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Abstract: Environmental chemicals, including PFAS (per- and polyfluoroalkyl substances), pesticides,
industrial chemicals, and consumer products, commonly exist as mixtures. These substances are frequently
exposed or co-exposed in varying concentrations, leading to potentially hazardous health effects such as cancer
in humans. Thus, understanding the dose-dependent toxicity of chemical mixtures is important for assessing
health risks. In this context, comprehensive methods for assessing the toxicity and identifying the mechanisms
of harmful chemical mixtures are currently lacking. Here, the dose-dependent toxicity assessments of chemical
mixtures are performed in three methodologically distinct phases. In the first phase, we evaluated our machine
learning method (AI-HNN) and pathophysiology method (CPTM) for predicting toxicity. In the second phase,
we integrated AI-HNN and CPTM to establish a comprehensive new approach method (NAM) framework
called AI-CPTM, targeted at refining prediction accuracy and providing a comprehensive understanding of
toxicity mechanisms. The third phase involved experimental validations of the AI-CPTM predictions. Initially,
we developed binary, multiclass classification, and regression models to predict binary, categorical toxicity,
and toxic potencies, using nearly a thousand experimental mixtures. This empirical dataset was expanded with
virtual mixtures compensating the lack of experimental data and broadening the scope of the dataset. For
comparison, we also developed additional machine learning models based on RF, Bagging, AdaBoost, SVR,
GB, KR, DT, KN, and Consensus methods. The models achieved overall accuracies of over 80% with AUC
values exceeding 90%. The regression models achieved an R? >0.88. In the second phase, we innovatively
integrated HNN-derived toxicity predictions with Z-scores from CPTM, resulting method called AI-CPTM. In
the final phase, we demonstrated the superior performance of AI-CPTM through rigorous literature and
statistical performance validations. Additionally, the predictive capability of AI-CPTM, including for PFAS
mixtures and their interaction effects, was demonstrated by experimental validations using dose-response
zebrafish embryo toxicity assays. Overall, the AI-CPTM approach significantly improves upon the limitations
of standalone models and has shown extensive enrichments in the identification of toxic chemicals and
mixtures. Further experimental studies involving human cell models, patient-derived xenografts, and
investigations into the toxicity of multiple mixtures are currently underway.

Keywords: Environmental chemicals; mixtures; PFAS; NAM method; Toxicity; zebrafish toxicity

Introduction

Humans are routinely coexposed to various chemicals present in the environment. These
environmental chemicals mostly exist as mixtures of diverse individual chemicals. The toxicity of
these mixtures is significantly influenced by the concentration levels of their individual components.
While the toxicity profiles of single chemicals have been widely studied and reported, there is a
substantial gap in comprehensive data regarding the toxicity of chemical mixtures. This lack of
experimental toxicity data on chemical mixtures is due to several associated difficulties including
high costs, time-consuming processes, and ethical issues related to the use of animals in toxicological
testing[1]. The practical challenges of conducting experimental evaluations on chemical mixtures are
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further augmented by the existence of number of potential combinations and concentration ratios of
chemical constituents|[2]. As a result, there is a pressing need for alternative methods that can predict
the toxicity of chemical mixtures without reliance on traditional experimental methods.

Computational toxicology offers a promising solution by employing mathematical and
computer-based models to predict the effects of chemical exposures. These methods uses existing
data and predictive algorithms to evaluate potential health risks posed by chemical mixtures, thus
circumventing some of the traditional challenges faced in experimental toxicity assessments[3].
Computational approaches are particularly valuable as they can handle complex mixtures at various
concentration ratios, effectively increase the scope of toxicological assessments beyond what is
feasible with in vivo and in vitro methods alone. Thus, the development and refinement of
computational models play a key role in advancing our understanding of mixture toxicology and
facilitating more effective environmental health risk assessments. These models not only help in
reducing the reliance on animal testing but also enhance the efficiency and cost-effectiveness of
toxicity assessments[4,5].

Quantitative Structure-Activity Relationship (QSAR) methodologies are widely used for
assessing the toxicity of chemicals. These methods rely on the relationship between chemical
structure and their biological activity, providing as a toxicological assessments tool. Altenburger et
al. have extensively discussed the challenges and methodologies involved in evaluating the toxicity
of chemical mixtures, and the importance of computational techniques given the limitations of
traditional experimental methods[6]. Luan et al. employed the QSAR approach to model the toxicity
of binary mixtures of non-polar narcotic chemicals, achieved high predictive accuracy with an R? of
0.94 for their multilinear regression model (MLR) and an R2 of 0.96 for the radial basis function neural
network (RBFNN) model[7]. This study showed the effectiveness of QSAR models in predicting the
toxicological interactions within binary chemical mixtures, indicating their potential application in
broader chemical assessment frameworks. Similarly, Qin et al. developed multiple linear regression
models based on different mechanistic assumptions of 24 models using the concentration addition
approach and another 24 based on independent action[8]. These models were designed to assess the
toxicity of four binary combinations of chemicals across six varying concentration ratios, further
showing the applicability of QSAR methodologies in complex mixture toxicity prediction. Toropova
et al. also applied QSAR models to predict the toxicity of binary mixtures of benzene and its
derivatives, using descriptors calculated from the Simplified Molecular Input Line Entry System
(SMILES)[9]. These models, tuned to specific chemical categories, and achieved high R? values that
reflects the adaptability of QSAR in handling diverse chemical datasets and contributing to its limited
applicability. However, a critical characteristic in the effective application of QSAR models is defining
their applicability domain, for the reliability of the predictions[3,10-12]. Additionally, the absence of
toxicokinetic and toxicodynamic, as well as pathophysiological mechanisms, limits the utility of
QSAR models.

Machine learning (ML) models are emerging recently to predict the mixture toxicity. Duan et al.
used ink-jet printing (IJP) technology and continuous photographing to generate the experimental
toxicity data in the form of luminescent inhibition rates (LIRs)[13]. ML method-based regression
models were developed on the ternary mixtures of 4 compounds at various concentration to predict
the toxicity. Random forest (RF) method gave the best predictive performance with average R? of
0.96. The limitation of this strategy was that toxicity prediction could be done only for the mixtures
of the compounds in the training set by varying their concentration. Cipullo et al. used neural
network (NN) and RF to develop regression models that predicted the toxicity of complex chemical
mixtures in two soil samples by first predicting the bioavailability concentration and using the value
as input in the toxicity prediction models[14]. This method is applicable for predicting the toxicity
for only those two soil samples at a given time t. Neither of the models in these two studies can be
used generally to predict toxicity of a mixture of random chemicals. The mixtures comprise of limited
number of compounds as the component chemicals and there is no provision of changing the input
features based on the descriptor of the component chemicals. These studies apply very specific and
complicated methods to generate the toxicity data and uses very limited input features to develop
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ML models with limited applicability. Thus, there is a need for robust models to predict the toxicity
of a diverse set of chemical mixtures using easily obtainable descriptors as the input features and
more interpretable form of predicted toxicity. Also, binary classification models that predict whether
the mixtures are toxic or not and multiclass classification models that predict the degree of toxicity of
the mixtures are also important to identify hazardous mixtures.

Moreover, humans are exposed to thousands of potentially dangerous environmental chemicals
and their mixtures. According to the WHO and the IARC, chemical exposures are responsible for
nearly 30% of human cancers. Most diseases or symptoms or adverse effects are due to chemical
mixtures rather than a single chemical, and even less is known regarding the impact of mixture
exposure[7,15-40]. Importantly, the question of which mixtures contribute to the adverse effects or
toxicity or carcinogenic potentially causing the initiation or progression of cancer remains
unresolved. Further, for assessing mixture cancer risk or toxicities, neither computational nor
experimental methods currently consider the mechanisms [7,15-44]. It is important to characterize
and understand the characteristic driving markers toxic and carcinogenic responses of chemical
mixtures. Additionally, the number of possible complex mixture combinations creates significant
difficulties for effective biological testing. Consequently, the qualitative and quantitative data
assessing the mixtures and subsequent adverse effects are lacking, making the translation of existing
data into meaningful prevention and therapeutic strategies [7,15-44]. We recently described a Al
hybrid neural network (AI-HNN) machine learning method for predicting the binary, multiclass and
categorical carcinogenicity of chemicals and their mixtures in a dose-dependent manner[45-48].
However, this method does not account for post-exposure effects such as toxicokinetic and
toxicodynamic properties, among other toxicological and pathophysiological characteristics, that
limits the utility of this method. We have previously introduced a computational pathophysiology
method termed Chemo-Phenotypic Based Toxicity Measurement (CPTM), which incorporates these
properties to predict the toxicity, carcinogenicity, and mechanisms of chemicals and their
mixtures[49]. However, the CPTM lacks the ability to consider dose-dependent effects and chemical
interactions in mixtures. Consequently, there is an urgent need for a comprehensive alternative new
approach methodology (NAM) to thoroughly assess the toxicity, cancer risks, and mechanisms
associated with chemical mixtures.

In the present study, we introduce a novel, comprehensive New Approach Methodology (NAM)
designated as AI-CPTM. This methodology synergistically integrates the Chemo-Phenotypic Based
Toxicity Measurement (CPTM) and the hybrid neural network (AI-HNN) models. The CPTM
component assesses the post-exposure scenario, predicting toxic and carcinogenic effects and
modeling the phenotypic responses following chemical exposure. Conversely, the AI-HNN
component predicts the preexposure toxicity and carcinogenicity of chemicals and their mixtures in
a dose-dependent manner, including the assessment of chemical interaction effects. To train our
machine learning (ML) models, we compiled experimental toxicity data from multiple studies
reported in the literature, focusing on chemical mixtures. For qualitative toxicity predictions, ML
models were developed for binary and multiclass classification of binary mixture toxicity. For
quantitative toxicity predictions, ML regression models were developed to estimate toxic potency.
Independently, CPTM computes the relative toxicity in terms of z-scores. Scores from each model are
combined to generate AI-CPTM score, which is used to rank the mixtures from high to low toxicity.
The AI-CPTM predictions were validated using various performance metrics and validated with data
from the literature. Additionally, we conducted validations of the toxicity of chemicals and their
mixtures, as well as their chemical interaction effects, using the zebrafish embryo toxicity assay. In
these validations, both our AI-HNN and AI-CPTM methodologies demonstrated robust performance
in predicting the toxicity of chemicals and their mixtures in a dose-dependent manner.

Materials and Methods

Collection of Experimental Chemical Mixtures Data from the Literature
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Experimental mixtures data for 981 mixtures were collected from various publications (See
Supplementary Table S1). The toxicity of these 981 mixtures are either given as LDso (median lethal
dose) or LCso (median lethal concentration) or ECso (median effective concentration) values. The data
are converted to ECso/LCso if it is given as pEC50/pLC50 and to mg/L if it is given as mol/l. To convert
data from pEC50/pLC50 to EC50/LC50, we used ECso = 10¢PEC50),

Molar mass (or molecular weight in g/mol) is used to convert ECs mixture data from mol/L to
mg/L. For a mixture of two chemicals A and B,

ECso g/L = ECs0 mol/L (molar mass A x mole fraction A + molar mass B x mole fraction B) .....(1)

Whereas molar masses A and B are the molecular weights of the chemical components A and B
in the mixture, mole fractions A and B are the mole fractions of the components A and B in the
mixture. The mole fractions of the component chemicals in the mixture were calculated from the
median effective concentrations of the component chemicals when acting alone and their
corresponding toxicity ratios in the mixture. In some cases, the fractions of the components in the
mixture are provided. The detailed computation of mole fractions is described in the regression
method section.

Collection of Drug Combinations

Data on drug combinations were downloaded from the Drug Combination Database (DCDB) at
www.cls.zju.edu.cn/dcdb/download.jsf. Out of 1,363 combinations, 942 were binary combinations.
The DCC_IDs of each component drug were mapped to DrugBank IDs. Descriptors were calculated
for the component drugs of binary combinations.

Collection of ChemIDPlus Single Chemicals

92,322 single chemicals with LDso values in mg/kg were collected from ChemlIDplus, as detailed
in our previous publication[45,47,48]. These chemicals are included with PFAS. We considered rat
and mouse oral route of exposure data, resulting in a total of 22,808 single chemicals for which
descriptors were calculated.

Creation of Binary Mixture Dataset

Dataset I: It consists of 981 binary mixtures consisting of 564 toxic and 382 non-toxic chemical
mixtures.

Dataset II: To create a balanced dataset I, we added 200 binary drug combinations to the non-
toxic binary mixture data of dataset I. Thus, we obtained 564 toxic and 582 non-toxic mixtures.

Dataset III: Here, all 373 binary drug combinations were added as non-toxic data to the 981
chemical mixture dataset I. Thus, this dataset III consists of 564 toxic and 755 non-toxic binary
mixtures.

Generating Virtual Mixtures: Assumptions and Methods

While simulating the dose-dependent toxicity of chemical mixtures, we initially addressed the
lack of experimental data on mixtures, including PFAS, by creating virtual mixtures. These mixtures,
both binary and multiple, were derived from individual chemicals. As we previously described
previously[45], we employed various permutations and combinations to generate mixture
combinations from individual ChemIDplus chemicals, which include emerging PFAS chemicals.
Given the impracticality of handling the millions of potential combinations of 22,808 ChemIDplus
chemicals, we adopted a representative sampling approach to manage the dataset, as previously
outlined[45,48]. This method enables us to capture a diverse range of combinations while effectively
reducing the vast number of possibilities. For the creation of virtual mixtures, we employed
assumption-based cases to form different combinations of mixtures, as detailed in earlier
publication[45]. In this study, we report results exclusively from Case 1, where virtual mixtures were


https://doi.org/10.20944/preprints202405.2120.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2024 d0i:10.20944/preprints202405.2120.v1

5

formed by combining a single toxic chemical with another toxicant to produce a toxic mixture, and
Case 2, where mixtures were formed by combining a nontoxic chemical with another non-toxicant to
produce a nontoxic combination. In this way, we formed the following virtual mixture dataset from
ChemlIDPlus chemicals.

Dataset IV: This dataset was put together based on the 22,682 ChemlIDplus chemicals,
comprising 6,436 toxic and 16,246 non-toxic chemicals. Assumption-based binary mixtures were
generated by uniquely combining 6,436 toxic chemicals to form 3,218 toxic binary combinations, and
16,246 non-toxic chemicals were similarly combined to form 8,123 non-toxic binary combinations.
Consequently, a total of 11,341 unique binary chemical combinations were created.

Dataset V: Comprising 12,293 virtual binary mixtures, this dataset includes 11,341 combinations
from ChemlIDplus, 373 drug combinations, and 557 additional binary mixtures. Within this set, 3,592
are classified as toxic mixtures, while 8,701 are considered non-toxic mixtures.

Dataset VI: This dataset was augmented by adding randomly selected 400 toxic and 400 non-
toxic ChemIDplus binary combinations to Dataset III, ending in a total of 766 toxic and 964 non-toxic
mixtures.

Dataset VII: From the pool of 22,808 chemicals in ChemIDplus, 16,320 were identified as non-
toxic and 6,488 as toxic. Only those chemicals with Tanimoto similarity >0.6 to the 236 component
chemicals from binary mixtures previously identified in the literature were selected, resulting in 3,833
non-toxic chemicals and 1,659 toxic chemicals. We hypothesized that binary mixtures of toxic
chemicals would invariably be toxic, those comprising only non-toxic chemicals would remain non-
toxic, and those combining toxic and non-toxic chemicals would be classified as toxic. From all
possible binary combinations, 30,000 were randomly selected as toxic mixtures from the toxic
chemical set, 60,000 as non-toxic mixtures from the non-toxic set, and 60,000 as toxic mixtures from
the mixed set. This process yielded 90,000 toxic binary mixtures and 60,000 non-toxic binary mixtures.
Additionally, 981 experimental binary mixture data from the literature were incorporated into the
150,000 ChemIDplus mixture dataset.

6. Hybrid Neural Network (HNN) Method for the Prediction of Chemical Mixture Toxicity

We used the hybrid neural network (HNN) framework called as AI-HNN, that was developed
in our previous work to predict dose-dependent single chemical toxicity and dose dependent mixture
carcinogenicity prediction[47,48]. HNN is developed using the Keras APIin python. A Convolutional
Neural Network (CNN) merges with multilayer perceptron (MLP) type feed forward neural network
(FFNN) to make the final toxicity prediction of the chemicals. CNN uses 3-D array of one-hot encoded
SMILES strings as input while the FENN uses molecular descriptors of the chemicals calculated using
QikProp[50] and mordred[51] as input. Besides an input and an output layer, a CNN consists of
convolutional layers, activation layers, pooling layers, and fully connected layers. A CNN eliminates
the requirement of a very high number of neurons and parameters for input of large size by allowing
the network to be deeper but with few parameters. It uses pooling layer to reduce the size of the data
and helps control overfitting. The final classification is done by implementing sigmoid activation
function in case of binary classification, softmax activation function in case of multiclass classification,
and linear activation function in case of the regression model.

6.1. Dose-Dependent Relationship of the Chemical Mixtures using the HNN

Next, considerations of the dose-dependent ratio of chemical components in a mixture were
included in two steps. In the first step, we modified the concentration addition CA model, and in the
second step, we used a Mathematical approach. The modified CA model, involves calculating and
integrating dose-dependent ratios, for different chemical components in a mixture. For most cases,
mainly for virtual mixtures, the experimental dose-concentration data of a chemical is not available.
Therefore, we developed regression models, to calculate the concentrations.

Calculation of dose-dependent ratio of chemicals in a mixture and computation of chemical
interactions effects.
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Regression models are developed to calculate the predicted range of median effective
concentration (ECso) of the component chemicals in the mixtures. Similalrly, LCso and LCso
concentrations were calculated. The regression models were derived by modifying the concentration
addition (CA) model[52] for the mixtures which are described below.

According to the concentration addition (CA) model[52], mixture toxicity is given by

_ Cm _ Cm
ECSOmix_ Cy Cp = Ty e (2)

+
ECs504 ECs0B

where, ECsomix is the median effective concentration of the mixture, Ca, Cs and Cum are the
concentrations of components A, B and mixture required to cause the median effect (50% effect) by
the mixture, ECs0a and ECsos are the median effective concentration of component chemicals A and B
when acting as a single compound.

The sum of toxic units (TUs) of each component gives the joint toxicity of the mixture.

Ca Cp
TU =—A 4 B
EC504  ECs0B

From equation (2) and (3),
Coy =TU X ECsgmix ~ veveeneenne 4)

whereas, TU ranging from 0.8 to 1.2 indicates additive effect; TU > 1.2 indicate synergistic effect;
TU < 0.8 indicate antagonistic effect; TU 2 0.8 indicate independent action effect.

Here, we systematically modeled the chemical interaction effects, which encompass additive,
synergistic, antagonistic, and independent action effects by integrating appropriate toxic unit (TU)
ratios. This methodological framework permitted the incorporation of varying doses of the
component chemicals, along with their respective interaction effects, and enables dose-dependent
effects. For the scope of this study, we specifically focused and reported results only the additive
effects of the component chemicals within the mixtures while calculating the predicted range of
concentrations for the components in the mixture at median inhibition. Thus, when TU = 0.8 to 1.2,
then, equation (3) becomes,

Cu = (0.8 X ECsomix) t0 (1.2 X ECspmix)  «veveeeeens (5)

Equation (2) can be rewritten as:

1

ECSOmiX = DA N DB ceereeresees (6)
EC504 ECs0B
Ca Cc . . .
whereas, p, = - and pg = C—B are the mass fractions of components A and B in the mixture at
M M

median inhibition.
The concentration of components A and B that causes median effect in the mixture can be
calculated in terms of mass fraction as

Cy =pa X Cy
Co=Dg XCo e, @)

Thus, from equation (5) and (7) we get the final equation (8) to calculate the range of
concentration of each component chemicals required to cause median effect by the mixture as:

Ca= (P4 X 0.8 X ECs0mix) t0 (1.2 X ECs0pmix X Da)


https://doi.org/10.20944/preprints202405.2120.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2024 d0i:10.20944/preprints202405.2120.v1

Cg= (pg X 0.8 X ECsomix) t0 (1.2 X ECspmix X D) ceveveenennn 8)

Dose-dependent computations using Mathematical approach.

The dose consideration during mixture formation uses the concentration information of each
component chemical that makes the mixture to calculate the mixture descriptor. We used the reported
concentration information associated with a chemical while making mixture combinations. In cases
where concentration information was unavailable for certain chemicals such as some experimented
chemicals and virtual mixture chemical, we assigned concentrations that we computed from the
modified concentration addition model, or we assigned the equal concentrations. In this study, we
report results for the equal concentrations assigned for the component chemicals. We also report only
the binary mixture data. We will present the various concentration ratios, chemical interaction effects,
and data on multiple mixtures in our forthcoming manuscript.

As described in the above data collection section 1, although various datasets I to VII are
prepared from combining data from different sources, the toxicity determination metrics and
threshold vary across and within the datasets. The 981 experimental mixtures data collected from the
literature consists of both LCs0o and ECso data. We used one standard cutoff of 100 mg/L for toxicity
determination set by EPA. In case of LDso data of ChemIDPlus chemicals, we used a cutoff of 500
mg/kg for determining the toxicity. All the collected chemical experimental data were converted to
mol/L before calculating the log (1/ECso or LCso, or EDso).

Next, we considered dose dependency by using mole fractions, and molecular descriptors of
chemicals, which are given as input feature for the HNN FFNN framework. These features enabled
us to calculate the dose-dependent factor, ‘D’. Mole fractions of the component chemicals in a mixture
were calculated from their median effective concentration when acting alone and their corresponding
toxicity ratio in the mixture. The dose-dependent chemical mixture descriptor ‘D’ was calculated
using three different mathematical methods formulas (sum, difference, and norm) as the basis as
described previously[45,53].

Sum: The mixture descriptor dose-dependent factor ‘D’ is calculated as the sum of the
molecular descriptors d;, d,...d, of the two or more component chemicals in a mixture weighted
by their respective mole fractions x;, x, ...x, in a mixture.

D=xi1di+xdo+ Xndn el 9)

Difference: The mixture descriptor dose-dependent factor ‘D’ is calculated as the absolute
difference between the molecular descriptors d: & d: of the two component chemicals in a mixture
weighted by their respective mass fractions x1 & x2 in a mixture.

D = |xid1 — x2d2— -~ xndnl Ll (10)

Norm: The mixture descriptor dose-dependent factor ‘D’ is calculated is calculated as squared
sum of the molecular descriptors di & d:z of the two component chemicals in a mixture weighted by
their respective mass fractions x1 & x2 in a mixture:

D =(x1d)? + (x,dy)% + = (ndn)® oo (11)

In this study, we used and reported only the Sum method results. The mixture descriptor dose-
dependent factor ‘D’ were calculated using the Sum method. We used 653 descriptors for each
component chemicals, computed using the Mordred[51]. The mixture descriptor ‘D" was calculated
as the sum of the molecular descriptors ‘d1” and ‘d2’ of the two component chemicals of the mixture,
each scaled by their respective concentration fractions ‘x1” and ‘x2” in mg/L.

Molecular Structural Feature Descriptors Using SMILES of the Chemicals

Next, the SMILES structural representation, and image bytes of chemicals are computed, which
are used as, input feature for the HNN CNN model. For the SMILES, the mixture SMILES 'S’ is
generated by concatenation of the two SMILES strings ‘S1" and 'S2’ with a period (.) as the separator.
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SMILES Preprocessing

The detailed process is explained in our previous studies for single chemical toxicity and mixture
carcinogenicity studies[45,47,48]. However here we used slightly modified process. Molecular
SMILES are used for chemical nomenclature using ASCII strings to represent 2D structural attributes
that we used here as input to our CNN models. Since raw texts cannot be directly used as input for
the deep learning models we encoded it as numbers. The entire list of SMILES strings is first
represented on the tokenizer to create a dictionary of the set of all the possible characters in the
SMILES string and their corresponding index. We assumed and created a dictionary ‘D" where,

D={C:1,=:2,(:3,"):4,#:5'N:6,..., "M} ........ (13)

This results in every character in the SMILES string being assigned a unique integer value which
is the index of the character in the dictionary. The SMILES entry for every chemical is then converted
to one-hot encoded 2-D matrix. For example, acrylonitrile-d3 chemical with SMILES string C=CC#N
is one-hot encoded as:

100000 01
010000 0
c 100000 0
cl _ |t 00000 0
=16 0001 0 ol (14)
N 000001 0
0 0 00 0 0 - o

A 3-D matrix of size K x L x M is obtained eventually where K is the number of chemicals, L is
the maximum length of the SMILES string, and M is the number of sets of all the possible characters
in the SMILES string in the K chemicals. One-hot encoding means converting the integer value of
each character in the SMILES to its equivalent binary vector of length M.

Descriptor Calculation

We computed 653 descriptors for each component chemicals, using the MordRed software[51].
Additional descriptors were computed from the SMILES of the component chemicals. The
structconvert utility in Schrodinger software[50] was used to convert the SMILES of the chemicals to
2D structures in .sdf format. The 2D .sdf file was converted to 3D structures using 3D minimization
application in Schrodinger’s Canvas software. Additional descriptors based on 3D molecular
structure such as ADME (Absorption, Distribution, Metabolism, and Excretion) properties such as
octanol/water partition coefficient, MDCK cell permeability, Caco-2 cell permeability, binding to
human serum albumin, and human oral absorption, were calculated using QikProp application in
Schrodinger[50]. In the last step, these descriptors were given as input features for the FFNN and
CNN of the HNN hybrid framework, and simulations were initiated. The output of the CNN, and
FFNN are merged, within the HNN framework[45—48] to create mixture classification models which
are described below. Eventually, we predicted the unknown chemical mixture toxicity in a dose-
dependent manner with the inclusion of chemical interaction effect.

Binary Classification Criteria

According to the EPA’s toxicity categories, a concentration of less than 100 mg/L is considered
toxic[54]. Therefore, all chemicals with ECso/LCs0 values greater than or equal to 100 mg/L were
considered non-toxic. For binary classification, out of 981 binary mixtures, 610 were classified as toxic,
while 371 were classified as non-toxic.

Multiclass Classification Criteria

Multiclass models predict the degree of toxicity of binary mixture of chemicals by classifying
each mixture into one of the five classes. EPA classifies pesticides into five categories based on the
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degree of toxicity[54]. The classification based on acute concentration in mg/L for aquatic organisms
classifies the compounds into
i very highly toxic (<0.1 mg/L)
ii. highly toxic (0.1-1 mg/L)
iii. moderately toxic (>1-10 mg/L)
iv. slightly toxic (>10-100 mg/L)
v. practically nontoxic (>100 mg/L)

Using this categorical classification criteria, we categorized 981 experimental binary mixtures as
follows: 371 are very highly toxic (class 4), 273 are highly toxic (class 3), 153 are moderately toxic
(class 2), 70 are slightly toxic (class 1), and 114 are practically non-toxic (class 0). Similarly, we
classified the mixture datasets I to VII (see sections 4 and 5).

Developing Binary and Multiclass Classification Models using other Machine Learning Methods

To compare and evaluate the binary and multiclass predictions of our HNN method, we
developed binary and multiclass classification models using various machine learning techniques,
including Random Forest (RF), Bagged Decision Trees (also known as Bootstrap Aggregating or
Bagging), and Adaptive Boosting (AdaBoost). These models were then combined to create an
ensemble model for improved predictive performance.

Developing Regression Models using other Machine Learning Methods

To compare and evaluate the regression-based potency predictions of the HNN, we developed
regression models using various machine learning methods, including Random Forest (RF), Support
Vector Regressor (SVR), Gradient Boosting (GB), Kernel Ridge (KR), Decision Tree with AdaBoost
(DT), and KNeighbors (KN). These models were implemented using the scikit-learn package in
Python to generate the final consensus prediction of the median effective concentration (EDso or ECso).
A consensus value is calculated based on the average predicted values of all seven models.

Ensemble Model

Ensemble of model predictions optimizes the predictive performance of models and was
employed in the binary classification models. The ensemble prediction, as we described
previously[45,47,48], was used to calculate the final prediction based on the prediction results from
HNN, RF, Bagging, and AdaBoost.

Robust Model Evaluation

Binary and Multiclass Classification Model Evaluation

The results presented here are an average of 30 iterations. Approximately 20% of the data were
randomly separated as the test set in each iteration from the datasets. We employed a robust
evaluation process to assess the performance of the mixture classification models. Initially, about 20%
of the available data were randomly allocated as the test set for each iteration to ensure an unbiased
assessment. This evaluation process was repeated for 30 iterations, and the average results were used
to evaluate the model’s performance. Several metrics were used to assess the classification models.
Stratified 10-fold cross-validation (CV) was performed for classification models, and the average of
10 CV results was calculated. Stratified cross-validation ensures that the proportion of samples for
each class is maintained while selecting the test set. The performance of each model was evaluated
based on accuracy, AUC, sensitivity, and specificity, as we previously described. Accuracy, which
measures the proportion of correctly classified instances, served as the primary evaluation metric
(Supplementary Equation S1). Additionally, the performance of each model was evaluated based on
the AUC. AUC provides the probability of a positive outcome being ranked before a negative
outcome and is a superior metric for evaluating binary classifiers compared to accuracy. Sensitivity,
representing the true positive rate, and specificity, representing the true negative rate, were also
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considered to evaluate the model performance. These metrics offered us insights into the model’s
ability to correctly identify positive and negative outcomes within the dataset. Micro-averaging is
used in multiclass classification to calculate the average value across all classes by converting the data
into multiple binary classes and assigning equal weight to each observation. This technique involves
converting the data into binary classes and giving equal weight to each observation, enabling a fair
evaluation of the model performance across multiple classes. By considering the average
performance across all classes, we gain a comprehensive understanding of the model overall
classification accuracy and performance.

Regression Model Evaluation

Approximately 20% of data were randomly separated as the test set. The calculated performance
metrics of the models were based on the average of 30 iterations. Mean square error (MSE), mean
absolute error (MAE) and Coefficient of Determination (R2) were the metrics used to evaluate the
performance of the models (Supplementary Equation S2).

Compound Out

The “compound out” method for segregating the test set has also been adopted as a means to
validate our models with increased rigor. This approach ensures that at least one of the component
chemicals within each mixture of the test set is not included in the training set. This methodological
choice enhances the robustness of our validation process by testing the model’s predictive ability on
entirely new or novel chemicals, thereby mitigating the risk of overfitting, and ensuring that the
model’s predictions are generalizable to new, unseen compounds. The inclusion of a varied set of
chemical and drug mixtures enhances the test set complexity and challenges the model ability to
generalize across a diverse chemical interaction. By evaluating the model performance on this
expanded and varied test set, we assess its robustness and accuracy in predicting the toxicity of
diverse chemical combinations under different contexts, confirming its applicability and reliability in
practical real-life scenarios. By implementing this stringent validation technique, we demonstrate the
model capacity to accurately predict chemical interactions and mixture toxicities.

COSet I: All 61 binary mixtures comprising four specific chemicals such as sulfamonomethoxine,
sulfachloropyridazine, trimethoprim, and 2,4-dichlorophenol, were included in the test set of Dataset
II. Additionally, to further diversify the test set, 19 binary combinations of approved drugs were
integrated, obtaining a total of 80 distinct mixtures designated for test set.

COSet 1I: All 60 binary mixtures, consisting of seven specific chemicals such as Penicillin V
potassium salt, benzene, gamma valerolactone, sulfapyridine, sertraline, p-dinitrobenzene, and
diazinon, were included in Dataset II test set. To enhance the diversity and complexity of the test set,
an additional 20 binary drug combinations were incorporated, bringing the total to 80 distinct
mixtures.

Reproducibility

The rigor & reproducibility were discussed above sections. The model and the outputs are
reproducible with our collected data. Also, the simulations begins with a fixed seed for
reproducibility.

Results and Discussion

The results are presented in two sections. Section I discusses the evaluation of dose-dependent
toxicity of chemical mixtures using our hybrid neural network (HNN) method, including
comparisons with other machine learning methods. Section II describes how the HNN is integrated
with the CPTM and the integrated AI-CPTM assessment of the dose-dependent toxicity of chemical
mixtures. Section III describes the validations of the AI-CPTM predictions.

1. Dose-Dependent Toxicity Assessment of Chemical Mixtures using HNN and other Machine
Learning Methods
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Descriptor calculation for the virtual mixtures using Sum, Diff. and Norm methods

We evaluated the dose-dependent toxicity of chemical mixtures using a combination of existing
experimental data, drug combinations, and virtual mixtures generated to supplement the lack of
experimental data. We developed binary and multiclass classification models using data from 981
experimental binary mixtures sourced from 60 articles (see Supplementary Material 1), to predict
binary and categorical toxicity. Additionally, regression models were developed to determine the
toxic potency (pECso/pLCso) of these mixtures. Of the total data, 785 data (80%) were designated as
the training set, with the remaining 196 data set aside for validation. We also explored the impact of
Sum, Difference, and Normalization methods on toxicity evaluation, integrating both experimental
and virtual data, which yielded highly accurate results. Statistical analyses, including T-tests,
revealed no significant differences in model performance across accuracy, sensitivity, specificity,
precision, and AUC for these methods. All the simulations were carried out over 30 iterations with
stratified 10-fold cross-validation to ensure statistical robustness. Here, we report the results obtained
from the Sum method.

Machine Learning Model Performance using Literature Derived Experimental Mixtures Data

1.1. Mixture Toxicity Prediction Using Binary Classification

The predictive capability of the machine learning models was evaluated using a training set of
785 data (494 toxic and 291 non-toxic). A random selection of 157 samples (20%) served as the test set,
while the models were trained on the remaining 628 samples during each simulation. The HNN, RF,
Bagging, AdaBoost, and Ensemble were used. The average accuracies achieved ranged from 90.91%
to 92.48%, and the average Area Under the Curve (AUC) scores varied from 0.94 to 0.96 across the
different models, with the ensemble method exhibiting the highest sensitivity and specificity (Figure
1a). These models were further validated against an external validation dataset of 196 data (116 toxic
and 80 non-toxic), where accuracies ranged from 90.85% to 94.23% and AUC scores varied between
0.972 and 0.985. The Ensemble method demonstrated superior sensitivity and specificity again,
confirming its robustness (Figure 1b).
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Figure 1. a. A) Accuracy, B) AUC, C) sensitivity, and D) specificity for the data in the training set
achieved by the binary classification models based on HNN, RF, Bagging, AdaBoost and Ensemble
methods.b. A) Accuracy, B) AUC, C) sensitivity, and D) specificity for the validation set achieved by
the binary classification models based on HNN, RF, Bagging, AdaBoost and Ensemble methods.

1.2 Mixture Toxicity Prediction Using Multiclass Classification

To evaluate multiclass classification models, we randomly selected 157 samples (20%) from a
total of 785 data points (comprising 291 of class 0, 225 of class 1, 122 of class 2, 55 of class 3, and 92 of
class 4) as the test set, using the remaining 628 samples as training data. The HNN, RF, Bagging, and
AdaBoost demonstrated robust performance metrics, with no method falling below significant
predictive accuracy (ranging from 62% to 82%), AUC values (86% to 97%), micro sensitivity (62% to
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82%), and micro specificity (90% to 95%) (Figure 2a). These models were then validated against an
external dataset of 196 samples (80 class 0, 48 class 1, 31 class 2, 15 class 3, and 22 class 4) using the
same total data pool of 785. The predictive performance continued to show similar accuracy, AUC,
micro sensitivity, and micro specificity (Figure 2b).

1.3. Mixture Toxicity Prediction using Regression Models

Regression models were evaluated using 645 mixtures, with 129 randomly selected as a test set
and the remaining 516 data used for model development. The models were built using HNN, RF,
Support Vector Regression (SVR), Gradient Boosting (GB), Kernel Ridge (KR), Decision Tree Boosting
(DTBoost), and Neural Network (NN) to determine and compare the toxic potencies. All methods
demonstrated robust regression performance metrics, including R?, Mean Squared Error (MSE), and
Mean Absolute Error (MAE) values, indicative of accurate predictions of mixture toxic potency
(Figure 3a). Upon testing these models against an external validation set of 160 data, consistently high
R2 values and low error rates were observed, confirming the model’s robust predictive ability (Figure
3b). Additionally, the predicted range of the concentrations of component chemicals required to
achieve a median effect was calculated from the toxicity values obtained by the HNN and the
consensus method (Supplementary Table S2).
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Figure 3. a. A) Coefficient of determination (R?), B) mean squared error (MSE), and C) mean absolute
error (MAE) for the data in the training set achieved by the regression models based on HNN, RF,
SVR, GB, KR, DTBoost, NN and Consensus methods. b. A) Coefficient of determination (R?), B) mean
squared error (MSE), and C) mean absolute error (MAE) for the validation set achieved by the
regression models based on HNN, RF, SVR, GB, KR, DTBoost, NN and Consensus methods.

1.4. Comparison of Mixture toxicity Prediction with Existing Literature

Although there is a lack of directly comparable data, our models exhibit broader applicability
and enhanced predictive power relative to existing models, such as those developed by Duan et
al,,[13] and Cipullo et al.[14], which are confined to a limited number of specific compounds and
conditions. Duan et al. formulated regression models to predict toxicity, expressed as luminescent
inhibition rates (LIRs), for mixtures of four compounds, relying solely on the concentrations of the
constituent chemicals as input features. Cipullo et al. developed regression models for two distinct
soil samples, incorporating soil type, amendment type, chemical concentrations, and time ‘t’ as input
features. In contrast, our approach utilizes a more extensive variety of chemical mixtures and
employs a broader set of input features, thus enhancing predictive accuracy across a diverse range of
toxicological outcomes.

L.5a.  Evaluation of Machine Learning Model Performance using Data Derived from Combinations of
Experimental Mixtures and Drug Combination Datasets (Datasets I to 11I).

In the three datasets (I, I, and III), the number of toxic chemicals remains constant, with
variations arising only from the addition of non-toxic chemicals through drug combinations (see
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Materials and Methods section). For the HNN, the specificity improved from 0.91 in Dataset I to 0.93
and 0.95 in Datasets II and III, respectively. Sensitivity initially decreased from 0.92 to 0.91 and then
increased to 0.94 (Figure 4a). The increase in specificity was statistically significant, as indicated by
the p-values from t-tests; however, the changes in sensitivity were not statistically significant. For the
RF model, specificity increased from 0.88 to 0.93 and 0.95, while sensitivity decreased from 0.95 to
0.91 and further to 0.90 (Figure 4a). The increase in specificity was highly significant for both RF and
Bagging models. For AdaBoost, the increase in specificity from Dataset I to II was not statistically
significant, but it was significant between Datasets II and IIl. The decreases in sensitivity were
significant across all models, except for HNN. The general rise in specificity across the models can be
attributed to the inclusion of additional drug data, which are negative samples in the datasets. These
data were predicted with nearly 100% accuracy, enhancing the overall true negative rate. Conversely,
the decline in sensitivity for most models was likely due to a decreased prediction capability for
positive samples, potentially resulting from overfitting to training sets comprised predominantly of
negative samples. The HNN sensitivity was the least impacted among all the models. The HNN
results demonstrated no significant difference in sensitivity between Datasets I and II or between
Datasets I and III. The enhancement in HNN prediction accuracy with Dataset III compared to
Dataset I was statistically highly significant, attributed to an increase in specificity and a non-
significant decrease in sensitivity. There was a significant increase in the prediction accuracy of RF,
but the increases in prediction accuracy for Bagging and AdaBoost with the addition of drug
combination data were not statistically significant (Figure 4a).
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Figure 4. a: Prediction accuracy, sensitivity, specificity, precision, and AUC for the mixture dataset I
(no drug combination) with 175 random mixtures in the test set, II (with 100 drugs combinations)
with 200 random mixtures in the test set, and III (with all 373 drugs combinations) with 250 random
mixtures in the test set by HNN, RF, Bagging, AdaBoost and the Ensemble methods. 4b:  Statistical
summary of the results of HNN, RF, Bagging, AdaBoost and Ensemble methods with prediction accuracy,
sensitivity, specificity, precision, and AUC for the mixture datasets 1V, V, and VI are shown.

1.5b. Toxicity Prediction using Binary Classification with Virtual Mixtures and Drug Combination Datasets
(Datasets 1V to VI)

Dataset IV consists of 3,226 toxic and 8,137 non-toxic binary combinations derived from the
single chemical data of ChemIDplus. Dataset V includes 3,592 toxic and 9,258 non-toxic binary
combinations, supplemented by 373 binary drug combinations and 557 binary chemical mixtures.
The toxicity prediction results from these two datasets were very similar, as shown in Figure 4b. To
investigate whether the large number of ChemIDplus chemical combinations influenced the results,
toxicity predictions were conducted using Dataset VI, which comprises only 800 ChemIDplus
chemical combinations, alongside 373 binary drug combinations and 557 binary chemical mixtures.
The HNN maintained an accuracy of 86% with both Datasets IV and V. For Dataset IV, HNN
demonstrated a sensitivity of 0.71, a specificity of 0.91, a precision of 0.77, and an AUC of 0.91. The
accuracy of HNN slightly decreased to 83% for Dataset VI, but the AUC remained at 0.91. The
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performance of other machine learning methods was consistent across all datasets, though their
AUCs were notably higher for Dataset VI. Further, the results with Dataset VI suggest that the
observed decrease in accuracy from integrating ChemIDplus combination data to form Dataset V
from Dataset III was not due to the large size of the ChemIDplus data, which also yielded lower
accuracy. This reduction in accuracy may be due to the increased diversity of chemicals in the training
and test sets for Datasets V and VI, compared to Datasets L II, and III.

1.6. Compound Out Method

The models were constructed using the COSet I and II datasets and validated with the more
stringent compound-out method. The accuracies achieved were 92.33%, 91.2%, 88.79%, 90%, and
92.04% for the HNN, RF, Bagging, AdaBoost, and Ensemble methods, respectively, for COSet I; and
85.92%, 81.42%, 78%, 79%, and 86% respectively for COSet II (Figure 5). The sensitivity of the models
approached a value very close to 1 across all methods, except for the Bagging method for COSet II.
The average specificities were 0.81, 0.77, 0.75, 0.77, and 0.79 for COSet I, and 0.72, 0.64, 0.80, 0.62, and
0.71 for COSet 11, respectively. These results demonstrate the model robust predictive capabilities,
even for new chemicals. The HNN model exhibited superior accuracy, AUC, sensitivity, and
precision for both COSet I and II, whereas the Bagging method performed well in predicting
specificity and precision (Figure 5).
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Figure 5. Prediction accuracy, sensitivity, specificity, precision, and AUC for the compound out
mixture COSet I and COSet II by HNN, RF, Bagging, AdaBoost and the Ensemble methods.
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I. AI-CPTM: the integration of the HNN Machine Learning Method with the CPTM
Pathophysiology Method for the Assessment of Dose-Dependent Toxicity of Chemical
Mixtures.

We employed the HNN and CPTM, as well as the integrated AI-CPTM approach, for toxicity
predictions concerning single chemicals and mixtures. We previously introduced the CPTM
pathophysiology method for predicting the toxicity and carcinogenicity of hazardous chemicals[49].
The CPTM, a proteo-chemometric method, predicts phenotypic responses and model interactions
between chemicals (and their mixtures) with genes and cells within physiological processes. It also
identifies chemicals predicted to interact with key cellular networks associated with toxicity or
cancer, estimating risks in terms of a “toxic or cancer risk Z-score. Additionally, our earlier work
introduced a HNN machine learning-based framework to predict mixture toxicity and carcinogenesis
demonstrated a higher prediction accuracy. However, we noted a significant reduction in the


https://doi.org/10.20944/preprints202405.2120.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2024 d0i:10.20944/preprints202405.2120.v1

15

predictive accuracy of our HNN approach for carcinogenic mixtures when transitioning from a
random to a distinct separation of training and test datasets[45-48]. This decline was due to the
absence of biological specific variables such as toxicokinetics (TK), toxicodynamics (TD),
mechanisms, and the complex behavior of chemical mixtures. Further, relying exclusively on HNN
to predict specific organ toxicity or cancer types are inadequate. To address these limitations, we
developed an integrated approach that incorporates these factors, targeting toxicology and
carcinogenesis endpoints. The combined HNN and CPTM, termed as the AI-CPTM method,
integrates the toxicity score from HNN with the CPTM Z-score. This combination allows for the
identification of potentially toxic or carcinogenic chemicals or mixtures, elucidates potential
mechanisms, and determines specific organ toxicity or carcinogenicity. The HNN method assigns a
binary toxicity status (0 for non-toxic, 1 for toxic), while the CPTM outputs a Z-score, where higher
scores indicate greater toxicity. Detailed methodologies for Z-score computation by CPTM and
descriptor calculation, along with toxicity and carcinogenicity predictions by HNN for single
chemicals and mixtures, have been reported in our published studies[49]. This paper exclusively
presents the outcomes of toxicity predictions made using the CPTM, HNN, and the combined Al-
CPTM methods for single chemicals and binary mixtures, which are discussed below.

AI-CPTM Score Computations

The AI-CPTM score is computed as the combination of AI-HNN and CPTM score.
AI-CPTM score = AI-HNN score (binary class + categorical class + potency) + CPTM Z-

score.
In the case of AI-HNN score, the binary score is assigned by:
Binary score = Binary value 0 or 1: score 1 if carcinogenic or toxic; score 0 if noncarcinogen

or nontoxic.
The categorical scores are assigned according to the IARC classification for the range of values
<Img/kg to >2000 mg/kg or <1 mg/L to >500mg/L as below:
Categorical score = Score 1 for group 1 (carcinogenic or high toxic); score 0.75 for group 2A
(probable
carcinogen or toxic); score 0.5 for group 2B (possible carcinogen or
medium toxic;  score
0.25 - group 3 (may be carcinogen or low toxic); 0 - group 4
(noncarcinogen or nontoxic).
The potency scores are assigned for the range of values <lmg/kg to >2000 mg/kg or <1 mg/L to

>500mg/L
as below:
Potency score =  score 1 for <lmg/kg/day to <100 mg /kg/day; score 0.75 for >100
mg/kg/day to <250 mg
/kg/day; score 0.5 for >250 mg/kg/day to <500 mg /kg/day; score 0.25
for >500 mg/kg/day

to <1500 mg /kg/day; score 0 for >1500 mg/kg/day.

Basically, the total AI-CPTM score cannot exceed a value of 4, because each score is normalized
to 1, with four score components in the total score, as seen in the equation below in the case of highly
toxic or carcinogenic mixtures, typical AI-CPTM total score:

AI-CPTM score = score [(AI-HNN + CPTM)]

score [(1 +1+ 1) + (>09)] =
>3.9

In this study, we report the results of HNN, CPTM and AI-CPTM predicted single and mixture
chemical toxicity for the binary classification which are discussed below.

I11.1. Single chemical Toxicity — Binary Classification

We initiated our evaluation by assessing the performance of the AI-CPTM method using 21,758
rat and mouse oral LDso data obtained from ChemlIDPlus as a training dataset. A unique set of 1,050
chemicals served as the test set, for which molecular descriptors were calculated. The lowest effective
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level (LEL) of chemical dose was considered to determine toxicity. We employed various LD50
thresholds, such as 50 mg/kg, 250 mg/kg, 500 mg/kg, 750 mg/kg, and 1500 mg/kg, as previously
described[45,47,48]. Toxicity predictions were made for the experimentally known 1,050 toxic
chemicals using both the HNN method and the CPTM method.

I1.1.1. Accuracy based on Experimental Toxicity

To determine whether combining HNN machine learning predictions with CPTM predictions
enhances the performance of toxicity predictions, we performed an experimental comparative
analysis. This analysis involved both individual CPTM predictions and the combined CPTM + HNN
predictions i.e. AI-CPTM, using the experimentally known toxic set of 1,050 chemicals. We counted
the experimentally determined toxic chemicals against CPTM Z-score ranked toxic chemicals, both
with and without the inclusion of HNN predictions, and calculated the percentage of correctly
predicted toxic chemicals.

CPTM Performance without HNN Predictions added.

Chemicals were sorted in descending order from higher (more toxic) to lower (less toxic) values
based on the CPTM Z-score. The top ranked 100, 200, and 300 chemicals were marked. This implies
that all top 300 chemicals are relatively toxic, with the top 1 being the most toxic. We then annotated
the experimentally assessed toxic or non-toxic outcomes for the top 300 chemicals (toxic = 1, non-toxic
=0). To determine the number of correctly predicted chemicals by the CPTM in the top 100, 200, and
300, we counted the number of ‘1’s known to be toxic from experimental studies. The results,
displayed in Figure 6a, show the percentage of experimentally determined toxic chemicals against
the CPTM’s Z-score ranking. Figure 6a demonstrates that the percentage of chemicals correctly
identified as toxic at various Z-score cutoffs (e.g., top 100, 200, 300) did not vary significantly. The
trend of correctly predicting the experimental results increased with increasing LDso thresholds, with
the highest prediction accuracy of 69% achieved at the 1500 mg/kg threshold. This trend suggests that
the CPTM is more accurate at identifying toxic chemicals among those with higher Z-scores. On the
other hand, a decreasing and inconsistent trend across different toxicity thresholds could indicate the
model predictive limitations. These findings establish the baseline effectiveness of the CPTM in
assessing chemical toxicity without the enhancements from machine learning HNN. The strategy of
ranking chemicals by their Z-scores and then correlating them with experimental outcomes offers a
direct method to evaluate the model’s predictive accuracy. Using only the CPTM Z-score for this
analysis provides a benchmark for comparing the performance of the Al-enhanced CPTM, which
incorporates HNN predictions, as detailed below.

d0i:10.20944/preprints202405.2120.v1
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Figure 6. Percentage of experimentally determined toxic chemicals counted a) against CPTM’s Z-score
ranking of chemicals, b) counted against CPTM’s Z-score ranking obtained after adding ML (Al-
HNN) score - (AI-CPTM).

CPTM Performance with HNN Added (AI-CPTM)

The study was expanded by integrating HNN machine learning predictions into the CPTM. As
detailed in the AI-CPTM score computations section, new total score was calculated by adding a
value of 1 to the CPTM Z-score for chemicals predicted to be toxic by the HNN method. The
effectiveness of this Al-enhanced CPTM (AI-CPTM) was assessed by counting the number of
correctly predicted toxic chemicals among the top 100, 200, and 300, then annotating the
experimentally assessed toxic or non-toxic outcomes for the top 300 chemicals and the findings are
displayed in Figure 6b. Figure 6b, show the percentage of experimentally determined toxic chemicals
as per the AI-CPTM (CPTM+ML) Z-score ranking that is the percentage of chemicals correctly
identified as toxic at different Z-score thresholds (e.g., top 100, 200, 300) after integrating HNN
predictions into the CPTM. The Al-enhanced CPTM performance in predicting toxic chemicals did
not differ significantly for the top 100, 200, and 300 ranked chemicals. Moreover, the accuracy of
predicting experimental results improved with higher LDso thresholds, with the highest accuracy
reached at the 500 mg/kg threshold. For the 1500 mg/kg threshold, the AI-CPTM showed a similar
trend in prediction accuracy for its top 100, 200, and 300 ranked compounds as observed in the CPTM
alone. An increasing overall prediction performance trend suggests that the CPTM more accurately
identifies toxic chemicals at a higher Z-score. Conversely, a decreasing and inconsistent trend across
different toxicity thresholds could indicate the model predictive limitations. The AI-CPTM minimum
prediction accuracy (Figure 6b) starts at 41% for the 50 mg/kg threshold and reaches up to 89% at 500
mg/kg, compared to 20% and 69%, respectively, for the traditional CPTM (Figure 6a). These findings
indicate that incorporating HNN predictions significantly enhances the CPTM ability to predict
chemical toxicity. By using machine learning, the AI-CPTM is expected to provide more precise and
refined toxicity predictions, potentially revealing subtle patterns and correlations not detectable with
the conventional CPTM or standalone HNN.

I1.1.2. Accuracy Based on HNN Predicted Toxicity

Next, we sought to determine whether integrating predictions from the HNN with those from
the CPTM enhances the overall accuracy of toxicity predictions. We performed a comparative
analysis of individual CPTM predictions and the combined CPTM + HNN predictions (AI-CPTM),
as well as evaluating the stand-alone HNN predictions for 1,050 chemicals. We calculated the
percentage of toxic chemicals predicted by HNN and compared it against the chemicals ranked by
the CPTM Z-score, both with and without the inclusion of HNN predictions.

CPTM Performance without HNN Added

The chemicals were sorted in descending order based on the CPTM Z-score. The top-300 ranked
chemicals were annotated with the HNN-predicted toxic or non-toxic outcomes. We counted the
instances where chemicals predicted to be toxic by the HNN (labeled as “1’) were correctly identified.
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The results, displayed in Figure 7a, illustrate the proportion of chemicals that the HNN correctly
identified as toxic at various CPTM Z-score rankings. The percentage of chemicals correctly identified
as toxic by the HNN at different Z-score cutoffs (e.g., top 100, 200, 300) remained consistent across
the CPTM rankings for each LDso threshold. Furthermore, the trend of correctly predicting
experimental results improved with an increase in the LDso threshold, with the highest accuracy of
65% being achieved at the 1500 mg/kg threshold. An increasing trend indicates that the CPTM is more
effective at identifying toxic chemicals among those with higher Z-scores. Conversely, a decreasing
or fluctuating trend across different toxicity thresholds could indicate limitations in the predictive
ability of the model. These findings again suggest that comparing the pathophysiological results
predicted by the CPTM with those predicted by the HNN does not effectively demonstrate the CP'TM
efficacy in predicting chemical toxicity without integrating the machine learning-based HNN results
or vice versa. Consequently, we decided to incorporate the HNN-predicted outcomes with those
predicted by the CPTM for further analysis.
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Figure 7. a) Percentage of machine learning based predicted toxic chemicals counted against CPTM’s
Z-score ranking of chemicals, b) the percentage of chemicals correctly identified as toxic at various Z-
score cutoffs (e.g., top 100, 200, 300) after incorporating HNN predictions into the CPTM.

CPTM performance with HNN added.

We calculated a new Z-score by adding 1 to the existing CPTM Z-score for chemicals predicted
to be toxic (assigned a value of 1) by the HNN method. The chemicals were then re-sorted in
descending order based on this new Z-score, termed AI-CPTM (CPTM enhanced by ML predictions),
where a higher value indicates higher toxicity. For the top 300 chemicals, we annotated the outcomes
predicted by the HNN as either toxic or non-toxic, assigning a 1 for toxic and a 0 for non-toxic. To
determine the number of chemicals correctly predicted as toxic by the AI-CPTM among the top 100,
200, and 300, we counted the number of ‘1’s indicating predictions of toxicity by the HNN in these
subsets. The results are presented in Figure 7b. The trend of accurately predicting the HNN-predicted
results improves with increasing LDso thresholds, reaching the highest prediction accuracy.
Interestingly, the correct prediction retrieval rate of AI-CPTM is 44% for an LDs of 50 mg/kg,
increases to 98% for 250 mg/kg, and achieves 100% for >500 mg/kg. The performance of AI-CPTM in
correctly predicting the results (i.e., identifying toxic chemicals) varies among its top 100, 200, and
300 ranked chemicals at LDso levels of 50 mg/kg, 250 mg/kg, 500 mg/kg, and 750 mg/kg, but not for
1500 mg/kg. This demonstrates a stark contrast to the trend of correct predictions by the CPTM alone.

In summary, the integration of machine learning predictions significantly increases the number
of correctly identified toxic chemicals among the top 100, 200, and 300 chemicals. This enhancement
clearly demonstrates the benefits of including and augmenting the Z-score with machine learning
insights to refine the predictive capabilities of the CPTM. The accuracy of identifying toxic chemicals
within the newly ranked list of the AI-CPTM is superior when assessments are based on HNN
predictions rather than solely on experimental outcomes. This improvement is attributed to the
recalibrated Z-score, by the HNN predictions, yielding a higher prediction rate than the original
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CPTM calculations. Additionally, in scenarios where the CPTM Z-score is evaluated without the
inclusion of HNN predictions, the overall trend indicates that the percentage of correctly predicted
toxic chemicals which is based on both HNN-predicted and experimental outcomes, increases with
an ascending LDso threshold (1500>750>500>250>50). However, with the integration of HNN
predictions into the CPTM, the accuracy in predicting toxic chemicals based on both HNN-predicted
and experimental data shows an increase up to the 500 mg/kg threshold and then plateaus. This
plateau effect occurs because chemicals are considered toxic if their LDso value is less than 500 mg/kg.
Overall, AI-CPTM, the integration of HNN with the CPTM significantly improves the model
predictive accuracy.

I11.2. Chemical Mixture Toxicity — Binary Classification

In the process of applying AI-CPTM to chemical mixture toxicity, we evaluated the performance
of the AI-CPTM, which classifies virtual mixtures as either toxic or non-toxic. The virtual mixtures
are created to compensate for the lack of experimental mixtures data for the training set. These virtual
mixtures were generated based on single chemical oral LDso data from rat and mouse studies, listed
in ChemlIDplus database. The training dataset comprised 3,004 toxic and 3,000 non-toxic virtual
mixtures (refer to Materials and Methods for details). Additionally, we incorporated 182 mixtures
sourced from the literature and 373 non-toxic drug combinations (details provided in Materials and
Methods). In total, the training set included 3,559 mixture combinations, with 3,155 classified as toxic
and 3,404 as non-toxic. To assess toxicity, we considered the lowest effect level (LEL) chemical dose.
We employed various LDso thresholds for our analysis, ranging from 50 mg/kg to 1500 mg/kg, as
described in our previous publications[45,47,48]. Toxicity predictions for 1,050 chemically known
toxic substances were conducted using both the HNN and CPTM methods. The HNN method
categorizes chemicals as either toxic (assigned a value of 1) or non-toxic (assigned a value of 0),
whereas the CPTM method outputs a Z-score. These combined Z-scores (AI-CPTM) are then rank-
ordered, with higher values indicating greater toxicity. A more detailed explanation of the descriptor
calculation and the toxicity prediction process for mixtures using the HNN can be found in the
Materials and Methods section, as well as in our published studies[45,47,48]. Additionally, the
methodology for calculating the CPTM Z-score is thoroughly detailed in our earlier publications[49].

I1.2.1. Accuracy Based on Experimental Toxicity

To assess whether incorporating HNN predictions enhances the CPTM performance in
predicting chemical mixture toxicity, we conducted a comparative analysis. This involved evaluating
the performance of individual CPTM predictions and combined CPTM + HNN (AI-CPTM)
predictions against 182 mixed chemicals already known to be toxic from experimental studies. This
targeted analysis is to determine the accuracy of experimentally determined toxic chemical mixtures
when ranked according to the CPTM Z-score, both with and without the inclusion of HNN
predictions as described below.

CPTM Performance without HNN Predictions

Chemical mixtures were ranked in descending order based on their CPTM Z-scores. We then
annotated the experimentally assessed toxic or non-toxic outcomes for the top 300 chemical mixtures,
assigning a ‘1’ for toxic and ‘0" for non-toxic. To evaluate the accuracy of the CPTM predictions among
the top 300 mixtures, we counted the number of ‘1’s known to be toxic from experimental studies.
The results, displayed in Figure 8a, show the percentage of experimentally determined toxic chemical
mixtures ranked according to the CPTM Z-score.

CPTM Performance with HNN Added (AI-CPTM)

Next, new Z-scores were generated by adding a value of 1 to the original CPTM Z-scores for
mixtures predicted as toxic by HNN. The efficacy of the AI-CPTM was then assessed by counting the
predicted toxic mixtures among the top 100, 200, and 300. Similar to the discussed above, we
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annotated the experimentally assessed outcomes for the top 300 mixtures as toxic (“1’) or non-toxic
("0’), presuming that the top 300 chemicals are relatively toxic. To determine the number of correctly
predicted chemicals by the AI-CPTM in the top 100, 200, and 300, we matched the “1’s known to be
toxic from experimental studies. These findings, displayed in Figure 8a, show the percentage of
experimentally determined toxic chemicals as per the AI-CPTM'’s Z-score ranking. Figure 8a reveals
that the percentage of mixtures correctly identified as toxic at various Z-score cutoffs (e.g., top 100,
200, 300) improved after incorporating HNN predictions into the CPTM. Specifically, the AI-CPTM
performance in accurately predicting experimental results (i.e., toxic chemicals) varies across the top
100, 200, and 300 ranked chemical mixtures, with the top 100 and 200 mixtures showing higher
predictive performance. For the top 100 and 200, the AI-CPTM predictive accuracy increased
dramatically from 50% to 75%, while for the top 300, the performance reached to 60%. This increasing

trend suggests that the AI-CPTM is more proficient at identifying toxic chemicals among those with
higher Z-scores.
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Figure 8. a) Percentage of experimental 1s (toxic) counted against CPTM’s Z-score ranking and
ranking obtained after machine learning (ML) predictions integrated into the Z-score. b) Percentage
of predicted 1s counted against CPTM’s Z-score ranking and ranking obtained after machine learning
(ML) predictions integrated into the Z-score.

I1.2.2. Accuracy Based on HNN Predicted Toxicity

Next, we carried out the analysis involved evaluating the performance of standalone CPTM
predictions against those combined with HNN predictions (AI-CPTM), using the actual HNN-alone
predictions for 3,155 toxic chemical mixtures as a benchmark, which are described below.

CPTM Performance without HNN Predictions

To determine the number of correctly predicted chemical mixtures by the CPTM within the top
100, 200, and 300, we counted the ‘1’s predicted to be toxic by the HNN. The results, displayed in
Figure 8b, illustrate the percentage of HNN-predicted toxic chemical mixtures as per the CPTM’s Z-
score ranking. Figure 8b shows the performance of CPTM in correctly identifying toxic chemical
mixtures at various Z-score cutoffs (e.g., top 100, 200, 300). The CPTM capability to accurately predict
HNN:-identified toxic outcomes (i.e., “1s" - toxic chemicals) remained consistent across the top 100,
200, and 300, standing at 49%. This medium predictive trend may indicate limitations in the model’s
predictive capacity, establishing a baseline for the effectiveness of the CPTM in predicting chemical
mixture toxicity without machine learning HNN enhancements.

CPTM Performance with HNN Added (AI-CPTM)

The efficacy of AI-CPTM was evaluated by counting the predicted toxic mixtures among the top
100, 200, and 300. The same annotation process for the HNN-predicted toxic or non-toxic outcomes
was applied to the top 300 mixtures. The number of correctly predicted chemicals by the AI-CPTM
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in the top 100, 200, and 300 was determined by matching the ‘1’s predicted to be toxic by the HNN
(Figure 8b). Figure 8b reveals that after incorporating HNN predictions into the CPTM, the
percentage of mixtures correctly identified as toxic at various Z-score cutoffs (e.g., top 100, 200, 300)
increased significantly. The AI-CPTM performance in accurately predicting toxic mixtures varied
across the top 200 and 300 ranked mixtures, with the top 100 and 200 achieving the highest predictive
performance at 99%. This marked improvement from 49% to 99% for the top 100 and 200, and an
increase to 70% for the top 300, suggests the AI-CPTM enhanced accuracy in identifying toxic
chemicals, particularly among those with higher Z-scores. The integration of HNN predictions into
the CPTM signifies a notable model’s predictive capability for chemical mixture toxicity.

In summary, in the context of accuracy calculated based on experimental toxicity, the integration
of HNN with the CPTM has significantly increased the number of correctly identified toxic mixtures
within the top 100, 200, and 300 mixtures. This enhancement highlights the potential of improving
the predictive accuracy of the CPTM model through the application of machine learning predictions.
Notably, the AI-CPTM ability to accurately classify toxic chemical mixtures in its newly ranked list
was superior when based on HNN-predicted outcomes compared to actual experimental outcomes.
This improvement comes from the recalibrated Z-score, which is based on the HNN predictions and
shows a higher prediction rate than the CPTM alone. Similarly, in the case of accuracy calculated
based on HNN-predicted toxicity, the findings demonstrate that the incorporation of HNN
predictions into the CPTM noticeably enhances the model capability to predict chemical mixture
toxicity. By integrating machine learning, the AI-CPTM delivers more refined and accurate toxicity
predictions, potentially identifying subtle patterns and correlations that are not apparent with the
HNN alone or CPTM alone. Nonetheless, it is important to recognize the complexities and potential
biases inherent in machine learning algorithms, which could influence the interpretation and
generalizability of the outcomes. This challenge is offset by the pathophysiological insights offered
by the CPTM model, emphasizing the significant advancements in toxicity prediction achieved by
integrating HHINN.

11.3. Experimental Validation

We evaluated the AI-CPTM predicted 11 toxic chemicals, including PFAS, in a dose-response
zebrafish embryo toxicity assay (Table 2 and Figure 9-11). We used the zebrafish embryos as a model
for assessing the potential hazards posed by the chemicals to humans apart from aquatic life. Further,
these zebrafish experiments were used to establish the toxic concentrations for each chemical.
Subsequently, we created 38 binary mixtures from these 11 chemicals. In the iterative simulations,
these determined concentrations were used to calculate the dose dependent ratios and molecular
descriptors of these 11 component chemicals within each mixture (Table 3). These descriptors were
subsequently employed as input features for the AI-CPTM. The toxicity assessments of these
mixtures were computed using AI-CPTM, and the results of these evaluations are presented in Tables
3 and 4 including the corresponding toxicity outcomes determined from the zebrafish experiments
(Figure 10 and 11). This comprehensive experimental analysis validated the AI-CPTM predictive
performance for both single chemicals and their mixtures, as well as its ability to understand the
mixture effects of chemical combinations, including PFAS. Consequently, it enhanced the predictive
capability of the AI-CPTM for mixed toxicological evaluations. The detailed results are discussed in
the below sections.

Table 2. 11 toxic chemicals for binary combination toxicity prediction.

Chemicals CASRN
Pyraclostrobin 175013-18-0
Fenpropathrin 39515-41-8
Alpha, alpha’-(1-methylethylenediimino)di-ortho-cresol ~ 94-91-7
Paclobutrazol 76738-62-0
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2,4,6 -Tribromophenol 118-79-6
Pyridaben 96489-71-3
Butachlor 23184-66-9
Tetramethrin 7696-12-0
Dicyclohexyl Phthalate (DCHP) 84-61-7
Pentadecafluorooctanoic acid (PFOA) 335-67-1
Prefluorooctane sulfonic acid (PFOS) 1763-23-1

I1.3.1. Zebrafish embryo toxicity studies of single chemicals.

Dose-dependent toxicities in zebrafish embryos were assessed by the lowest dose that caused
significant developmental abnormalities 2 days post-fertilization (2 dpf) in a dose-response live
assay. The results, displayed in Figure 9, Table 3, and Supplementary Material 2, detail the
deformities observed in embryos as indicators of chemical toxicity. We used DMSO and fresh water
as controls, for comparing the effects of each chemical and confirming that observed effects in the
embryos are due to the chemicals tested. Starting with Pyraclostrobin, was identified as toxic at 30
nM. It induced developmental delays in the embryos without visible deformities. However,
increasing the concentration to 100 nM resulted in embryo lysis, demonstrating a clear dose-
dependent toxicity. This pattern suggests that Pyraclostrobin may interfere with essential
developmental processes at a cellular level, which become more pronounced with increased dosage.
Fenpropathrin exhibited toxicity at 10uM, resulting in slight developmental delays and dorsal
arching, with a twitching phenotype observed by 2 dpf at both 10uM and 15uM. It appeared
relatively normal at 5uM. This twitching phenotype indicates specific neuronal toxicity. Motor fuel
oil showed toxicity at 5uM, characterized by a delayed onset (around 36hpf), slight ventral curvature,
and skinniness at 5uM, but was relatively normal at 1uM with 100% lethality at 10uM. The symptoms
delayed onset suggests that the motor fuel oil toxic effects might involve pathways activated later in
the developmental process. Paclobutrazol at 50 uM also showed severe effects, including
pronounced ventral curvature and cardiac edema, indicating its potent impact on cardiac
development and overall embryonic growth. These symptoms were absent at lower concentrations
(30 pM), highlighting a dosage-sensitive relationship. In contrast, Triasulfuron, Tepraloxydim, and
Penoxsulam did not exhibit toxicity even at high concentrations (200 pM), suggesting that their
modes of action may not be active in zebrafish embryogenesis within the tested range. 2,4,6-
Tribromophenol was particularly potent, stalling development as early as the 2-somite stage at
concentrations as low as 2 uM, and was lethal by 10 uM. This indicates a strong embryotoxic effect,
interfering with very early developmental stages. Pyridaben was found to be toxic at 50 nM, causing
developmental stalling at the 8-somite stage at 100 nM, affecting developmental progression (32hpf),
and inducing morphological abnormalities in the hindbrain region. This suggests disruptions in
neural development characterized by a slightly elongated and thin hindbrain region at 50 nM. For
Baythroid, although toxic at 20 uM, variable phenotypes but with issues such as solubility and
observed precipitation complicate the understanding of its direct effects on embryo development.
Butachlor was toxic at 200 puM, leading to significant ventral curvature and cardiac edema,
suggesting severe developmental toxicity and was normal at 100uM. Conversely, Bis-(2-Ethylhexyl)
Phthalate showed no toxic effects up to 200 uM, indicating a lack of detrimental interaction with the
zebrafish developmental pathways at these concentrations. Both Tetramethrin and Dicyclohexyl
Phthalate showed toxicity at 5uM and 200uM, respectively, with specific developmental delays and
morphological abnormalities, indicating that even at low concentrations, these chemicals could
disrupt normal embryonic development. Finally, Imazamox appeared to be non-toxic up to 200 pM,
possibly due to its inability to interfere with the pathways essential for early development in
zebrafish.

I1.3.2. Zebrafish Embryo Toxicity of Chemical Mixtures and Chemical Interactions Analysis
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I1.3.2.A. Measurement of Mixture Toxicity in Zebrafish Models.

Approach for Assessing Chemical Mixtures in Zebrafish

First, the toxicity of single chemicals in zebrafish embryos is determined. Using the toxicity data
of single chemicals as a baseline, we screened mixtures for altered activity and characterize the
optimal concentration ratios of components. For chemical treatments, 1000x working stocks are
prepared in DMSO. Dechorionated zebrafish embryos, eight per well, are placed in 0.5ml of fish water
(0.3g/L sea salt) in 24-well plates. The 1000x stock solution of chemicals is diluted to 2x in fish water
with 2% DMSO added. Then, 0.5ml of the 2x diluted chemical solution is added to the 0.5ml of fish
water containing the embryos to achieve a final concentration of 1x compound in 1% DMSO.

Fresh

Fresh
DMSO  water

Figure 9. Dose dependent toxicity assessment of AI-CPTM predicted chemicals (Table 2 and 3) as the
lowest dose leading to defined here as significant developmental abnormalities at 2days after post
fertilization (2 dpf) in a dose response zebrafish live assay.

Measurement of Developmental Toxicity

We assessed individual chemicals for developmental toxicity, indicating any disruption in
embryonic development from 1 to 4 days post-fertilization (dpf). Embryos are exposed to chemicals
in their bath water from 1 dpf to 4 dpf, without changing the water during the exposure period.
Initially, chemicals are screened by testing them at a series of concentrations increasing by half-log
steps. Teratogenicity is quantified based on the severity of developmental abnormalities as shown in
Figures 9-11. Each embryo is assigned a score reflecting the severity of observed phenotypes, with
the average score representing the group. The ECso for developmental toxicity is defined as a score of
5 on this teratogenicity scale (Figure 10 and Supplementary Material 2). Once the effective range is
identified, the ECso is determined by testing a linear series of concentrations spanning from non-toxic
to toxic levels. For chemicals not toxic at 10uM, tests are extended up to 200puM, with those showing
no effects at this level considered as non-toxic.
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Figure 10. Mixed chemical phenotypes and how they are scored. The mixed chemical phenotype score
is the sum of the scores for the five-individual fish in a well. Two wells were treated per chemical
combination and the scores are averaged for the wells. Scoring was as follows: dead = 0; severely
deformed =1; deformed =2; slightly deformed = 3; and normal phenotypes = 4.

A thorough evaluation is conducted on how various chemicals and their combinations affect the
development of zebrafish embryos in terms of toxicity as shown in Figure 11. Pyraclostrobin is
examined across a range from 30nm to 200pm, showing minimal effects at the lowest concentration
but significant embryonic damage at 200pm, highlighting a clear dose-dependent increase in toxicity.
The herbicides terapolyxylim and penosulam, both administered at 200pm, cause moderate
deformities like slight curvature of the spine, indicating disruption in developmental processes.
Pyridaben, at a lower concentration of 50nm, already leads to noticeable developmental delays and
morphological abnormalities, emphasizing the potential for significant impact even at lower doses.
Baythroid and butachlor, as well as tetramethrin and phthalate, at 200pum, induce pronounced
deformities, such as severe spinal curvatures and edema, suggesting strong toxic impacts that disrupt
physiological development. The most severe effects are observed with diclobenyl phthalate and
imazamox at 200um, where exposure results in marked malformations and growth retardation,
highlighting their potent embryotoxic effects. Analyzing the toxicity of chemical mixtures, which
better reflects realistic environmental exposures, with non-toxic DMSO as control, showing embryos
with normal development and compared with the observed effects in chemical mixture treated
groups. The mixture of pyraclostrobin at 30nm with 10pum fenpropathrin exhibits synergistic effects,
leading to more severe developmental defects than either chemical alone, suggesting amplified
toxicity. Further, mixtures of pyraclostrobin with motor oil or tertramethrin, and the combination of
fenpropathrin with motor fuel oil at 10pm and 5um, respectively, show extremely detrimental effects
on embryo development, with significant abnormalities such as severe curvature and edema. These
findings indicate that certain combinations can severely disrupt embryonic development. Moreover,
the combination of pyridaben at 50nm with trimethobenzol at 5pum results in a significant increase in
toxicity, causing extensive developmental deformities. This comprehensive analysis emphasizes the
need for detailed consideration of both the individual and combined effects of chemicals in
environmental and regulatory contexts. Further, the chemical interaction analysis is discussed detail
in the section below.

II1.3.3. Comparison of zebrafish toxicity outcomes with the results from machine learning models
for chemical mixtures.

We tested the top 300 chemical mixtures, as prioritized by AI-CPTM, which were randomly
selected and readily purchasable, on zebrafish embryos. Based on the degree of deformity,
morphological changes, and survival rate of the embryos (Figures 9-11), we classified each binary
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mixture as toxic (‘1) or non-toxic (‘0") (Table 3). We then compared the toxicity predictions made by
the machine learning model with the results obtained from the zebrafish assays. Table 3 summarizes
the prediction outcomes using AI-CPTM, HNN, RF, Bagging, and AdaBoost methods, alongside the
zebrafish-determined toxicity, with ‘1" indicating toxic and ‘0" indicating non-toxic. Our AI-CPTM
method achieved a accuracy of 81% in predicting the zebrafish mixture toxicity outcomes, followed
by our standalone AI-HNN at 70.2%, Random Forest at 62.1%, Bagging at 54%, and AdaBoost at
51.3% (Table 3). It is observed that the predictive capability of AI-CPTM for chemical mixture toxicity
is superior to that of HNN alone and the other machine learning methods tested. Additionally, our
standalone AI-HNN method surpassed the other machine learning techniques in predictive
performance (Table 3). Notably, the predictions from AI-CPTM agree with the experimental chemical
toxicity outcomes observed in zebrafish. We anticipate an improved trend in the prediction accuracy
for chemical mixture toxicity as we further refine and optimize the AI-CPTM method with additional
concentration and dose-response data. This extensive validation exercise highlights the relative
strengths and weaknesses of each predictive approach in different chemical interaction scenarios.

Determination of ECso and Measurement of Mixed Chemical Interactions

The ECs, indicating the median effective concentration for developmental toxicity, is
determined using morphological criteria. Fish are identified by date and well number (Figures 10).
In each well, containing five fish, the mixed compound phenotype score is the sum of the scores for
the individual fish. Two wells are treated per combination, and scores are averaged across these wells
(Supplementary Material 2). Scoring follows this scale: dead = 0; severely deformed = 1; deformed =
2; slightly deformed = 3; normal phenotypes = 4. Chemical interactions in mixtures are classified as
synergistic, additive, no interaction, inconclusive, or antagonistic based on the comparative toxicity
of mixtures versus individual components. For example, if compound #1 scores 17 and compound #2
scores 15, a combined average score of 15 indicates no interaction, suggesting that compound #1’s
toxicity does not exacerbate that of compound #2 (Supplementary Material 2). The ECs0 and Lowest
Observable Effect Concentration (LOEC) for binary mixtures are determined by testing a linear
concentration series of the first chemical against five concentrations of the second chemical, including
a vehicle control.

Comparison Predicted vs Experimental Mixed Chemical Interactions

Focusing on specific combinations (Table 3 and Figure 11), such as Pyraclostrobin at 0.01 pM
mixed with Fenpropathrin at 5 uM, we observe that while RF, Bagging, and AdaBoost predicted
toxicity, both AI-CPTM and HNN did not predict any harmful interaction. Experimental results
supported the predictions of AI-CPTM and HNN, showing no interaction, thus validating these
models as more accurate in this scenario. This pattern is consistent in other mixtures involving
Pyraclostrobin with different chemicals such as motor fuel oil, where again, AI-CPTM and HNN
correctly predicted no interaction while other models did not. In contrast, the combination of
Fenpropathrin and fuel oil, where most models except AI-HNN anticipated an additive effect, aligns
with the experimental observations of increased toxicity. This scenario validates the predictions of
RF, Bagging, and AdaBoost, emphasizing their utility in identifying potential additive interactions.
Investigating broader interactions involving chemicals such as Paclobutrazol, 2,4,6-Tribromophenol,
and Pyridaben reveals a trend where AI-CPTM generally predicts potential toxicity. The mixtures
involving Butachlor, Tetramethrin, and Dicyclohexyl Phthalate further demonstrate the predictive
power of AI-CPTM and HNN models. Many predictions of synergistic interactions by these models
were confirmed by experimental results, particularly when the models were in agreement. This
consistency highlights the effectiveness of AI-CPTM in scenarios expecting significant chemical
interactions. A distinct case is the mixture of Perfluorooctane Sulfonic Acid (PFOS) and
Pentadecafluorooctanoic Acid (PFOA), where all models predicted a synergistic interaction, which
was robustly validated by experimental findings discussed in below sections. Taken together, the
overall analysis indicates that AI-CPTM and HNN are particularly reliable not only in predicting
chemical mixture toxicity but also correctly predicting mixture chemical interaction effects. The RF,
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Bagging, and AdaBoost models perform good in most cases of where chemical interactions enhance
toxicity ie. synergistic effects. Finally, these findings emphasize the importance of studying
chemical interactions for environmental safety assessments, as these mixtures can lead to unexpected
and often more severe biological or health impacts.

Table 3. Toxicity predictions by HNN, Random Forest, Bagging, and AdaBoost method of machine
learning along with the concentration of the components for the binary mixtures of 10 chemicals listed
in Table 2. Last column lists the experimental toxicity prediction.
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Figure 11. The results of zebrafish toxicity studies for Panel a) selected single chemicals and Panel b)
their mixture combinations. Panel A, is the toxicity data obtained from single chemical dose-response
studies were used to inform the mixed chemical toxicity studies. Panel B, mixtures toxicity assessed
based on the presence of significant developmental abnormalities in the embryos, with DMSO and
water as control. Additionally, the outcomes regarding toxicity, developmental abnormalities, and
chemical-chemical interactions are in Table 3 and Figure 9 and 10. The rationale behind the selection
of doses for mixture toxicity studies is detailed within the main text.

II1.3.4. Toxicity Studies of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA)
chemical and their mixtures on Zebrafish Embryos.

The methodology for assessing the toxicity in zebrafish is detailed in our earlier publication[49].
As indicated in Table 4 and 5 and Figure 12, the lethal dose (LDso) and the effective concentration
(ECso0) for PFOS have been determined to be 53 uM and 11 uM, respectively. For PFOA, these values
are 187.5 uM for LDso and 29.5 uM for ECso. These concentrations reflect the exposure of zebrafish
embryos to PFOS and PFOA at 2 days post-fertilization (dpf) for one day at a temperature of 33°C.
The LDso is the dose at which 50% of the embryos are dead, while the EC50 is the dose at which 50%
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of the embryos exhibit any form of abnormality, including a bent body axis, edema, cloudy tissue,
and developmental delay.

The data presented in Table 4 and 5 and Figure 12, shows the acute and sub-lethal toxicity of
perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) individually and in
combination to zebrafish embryos. This initial study offered a comparative insight into their toxic
profiles in terms of lethal (LDso) and effective (ECs0) concentrations, which are important for the
measure of their toxic effects. For PFOS, the lethal concentration required to kill 50% of the zebrafish
embryos is relatively low at 53 uM. This indicates a high level of acute toxicity, making PFOS notably
hazardous. In the case of PFOA, at 187.5 uM, the LDso concentration for PFOA is significantly higher
than that for PFOS. This suggests that, under similar conditions, PFOA is less lethal to zebrafish
embryos, though still toxic. The effective concentrations (ECso) of PFOS, at 11 uM, it induces sub-
lethal effects in half of the zebrafish embryo population. These effects include severe developmental
abnormalities such as bent body axis, edema, cloudy tissue formation, and developmental delays,
signaling significant toxicity even at lower concentrations. Whereas PFOA requires a higher
concentration of 29.5 uM to achieve similar sub-lethal effects. This still presents considerable toxicity,
indicating that while PFOA may be less acutely toxic than PFOS, its ability to cause developmental
disruption at higher concentrations.

We explored further into the combined effects of PFOS and PFOA as shown in Table 5, to
examine how varying concentrations of PFOS affect the LDso of PFOA in a mixture. The combination
68 uM PFOS and 16.5 uM PFOA shows that a lower concentration of PFOA is needed to reach the
LDso when PFOS is at a higher concentration. The combination 38 uM PFOS and 29 uM PFOA shows
that an increase in the required LDso concentration of PFOA as the PFOS level is reduced whereas the
combination of 22 uM PFOS and 29.5 uM PFOA showed even with a further reduction in PFOS, the
LDso of PFOA remains similar to that in the 38 uM PFOS scenario. These findings suggest that higher
concentrations of PFOS significantly decrease the concentration of PFOA required to lethally affect
50% of the zebrafish embryos. This pattern of the interaction between PFOS and PFOA indicates a
synergistic effect, where the toxicity of one chemical is enhanced by the presence of another (Table
3). Taken together, these data are providing standalone and combinatory toxicity effects of PFOS and
PFOA. Further, the comparison between the LDso and ECso values for PFOS and PFOA clearly shows
that PFOS is more toxic than PFOA to zebrafish embryos. PFOS not only requires a lower
concentration to be lethal but also affects development at much lower concentrations compared to
PFOA. Finally, these data support the AI-CPTM toxicity and chemical interaction effect predictions.

Table 4. Toxicity of PFOS and PFOA in zebrafish embryos. The LDs and ECso concentrations for
zebrafish embryos exposed to PFOS and PFOA at 2days post fertilization for one day at 33°C. LDso
defined as the lethal dose resulting in the death of 50% of the embryos. ECs is defined as the effective
dose where 50% of the embryos display any abnormality, including bent body axis, edema, cloudy
tissue, developmental delay.

Compound LDso ECso
PFOS 53 uM 11 pM
PFOA 187.5 uM 29.5 uM

Table 5. PFOS and PFOA mixture LDso concentrations. The LDso for PFOA when mixed with PFOS,
were determined at three PFOS concentrations.

Concentration of PFOS Present (uM) 68 uM PFOS 38 uM PFOS 22 uM PFOS

LD50 (added PFOA concentration 16.5 uM PFOA 29 uM PFOA 29.5 uM PFOA
(uM)
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Zebrafish Survival upon exposure to PFOA and PFOS mixtures

PFOS and PFOA Mixture Zebrafish Survival Assay

For the mixed exposure to PFOS and PFOA, the lethal dose (LDso) concentrations were
determined under the same conditions with exposure at 2 dpf for one day at 33°C. A dose-response
curve for PFOA was generated against three predetermined concentrations of PFOS, and the lethal
concentration (LCso) values for PFOA were calculated at each concentration of PFOS (Table 4 and 5).
The Figure 12 shows the survival rates of zebrafish embryos exposed to various concentrations of
PFOS and PFOA as displayed in Table 5. The LDso concentrations for zebrafish embryos exposed to
PFOS and PFOA at 2days post fertilization for one day at 33°C. A dose-response curve for PFOA was
tested against three fixed concentrations of PFOS. LCso concentrations for PFOA combined with
PFOS, were determined at the three fixed PFOS concentrations. A dose-response curve showing
how the survival rate changes with different combinations of PFOS and PFOA. A dose-response
shows decreasing survival rates as the concentration of PFOA increases in the presence of fixed
amounts of PFOS.
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Figure 12. Dose-response of zebrafish survival rates upon exposure to PFOA and PFOS mixtures
(Table 5).

For the study of mixed exposure to PFOS and PFOA, the lethal dose LDs0 concentrations were
established under same conditions, specifically, exposure at 2dpf for one day at a temperature of
33°C. The interaction between PFOS and PFOA was systematically analyzed by generating a dose-
response curve for PFOA across three predetermined concentrations of PFOS. Concurrently, the
lethal concentration LCso values for PFOA were calculated at each of these PFOS levels, as shown in
Table 4 and 5. Figure 12 shows the survival rates of zebrafish embryos subjected to various
concentrations of both PFOS and PFOA, as displayed in Table 5. Additionally, the dose-response
relationship was explored by plotting the survival rates against increasing concentrations of PFOA
in the presence of fixed amounts of PFOS, revealing a trend of decreasing survival as PFOA
concentration increased. This provides a representation of how PFOS and PFOA interact to affect
embryo viability, revealing the PFOS and PFOA mixture synergistic toxicity.

IV. Limitations

This study leverages a machine learning-driven pathophysiology method to evaluate the dose-
dependent toxicity of hazardous chemical mixtures, incorporating experimental validations using
zebrafish embryo assays. Despite achieving promising results, several limitations and areas for future
research should be addressed to enhance the model applicability and reliability. Firstly, the dataset,
although extensive, relies significantly on virtual mixtures to address the lack of empirical data. This
dependency on simulated data introduces potential biases and may limit the generalizability of the
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findings. While the dataset contains 981 experimental mixtures enriched with virtual mixtures, it does
not capture the full spectrum of environmental mixtures, particularly those involving complex
mixers of environmental compounds. This limitation adds potential biases in the AI-HNN model, as
it might not fully represent the diverse chemicals and its interactions encountered in real-world
scenarios. Machine learning algorithms, despite their high accuracy, are susceptible to several biases
that can affect the reliability of toxicity predictions. One key type is sampling bias, which occurs if
the training data does not adequately represent the diversity of real-world chemical mixtures. This
can lead to models that perform well on the training data but fail to generalize to new, hidden data.
Another critical issue is label bias, where inaccuracies or inconsistencies in the labeled data used for
training can skew the model learning process, leading to inaccurate predictions. Furthermore,
algorithmic bias may arise from the way machine learning algorithms prioritize certain features or
patterns over others, potentially ignoring important but less frequent interactions. These biases can
influence the interpretation and generalizability of the results, stress the need for rigorous validation
and refinement of the models. Further, the CPTM pathophysiology model does not fully capture the
toxicokinetics, toxicodynamics, and exposomics of chemical mixtures. Additionally, while zebrafish
embryo assays provide valuable insights into developmental toxicity, they do not fully replicate
human biological responses. This limitation restricts the direct applicability of these findings to
human health risk assessments. The absence of human models in the validation phase further
complicate this issue, as it is important to confirm the relevance of toxicity predictions to human
health. Moreover, while the study addressed additive, synergistic, independent, and antagonistic
interactions among chemicals, it did not explore all possible interactions, particularly those involving
complex mixtures of more than two chemicals. This gap in the analysis means that the model may
not fully account for the comprehensive nature of chemical interactions in the environment.

V. Future Studies

To address these limitations, our future research will focus on expanding the dataset with more
empirical data from diverse environmental and industrial sources, specifically targeting emerging
contaminants such as PFAS and nanoplastics, to improve the accuracy, robustness and
generalizability of the models for the de novo data. We also advancing the machine learning
algorithms that reduce biases and improve the interpretability of toxicity predictions. This will be
complemented by implementing rigorous cross-validation techniques, including external validations
with independent and de novo datasets. We are extending the approach to study more complex
mixtures involving multiple chemicals that will provide deeper insights into their combined or
cumulative effects. The pathophysiology method is expanded by including more advanced
toxicokinetics, toxicodynamics pipeline with exposomics and epidemiological data. Further
improvements will include identifying potential biomarkers and predictive indicators of chemical
toxicity to aid in early detection and intervention strategies. We are incorporating the human cell-
based assays including mechanistic studies to understand the biological pathways and molecular
interactions underlying the observed toxic effects. This would enhance the relevance of the findings
to human health risk assessments, providing more accurate representations of human biological
responses to chemical exposures. The continued development and refinement of AI-CPTM will be
essential for improving our ability to predict toxic and cancer risks posed by hazardous chemical
mixtures, ultimately contributing to better public health outcomes.

VI. Conclusions

In this study, to predict the dose-dependent toxicity of chemicals and their mixtures, we carried
out studies in three primary phases: in the first phase, we deployed machine learning models for
initial toxicity prediction; second phase, we carried out the subsequent integration HNN method with
physiologically based method to enhance predictive accuracy and reliability; in the final phase we
performed statistical, literature, and experimental validation studies. In the beginning, we developed
and tested multiple machine learning models, including binary and multiclass classification and
regression models based on our HNN method, and several other machine learning methods such as
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RF, Bagging, AdaBoost, SVR, GB, KR, DT, and KN. The dataset comprised 981 experimental mixtures
and was expanded with virtual mixtures to address lack of empirical data. We also employed
ensemble of these methods to arrive at consensus score to assess their predictive capabilities. Detailed
statistical analyses were performed to validate the results of the models, and assess reliability and
rigor through stratified 10-fold cross-validation and multiple iterations. Performance metrics
including accuracy, sensitivity, specificity, precision, and AUC were analyzed. Our HNN models
achieved comparatively high accuracies, with AUC values exceeding 90%, demonstrating robust
predictive capabilities. Further, we introduced a novel methodology, AI-CPTM, which integrates a
HNN with our pathophysiology method CPTM for the dose-dependent assessment of hazardous
chemical mixtures. The AI-CPTM integrative approach leverages the predictive power of machine
learning together with the toxicodynamics, toxicokinetics and pathophysiological insights provided
by CPTM.

The integration of HNN predictions with CPTM (AI-CPTM) substantially increased the number
of correctly identified toxic chemical mixtures. The AI-CPTM method demonstrated superior
accuracy in predicting toxicity for the top 100, 200, and 300 ranked mixtures, with performance
improvements from 49% to 99% in some cases. This enhancement underlines the value of combining
machine learning insights with pathophysiological data to refine toxicity predictions. Experimental
validation using zebrafish embryo assays confirmed the predictive capabilities of AI-CPTM. The
method achieved 81% accuracy in predicting toxicity compared to experimental outcomes,
outperforming other ML techniques. The AI-CPTM experimental validations with zebrafish embryo
toxicity assays provided a biological confirmation, and highlighting its potential in identifying toxic
effects at various developmental stages, which are critical endpoints in toxicological studies. These
rigorous validations, including zebrafish embryo toxicity assays, AI-CPTM has shown substantial
improvements in identifying toxic chemical mixtures compared to traditional methods. This
validation emphasizes the practical applicability of AI-CPTM in real-world toxicological assessments
of chemicals and their mixtures.

The AI-CPTM approach not only improved the accuracy of toxicity predictions but also
provided deeper insights into the mechanisms underlying chemical toxicity. The method
demonstrated the ability to predict the toxic effects of complex mixtures, including those involving
PFAS, which are of emerging contaminants of concern. The combination of machine learning and
pathophysiological modeling allowed to include and analyze chemical interactions and their dose-
dependent effects. This integrative approach represents a significant advancement in the field of
environmental toxicology, offering a comprehensive tool for assessing the risks associated with
chemical exposures. Our study highlighted the limitations and potential biases of machine learning
models, emphasizing the need for ongoing refinement and validation. While AI-CPTM showed
marked improvements in predictive accuracy, further research is necessary to ensure its
generalizability across different chemical contexts. Future studies should focus on expanding the
dataset, incorporating human cell model validations, and exploring the effects of more complex
multi-mixture scenarios. Addressing these challenges will be our priority for broadening the
applicability of AI-CPTM and enhancing its utility in regulatory and environmental safety
assessments. The continued development and refinement of AI-CPTM is our priority for improving
our ability to predict and mitigate the risks posed by hazardous chemical mixtures, ultimately
contributing to better environmental and public health outcomes.

Supplementary Materials: The following supporting information can be downloaded at the website
of this paper posted on Preprints.org.
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