemical signals involved in the attraction of insects, such as
Drosophila melanogaster, Eupeodes corolla, and Sitona humeralis [17-19]. These compounds, which were
not common to other treatments, could be a key factor in the attraction of M. sacchari to extracts from
CF sorghum plants.

Some of the compounds identified in this study have been reported to have biological activity
in certain insects, including some found exclusively in CF plants, such as acetic acid. Acetic acid has
been related to high-dose N fertilization in Brassica napus plants and serves as a potential attractant
of Meligethes aeneus and D. melanogaster [11,17]. Butyric acid is a key attractant of pests such as
Holotrichia paralela and Bubas bison [20,21]. A compound induced by herbivory, 2-octanol, has been
reported as an attractant of Spilosoma obliqua [22]. In Camellia sinensis plants, 1,3-benzenedicarboxylic
acid has been related to N fertilization doses and infestation of the aphid Toxoptera aurantii [23]. The
most abundant compound in CF was phenol, which acts as an attractant of beetles of the species B.
bison [21].

In OF, we found butanedioic acid, a component of the silkworm cocoon, which may be involved
in its protection [24]. Likewise, higher levels of butanedioic acid were found in chickpea plants and
were linked to increased resistance to the leaf miner Liriomyza cicerina [25]. Another compound that
could have repellent activity against M. sacchari is 1,2-benzenedicarboxylic acid, which has potential
as a natural insecticide [26]. In Capsicum spp. plants infested with Aphis gossypii aphids, 1-undecanol
has been identified as a compound involved in plant’s defense [27]. In the present study, 1-undecanol
was exclusively found in FO and OF sorghum plants, suggesting its potential role as a repellent
against M. sacchari. Finally, 1-tetradecene exhibits repellent activity against the aphids Acyrthosiphon
pisum and Myzus persicae [28], while showing attractant activity towards Apolygus lucorum,
Adelphocoris suturalis, and Megalurothrips sjostedti [29,30]. Although previous reports on the
compounds identified in this study may provide an indication of their activity against or towards M.
sacchari, further research is needed to confirm their biological activity.

Based on our results, M. sacchari has a preference for CF and OF treatments. In this regard, it has
already been reported that there is a preferential relationship of M. sacchari for plants fertilized with
higher levels of N [4]. Here, we compared the preference for CF or OF plants. The release of nutrients
in organic fertilization is slower compared to chemical fertilizers. This differential rate impacts sap-
sucking insects, as leaf sap composition is affected by fertilizer sources and dosages [31,32]. To date,
only M. persicae has been tested using chemical stimuli. Olfactometer tests revealed that this species
was more attracted to volatile compounds from cabbage plants with higher N doses [33]. A higher
incidence and preference for fertilized plants has also been observed in other aphids, such as M.
persicae, which preferred capsicum plants with higher N doses [34]. Similarly, the aphids T. aurantii,
Lipaphis erysimi, Bemisia tabaci, Rhopalosiphum padi, and Sitobion avenae were more attracted to host
plants fertilized with high N doses compared to unfertilized plants. This preference affected their
fecundity and longevity [23,35-37].

Insect preference for fertilized plants is attributed to physiological changes in the plants, which
cause changes in their metabolites and, consequently, in the chemical signals they emit [37]. In
addition, M. persicae showed a preference for white clover CF plants over plants fertilized with
poultry manure [38]. It has also been reported that maize plants fertilized with synthetic fertilizers
had a higher percentage of infestation by R. maidis aphid than plants fertilized with animal manure
[39]. In this regard, chemical nitrogen fertilizers enhance the vigorous qualities of plants, making
them attractive to insects [40,41]. On the other hand, organic fertilization, characterized by the slow
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release of nutrients and consequently a lower N dose, may affect the production of toxic compounds,
helping to maintain pest populations at low levels and to enhance plant resistance [42-44].

There are no reports indicating the existence of a chemical signal involved in the interaction
between M. sacchari and S. bicolor. Moreover, it has been claimed that this insect relies primarily on
visual signals. However, aphids have large antennae, suggesting that olfactory signals must be
important factors in locating host plants [45,46]. Our findings confirm the above, as chemical signals
were used to evaluate the preference of M. sacchari for S. bicolor extracts.

5. Conclusions

The type of fertilization used affected the compounds extracted from S. bicolor plants, which is
related to the attractant activity shown by the extracts from fertilized sorghum plants. The sugarcane
aphid showed a preference for extracts from CF plants, confirming that M. sacchari uses chemical
stimuli to locate its host plant, and that CF makes sorghum plants susceptible to attack by this aphid.
Therefore, OF represents a key method for pest prevention.

The type of fertilization and its relationship with the chemical compounds of sorghum plants
should be taken into account when devising management strategies for M. sacchari. It is evident that
sugarcane aphids rely on allelochemicals to locate the sorghum plant. We recommend further studies
to determine the biological activity of the compounds identified here against M. sacchari.
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