Pre prints.org

Communication Not peer-reviewed version

Optimal Piecewise Polynomial
Approximation for Minimum Computing
Cost by Using Constrained Least
Squares

Jieun Song and Bumijoo Lee .
Posted Date: 30 May 2024
doi: 10.20944/preprints202405.2074.v1

Keywords: piecewise polynomial, function-approximation, regression, constrained least squares

[ORt|0] Preprints.org is a free multidiscipline platform providing preprint service that

il is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of

OF: Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/144917

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Communication

Optimal Piecewise Polynomial Approximation for
Minimum Computing Cost by Using Constrained
Least Squares

Jieun Song ! and Bumjoo Lee 2*

1 Dept. of Electronic Engineering, Myongji University, Korea; song12069595@gmail.com
2 Dept. of Electrical Engineering, Myongji University, Korea
* Correspondence: bjlee@mju.ac.kr

Abstract: In this paper, the optimal approximation algorithm is proposed to simplify non-linear functions
and/or discrete data as piecewise polynomials by using the constrained least squares. In time-sensitive
applications or in embedded systems with limited resources, the runtime of the approximate function is as
crucial as its accuracy. The proposed algorithm search to find the Optimal Piecewise Polynomial (OPP) with
minimum computational cost while ensuring the error below a specified threshold. This was accomplished by
using smooth piecewise polynomials with optimal order and number of intervals. The computational cost only
depends on polynomial complexity, i.e., the order and the number of intervals at runtime function call. For
optimal approximation, computational costs for all the possible combinations of piecewise polynomials were
calculated and tabulated as ascending order for the specific target CPU off-line. Each combination was
optimized through constrained least squares and random selection method for given sample points. Afterward,
whether the approximation error is below the predetermined value is examined. When the error is permissible,
the combination is selected as the optimal approximation or the next combination was examined. To verify the
performance, several representative functions were examined and analyzed.

Keywords: piecewise polynomial; function-approximation; regression; constrained least squares

1. Introduction

In many applications of scientific and engineering fields, approximation for complex function
or data set is important such as compression of ECG signal [1], various voice processing applications
speech recognition, synthesis, and conversion [2,3], and correction of sensor data [4,5]. Numerous
methods have been studied for approximation, with the least squares method being the preferred
choice. Because the least squares method offers high accuracy by minimizing the residuals and is also
simple to implement in a computer program. Formulating the optimal coefficients as least squares
problems dates back to Gendre (1805) and Gauss (1809). The first application can be found by
Gergonne in 1815 [6]. Therefore, in this paper, the least squares method is employed for
approximation.

The approximation error at the sample points generally tends to decrease as high-order
polynomials are used, while this causes the overfitting which gives large oscillation between sample
points. To resolve the overfitting, it is recommended to use lower-order polynomials by splitting the
sections. In the case of using piecewise polynomials, it takes less computation time than using a single
high-order polynomial with the same approximation error. Since the maximum number of intervals
and orders depend on the number of samples and complexity, several researches have been proposed
to find the appropriate order and number of intervals. In [7-10], piecewise polynomial fitting was
proposed. [7] proposed Least Squares Piece fitting using a cubic polynomial. [9] used a method of
adjusting the boundary of the segments to increase the operation speed, and [10] used Piecewise
Polynomial Modeling to lower the error rate. However, in [8-10], there is a limitation that the order
of the polynomial must be determined by the user. In [4], the whole domain is evenly divided into

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202405.2074.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

several intervals, and each interval was approximated by a cubic polynomial using the least squares
method with the constraint that it had continuity in all boundaries. [11-13] proposed an
approximation method using Piecewise Linear Approximation (PLA). [14] proposed a method using
several linear functions and then moving the endpoints of the interval appropriately to reduce the
approximation error of the interval.

There are two considerations when approximating with piece-wised polynomials: the order of
polynomials and the number of intervals. The higher order of polynomials needs more computational
cost. Further, this may cause overfitting. Therefore, it is necessary to determine the appropriate order
of the polynomials. When using approximated function, i.e. piece-wised function, it requires
additional steps to determine the subdomain corresponding to input value. If there are many
intervals, the approximation precision increases. But more time also needed to determine subdomain.
So, the order and the number of polynomials should be balanced and optimized. In order to take this,
optimization scheme is proposed in contrast with [4-14] which utilize predetermined polynomial
order and number of polynomials.

Several researches are adopted optimization methods for curve fitting. Among the optimization
methods, hp-adaptive pseudo-spectral method, proposed in [15], is most similar to the algorithm
proposed in this paper. The method determines the locations of segment breaks and the order of the
polynomial in each segment. To be more specific, when the error within a segment displays a
consistent pattern, the number of collocation points is increased. On the other hand, if there are
isolated points with significantly higher errors than the rest of the segments, then the segment is split
at those points. It produced solutions with better accuracy than global pseudo-spectral collocation
while utilizing less computational time and resources. The hp-adaptive pseudo-spectral method and
the optimal piecewise polynomial (OPP) function-approximation algorithm, proposed in this paper,
are similar in that they increase accuracy by increasing the number of orders and intervals. While the
OPP function-approximation algorithm compares computational costs to obtain an approximation of
the minimum cost while satisfying the error norm construct for approximation.

As seen in Figure 1, approximation is processed by finding the optimized order and number of
intervals that satisfy the error norm constraint with minimum computational cost. To do this, the
algorithm adopts two cost functions. One is for the approximation error that is used by the least
squares. The calculated approximation error is compared with the error norm construct for
approximation. The other is computational cost function. It means program run time to calculate
value of function for input value, x, and is composed of two runtime costs: cost for polynomial
function call and cost for binary search tree to determine the relevant interval. In order words, the
computational cost is calculated given the order of polynomial and the number of intervals. The costs
for all possible combinations are calculated and sorted in ascending order offline. This is used to
search for the order and number of intervals with the minimum cost satisfying the error constraint.
Therefore, the OPP function-approximation algorithm is useful in systems that must be efficient to
compute, such as real-time systems and embedded systems. When approximating, if the
approximation functions of each interval are placed independently, discontinuity occurs over the
entire interval. To address this, a constraint has been introduced using the Lagrange multiplier
method to smoothly connect the approximation functions of each interval.

https://doi.org/10.20944/preprints202405.2074.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

4{ OPP Approxmation }7
‘| Approximation conditions ’—

Minimum
computational
cost (c;)

h 4

Error norm
constraint (€,)

° o ° Approximation

o ° ° -

n:ﬂ y

X

Discrete Data

or

"
vy U V3 Upoq VX
n equations of m-th order

Continuous Data X

Online Prediction

Figure 1. OPP function-approximation algorithm overview.

This paper is organized as follows. In Section 2, previous knowledge, related to the algorithms
proposed Section 3, is described. In Section 4, the algorithm is examined with representative test
functions. Subsequently, the OPP function-approximation algorithm is discussed and further work,
to improve the performance, is proposed in Section 5.

2. Preliminaries
2.1. Nomenclature

The algorithm and all formulas in this study use the notation in Table 1. The symbols necessary
to understand the algorithm are as follows: a;; means the coefficient of the i** order term of the k**
polynomial. g, represents the coefficients of the approximation polynomial in the k** interval as a
vector, and q is a (m + 1)n vector concatenated all q,. ¢, is the approximation cost and c, is the
computational cost at runtime. m” and n* mean the optimal polynomial order and the number of
intervals, respectively. Where * describes optimized value for c, within €, and minimum c,.
Scalars, vectors and matrices are written in lowercase, lowercase boldface and uppercase boldface,

respectively.

Table 1. Significations of symbols.

Symbol Signification

fx) Function to approximate

Xy The j*™* sample in the k' interval

Vi,j The j** function value in the k" interval

n(k) Number of samples for the k™ interval
m Polynomial order
n Number of intervals
qx (m + 1) x 1 vector of polynomial coeffs in the k** interval
q (m+ 1)n x 1 vector concatenated all q

Qpi Coefficient of the i*" order term for the k* polynomial

https://doi.org/10.20944/preprints202405.2074.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

4
v (n + 1) x 1 vector of boundary values
Cq Average sum of error squares at sample points
€q Error norm constraint for approximation
c.(m,n) Computational cost according to (m,n) polynomial expressed by CPU instruction
' cycles
(m*,n") (m,n) for the minimal computational cost with |c.(m,n)| < €,
Pk Approximation polynomial for the k™" interval

2.2. Formulation of Constrained Least Squares

The least squares method is a representative approach in regression analysis to approximate
functions or discrete samples by minimizing the sum of the squares of the residuals made in the
results of each individual equation. The residual, is the difference between the given sample and the
approximate value, represented by weighted squares as shown in (1). The matrix form of the least
squares algorithm is represented as follows:

n
1
e= EZ((yk — Fi qy)TWk(}’k - Frqy) M
k=1
1 Xk,1 xl%,l xlrcr,l1
2 m
where F, =1 k2 Ykz Rz |y o Vo], and
1 Xenty Xiknao 7 Xt

q, = [ak_o Qpq ak,m]T. The least squares algorithm is accomplished by finding q which makes the
partial differential of error, i.e. the gradient, to be 0. Consequently, this leads to optimal polynomials
with the minimum average of the residual sum of squares at sample points. For the sake of simplicity,
Equation (1) can be shortened into a single monomial expression using sparse diagonal matrix F as
follows:

1
e=50-FO'W(Q-Fq))

where F =diag(F), y=I[y] - 7], and q=1[q] - q%]". The polynomial, p;, should be
smooth at the boundaries, v,_; and vy, with adjacent polynomials, p;_; and py.,, respectively.
Without loss of generality, in the proposed algorithm the 1st order differentiability was appended as
constraint, Gq = 0 for the smoothness. Note that if necessary, it is possible to increase the order for
differentiability at the intersection of the adjacent intervals. Consequently, Equation (2) was modified
with Lagrange Multiplier, 4 as follows:

1
e=50-FQ)'W(y—Fq)+27G A3)
. [v e v -1 —v, - vy)
where G =diag(G,) and G, = [0 1 e mpnt 0 1 e —mv}{”_l] By partial

differentiation of (3) with respect to q and 4, two equations are obtained, that is ;—qe =0 and Gq =0.

By solving the above equation, the optimal coefficients, which minimize c,, are obtained.
q=H(—G"(GHG")'GHF"W"y + FTW"y) 4)
where H = (FTWTF)™1,

3. OPP Approximation
3.1. Overall Algorithm Flow

The proposed algorithm is aimed at use in systems where computing time is critical, such as
real-time systems and/or embedded systems. At algorithm runtime, it is particularly important to
reduce function call times. Since the approximate function is composed of several polynomials, it
needs to know how much time is required to execute the function at runtime. To do this, the

https://doi.org/10.20944/preprints202405.2074.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

computational cost function was defined from the four arithmetic operations and binary search tree.
This is explained in more detail in the next subsection. Offline, based on the computational cost
function, an approximation polynomial with the smallest calculation time is obtained, then used to
the system.

The overall flow for the OPP approximation is described in Figure 2. First, the maximum values
of polynomial order, m,,,, and the number of intervals, n,,,, to explore was set. Afterward,
computational cost for all possible combinations of the number of intervals and the order is calculated
and tabulated in ascending order (m € [2,Myqy], N € [1,Nypay]). Subsequently, q¢ and ¢, are
calculated using the constrained least squares for the k™ pair (m,n),, the sample points (x,y), and
the polynomial intervals v. This is repeated with randomly selected v for N times and the case
with the smallest ¢, was selected. If c, is greater than €,, the next pair (m,n);,, is examined and,
q and c, are calculated again. The loop is repeated until c, is less than €,. When c, becomes
smaller than €,, the piecewise polynomials with the order and the number of intervals are
determined as optimized approximate. If ¢, of the pair (m,n),,,, is greater than €, about the pair,
it is considered that finding the piecewise polynomial approximation function is failed in the
specified range. In this case, it is possible to continue searching by larger my,,, and/or n,g, or by
relaxing €,.

Compute Computational
Costs according to (m,n)

Sort Computational Costs
in ascending order

]

Initialize Matrix
with Given vy, my, ny

Compute Least Squares

for Optimal Polynomial

Compute Approximation

Error (c,(my, ny))

no

yes

no
Return OPP @

yes
Fail to Find Optimal

Piecewise-Polynomial

Figure 2. Overall Algorithm Flow for OPP Approximation.

3.2. Computational Cost

In this section, the computational cost is described. Since the approximated function is piece-
wised with several polynomials, at runtime it takes two kinds of computation times: the time for a
single polynomial computation and the time for selecting specific polynomial. Therefore, the
computational cost function is defined as follows:

cc(mmn) =c, +cp (5)

Computing time for a single polynomial depends on the order of polynomial. This is defined as
cp(m) as follows:

cp(m) = ngry + nurm + nerem (6)

https://doi.org/10.20944/preprints202405.2074.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

where n,, n,,and ny are the number of assignments, arithmetic, and ‘for” instructions, respectively.
In addition, 7,, 7., and 7y are cycle counts of assignment, arithmetic, and ‘for” instructions. m, the
order of polynomial, means repetition count.

Since the approximate function is implemented with several polynomials, the clock cycles are
required for the binary search which is to find the suitable intervals for a certain input x. This is
defined as ¢, and is determined as the average of the short path case and long path case in a binary
search tree. Two examples are illustrated in Figure 3.

short path long path

short path long path

(b)

Figure 3. Binary search tree to select a suitable polynomial corresponding to input value (a) Example
1: n = 6; (b) Example 2: n =9.

Since the average clock cycles to determine the corresponding polynomial depends on the
probability for which the input is in a certain interval, ¢, is a probability distribution function for
input value. For the sake of simplicity, the probability that an input is in a particular interval is the
same for all intervals. Consequently, the costs associated with the number of intervals are as follows:

Cp = CpsPs T CpiPy ()

where ¢, = (dy, — D (ng1y +ng7y + N1 + Ny, N1, D =Ng/N, Cpp = dyy(Ng¥y + Nty + 015 +
nyhy, + 1), and p; = ny/n. cps and cy,; represent binary search tree cost for the short path and the
long, respectively. Similarly, ny; and n; are the number of the short path and the long path,
respectively. Note that n; + n; = n. d,, means the depth of the tree and is an integer value satisfying
29m=1 < < 29m In addition, ng, n,, and n; are the number of divisions, ‘while’, and ‘if
instructions, respectively. Finally, r;, 1,, and r; are cycle counts of division, ‘while’ and ‘if’
instruction for ARM Cortex-M7 core, respectively. The calculated c.(m,n) is organized into a table
by m and n (see Figure 4) and it is sorted in ascending order. In this paper, it is a priority to increase
m when the costs are the same.

https://doi.org/10.20944/preprints202405.2074.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

Figure 4. Computational cost according to the order of polynomial(m) and the num. of intervals(n)
(Mpax = 10, Ny, = 20).

4. Experimental Results

In order to verify the performance of the proposed OPP algorithm, it was implemented using
MATLAB with several nonlinear functions. In this experiment, we set the number of samples to 100,
Mpmax = 10, Npgyx = 20, and €, = 0.0001. And the boundary values are determined as the value
when the approximate error is the smallest after changing 100 times randomly. Figure 5 is the result
of approximation for the logarithmic function. The logarithmic function was chosen as the test
function because there are many sensors whose output results are logarithmic, such as temperature
sensors and distance sensors. Figure 6 is approximation results for the sine function that is frequently
used in many applications. Figures 7 and 8 show approximate results for triangular and square
functions, respectively. The triangular function is adopted to examine an approximation to the
continuous nonlinear function with undifferentiable points. In Figure 7, approximate with a smooth
curve at a sharp point. And the square function is used to curve fitting the function which has
discontinuous points. Figure 8 shows that overfit occurs in the section where the value changes
rapidly, resulting in oscillation. Figure 9 is the result of approximation of the sigmoid function. The
sigmoid function, also known as the logistic function, is commonly used in various fields such as
neural networks, machine learning, and statistics. Figure 10 is the result of approximation for the
ReLU function which is one of the most commonly used activation functions in deep learning models.
Figure 11 is the result of the user specified function for testing a nonlinear function that is more
complex than the previous differential functions across all intervals. The function is represented as
follows:

y = e + sin(x) — In(x) (8)

Overall, the approximation for continuous and differentiable functions over all intervals is a
satisfactory result. However, in functions with continuous but undifferentiable points and functions
with discontinuous points, they have less accurate and higher c.(m,n) than continuous functions.
This can be solved by increasing the sample point. Another way is to vibrate the boundary value,
which will be studied later.

https://doi.org/10.20944/preprints202405.2074.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

o sample points
approximation
— — —boundary values

1 1 1 1 1 1

8 10 12 14 16 18 20

input x
Figure 5. Approximation for In(x), (0'1 ZSOx S), (m*,n*) = (5,2) and the erroris 3.3249 x 10795,
1 .5 T T T T T T T
o sample points
approximation
1 +|— — —boundary values -

Figure 6. Approximation for sin(x), (-4 <x <4), (m*n*) = (4,2) and theerroris 2.0771 x 107%.

https://doi.org/10.20944/preprints202405.2074.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

1.5

T T T T
| C] sample points
\
\

approximation
— — —boundary values

Figure 7. Approximation for sawtooth(x), (—4 < x < 4), (m*,n") = (4,6) and the error is 1.8994 x
10795,

1.5 T L | T T T TTT 1
I o sample points [[[
Il approximation [I [l
1 Al |— — —boundary values [l L Iﬁ_\hl]
| I I \ I [
| | | \ (I e
[l | | \ [I .
0.5 I | | I - o
| | | If [[
> | | | If (I [
5 \ | | I [[
g o \ I I Il 17
o \ | | Il [[
\ | | Il [[
05F | | | [[[.
\ | | |l [[
\ | | \ [[y
\ | | \ [[
T |pe-ess—o—aamp—o” |“'*°-“4\ Il) e
Il | | [l [[
Il | | [l [[
. L. L L L Ll
-4 3 2 1 0 1 2 3 4

Figure 8. Approximation for square(x), (—4<x<4), (m*,n*)=(414) and the error is
5.4552e795,

https://doi.org/10.20944/preprints202405.2074.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

10

1 T T T

T m O
o sample points ‘
09r approximation ‘ 7
— — —boundary values }
\
\ i
\
\ i
> | 4
—
> | 2
o y i
=
>
o
1 1
2 3 4

1
1+e™*

Figure 9. Approximation for (-4 <x<4), (m,n*) =(22) and the error is 2.8652e7°5.

45 T T T
o sample points
4r approximation
— — —boundary values

35

output y
N

151

Figure 10. Approximation for max(0,x), (-4<x<4), (m"n")=(23) and the error is
1.5845e795,

https://doi.org/10.20944/preprints202405.2074.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

11

6 T T T T T T T T T T T
o sample points
58 approximation _
— — —boundary values

input x

Figure 11. Approximation for (8), (0.1 < x < 10), (m*,n*) = (4,4), at the error is 2.9888¢~5.

5. Conclusions

To approximate complex function or discrete sample points, Optimal Piecewise Polynomial
(OPP) function-approximation algorithm was proposed. The maximum values of polynomial order
and the number of intervals to explore are preset, and the computational cost is calculated to
determine the order and number of intervals for the approximation function. Then the combination
of the order and the number of intervals is sorted in ascending order based on computational cost
offline. Subsequently, the coefficient of the polynomial and the approximation error at the sample
points are determined using constrained least squares. If the error is greater than the given error
bound, the next combination is examined until the error is less than the bound. Ultimately, the OPP
function-approximation algorithm determines the fastest approximation function at runtime within
permissible error. The performance of the proposed algorithm has been demonstrated through
several nonlinear functions.

There are some further works to obtain a more accurate approximation function. In this paper,
the optimal intervals were obtained by random sampling, i.e. Mote Carlo method. To improve the
performance, gradient-based method will be also applied to determine the optimal boundaries which
minimizes the approximation error. Moreover, the performance will be verified and analyzed by
experiments with actual embedded systems.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIP) (No. NRF-2020R1A2C1010891).

References

1. Nygaard, R.; Haugland, D. Compressing ECG signals by piecewise polynomial approximation. in
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing 1998, 3, 1809-1812. doi:
10.1109/ICASSP.1998.681812

2. Ghosh, P. K; Narayanan, S. S. Pitch contour stylization using an optimal piecewise polynomial
approximation. IEEE signal processing letters 2009, 16, 810-813. doi: 10.1109/LSP.2009.2025824

3. Ravuri, S,; Ellis, D. P. Stylization of pitch with syllable-based linear segments. IEEE International Conference
on Acoustics, Speech and Signal Processing 2008, 3985-3988. doi: 10.1109/ICASSP.2008.4518527

4. Kim, J. B.; Kim, B. K. The Calibration for Error of Sensing using Smooth Least Square Fit with Regional
Split(SLSFRS) Korea Automatic Control Conference 2009, 735-739.

https://doi.org/10.20944/preprints202405.2074.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2074.v1

12

5. Dong, N.; Roychowdhury, J. Piecewise polynomial nonlinear model reduction in Proceedings of the 40th
annual Design Automation Conference 2003 484-489. doi: 10.1145/775832.775957

6. Stigler, S.M. Gergonne’s 1815 paper on the design and analysis of polynomial regression experiments Hist.
Math. 1974, 1, 431-439. dio: 10.1016/0315-0860(74)90033-0

7. Ferguson, J.; Staley, P. A. Least squares piecewise cubic curve fitting Communications of the ACM 1973, 16,
380-382. dio: 10.1145/362248.362276

8. Pavlidis, T.; Horowitz, S. L. Segmentation of plane curves IEEE Trans. Comput 1974, C-23, 860-870. dio:
10.1109/T-C.1974.224041

9. Gao,];Ji, W.; Zhang, L.; Shao, S.; Wang, Y.; Shi, F. Fast piecewise polynomial fitting of time-series data for
streaming computing IEEE Access 2020, 8, 43764—43775. dio: 10.1109/ACCESS.2020.2976494

10. Cunis, T.; Burlion, L.; Condomines,].-P. Piecewise polynomial modeling for control and analysis of aircraft
dynamics beyond stall Guid. Control Dyn. 2019, 42, 949-957. dio: 10.2514/1.G003618

11. Eduardo, C.; Luiz, F.N. Models and Algorithms for Optimal Piecewise-Linear Function Approximation.
Math. Probl. Eng. 2015, 2015, 876862. dio: 10.1155/2015/876862

12. Griitzmacher, F.; Beichler, B.; Hein, A.; Kirste, T.; Haubelt, C. Time and Memory Efficient Online Piecewise
Linear Approximation of Sensor Signals Sensors 2018, 18, 1672. dio: 10.3390/s18061672

13. Marinov, M.B.; Nikolov, N.; Dimitrov, S.; Todorov, T.; Stoyanova, Y.; Nikolov, G.T. Linear Interval
Approximation for Smart Sensors and IoT Devices Sensors 2022, 22, 949. dio: 10.3390/s22030949

14. Liu, B.; Liang, Y. Optimal function approximation with ReLU neural networks Neurocomputing 2021, 435,
216-227. doi: 10.1016/j.neucom.2021.01.007

15. Darby, C. L.; Hager, W. W.; Rao, A. V. An hp-adaptive pseudospectral method for solving optimal control
problems. Optimal Control Applications and Methods Optimal Control Applications and Methods 2011, 32,
476-502. doi: 10.1002/0ca.957

16. M.OWEN. Cortex-M7 instruction cycle counts, timings, and dual-issue combinations. Available online:
https://www.quinapalus.com/cm7cycles.html (accessed on 20 March 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202405.2074.v1

