Pre prints.org

Article Not peer-reviewed version

Leveraging VR for the Visualization of
Non-Observable Electrical Circuits
Principles in Engineering Education

Elliott Wolbach , Michael Hempel i , Hamid Sharif

Posted Date: 30 May 2024
doi: 10.20944/preprints202405.2050.v1

Keywords: virtual reality; education; circuit simulation; visualization; immersion

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3601050
https://sciprofiles.com/profile/738799
https://sciprofiles.com/profile/738800

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2050.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Leveraging VR for the Visualization of
Non-Observable Electrical Circuits Principles in
Engineering Education

Elliott Wolbach 2, Michael Hempel *®) and Hamid Sharif

Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
ewolbach2@unl.edu (E.W.); hsharif@unl.edu (H.S.)
* Correspondence: mhempel@unl.edu

Abstract: As technology advances, the field of electrical and computer engineering continuously
demands the introduction of innovative new tools and methodologies to facilitate effective learning
and comprehension of fundamental concepts. This research addresses an identified gap in
technology-augmented education capabilities and researches the integration of Virtual Reality (VR)
technology with real-time electronic circuit simulation to enable and enhance the visualization of
non-observable concepts such as voltage distribution and current flow within these circuits. In
this paper, we describe the development of our immersive educational platform, which makes
understanding these abstract concepts intuitive and engaging. This research also involved the
design and development of a VR-based circuit simulation environment. By leveraging VR'’s
immersive capabilities, our system enables users to physically interact with electronic components,
observe the flow of electrical signals, and manipulate circuit parameters in real-time. Through this
immersive experience, learners can gain a deeper understanding of fundamental electronic principles,
transcending the limitations of traditional two-dimensional diagrams and equations. Furthermore,
this research focuses on the implementation of advanced and novel visualization techniques within
the VR environment for non-observable electrical and electromagnetic properties, providing users
with a clearer and more intuitive understanding of electrical circuit concepts. Examples include
color-coded pathways for current flow and dynamic voltage gradient visualization. Additionally,
real-time data representation and graphical overlays are researched and integrated to offer users
insights into the dynamic behavior of circuits, allowing for better analysis and troubleshooting.

Keywords: virtual reality; education; circuit simulation; visualization; immersion

1. Introduction

With the ever-expanding world of technology, innovative new ways of utilizing this technology
in critical areas such as education emerge. Within electrical engineering, simulation software such as
MultiSim and Spice has been used to teach students how to create circuit schematics and simulate
these circuits to find various voltages and currents. These tools, along with building and testing
circuits in person, give new students insight into the fundamental aspects of circuitry. However, events
like COVID-19 and other factors continue to impact students and prevent in-person labs from taking
place. Furthermore, whereas in-person labs teach students how to assemble circuits and troubleshoot
them, they often do little to deepen their understanding of the core principles governing these circuits,
primarily because these effects and principles are non-observable. This prompted the research and
development of solutions to virtualize these in-person labs through the use of virtual reality (VR)
technology. VR allows for computer-generated scenes and objects to be rendered with the use of a
headset, allowing the user to immerse themselves in these computer-generated environments and for
the user to interact with them through a controller system or hands-free interactions. VR technology
presents a unique new ability to visualize the non-visible — and this traditionally non-observable —
fundamentals in electrical and electronics engineering.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/
https://orcid.org/0000-0002-7091-8349
https://orcid.org/0000-0001-6229-2043
https://doi.org/10.20944/preprints202405.2050.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2050.v1

20f 15

1.1. Related Work

VR has gained attention as a tool to promote learning, especially in remote labs or home learning
for electrical labs. Various methods ranging from fully immersive VR with head-mounted devices to
augmented reality applications and web-based interfaces have been researched and attempted.

For instance, the creators of the Three-Dimensional Virtual Simulation Experiment Platform, [1],
utilized the Unity 3D engine [2] and Autodesk’s 3ds Max to develop a realistic lab environment that
imitates integrated circuit manufacturing and testing. Students interacted with this virtual environment
via a web-based interface, conducted experiments, and received feedback on their performance. While
the virtual environment was not as immersive as a head-mounted display (HMD), students’ grades
showed improvement after completing the virtual experiments. However, some students encountered
issues with network connectivity and long loading times.

Cao et al. [3] introduced a guided virtual reality education simulation that allows primary school
students to learn basic analog circuit concepts. Basic components of switches and light bulbs were
displayed with 3D models, and a simplified visualization of current was shown through an overlay
above the wires. Utilizing realistic circuits rather than simplified or abstract representations allows
the younger students to grasp the different topics, with 9% of students showing improvement from a
pre-experiment quiz. Jiang et al. [4] developed a similar application with the ability to allow multiple
users to experiment on the same circuit. Like in [3], the circuitry utilized simplified blocks to allow for
easier configuration of simple analog circuits.

Khairudin et al. [5] took a similar approach with an interactive virtual laboratory that focused
on visualizing and simulating logic circuits in real-time. Circuits were shown as 2D images, and the
circuit’s inputs were controlled by switches that could be toggled, allowing students to try different
combinations.

In [6], the authors describe their approach to implementing an application that can read a
resistor network topology and generate a netlist. Then, using LTspice, the properties of the individual
components are outputted to the Unity 3D engine’s terminal.

The authors of [7] used augmented reality (AR) to create an immersive simulator. AR allows users
to see the surrounding space and overlays virtual models and UI to create a mixed-reality experience.
Using tokens to identify different circuit components and a simulator back end, users could change
circuit parameters and see real-time changes in graphs depicting different output voltages and power.
This approach focused on being a low-cost solution, with the platform being an Android mobile device
or tablet, allowing for easy-to-use functionality.

Zamojshi et al. in [8] used a different approach to teach students about electronics and
telecommunications. They created a virtual reality "escape room" called Ohm VR, where students
could learn through a series of puzzles. The interactive modules were placed on the walls of the virtual
room, allowing students to input answers on keypads. After using the application, students’ scores on
a quiz related to the topics improved, and the improvement remained even two weeks later when the
survey was given again. This proves that VR education applications can be effective tools in helping
students learn STEM-related concepts.

While these applications clearly show the benefits of using VR in electrical education, there are
still gaps within the current learning space. For example, the current approaches do not fully utilize
VR'’s capability to visualize elements such as current and voltage, which are invisible to the human
eye and can be hard to visualize. Additionally, students face difficulties with using breadboards to
create and debug circuits. To address these issues, a VR-based approach that simplifies the creation
and manipulation of circuit elements while taking full advantage of VR'’s visualization capabilities is
needed.

1.2. Scope and Contributions

This paper contributes to the existing body of knowledge by implementing a visualization
system that allows students to see voltage and current interaction within different circuit topologies.

https://doi.org/10.20944/preprints202405.2050.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2050.v1

30f15

Additionally, realistic interactions between circuit elements and a breadboard were modeled by
leveraging Unity’s physics engine. This allows students to design and build their circuits in
a realistic setting and provides an opportunity to learn and strengthen good breadboarding
practices. For this work, we researched and implemented a novel real-time integration with a circuit
simulation framework. Additionally, in this work, we established the foundations for a modular and
highly extensible framework for electrical circuit simulations that supports both analog and digital
components, which is successfully demonstrated by utilizing a variety of analog components, such as
resistors, switches, capacitors, and LEDs, as well as with several different digital Integrated Circuits
(ICs).

2. Materials and Methods

In this section, we are showing our process for implementing this VR platform for electrical
engineering education. We will also examine the utilized development resources and explain
how different elements were designed, implemented, and validated within the Unity 3D engine
environment.

2.1. Devices Used for Development

Throughout this project we utilized a variety of different VR systems. Out of those, our efforts
focused on two different systems: the HTC Vive and the Meta Quest 2.

The HTC Vive is a tethered VR system, meaning that an external computer system is needed to
run the application for the headset. The headset is connected to that computer via an HDMI cable to
receive the visual data generated from an application. The HTC Vive uses beacons installed in the
environment, called Lighthouse, which enables it to track the VR headset user within the "play space."
Through this system the user is free to move around within the environment and be more immersed in
the virtual scenery. The HTC Vive has a few drawbacks, however, that were discovered in connection
with this project. First, while the HTC Vive allows movement in the play space, that mobility is limited
by the lighthouse beacons and their visibility within the area. If the beacons lose track of the user’s
position, it results in unexpected and undesirable loss of immersion for the user. Thus, in order to fully
utilize this tracking, an open space is needed. This limits the space that users could use when using
our application. Additionally, the tethered nature of the system results in further degradation in the
level of immersion since the user needs to be somewhat aware of the cable’s position to avoid falls or
stumbles. It is also limiting to the user’s movements. Finally, having to be connected to a computer at
all times limits where and how students can use this application.

The Mate Quest 2, on the other hand, does not share these limitations. It is a stand-alone system,
meaning that all of the computing needed to run its applications resides within the headset. Along
with the built-in tracking cameras that identify and track the user’s position, this allows users to take
the Quest 2 anywhere and use applications in virtually any setting. However, due to the compact
form factor, this somewhat limits the available computational capabilities and the visual fidelity of
the experience. The Quest 2, however, is also capable of using its tracking cameras to track the user’s
hands and fingers to allow for hands-free control. This makes the Meta Quest 2 a very compelling
choice for a virtual laboratory experience, such as the one demonstrated in this paper.

2.2. Software Used for Development

This research project used various software applications to aid in its development. The main
applications were Unity [2], Spice# [9], and Fusion360 [10].

2.2.1. Unity

Unity is a 3D engine and development framework used to develop various 2D, 3D, virtual reality,
and augmented reality applications. With a built-in physics engine, gravity and collisions can be
simulated between virtual objects and other elements referred to as GameObjects in Unity, allowing

https://doi.org/10.20944/preprints202405.2050.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2050.v1

40f15

for highly dynamic and interactive scenes to be created. Additionally, Unity supports a rendering
and material engine that allows for control over shaders and lighting generation. Finally, through an
extensive library of software packages, there is support for VR development out of the box with the
use of OpenXR and the XRI toolkit. Within Unity, there are multiple terms used to describe different
elements used in the creation of an application: GameObjects, as indicated earlier, are any object that
is within the workspace of Unity. This can be a cube, a complex mesh model, or an empty object.
A GameObject needs multiple Components to define different aspects of itself, like what color it is,
whether it is affected by the Physics Engine and whether there are any scripts associated with that
GameObject.

Each of these GameObjects is its own entity but can be grouped together to create families of
GameObjects. These families can then be saved as Prefabs or templates that can be easily used multiple
times within a scene. For developers, editing the root Prefab will change all instances of that specific
Prefab, while during runtime, each prefab will be independently interacted with and changed based
on user inputs.

2.2.2. Spice#

Spicet is a C# port of Spice [11], which is a popular circuit simulation tool. Since Unity uses C# for
its scripting language, Spice# could be used directly within the application. This allows for all of the
simulations to be run directly on the headset without the need for an outside connection. Simulation is
straightforward: different elements are added to the simulator circuit, each with its own parameter
sets like resistance, voltage, and connection points. Then, the simulator is run and outputs a variety of
properties, such as the model voltages, of the circuit to be generated. Different circuit topologies were
tested through the creation of basic example scripts that were first run outside of the development
environment and later also used for the integration testing of Spice# into Unity.

2.2.3. Fusion360

Fusion360 is computer-assisted design software for creating 3D models. This program was used
to create and modify existing models of the electrical elements [12-15].

As discussed later in this section, in Unity, templates called Prefabs can be created out of multiple
GameObjects. This Prefab can be initialized multiple times within a scene with default parameters.
In order to create said Prefabs, the original models of the circuit elements needed to be edited to be
in separate parts. For example, for all of the analog elements, the main body of the element needed
to be separated from the leads of the element. This allows for different components and scripts to be
applied to the body that is being directly affected.

2.3. Virtual Reality Device Rig

It is important to accurately translate the user’s real-world position into the virtual space. By
utilizing OpenXR and Unity’s libraries, a virtual reality device rig was imported into the workspace.
This allows Unity to track the movement of the headset and controllers and read button inputs. As seen
in the left image of Figure 1, the controller is modeled so the user can see when they are manipulating
objects. The rig comes with three types of interactor elements: Poke, Direct, and Ray. These interactors
control how the user can manipulate the GameObjects in the scene. The "Poke" interactor allows
for the Ul to be "poked", for example to mimic pressing buttons or adjusting sliders. The "Direct"
interactor allows the user to virtually grab a GameObject, pick it up, and turn it around. Finally, the
"Ray" interactor extends a ray from the controller model in the direction it is pointing at, and allows
for GameObjects and Ul to be interacted with from a distance.

With the Quest 2’s ability to track the users” hands, the rig we implemented within our virtual
world was expanded with the XRhands package that allows Unity to access the hand tracking data of
the map virtual hand models, seen in the right image of Figure 1, allowing for users to leverage far

https://doi.org/10.20944/preprints202405.2050.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2050.v1

50f15

more intuitive manipulation gestures. This also has the Poke, Direct, and Ray interactors, allowing the
users to seamlessly pick up GameObjects and interact with Ul menu buttons and sliders.

Vo —

Resistanve:-
R1

000 Ohms

oytane: 777 VOIS curre!
Joltage:

mps
1 277 Af
curren'

Resistance’ 1

2725 \Y
2271 MA

2271V

2271 8

Figure 1. Left: Controller, Right: Tracked Hand Control

2.4. Development of Circuit Elements

Within Unity, each circuit element needed to be created with custom scripts that connected the
GameObjects with the Spice# simulator.

The breadboard, for example, is a main component with all of the connection points of a real-life
breadboard being modeled, as shown in Figure 2. The top plate of the breadboard has a ‘'mesh collider’
attached to it. This allows for the mesh of the model to be used to calculate collision points. This
means that elements or their leads, such as the legs of an IC or the terminals of a resistor, can not go
through this top plate except at the locations of each of the holes. Each of the brown squares represents
a common connection point for the inner columns, as well as the top and bottom rows. Each of these
contact strips has a script that is used in the circuit calculations to obtain the model voltage at that
point.

Figure 2. Left: Breadboard surface model, Right: Breadboard connectors for physics-based detection

The leads of the elements are attached to the main body of the element as children’s GameObjects
within the Prefab. These leads have box colliders and ridge body components attached to them.
These components allow for this GameObject to interface with Unity’s Physics engine. RigidBody
components cause the leads to be treated like solid objects. They will collide with other GameObjects;
the box collider component will allow the system to detect these collisions and trigger scripts based on
collision entrance or exit.

Other electronic elements, including voltage sources, resistors, capacitors, switches, LEDs, and
wires, were created to populate this breadboard. All of these elements needed to be either modeled
from scratch or by significantly modifying existing models in order to facilitate their integration with
the circuit simulation, for example by isolating individual elements such as legs and main bodies.
These separate parts were then used to create prefabs of the electrical components. As seen in Figure
3, the resistor GameObject is made up of individual parts; this allows for different components and
scripts to be attached directly to the part they will interact with. All of the electrical elements have a
prefab created so that multiple instances can be spawned to give users the ability to build larger and
more complex circuits.

https://doi.org/10.20944/preprints202405.2050.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2050.v1

6 of 15

= rr_r'-JL-m'r:'

Lar |r_:r:!_'-.-'L-'|I|.|r:!

41 Background
F|II Area

chlr le Slide Area
(1 Handle
frl Plane

Figure 3. Example of the structure for the Resistor GameObject

All of the electrical element’s legs needed to interact with the breadboard’s internal contact pads.
A RigidBody component and Box Collider component were attached to each of the legs. The RigidBody
component allows for the attached GameObject to be affected by Unity’s Physics Engine, allowing for
it to experience gravity and collide with other GameObjects with RigidBody components. A script
attached to the leg GameObjects interfaces with a physics engine to track connection points on a
breadboard. It utilizes two methods: "OnCollisionEnter” and "OnCollisionExit.” ‘OnCollisionEnter’ is
triggered when a GameObject with a RigidBody component collides with another GameObject that has
a Collider component, and vice versa. The 'collision” parameter provides details about the collision,
and the script filters events to focus only on collisions involving GameObjects tagged as "Wire’ or
"Wire_connected.” These tags are assigned to the connection points on the breadboard.

When a collision with one of these tagged wires occurs, the script updates the GameObject’s tag to
"Wire_connected” and increments a counter using the ‘contact’ parameter within the "Wire_info.’
This is tracked and implemented on a per-lead basis. For example, for a component with two
legs, such as a resistor, depending on whether the script is associated with "Lead 1" or "Lead 2"
it updates the connection parameters ‘connection_A’ and “connection_B’ within the parent script (such
as 'Resistor_info’) with the name of the collider it interacted with. This approach allows for flexible
tracking and updating of connection points for various components on a breadboard.

For the main body, scripts store and manipulate the element’s information, like voltage over the
element, and specific attributes, like the resistance value that is associated with a resistor element. This

https://doi.org/10.20944/preprints202405.2050.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2050.v1

7 of 15

will be discussed further in Section 2.6, describing for example how these scripts are used to retrieve
circuit information for the simulator and how the results of the simulation are used to update each
element.

To demonstrate the application’s ability to simulate digital logic, different digital logic integrated
circuit (IC) packages were created. These ICs were chosen to represent both basic and complex digital
components and include the 741s08, which is a Quad AND Gate IC, and the 7415283, which represents
a 4-bit Full Adder with Fast Carry.

For simulating these ICs we evaluated both an approach utilizing a transistor-level simulation
using the Spice# simulator framework, as well as a logic-driven circuit abstraction approach. From
these experiments, we found that the transistor-level calculations were too slow, with updates resulting
in a delay of approximately 200ms that in turn disrupted Unity’s frame generation loop for the VR
headset. This caused the last image frame to remain static, and as the user moved their head, black
spaces appeared in the unfilled regions, breaking the immersive experience. These issues could
be resolved with the IC circuit abstraction approach, which proved to be both highly efficient and
sufficiently accurate. In this approach, rather than low-level transistor simulations, the circuitry of
the ICs was abstracted, interfacing with the rest of the virtual circuit through their input and output
pins. The contact scripts for these digital ICs are similar to those for analog elements but handle more
connection points (14 and 16 pins).

For the 741s08 script, two input fields are used: ‘connections’ and ‘logic_levels’, which represent
the physical leg connections and their respective logic levels. In the Update method, an ‘outputs’
dictionary is initialized to store the connection points and logic levels. The variables "high” and "low’
are set from the voltage levels at the VCC and GND pins. The script then loops through all connections
to update their logic values. Using logical operations, the inputs for each AND gate are processed,
and the results are assigned to the corresponding output pins. The voltage node levels are updated
with these logic levels, and the updated outputs are stored in the ‘outputs” dictionary and returned.
The implementation for the 7415283 is similar, but it performs bit-wise addition with carry bits to
implement the 4-bit adder.

By implementing and evaluating these two ICs we could demonstrate that this abstraction allows
for efficient simulation of digital logic components in a VR environment without the performance
issues associated with low-level transistor simulations.

2.5. User Interfaces

For all the various GameObjects that represent electrical components, we also implemented
different menus to allow users to control various aspects of the component instance and the overall
simulator. Each of these electrical components, with the exception of simple wires, has a Ul
representation that indicates the voltage over and current through that specific component. Also, this
Ul has a control slider for its electrical characteristics. For example, the resistor’s UI has a slider that
allows the resistance value of that resistor to be changed in the simulation. Other menus allow users
to spawn in additional instances of the electrical components and navigate to different scenes that
demonstrate various capabilities of this VR educational application.

2.6. Simulation Implementation

For realizing the circuit simulation backend we researched lightweight computational frameworks
that could directly be integrated on the Quest 2’s hardware. We selected an open-source project called
Spice# for this purpose, which is a C# port of SPICE, and then designed an interface between it and the
rest of the VR application. This allowed for a direct Spice# interaction between the virtual world and
the circuit representation, through a variety of Unity scripts. This also allows updates to the virtualized
circuit to trigger immediate recalculations via Spice#, and for its results to be immediately realized
within the visualization of the circuit parameters. Using Spice# as the backend circuit simulator, each
electrical component is added to the simulation netlist to build the circuit topology. This process is

https://doi.org/10.20944/preprints202405.2050.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2050.v1

8 of 15

managed by the application’s main script, which parses all active electrical components to extract
the necessary values for the simulator and updates relevant fields once the simulation calculates the
circuit’s nodal voltages. When the value of an electrical component is updated, the "Create_net_list.cs"
script is triggered, initiating a rerun of the simulation. The simulator first clears the previous circuit
and creates two arrays: one for all active components and a second array for breadboard wires with
connections. Each electrical component in the array is assigned a unique name with an incrementing
number tag. The script then gathers relevant values from these components to create netlist elements
corresponding to their respective data types. For instance, when adding a resistor to the simulation, a
temporary variable is created using the Resistor class, passing the resistor’s name, connection points,
and resistance value into the constructor. This variable is subsequently added to the simulator’s netlist.
After all electrical components have been added to the simulator, the output streams are mapped
to the active node wires. The simulator then calculates the node voltages and updates the voltage_node
field for each node wire. Following the simulation, each circuit component is updated accordingly.
Analog components use these node voltages to compute the current through each component. For
digital logic, additional steps involve creating voltage sources to act as drivers for the IC’s output pins.
These new voltage sources are added to the circuit’s netlist, and the simulation is rerun to update any
components connected to the output pins. A flowchart illustrating this process is shown in Figure 4.

https://doi.org/10.20944/preprints202405.2050.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2050.v1

9of 15

Initialize variables
and data structures

¥
Reirieve game
objects tagged as
'Component” and
"Wire_connected”

For each component | Check component
game objects type
¥
Process .| Create SpiceSharp

Set up simulation components - component

parameters

¥
L Add componentto | |
circuit

Run simulation

hJ

Update game objects
based on simulation
resulis

End

Figure 4. Main script flowchart

2.7. Development of Visualization Components

2.8. Universal Visual Pipeline

Unity’s Universal Render Pipeline (URP) is a rendering pipeline that is designed to optimize
real-time rendering performance. It is a lightweight pipeline suitable for projects that target mobile
platforms like stand-alone VR applications. URP offers different configuration options to provide
a balance between performance and visual quality. The two main features of URP are lightweight
materials, shaders, and shader graphs. These features help Quest 2 to display the virtual environment
and circuitry components with different and changing colors while not affecting performance.
Additionally, the shader graph enables the creation of custom shaders through a visual interface.

https://doi.org/10.20944/preprints202405.2050.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2050.v1

10 of 15

A custom shader was developed using Shader Graph to create an animated line that represents the
current flowing through electrical elements. When creating a shader, external variables associated with
the shader can be used to affect the shader’s operation. In Figure 5, multiple nodes were connected
to create a moving dotted line. The first input is ‘Current,” which represents the current passing
through the parent electrical element. This value is then multiplied by system time to create a vector
that increases based on the current. The 'Tiling And Offset” and "Fraction” nodes are used to create
a scrolling texture that is driven by the time and current-based vector. This scrolling texture is then
passed through an “Ellipse” node to create a dotted masked texture. Finally, the "Vertex” and 'Fragment’
nodes enable the texture to be rendered by the pipeline when assigned as a material component. The
finished shader can be seen in Figure 6 as the yellow dotted lines.

Figure 5. Shader Graph for custom dotted texture

2.498 mA 2.498 mA

Figure 6. Example of Line Renderers showing the current path as dots appearing to be moving from
left to right

2.9. Line Render

Renders are a unique feature in Unity that allows the developer to input a set of points in 3D
space and create a straight line connecting those points. The developer can adjust the parameters of
this component, such as the width of the line, light generation, and texture modes, among others. To
create the illusion of motion, a custom texture was applied to the "Material" field, and a yellow color
was chosen to simulate the current. This makes the line appear like a series of dots moving along the
path of the line.

https://doi.org/10.20944/preprints202405.2050.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2050.v1

11 of 15

When these line renders are visible, it’s called the "Current View Mode." To achieve this mode,
the GameObjects need to be slightly translucent. During implementation, this can be accomplished by
using the "Transparent_view" script, which we can apply to the affected parent GameObject. We then
assign the children GameObjects required to be translucent to the "renderers" list, while GameObjects
that are required to be invisible are assigned to the "hidden_renderers" list.

If enabled, the script will parse both lists and make the GameObjects either translucent by
changing their alpha value or invisible by disabling their renderer altogether. If this feature is disabled,
the script will reset all the GameObjects in the lists to their normal visual states.

2.10. Color Changing

As mentioned earlier, GameObjects that have a mesh model that contains a component responsible
for the color of that mesh. This component can be modified by scripts using Unity’s APL In this case,
the "Color_change_on_voltage" script is used to change the color of the attached GameObject based on
its voltage. When this script is initialized, it stores the GameObject’s 'Renderer’ to revert the color of
the GameObject if the script is disabled.

When the script is enabled, it assigns the component’s current voltage to "voltageOver’. Based on
the value of this variable, the script interpolates between the below-threshold color and the middle
color or between the middle color and the above-threshold color. The resulting interpolated color is
then applied to the GameObject’s ‘Renderer,” updating the color for the next frame.

3. Results and Discussion

The outcome of this research is a functional Virtual Reality circuit editor and simulator that
visualizes non-observable electrical characteristics such as voltage and current. Users can navigate the
VR environment using the Quest 2 headset and interact with electrical components and menus using
either the controllers or hand tracking. The simulator includes various circuit elements, enabling users
to construct, for example, resistive and RC circuits. Users can utilize switches and LEDs to control
inputs and outputs. Additionally, two modeled digital ICs provide the capability to experiment with
digital logic, and demonstrate the flexibility and extensibility of the implemented platform.

3.1. Visualization of Current Direction and Magnitude

As described in the preceding chapter, we were able to effectively illustrate the flow of current
through the use of Unity’s Line Render feature, which was customized with a texture to enhance
its visual impact. The resulting effect convincingly conveys the sensation of current movement, as
evidenced in the accompanying figure. By employing this visualization method, students are now
equipped with a clear understanding of the direction and strength of current in electrical circuits,
eliminating any confusion or uncertainty.

3.2. Visualization of Voltage Drops

Similarly to current, the voltage across circuit elements and its relation to Kirchhoff’s Voltage Law
(KVL) allows users to observe the distribution of voltage across a resistive network. Paired with the
voltage displayed on each element’s Ul, this feature enables comprehensive circuit analysis. Students
can verify their homework, for example, by easily replicating their circuits in the simulator, adjusting
parameters, and observing the exact voltage and current outputs.

In Figure 7, both branch currents and element voltages are shown. All resistors are configured
to 1k Ohm. The "red" resistor exhibits a 5-volt drop, indicating the highest voltage, followed by the
"orange" resistor with a 3-volt drop. The middle "yellow" resistor shows a 2-volt drop, while the
remaining two "green" resistors each have a 1-volt drop. This example helps students understand how
voltage and current behave in series-parallel resistor networks.

https://doi.org/10.20944/preprints202405.2050.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2050.v1

12 of 15

_—
—
—_—
—)
. |
e—
- ——
— =
= m——
==
=
— ——
—
—
= m——
—
il S—
_—
e e
—_—
-—
S
E e 1
e

Figure 7. Simulated resistor network with current and voltage visualized
3.3. Digital Logic Implementation

Two digital ICs were developed to interface with the Spice# simulator. These ICs can be controlled
by wires directly connected to power and ground sources or through switches. Their outputs can
power LEDs to show the output states. Both the 741s08 and the 7415283 can be seen in Figure 8. The
implementation of digital circuits expands the circuits that students can experiment with.

https://doi.org/10.20944/preprints202405.2050.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2050.v1

13 of 15

i fffff.fffff.fm

+

mET ——
EEEEE- .
EEEEER
EEEEE- EE
EEEEN
EEEEN
EEEEN
EEEEN
EEEEE: EE
EEEEER
EEEEER
EEEEER
EEEEER
EEEENy NN
EEEEER
EEEEN
EEEEN

MmO ——

2Room
- —EAEEEN
EEEEN
W O 2 W e] Cie——
EEEENR
EEEENR
EEEENR
EEEEN
EEEEN
EEEEN
FmOoOM

i.,ﬁ THEH 5&3‘

EEEEL !3 UEEEE lilﬁﬁ ﬁﬁs
EEEEE H EEEEE EEEEE EELEN

|
!

EN| "EEEEN

+
+

Figure 8. Top-down view of the two digital ICs wired to the breadboard
3.4. Real-Time Simulation Updates

The simulator’s visualization elements are updated in real-time as soon as a user modifies a
parameter, keeping all voltage and current values up-to-date. The application was designed to avoid
any bottlenecking and ensure smooth performance. Unity’s pipeline operates in a linear fashion,
starting with physics calculations and then moving to game logic. Once all scripts finish executing
in the game logic stage, Unity proceeds to the rendering stage to generate a new frame. Hence, it is
critically important to avoid any delays or prolonged computations during any of these stages in order
to ensure high frames rates, which in turn is vital to avoid nausea and disorientation in the VR user.

4. Discussion

Our new electrical engineering VR educational application offers users an immersive experience
in constructing and testing circuits. It can be used as a valuable supplement to students” education,
helping them enhance their understanding of basic concepts. The current framework prototype clearly
demonstrates these capabilities. It also shows that it can easily be expanded to accommodate more
complex analog and digital circuits and components.

Using the simulator is also highly intuitive. Users can launch the application from the Quest 2
menu and will be greeted with a default scene featuring a voltage divider on the breadboard. This will
allow newcomers to familiarize themselves with the controls and observe the simulator in action. They
can adjust resistance levels using controllers or hand gestures and observe changes in current and
voltage. Enabling "Current Mode" or "Voltage Mode" provides users with advanced visuals of current
and voltage. Users can choose to progress to various pre-made scenes from this starting scene, such
as a switch and LED setup or a pre-made digital logic circuit. Selecting "new scene" loads an empty
breadboard, allowing users to place electrical elements in any configuration to build their own circuits.

During the development of this research, several challenges has to be overcome. Our team needed
to develop a new approach for digital logic simulation that is both accurate and lightweight. The
results was a bridging layer that is highly scalable to more advanced ICs, yet retains the ability to
accurately and rapidly compute results that directly interface with the circuit simulation. Throughout
the process, we frequently conducted performance evaluations and user experience testing in order to
ensure stable and high frame rates, and the lack of any disorienting side effects from using the VR
environment. This was especially important for the Meta Quest 2, which uses an onboard processor for
all the application’s calculations and visualizations. The source code, along with our media files, will
be available upon request for further exploration upon the completion of our ongoing research for it.

https://doi.org/10.20944/preprints202405.2050.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2050.v1

14 0f 15

5. Conclusion

In this research project, we have developed an innovative VR circuit simulator with advanced
visualization capabilities for fundamental electrical concepts. The simulator is designed for the Quest 2
headset and uses the Unity engine, which enables users to interact with different circuit elements and
perform various simulations. It includes various viewing modes that allow users to observe current
flow direction, magnitude, and voltage drops displayed as gradients across the entire circuit. Users can
intuitively interact with the simulator using the Quest 2 controllers or through tracked hand motions.

The creation of this simulator required extensive research and the integration of numerous
components. We created all scenes and GameObjects in Unity, with some mesh renders adapted
from publicly available 3D models. We developed prefabs from these GameObjects, allowing for the
creation of multiple circuit topologies. Each prefab included custom scripts to manage aspects, such
as contact points with the breadboard and updating internal variables like voltage and current. The
electrical elements and user interfaces were designed to be compatible with both controller-based and
hands-free control schemes.

To showcase the application’s capabilities and evaluate the educational user experience, we
developed several example scenes, including a basic voltage divider circuit, a resistor ladder circuit,
a resistor-capacitor circuit, and a digital logic IC circuit. Custom shaders and scripts were created
to visualize current and voltage. A significant challenge was interfacing the electrical elements with
the Unity physics engine and using connection points to generate netlists for the Spice# simulator
to calculate nodal voltages. We carefully tuned all collider and RigidBody components to minimize
unexpected physics effects.

When building the simulation functionality, we also thoroughly investigated the impact on frame
generation. This led to optimized scripts that enabled the simulation of digital logic without disrupting
the user experience. To our knowledge, no comparable system is available for our students.

Our future research will expand visualization to digital logic, allowing students to "see the gates
inside the integrated circuits package." This enhancement would help students connect symbolic
representations of digital gates to the physical packages used in real life. Additionally, expanding the
simulator’s library to include more electronic components would enable users to simulate and explore
a broader range of circuits.

Author Contributions: Conceptualization, Elliott Wolbach; Investigation, Elliott Wolbach; Resources, Michael
Hempel; Software, Elliott Wolbach; Supervision, Michael Hempel and Hamid Sharif; Writing — original draft,
Elliott Wolbach; Writing — review & editing, Michael Hempel and Hamid Sharif.

Funding: This research received no external funding
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the corresponding
author after completion of the associated research efforts.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

VR Virtual Reality

AR Augmented Reality
Ul User Interface

IC Integrated Circuit

https://doi.org/10.20944/preprints202405.2050.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2050.v1

15 of 15

References

1. Lai, Z.; Cui, Y.; Zhao, T.; Wu, Q. Design of Three-Dimensional Virtual Simulation Experiment Platform for
Integrated Circuit Course. Electronics 2022, 11. doi:10.3390/electronics11091437.

2. Unity Technologies. Unity, 2005.

3. Cao, Q.; Png, B.T,; Cai, Y.; Cen, Y.; Xu, D. Interactive Virtual Reality Game for Online Learning of Science
Subject in Primary Schools. 2021 IEEE International Conference on Engineering, Technology & Education
(TALE), 2021, pp. 383-389. d0i:10.1109/TALE52509.2021.9678916.

4. Jiang, T.; Zhuang, Z. A Multi-person collaborative Simulation System For Circuit Experiment System Base on
Virtual Reality. 2021 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS),
2021, pp. 253-259. d0i:10.1109/ICITBS53129.2021.00071.

5. M,K;AK T; W], I, MN.A, A. Mobile Virtual Reality to Develop a Virtual Laboratorium for the Subject
of Digital Engineering. International Journal of Interactive Mobile Technologies (iJIM) 2019, 13, pp. 80-95.
doi:10.3991/ijim.v13i04.10522.

6. Li, Y; Shen, Y.; Sukenik, C.; Sanders, B.; Delacruz, P.; Mason, J. Work-in-progress: Rapid development
of Advanced Virtual Labs for in-person and online education. 2022 ASEE Annual Conference & Exposition
Proceedings 2022. doi:10.18260/1-2-40667.

7. Lucas, P;; Vaca, D.; Dominguez, E; Ochoa, X. Virtual Circuits: An Augmented Reality Circuit Simulator
for Engineering Students. 2018 IEEE 18th International Conference on Advanced Learning Technologies
(ICALT), 2018, pp. 380-384. doi:10.1109/ICALT.2018.00097.

8. Zamojski, P; Barczyk, N.; Frankowski, M.; Cybulski, A.; Nakonieczny, K.; Makowiec, M.; Igras-Cybulska, M.
Ohm VR: solving electronics escape room challenges on the roadmap towards gamified STEAM education.
2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), 2023, pp.
532-535. do0i:10.1109/VRW58643.2023.00117.

9. Boulanger, S.; Golebiowski, M.; katzb123.; Sodalom, O. Spicesharp.

10. 2024.

11.

12. Bradley, M. Red LED 5mm, 2012.

13. WORKSHOP, M. Breadboard, 2020.

14. Salamacha, Z. CD4021B-MIL - CMOS 8-Stage Static Shift Register.

15. Safaf, P. THT resistors 1/4 to 5 W (VERTICAL), 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.3390/electronics11091437
https://doi.org/10.1109/TALE52509.2021.9678916
https://doi.org/10.1109/ICITBS53129.2021.00071
https://doi.org/10.3991/ijim.v13i04.10522
https://doi.org/10.18260/1-2--40667
https://doi.org/10.1109/ICALT.2018.00097
https://doi.org/10.1109/VRW58643.2023.00117
https://doi.org/10.20944/preprints202405.2050.v1

	Introduction
	Related Work
	Scope and Contributions

	Materials and Methods
	Devices Used for Development
	Software Used for Development
	Unity
	Spice#
	Fusion360

	Virtual Reality Device Rig
	Development of Circuit Elements
	User Interfaces
	Simulation Implementation
	Development of Visualization Components
	Universal Visual Pipeline
	Line Render
	Color Changing

	Results and Discussion
	Visualization of Current Direction and Magnitude
	Visualization of Voltage Drops
	Digital Logic Implementation
	Real-Time Simulation Updates

	Discussion
	Conclusion
	References

