
Communication Not peer-reviewed version

Optimal Piecewise Polynomial

Approximation for Minimum Computing

Cost by Using Constrained Least

Squares

Jieun Song and Bumjoo Lee *

Posted Date: 30 May 2024

doi: 10.20944/preprints202405.2074.v1

Keywords: piecewise polynomial, function-approximation, regression, constrained least squares

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/144917

Communication

Optimal Piecewise Polynomial Approximation for

Minimum Computing Cost by Using Constrained

Least Squares

Jieun Song 1 and Bumjoo Lee 2,*

1 Dept. of Electronic Engineering, Myongji University, Korea; song12069595@gmail.com
2 Dept. of Electrical Engineering, Myongji University, Korea

* Correspondence: bjlee@mju.ac.kr

Abstract: In this paper, the optimal approximation algorithm is proposed to simplify non-linear functions

and/or discrete data as piecewise polynomials by using the constrained least squares. In time-sensitive

applications or in embedded systems with limited resources, the runtime of the approximate function is as

crucial as its accuracy. The proposed algorithm search to find the Optimal Piecewise Polynomial (OPP) with

minimum computational cost while ensuring the error below a specified threshold. This was accomplished by

using smooth piecewise polynomials with optimal order and number of intervals. The computational cost only

depends on polynomial complexity, i.e., the order and the number of intervals at runtime function call. For

optimal approximation, computational costs for all the possible combinations of piecewise polynomials were

calculated and tabulated as ascending order for the specific target CPU off-line. Each combination was

optimized through constrained least squares and random selection method for given sample points. Afterward,

whether the approximation error is below the predetermined value is examined. When the error is permissible,

the combination is selected as the optimal approximation or the next combination was examined. To verify the

performance, several representative functions were examined and analyzed.

Keywords: piecewise polynomial; function-approximation; regression; constrained least squares

1. Introduction

In many applications of scientific and engineering fields, approximation for complex function

or data set is important such as compression of ECG signal [1], various voice processing applications

speech recognition, synthesis, and conversion [2,3], and correction of sensor data [4,5]. Numerous

methods have been studied for approximation, with the least squares method being the preferred

choice. Because the least squares method offers high accuracy by minimizing the residuals and is also

simple to implement in a computer program. Formulating the optimal coefficients as least squares

problems dates back to Gendre (1805) and Gauss (1809). The first application can be found by

Gergonne in 1815 [6]. Therefore, in this paper, the least squares method is employed for

approximation.

The approximation error at the sample points generally tends to decrease as high-order

polynomials are used, while this causes the overfitting which gives large oscillation between sample

points. To resolve the overfitting, it is recommended to use lower-order polynomials by splitting the

sections. In the case of using piecewise polynomials, it takes less computation time than using a single

high-order polynomial with the same approximation error. Since the maximum number of intervals

and orders depend on the number of samples and complexity, several researches have been proposed

to find the appropriate order and number of intervals. In [7–10], piecewise polynomial fitting was

proposed. [7] proposed Least Squares Piece fitting using a cubic polynomial. [9] used a method of

adjusting the boundary of the segments to increase the operation speed, and [10] used Piecewise

Polynomial Modeling to lower the error rate. However, in [8–10], there is a limitation that the order

of the polynomial must be determined by the user. In [4], the whole domain is evenly divided into

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202405.2074.v1
http://creativecommons.org/licenses/by/4.0/

 2

several intervals, and each interval was approximated by a cubic polynomial using the least squares

method with the constraint that it had continuity in all boundaries. [11–13] proposed an

approximation method using Piecewise Linear Approximation (PLA). [14] proposed a method using

several linear functions and then moving the endpoints of the interval appropriately to reduce the

approximation error of the interval.

There are two considerations when approximating with piece-wised polynomials: the order of

polynomials and the number of intervals. The higher order of polynomials needs more computational

cost. Further, this may cause overfitting. Therefore, it is necessary to determine the appropriate order

of the polynomials. When using approximated function, i.e. piece-wised function, it requires

additional steps to determine the subdomain corresponding to input value. If there are many

intervals, the approximation precision increases. But more time also needed to determine subdomain.

So, the order and the number of polynomials should be balanced and optimized. In order to take this,

optimization scheme is proposed in contrast with [4–14] which utilize predetermined polynomial

order and number of polynomials.

Several researches are adopted optimization methods for curve fitting. Among the optimization

methods, hp-adaptive pseudo-spectral method, proposed in [15], is most similar to the algorithm

proposed in this paper. The method determines the locations of segment breaks and the order of the

polynomial in each segment. To be more specific, when the error within a segment displays a

consistent pattern, the number of collocation points is increased. On the other hand, if there are

isolated points with significantly higher errors than the rest of the segments, then the segment is split

at those points. It produced solutions with better accuracy than global pseudo-spectral collocation

while utilizing less computational time and resources. The hp-adaptive pseudo-spectral method and

the optimal piecewise polynomial (OPP) function-approximation algorithm, proposed in this paper,

are similar in that they increase accuracy by increasing the number of orders and intervals. While the

OPP function-approximation algorithm compares computational costs to obtain an approximation of

the minimum cost while satisfying the error norm construct for approximation.

As seen in Figure 1, approximation is processed by finding the optimized order and number of

intervals that satisfy the error norm constraint with minimum computational cost. To do this, the

algorithm adopts two cost functions. One is for the approximation error that is used by the least

squares. The calculated approximation error is compared with the error norm construct for

approximation. The other is computational cost function. It means program run time to calculate

value of function for input value, x, and is composed of two runtime costs: cost for polynomial

function call and cost for binary search tree to determine the relevant interval. In order words, the

computational cost is calculated given the order of polynomial and the number of intervals. The costs

for all possible combinations are calculated and sorted in ascending order offline. This is used to

search for the order and number of intervals with the minimum cost satisfying the error constraint.

Therefore, the OPP function-approximation algorithm is useful in systems that must be efficient to

compute, such as real-time systems and embedded systems. When approximating, if the

approximation functions of each interval are placed independently, discontinuity occurs over the

entire interval. To address this, a constraint has been introduced using the Lagrange multiplier

method to smoothly connect the approximation functions of each interval.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

https://doi.org/10.20944/preprints202405.2074.v1

 3

Figure 1. OPP function-approximation algorithm overview.

This paper is organized as follows. In Section 2, previous knowledge, related to the algorithms

proposed Section 3, is described. In Section 4, the algorithm is examined with representative test

functions. Subsequently, the OPP function-approximation algorithm is discussed and further work,

to improve the performance, is proposed in Section 5.

2. Preliminaries

2.1. Nomenclature

The algorithm and all formulas in this study use the notation in Table 1. The symbols necessary

to understand the algorithm are as follows: 𝑎𝑘,𝑖 means the coefficient of the 𝑖𝑡ℎ order term of the 𝑘𝑡ℎ

polynomial. 𝒒𝑘 represents the coefficients of the approximation polynomial in the 𝑘𝑡ℎ interval as a

vector, and 𝒒 is a (𝑚 + 1)𝑛 vector concatenated all 𝒒𝑘. 𝑐𝑎 is the approximation cost and 𝑐𝑐 is the

computational cost at runtime. 𝑚∗ and 𝑛∗ mean the optimal polynomial order and the number of

intervals, respectively. Where ∗ describes optimized value for 𝑐𝑎 within 𝜖𝑎 and minimum 𝑐𝑐 .

Scalars, vectors and matrices are written in lowercase, lowercase boldface and uppercase boldface,

respectively.

Table 1. Significations of symbols.

Symbol Signification

𝑓(𝑥) Function to approximate

𝑥𝑘,𝑗 The 𝑗𝑡ℎ sample in the 𝑘𝑡ℎ interval

𝑦𝑘,𝑗 The 𝑗𝑡ℎ function value in the 𝑘𝑡ℎ interval

𝜂(𝑘) Number of samples for the 𝑘𝑡ℎ interval

𝑚 Polynomial order

𝑛 Number of intervals

𝒒𝑘 (𝑚 + 1) × 1 vector of polynomial coeffs in the 𝑘𝑡ℎ interval

𝒒 (𝑚 + 1)𝑛 × 1 vector concatenated all 𝒒𝑘

𝑎𝑘,𝑖 Coefficient of the 𝑖𝑡ℎ order term for the 𝑘𝑡ℎ polynomial

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

https://doi.org/10.20944/preprints202405.2074.v1

 4

𝒗 (𝑛 + 1) × 1 vector of boundary values

𝑐𝑎 Average sum of error squares at sample points

𝜖𝑎 Error norm constraint for approximation

𝑐𝑐(𝑚, 𝑛)
Computational cost according to (𝑚, 𝑛) polynomial expressed by CPU instruction

cycles

(𝑚∗, 𝑛∗) (𝑚, 𝑛) for the minimal computational cost with |𝑐𝑐(𝑚, 𝑛)| ≤ 𝜖𝑎

𝑝𝑘 Approximation polynomial for the 𝑘𝑡ℎ interval

2.2. Formulation of Constrained Least Squares

The least squares method is a representative approach in regression analysis to approximate

functions or discrete samples by minimizing the sum of the squares of the residuals made in the

results of each individual equation. The residual, is the difference between the given sample and the

approximate value, represented by weighted squares as shown in (1). The matrix form of the least

squares algorithm is represented as follows:

𝑒 =
1

2
∑((𝒚𝑘 − 𝑭𝑘 𝒒𝑘)

𝑇𝑾𝑘(𝒚𝑘 − 𝑭𝑘𝒒𝑘)

𝑛

𝑘=1

 (1)

where 𝑭𝑘 =

[

1 𝑥𝑘,1 𝑥𝑘,1

2 ⋯ 𝑥𝑘,1
𝑚

1 𝑥𝑘,2 𝑥𝑘,2
2 ⋯ 𝑥𝑘,2

𝑚

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑘,𝜂(𝑘) 𝑥𝑘,𝜂(𝑘)

2 ⋯ 𝑥𝑘,𝜂(𝑘)
𝑚

]

, 𝐲𝑘 = [𝑦𝑘,1 ⋯ 𝑦𝑘,𝜂(𝑘)]𝑇, and

𝒒𝑘 = [𝑎𝑘,0 𝑎𝑘,1 ⋯𝑎𝑘,𝑚]
𝑇
. The least squares algorithm is accomplished by finding 𝒒 which makes the

partial differential of error, i.e. the gradient, to be 0. Consequently, this leads to optimal polynomials

with the minimum average of the residual sum of squares at sample points. For the sake of simplicity,

Equation (1) can be shortened into a single monomial expression using sparse diagonal matrix 𝑭 as

follows:

𝑒 =
1

2
(𝒚 − 𝑭𝒒)𝑇𝑾(𝒚 − 𝑭𝒒) (2)

where 𝑭 = diag(𝑭𝑘), 𝒚 = [𝒚1
𝑇 ⋯ 𝒚𝑛

𝑇]𝑇 , and 𝒒 = [𝒒1
𝑇 ⋯ 𝒒𝑛

𝑇]𝑇 . The polynomial, 𝑝𝑘 , should be

smooth at the boundaries, 𝒗𝑘−1 and 𝒗𝑘, with adjacent polynomials, 𝑝𝑘−1 and 𝑝𝑘+1, respectively.

Without loss of generality, in the proposed algorithm the 1st order differentiability was appended as

constraint, 𝑮𝒒 = 𝟎 for the smoothness. Note that if necessary, it is possible to increase the order for

differentiability at the intersection of the adjacent intervals. Consequently, Equation (2) was modified

with Lagrange Multiplier, 𝝀 as follows:

𝑒 =
1

2
(𝒚 − 𝑭𝒒)𝑇𝑾(𝒚 − 𝑭𝒒) + 𝝀𝑇𝑮 (3)

where 𝑮 = diag(𝑮𝑘) and 𝑮𝑙 = [
1 𝒗𝑘 ⋯ 𝒗𝑘

𝑚 −1 −𝒗𝑘 ⋯ −𝒗𝑘
𝑚

0 1 ⋯ 𝑚𝒗𝑘
𝑚−1 0 −1 ⋯ −𝑚𝒗𝑘

𝑚−1] . By partial

differentiation of (3) with respect to 𝒒 and 𝝀, two equations are obtained, that is
𝜕

𝜕𝑞
𝑒 = 𝟎 and 𝑮𝒒 = 𝟎.

By solving the above equation, the optimal coefficients, which minimize 𝑐𝑎, are obtained.

𝒒 = 𝑯(−𝑮𝑇(𝑮𝑯𝑮𝑇)−1𝑮𝑯𝑭𝑇𝑾𝑇𝒚 + 𝑭𝑇𝑾𝑇𝒚) (4)

where 𝑯 = (𝑭𝑇𝑾𝑇𝑭)−1.

3. OPP Approximation

3.1. Overall Algorithm Flow

The proposed algorithm is aimed at use in systems where computing time is critical, such as

real-time systems and/or embedded systems. At algorithm runtime, it is particularly important to

reduce function call times. Since the approximate function is composed of several polynomials, it

needs to know how much time is required to execute the function at runtime. To do this, the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

https://doi.org/10.20944/preprints202405.2074.v1

 5

computational cost function was defined from the four arithmetic operations and binary search tree.

This is explained in more detail in the next subsection. Offline, based on the computational cost

function, an approximation polynomial with the smallest calculation time is obtained, then used to

the system.

The overall flow for the OPP approximation is described in Figure 2. First, the maximum values

of polynomial order, 𝑚𝑚𝑎𝑥 , and the number of intervals, 𝑛𝑚𝑎𝑥 , to explore was set. Afterward,

computational cost for all possible combinations of the number of intervals and the order is calculated

and tabulated in ascending order (𝑚 ∈ [2,𝑚𝑚𝑎𝑥], 𝑛 ∈ [1, 𝑛𝑚𝑎𝑥]). Subsequently, 𝒒 and 𝑐𝑎 are

calculated using the constrained least squares for the 𝑘𝑡ℎ pair (𝑚, 𝑛)𝑘, the sample points (𝑥, 𝑦), and

the polynomial intervals 𝒗. This is repeated with randomly selected 𝒗 for 𝑁 times and the case

with the smallest 𝑐𝑎 was selected. If 𝑐𝑎 is greater than 𝜖𝑎, the next pair (𝑚, 𝑛)𝑘+1 is examined and,

𝒒 and 𝑐𝑎 are calculated again. The loop is repeated until 𝑐𝑎 is less than 𝜖𝑎 . When 𝑐𝑎 becomes

smaller than 𝜖𝑎 , the piecewise polynomials with the order and the number of intervals are

determined as optimized approximate. If 𝑐𝑎 of the pair (𝑚, 𝑛)𝑚𝑎𝑥 is greater than 𝜖𝑎 about the pair,

it is considered that finding the piecewise polynomial approximation function is failed in the

specified range. In this case, it is possible to continue searching by larger 𝑚𝑚𝑎𝑥 and/or 𝑛𝑚𝑎𝑥 or by

relaxing 𝜖𝑎.

Figure 2. Overall Algorithm Flow for OPP Approximation.

3.2. Computational Cost

In this section, the computational cost is described. Since the approximated function is piece-

wised with several polynomials, at runtime it takes two kinds of computation times: the time for a

single polynomial computation and the time for selecting specific polynomial. Therefore, the

computational cost function is defined as follows:

𝑐𝑐(𝑚, 𝑛) = 𝑐𝑝 + 𝑐𝑏 (5)

Computing time for a single polynomial depends on the order of polynomial. This is defined as

𝑐𝑝(𝑚) as follows:

𝑐𝑝(𝑚) = 𝑛𝑎𝑟𝑎 + 𝑛𝑟𝑟𝑟𝑚 + 𝑛𝑓𝑟𝑓𝑚 (6)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

https://doi.org/10.20944/preprints202405.2074.v1

 6

where 𝑛𝑎, 𝑛𝑟, and 𝑛𝑓 are the number of assignments, arithmetic, and ‘for’ instructions, respectively.

In addition, 𝑟𝑎, 𝑟𝑟, and 𝑟𝑓 are cycle counts of assignment, arithmetic, and ‘for’ instructions. 𝑚, the

order of polynomial, means repetition count.

Since the approximate function is implemented with several polynomials, the clock cycles are

required for the binary search which is to find the suitable intervals for a certain input 𝑥. This is

defined as 𝑐𝑏 and is determined as the average of the short path case and long path case in a binary

search tree. Two examples are illustrated in Figure 3.

(a)

(b)

Figure 3. Binary search tree to select a suitable polynomial corresponding to input value (a) Example

1: 𝑛 = 6; (b) Example 2: 𝑛 = 9.

Since the average clock cycles to determine the corresponding polynomial depends on the

probability for which the input is in a certain interval, 𝑐𝑏 is a probability distribution function for

input value. For the sake of simplicity, the probability that an input is in a particular interval is the

same for all intervals. Consequently, the costs associated with the number of intervals are as follows:

𝑐𝑏 = 𝑐𝑏𝑠𝑝𝑠 + 𝑐𝑏𝑙𝑝𝑙 (7)

where 𝑐𝑏𝑠 = (𝑑𝑚 − 1)(𝑛𝑎𝑟𝑎 + 𝑛𝑑𝑟𝑑 + 𝑛𝑟𝑟𝑟 + 𝑛𝑤𝑟𝑤 + 𝑛𝑖𝑟𝑖) , 𝑝𝑠 = 𝑛𝑠/𝑛 , 𝑐𝑏𝑙 = 𝑑𝑚(𝑛𝑎𝑟𝑎 + 𝑛𝑑𝑟𝑑 + 𝑛𝑟𝑟𝑟 +

𝑛𝑤𝑟𝑤 + 𝑛𝑖𝑟𝑖), and 𝑝𝑙 = 𝑛𝑙/𝑛. 𝑐𝑏𝑠 and 𝑐𝑏𝑙 represent binary search tree cost for the short path and the

long, respectively. Similarly, 𝑛𝑠 and 𝑛𝑙 are the number of the short path and the long path,

respectively. Note that 𝑛𝑠 + 𝑛𝑙 = 𝑛. 𝑑𝑚 means the depth of the tree and is an integer value satisfying

2𝑑𝑚−1 ≤ 𝑛 < 2𝑑𝑚 . In addition, 𝑛𝑑 , 𝑛ℎ , and 𝑛𝑖 are the number of divisions, ‘while’, and ‘if’

instructions, respectively. Finally, 𝑟𝑑 , 𝑟ℎ , and 𝑟𝑖 are cycle counts of division, ‘while’ and ‘if’

instruction for ARM Cortex-M7 core, respectively. The calculated 𝑐𝑐(𝑚, 𝑛) is organized into a table

by 𝑚 and 𝑛 (see Figure 4) and it is sorted in ascending order. In this paper, it is a priority to increase

𝑚 when the costs are the same.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

https://doi.org/10.20944/preprints202405.2074.v1

 7

Figure 4. Computational cost according to the order of polynomial(𝒎) and the num. of intervals(𝒏)

(𝒎𝒎𝒂𝒙 = 𝟏𝟎, 𝒏𝒎𝒂𝒙 = 𝟐𝟎).

4. Experimental Results

In order to verify the performance of the proposed OPP algorithm, it was implemented using

MATLAB with several nonlinear functions. In this experiment, we set the number of samples to 100,

𝑚𝑚𝑎𝑥 = 10, 𝑛𝑚𝑎𝑥 = 20, and 𝜖𝑎 = 0.0001. And the boundary values are determined as the value

when the approximate error is the smallest after changing 100 times randomly. Figure 5 is the result

of approximation for the logarithmic function. The logarithmic function was chosen as the test

function because there are many sensors whose output results are logarithmic, such as temperature

sensors and distance sensors. Figure 6 is approximation results for the sine function that is frequently

used in many applications. Figures 7 and 8 show approximate results for triangular and square

functions, respectively. The triangular function is adopted to examine an approximation to the

continuous nonlinear function with undifferentiable points. In Figure 7, approximate with a smooth

curve at a sharp point. And the square function is used to curve fitting the function which has

discontinuous points. Figure 8 shows that overfit occurs in the section where the value changes

rapidly, resulting in oscillation. Figure 9 is the result of approximation of the sigmoid function. The

sigmoid function, also known as the logistic function, is commonly used in various fields such as

neural networks, machine learning, and statistics. Figure 10 is the result of approximation for the

ReLU function which is one of the most commonly used activation functions in deep learning models.

Figure 11 is the result of the user specified function for testing a nonlinear function that is more

complex than the previous differential functions across all intervals. The function is represented as

follows:

𝑦 =
1

1 + 𝑒−𝑥
+ sin(𝑥) − ln(𝑥) (8)

Overall, the approximation for continuous and differentiable functions over all intervals is a

satisfactory result. However, in functions with continuous but undifferentiable points and functions

with discontinuous points, they have less accurate and higher 𝑐𝑐(𝑚, 𝑛) than continuous functions.

This can be solved by increasing the sample point. Another way is to vibrate the boundary value,

which will be studied later.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

https://doi.org/10.20944/preprints202405.2074.v1

 8

Figure 5. Approximation for 𝑙𝑛(𝑥), (
0.1 ≤ 𝑥 ≤

20
), (𝑚∗, 𝑛∗) = (5,2) and the error is 3.3249 × 10−05.

Figure 6. Approximation for sin(𝑥), (−4 ≤ 𝑥 ≤ 4), (𝑚∗, 𝑛∗) = (4,2) and the error is 2.0771 × 10−05.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

https://doi.org/10.20944/preprints202405.2074.v1

 9

Figure 7. Approximation for sawtooth(𝑥), (−4 ≤ 𝑥 ≤ 4), (𝑚∗, 𝑛∗) = (4,6) and the error is 1.8994 ×

10−05.

Figure 8. Approximation for square(𝑥) , (−4 ≤ 𝑥 ≤ 4) , (𝑚∗, 𝑛∗) = (4,14) and the error is

5.4552𝑒−05.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

https://doi.org/10.20944/preprints202405.2074.v1

 10

Figure 9. Approximation for
𝟏

𝟏+𝒆−𝒙
, (−4 ≤ 𝑥 ≤ 4), (𝑚∗, 𝑛∗) = (2,2) and the error is 2.8652𝑒−05.

Figure 10. Approximation for max(0, 𝑥) , (−4 ≤ 𝑥 ≤ 4) , (𝑚∗, 𝑛∗) = (2,3) and the error is

1.5845𝑒−05.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

https://doi.org/10.20944/preprints202405.2074.v1

 11

Figure 11. Approximation for (8), (0.1 ≤ 𝑥 ≤ 10), (𝑚∗, 𝑛∗) = (4,4), at the error is 2.9888𝑒−05.

5. Conclusions

To approximate complex function or discrete sample points, Optimal Piecewise Polynomial

(OPP) function-approximation algorithm was proposed. The maximum values of polynomial order

and the number of intervals to explore are preset, and the computational cost is calculated to

determine the order and number of intervals for the approximation function. Then the combination

of the order and the number of intervals is sorted in ascending order based on computational cost

offline. Subsequently, the coefficient of the polynomial and the approximation error at the sample

points are determined using constrained least squares. If the error is greater than the given error

bound, the next combination is examined until the error is less than the bound. Ultimately, the OPP

function-approximation algorithm determines the fastest approximation function at runtime within

permissible error. The performance of the proposed algorithm has been demonstrated through

several nonlinear functions.

There are some further works to obtain a more accurate approximation function. In this paper,

the optimal intervals were obtained by random sampling, i.e. Mote Carlo method. To improve the

performance, gradient-based method will be also applied to determine the optimal boundaries which

minimizes the approximation error. Moreover, the performance will be verified and analyzed by

experiments with actual embedded systems.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the

Korea government (MSIP) (No. NRF-2020R1A2C1010891).

References

1. Nygaard, R.; Haugland, D. Compressing ECG signals by piecewise polynomial approximation. in

Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing 1998, 3, 1809-1812. doi:

10.1109/ICASSP.1998.681812

2. Ghosh, P. K.; Narayanan, S. S. Pitch contour stylization using an optimal piecewise polynomial

approximation. IEEE signal processing letters 2009, 16, 810-813. doi: 10.1109/LSP.2009.2025824

3. Ravuri, S.; Ellis, D. P. Stylization of pitch with syllable-based linear segments. IEEE International Conference

on Acoustics, Speech and Signal Processing 2008, 3985-3988. doi: 10.1109/ICASSP.2008.4518527

4. Kim, J. B.; Kim, B. K. The Calibration for Error of Sensing using Smooth Least Square Fit with Regional

Split(SLSFRS) Korea Automatic Control Conference 2009, 735-739.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

https://doi.org/10.20944/preprints202405.2074.v1

 12

5. Dong, N.; Roychowdhury, J. Piecewise polynomial nonlinear model reduction in Proceedings of the 40th

annual Design Automation Conference 2003 484-489. doi: 10.1145/775832.775957

6. Stigler, S.M. Gergonne’s 1815 paper on the design and analysis of polynomial regression experiments Hist.

Math. 1974, 1, 431–439. dio: 10.1016/0315-0860(74)90033-0

7. Ferguson, J.; Staley, P. A. Least squares piecewise cubic curve fitting Communications of the ACM 1973, 16,

380-382. dio: 10.1145/362248.362276

8. Pavlidis, T.; Horowitz, S. L. Segmentation of plane curves IEEE Trans. Comput 1974, C-23, 860-870. dio:

10.1109/T-C.1974.224041

9. Gao, J.; Ji, W.; Zhang, L.; Shao, S.; Wang, Y.; Shi, F. Fast piecewise polynomial fitting of time-series data for

streaming computing IEEE Access 2020, 8, 43764–43775. dio: 10.1109/ACCESS.2020.2976494

10. Cunis, T.; Burlion, L.; Condomines, J.-P. Piecewise polynomial modeling for control and analysis of aircraft

dynamics beyond stall Guid. Control Dyn. 2019, 42, 949–957. dio: 10.2514/1.G003618

11. Eduardo, C.; Luiz, F.N. Models and Algorithms for Optimal Piecewise-Linear Function Approximation.

Math. Probl. Eng. 2015, 2015, 876862. dio: 10.1155/2015/876862

12. Grützmacher, F.; Beichler, B.; Hein, A.; Kirste, T.; Haubelt, C. Time and Memory Efficient Online Piecewise

Linear Approximation of Sensor Signals Sensors 2018, 18, 1672. dio: 10.3390/s18061672

13. Marinov, M.B.; Nikolov, N.; Dimitrov, S.; Todorov, T.; Stoyanova, Y.; Nikolov, G.T. Linear Interval

Approximation for Smart Sensors and IoT Devices Sensors 2022, 22, 949. dio: 10.3390/s22030949

14. Liu, B.; Liang, Y. Optimal function approximation with ReLU neural networks Neurocomputing 2021, 435,

216-227. doi: 10.1016/j.neucom.2021.01.007

15. Darby, C. L.; Hager, W. W.; Rao, A. V. An hp-adaptive pseudospectral method for solving optimal control

problems. Optimal Control Applications and Methods Optimal Control Applications and Methods 2011, 32,

476-502. doi: 10.1002/oca.957

16. M.OWEN. Cortex-M7 instruction cycle counts, timings, and dual-issue combinations. Available online:

https://www.quinapalus.com/cm7cycles.html (accessed on 20 March 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

https://doi.org/10.20944/preprints202405.2074.v1

