
Article Not peer-reviewed version

Time-travelling Turing Machines and the

Self-consistent Halting Problem

José Ignacio Orlicki *

Posted Date: 30 May 2024

doi: 10.20944/preprints202405.2041.v1

Keywords: Turing machines; Time-travelling; Computability

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3592737

Article

Time-Travelling Turing Machines and the
Self-Consistent Halting Problem

José I. Orlicki

Independent Researcher; joigno@gmail.com

Abstract: This paper introduces the novel concept of Time-Traveling Turing Machines (TTTMs) — Turing Machines

with the ability to read symbols that have been explicitly sent from their future computational state. We delve

into their properties and behavior, particularly emphasizing the importance of maintaining a self-consistent

computational timeline. We present theorems demonstrating the universality of these machines and the challenges

in achieving faster computations than traditional Turing Machines.

Keywords: turing machines; time-travelling; computability

1. Introduction

The concept of time travel has long captivated the human imagination, prompting deep questions
about causality, paradoxes, and the nature of time itself. While extensively explored in science fiction
and philosophy, the computational implications of time travel have received comparatively little
attention. This paper aims to bridge that gap by introducing and rigorously analyzing Time-Traveling
Turing Machines (TTTMs) - a novel model that extends the capabilities of standard Turing Machines
by allowing limited interactions with their own future computational states.

The significance of this work lies in its potential to shed new light on the fundamental limits
of computation and the complex interplay between information processing and temporal dynamics.
By carefully defining the semantics of time travel within the well-established framework of Turing
Machines, we can begin to ask precise questions about the power and limitations of such models, and
their relationship to classical notions of computability and complexity.

Our work builds upon a rich tradition of exploring unconventional computation models to gain
insights into the nature of information and physical reality. Probabilistic Turing Machines, for example,
introduced stochasticity into the deterministic world of classical computation, paving the way for
the study of randomized algorithms and cryptography [1]. Quantum Turing Machines took this a
step further by harnessing the power of quantum superposition and entanglement, leading to the
burgeoning field of quantum computing [2].

Time-Traveling Turing Machines represent a natural next step in this progression. While quantum
models leverage the counterintuitive features of quantum mechanics, TTTMs draw inspiration from
the equally enigmatic concept of closed timelike curves (CTCs) from relativistic physics [3]. However,
unlike most previous studies of CTCs, which focus on their logical consistency and physical plausibility
[4], our work adopts a more abstract, algorithmic perspective.

The key novelty of our approach lies in the careful design of the TTTM model to allow only
limited, self-consistent interactions with the future. By restricting time travel to the transmission of
a single symbol or tape contents, rather than arbitrary computational states, we prevent the most
egregious temporal paradoxes while still enabling non-trivial effects. This allows us to prove strong
theorems about the expressiveness and efficiency of TTTMs, shedding light on the power of even
limited forms of time travel.

Moreover, our work differs from previous studies of hypercomputation and infinite computation
[5] in its emphasis on finite, discrete models of time travel. Rather than allowing unlimited com-
putational steps or oracular access to undecidable problems, TTTMs operate within the constraints
of classical computability theory, augmented only by self-consistent closed timelike curves. This

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2041.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202405.2041.v1
http://creativecommons.org/licenses/by/4.0/

2 of 15

grounded approach enables us to make precise statements about the relationship between TTTMs and
standard complexity classes.

In summary, Time-Traveling Turing Machines represent a significant and novel contribution
to the study of unconventional computation models. By carefully extending the classical Turing
Machine framework to allow limited forms of time travel, we open up new avenues for exploring the
fundamental connections between information, causality, and temporality. Our work thus holds the
potential to enrich both theoretical computer science and the broader scientific discourse on the nature
of time and computation.

2. Related Work

Historical and contemporary research into unconventional computational models have frequently
pushed the boundaries of our understanding. Bennett’s pioneering exploration into logically reversible
Turing Machines [6] elucidated the potential for machines that never lose information, leading to the
intriguing proposition of thermodynamically reversible computation. This work showed that general-
purpose computing automata, such as Turing Machines, can be made logically reversible at every
step while retaining their simplicity and ability to perform general computations. The implications of
this result are of great physical interest, suggesting the possibility of thermodynamically reversible
computers that could perform useful computations at practical speeds while dissipating considerably
less than kT of energy per logical step.

Similarly, Probabilistic Turing Machines extended the conventional deterministic computation
model, introducing an element of randomness [1]. Gill demonstrated that Probabilistic Turing Machines
with small but non-zero error probability can compute certain number-theoretic functions more quickly
than deterministic Turing Machines. Additionally, it was shown that Probabilistic Linear-Bounded
Automata can simulate Non-Deterministic Linear-Bounded Automata. These results highlight the
potential advantages of incorporating randomness into computational models.

Other noteworthy contributions include Predictor Machines [7], which postulate links between
predicting the future and emergent complex behaviors. Moore showed that motion with as few as three
degrees of freedom can be equivalent to a Turing Machine and thus capable of universal computation.
Such systems possess a type of unpredictability qualitatively stronger than that previously discussed
in the study of low-dimensional chaos: even if the initial conditions are known exactly, virtually any
question about their long-term dynamics is undecidable.

Moreover, quantum computing, with its capability to intertwine communication across various
time points through phenomena like entanglement, offers tantalizing glimpses into the union of
time and computation. Several models of Universal Quantum Turing Machines have been proposed
and analyzed in relation to their physical properties, such as closed timelike curves (CTCs) [2,4,8].
Benioff discussed and reviewed quantum Turing Machines, emphasizing models with Hamiltonians
constructed from step operators that include fully quantum mechanical processes taking computation
basis states into linear superpositions. Aaronson and Watrous showed that if CTCs existed, quantum
computers would be no more powerful than classical computers: both would have the power of the
complexity class PSPACE. Khanehsar and Didehvar studied the paradoxical aspects of CTCs and their
impact on the theory of computation, proposing axioms to address physical consistency issues and
suggesting conditions under which the computational power of CTCs could be realized.

CTCs are a central concept in the study of time travel and its computational implications. The
seminal work by Deutsch [9] introduced a model for CTCs that imposes a probabilistic consistency
condition to avoid grandfather paradoxes. Aaronson and Watrous [4] built upon this model, studying
CTC computers with a polynomial size restriction and showing that they solve exactly the problems in
PSPACE, in both the classical and quantum cases. Our work extends these results to the computability
setting, where we consider CTCs with no bound on their size. We prove that in this setting, com-
puters with CTCs can solve exactly the problems that are Turing-reducible to the Halting Problem,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2041.v1

https://doi.org/10.20944/preprints202405.2041.v1

3 of 15

again in both the classical and quantum cases. This provides a more complete understanding of the
computational power of CTCs across different resource bounds.

Another key difference between our work and previous studies of CTCs is the treatment of
consistency. In the Deutsch model, CTCs are required to have fixed points (i.e., consistent solutions)
for all possible inputs. However, we show that in the computability setting, not all CTCs have fixed
points, even probabilistically. Despite this, we prove that the CTCs that do have fixed points are
sufficient to solve the Halting Problem, by considering fixed-point distributions involving infinite
geometric series. This result highlights the subtle differences between the complexity-theoretic and
computability-theoretic perspectives on CTCs.

Hypercomputation, in general, is the study of computational models that are more powerful than
Turing Machines, usually incorporating oracles that solve problems and define a hierarchy of machines
[5]. Ord surveyed much of the work on hypercomputation, explaining how non-classical models fit
into the classical theory of computation and comparing their relative powers. In our case, we introduce
a very limited form of oracle that is an operation of sending a symbol from a future configuration into
the past configuration of the machine.

Some literature discusses time travel in the context of membrane computing systems [10], focusing
on time capsules traveling unchanged from the past to the future, allowing for parallel worlds and the
decidability of recursively enumerable languages. However, in our specific model with self-consistent
computation histories, decidability of traditional Turing Machine languages is still not possible. An
interesting link between a single finite symbol time traveling and a finite string of symbols has also
been explored in the past, with a focus on complexity classes [11]. O’Donnell and Say showed that
randomized computation with logarithmically many CTC bits (i.e., polynomially many CTC states)
is equivalent to BPPpath, and quantum computation augmented with logarithmically many classical
CTC bits is equivalent to PP.

In contrast to these works, our model of Time-Traveling Turing Machines (TTTMs) focuses on
deterministic computation with the ability to send a single symbol back in time. We show that this
model is capable of simulating both the Deutsch and postselected CTC models, providing a unified
framework for studying the computability aspects of time travel. Furthermore, we introduce the
notion of self-consistent computations, which ensures that the outputs of different branches of a TTTM
computation agree whenever there are multiple possible timelines. This allows us to define a consistent
notion of computation in the presence of time travel, avoiding the grandfather paradox and other
logical inconsistencies.

By carefully analyzing the power and limitations of TTTMs, we provide new insights into the
relationship between time travel and computation. Our results on the universality of TTTMs and the
complexity of simulating them with standard Turing Machines help to delineate the boundaries of
what is computable with and without access to time travel. Moreover, by introducing the notions of
self-consistent computations and fixed-point solutions, we offer a fresh perspective on the nature of
causality and consistency in the context of closed timelike curves.

In summary, our work on Time-Traveling Turing Machines extends and complements the existing
literature on unconventional computation, closed timelike curves, and hypercomputation. By focusing
on the computability aspects of time travel and introducing novel notions of consistency and simulation,
we provide a unified framework for studying the computational power of deterministic systems
with access to limited forms of time travel. Our results highlight the subtle interplay between time,
information, and computation, opening up new avenues for future research in this exciting area.

3. Definitions

3.1. Traditional Turing Machines

A standard multi-tape, one-sided Turing Machine consists of:

• Tape alphabet Γ, with blank symbol ⊔, start symbol ▷.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2041.v1

https://doi.org/10.20944/preprints202405.2041.v1

4 of 15

• Set of states Q, initial state q0, halting states H ⊆ Q.
• Tape heads, initially positioned at the leftmost cells.
• Transition function δ : Q × Γk → Q × Γk × {L, R}k.

The machine operates as follows:

1. Tape 1 contains the input in cells to the right of ▷. Other tapes have only ▷.
2. At each step:

• δ uses the current state q and symbols γ1, . . . , γk under the heads to determine the next state
q′, write symbols γ′

1, . . . , γ′
k, and head moves D1, . . . , Dk.

• Heads move according to Di. They cannot move left from ▷.
• Write γ′

i unless it is ▷.

3. Halting in state qh ∈ H gives the output: non-blank contents of tape 1.

Tape 1 contains the input and output. Other tapes can be used as scratch space during computa-
tion.

Figure 1 illustrates a traditional Turing Machine with input "abc" on tape 1 and scratch work on
tape 2. The machine’s state and tape head positions are updated according to the transition function δ

at each step of the computation.

. . . ▷ a b c . . .

Input/Output Tape

. . . ▷ . . .

Scratch Tape

q0

Figure 1. A traditional Turing Machine with input "abc" on tape 1 and scratch work on tape 2.

3.2. Single Symbol Time-Traveling Turing Machine

A Single Symbol Time-Traveling Turing Machine (SSTTM) augments the standard model with the
following:

• Tape 1 holds a non-negative integer S in binary using all symbols except blank.
• Tape 2 holds the input and scratch workspace.
• Special internal state qsend ∈ Q to send a symbol back in time.

The machine operates as follows:

1. Computation proceeds as normal, except tape 1 holds the "time lag" S.
2. Upon entering qsend, the symbol γ under the tape 2 head is sent S steps back in time on tape 2.
3. If the current timestep t < S, the machine transitions to a special error state qerror /∈ H.
4. Otherwise, γ is placed on tape 2 at the position corresponding to timestep t − S, overwriting the

symbol that was there.
5. Computation continues from qsend, potentially in a new timeline.
6. As before, halting in H gives the output from tape 1.

This allows a single tape 2 symbol to be sent into the past, determined by the time lag S on tape 1.
Figure 2 depicts a SSTTM sending a symbol back in time. The time lag S is encoded on tape 1, and

the symbol γ under the tape 2 head is sent S steps into the past, potentially creating a new timeline.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2041.v1

https://doi.org/10.20944/preprints202405.2041.v1

5 of 15

. . . ▷ 1 0 1 . . .

Time Lag Tape (S = 5)

. . . ▷ γ . . .

Input/Scratch Tapeqsend

Send γ back S steps

Figure 2. A Single Symbol Time-Traveling Turing Machine (SSTTM) sending a symbol back in time.

3.3. Internal Clock Time-Traveling Turing Machine

An Internal Clock Time-Traveling Turing Machine (ICTTM) has:

• Internal timestamp counter C incrementing at each step.
• Special state qsend ∈ Q to optionally send the tape 1 symbol to time 0.

The machine operates as follows:

1. C starts at 0 and increments at each timestep.
2. Computation proceeds normally until optionally entering qsend.
3. Upon entering qsend, the current tape 1 symbol is sent to the same tape position at time 0,

overwriting what was there.
4. Computation continues from qsend.
5. Halting gives the output on tape 1.

Figure 3 illustrates an ICTTM sending a symbol to time 0. The internal timestamp counter C
keeps track of the current timestep, and upon entering qsend, the current tape 1 symbol is sent to the
same position at time 0.

. . . ▷ γ . . .

Tape 1qsend

Send γ to time 0

C = 5

Internal Clock

Figure 3. An Internal Clock Time-Traveling Turing Machine (ICTTM) sending a symbol to time 0.

Theorem 1. Any Internal Clock Time-Traveling Turing Machine (ICTTM) can be simulated by a Single Symbol
Time-Traveling Turing Machine (SSTTM) using an additional scratch tape.

Proof. Let M be an ICTTM with tape alphabet Γ, states Q, initial state q0, halting states H, and
transition function δ. We construct an SSTTM M′ that simulates M as follows:

• M′ has tape alphabet Γ′ = Γ ∪ {(γ, q, d) | γ ∈ Γ, q ∈ Q, d ∈ {L, R}}, where the additional
symbols encode the tape contents, head position, and state of M at each step.

• M′ has states Q′ = Q ∪ {qsim, q′send, qretrieve, qwrite}, where qsim is used for simulating M, q′send is
used for sending symbols back in time, qretrieve is used for retrieving the sent symbol, and qwrite

is used for writing the retrieved symbol to the simulated tape of M.
• M′ has initial state q0 and halting states H′ = H.
• M′ uses tape 1 for the time lag and tape 2 for simulating the tape of M and encoding the

computational history.

The simulation proceeds as follows:

1. M′ starts in state q0 with input w on tape 2 and time lag S on tape 1.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2041.v1

https://doi.org/10.20944/preprints202405.2041.v1

6 of 15

2. In state qsim, M′ simulates one step of M using the transition function δ. It updates the current
state, tape contents, and head position on tape 2 according to δ.

3. After each simulated step, M′ writes the current tape symbol γ, state q, and head direction d as
(γ, q, d) to the scratch tape to record the computational history.

4. If M enters state qsend, M′ transitions to state q′send and sets its time lag on tape 1 to the binary
encoding of the current step number C.

5. In state q′send, M′ sends the current symbol on tape 2 back C steps in time. It then moves the head
to the position on tape 2 corresponding to time 0.

6. M′ transitions to state qretrieve and reads the symbol (γ, q, d) from the scratch tape at the position
corresponding to time 0.

7. M′ transitions to state qwrite, writes γ to tape 2, moves the head in direction d, and updates the
current state to q.

8. M′ transitions back to state qsim and continues the simulation of M.
9. If M enters a halting state in H, M′ also halts, and its output is the contents of tape 2, which

represents the final tape of M.

To illustrate the simulation, consider an example ICTTM M with the following behavior:

• M starts with input "01" on its tape.
• At step 3, M enters state qsend and sends the current symbol "1" to time 0.
• M continues its computation and halts at step 5 with output "11".

The SSTTM M′ simulates M as follows:

• M′ starts with input "01" on tape 2 and time lag 3 (binary "11") on tape 1.
• M′ simulates steps 1 and 2 of M in state qsim, writing the computational history to the scratch

tape: "(0, q0, R)", "(1, q1, R)".
• At step 3, M enters qsend, so M′ transitions to q′send and sends the current symbol "1" back 3 steps

in time.
• M′ moves the head on tape 2 to the position corresponding to time 0, transitions to qretrieve, and

reads "(0, q0, R)" from the scratch tape.
• M′ transitions to qwrite, writes "1" to tape 2, moves the head right, and updates the current state

to q0. The scratch tape now contains "(1, q0, R)" at the position corresponding to time 0.
• M′ transitions back to qsim and continues simulating M from state q0 with tape contents "11".
• M′ simulates steps 4 and 5 of M, writing the computational history to the scratch tape: "(1, q2,

R)", "(1, q3, R)".
• At step 5, M enters a halting state, so M′ also halts with output "11" on tape 2.

This step-by-step breakdown demonstrates how the SSTTM M′ uses its scratch tape to encode the
full computational history of the ICTTM M and correctly simulates the internal clock send operation.
By recording the tape contents, head position, and state at each step, M′ can accurately update
the simulated tape of M when a symbol is sent back in time, ensuring a faithful simulation of the
ICTTM.

This shows that the internal clock model can be simulated by a single symbol time traveler,
demonstrating that the latter is at least as powerful as the former.

3.4. Full Tape ICTTM

A Full Tape Internal Clock Time-Traveling Turing Machine has:

• Internal counter C incremented each step.
• State qsend to send all non-blank contents of tape 1 to time 0.

It operates as follows:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2041.v1

https://doi.org/10.20944/preprints202405.2041.v1

7 of 15

1. C increments each timestep.
2. Upon entering qsend, the entire current non-blank contents of tape 1 are sent to the same positions

at time 0, overwriting what was there.
3. Computation continues from qsend.
4. Halting gives the output on tape 1.

Figure 4 depicts a Full Tape ICTTM sending the entire non-blank contents of tape 1 to time 0.
Upon entering qsend, all non-blank symbols on tape 1 are sent to their corresponding positions at time
0, overwriting the previous contents.

. . . ▷ a b c . . .

Tape 1qsend

Send non-blank contents to time 0

C = 5

Internal Clock

Figure 4. A Full Tape Internal Clock Time-Traveling Turing Machine sending the entire non-blank
contents of tape 1 to time 0.

Theorem 2. The Full Tape ICTTM can be simulated by a Single Symbol ICTTM.

Proof. Let M be a Full Tape ICTTM with tape alphabet Γ, states Q, initial state q0, halting states H,
and transition function δ. We construct a Single Symbol ICTTM M′ that simulates M as follows:

• M′ has tape alphabet Γ′ = Γ ∪ {(γ, i) | γ ∈ Γ, i ∈ N}, where the additional symbols encode the
tape contents and their positions at each step.

• M′ has states Q′ = Q ∪ {qsim, q′send, qiterate, qretrieve, qwrite}, where qsim is used for simulating
M, q′send is used for initiating the sending of symbols back in time, qiterate is used for iterating
through the scratch tape history, qretrieve is used for retrieving the sent symbol, and qwrite is used
for writing the retrieved symbol to the simulated tape of M.

• M′ has initial state q0 and halting states H′ = H.
• M′ uses tape 1 for simulating the tape of M and encoding the computational history, and a

scratch tape for storing the symbols and their positions to be sent back in time.

The simulation proceeds as follows:

1. M′ starts in state q0 with input w on tape 1.
2. In state qsim, M′ simulates one step of M using the transition function δ. It updates the current

state, tape contents, and head position on tape 1 according to δ.
3. After each simulated step, M′ writes the current tape symbol γ and its position i as (γ, i) to the

scratch tape to record the computational history.
4. If M enters state qsend, M′ transitions to state q′send and moves the head to the beginning of the

scratch tape.
5. In state qiterate, M′ iterates through the scratch tape, reading each symbol (γ, i) one at a time.
6. For each (γ, i), M′ moves the head on tape 1 to position i, transitions to state qsend, and sends γ

back to time 0 at position i.
7. M′ then moves the head back to the scratch tape, transitions to state qretrieve, and reads the next

symbol (γ′, i′).
8. M′ transitions to state qwrite, moves the head on tape 1 to position i′, writes γ′, and transitions

back to state qiterate.
9. After processing all symbols on the scratch tape, M′ transitions back to state qsim and continues

the simulation of M.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2041.v1

https://doi.org/10.20944/preprints202405.2041.v1

8 of 15

10. If M enters a halting state in H, M′ also halts, and its output is the contents of tape 1, which
represents the final tape of M.

The runtime overhead of this simulation is O(n2), where n is the number of steps in the compu-
tation of M. This is because for each step of M, M′ needs to iterate through the entire scratch tape
history, which grows linearly with the number of steps. The space overhead is O(n), as the scratch
tape needs to store the tape contents and their positions at each step.

To illustrate the simulation, consider an example Full Tape ICTTM M with the following behavior:

• M starts with input "01" on its tape.
• At step 3, M enters state qsend and sends the entire non-blank contents of the tape, "011", back to

time 0.
• M continues its computation and halts at step 5 with output "0111".

The Single Symbol ICTTM M′ simulates M as follows:

• M′ starts with input "01" on tape 1.
• M′ simulates steps 1 and 2 of M in state qsim, writing the computational history to the scratch

tape: "(0, 0)", "(1, 1)".
• At step 3, M enters qsend, so M′ transitions to q′send and moves the head to the beginning of the

scratch tape.
• M′ transitions to qiterate and reads the first symbol "(0, 0)" from the scratch tape.
• M′ moves the head on tape 1 to position 0, transitions to qsend, and sends "0" back to time 0 at

position 0.
• M′ moves the head back to the scratch tape, transitions to qretrieve, and reads the next symbol "(1,

1)".
• M′ transitions to qwrite, moves the head on tape 1 to position 1, writes "1", and transitions back to

qiterate.
• M′ reads the next symbol "(1, 2)" from the scratch tape, moves the head on tape 1 to position 2,

transitions to qsend, and sends "1" back to time 0 at position 2.
• After processing all symbols on the scratch tape, M′ transitions back to qsim and continues

simulating M from time 0 with tape contents "011".
• M′ simulates steps 4 and 5 of M, writing the computational history to the scratch tape: "(1, 3)".
• At step 5, M enters a halting state, so M′ also halts with output "0111" on tape 1.

This detailed proof and example demonstrate how the Single Symbol ICTTM M′ simulates the
Full Tape ICTTM M by iterating through the scratch tape history and sequentially sending each symbol
back in time to its original position. The analysis of the runtime and space overheads provides insight
into the efficiency of this simulation.

This demonstrates that the Full Tape model can also be simulated by a Single Symbol Time
Traveler. We use the Single Symbol Time-Traveling Turing Machine model as the foundational model,
but we have proved that many other models can be simulated with the foundational one.

4. Properties

4.1. Self-Consistent Computability

The ability of Single Symbol Time-Traveling Turing Machines (SSTTMs) to send tape symbols
into the past introduces non-determinism and potential timeline bifurcations. We formalize the notion
of a self-consistent computation and output, drawing inspiration from Novikov’s self-consistency
principle, which states that the only possible time travel scenarios are those that do not lead to logical
contradictions or paradoxes [3].

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2041.v1

https://doi.org/10.20944/preprints202405.2041.v1

9 of 15

Definition 1. Let M be an SSTTM, and let s1, s2, . . . , sk be the sequence of symbols sent to the past by M
during its computation on input w. Sending each symbol si results in either 0 or 1 new bifurcations in the
computation history of M, denoted as:

• b(si) = 0 if si does not cause a new bifurcation
• b(si) = 1 if si causes a single new bifurcation

Let O1, O2, . . . , Or be the set of all possible outputs printed on tape 2 from the r many bifurcations caused
by sending symbols into the past during the computation of M(w).

Then, the computation of M(w) is said to be self-consistent if:

1. k = 0, i.e., no symbols are sent to the past by M(w), and M(w) halts normally with output O1.
2. k > 0, i.e., symbols are sent to the past, causing bifurcations, but O1 = O2 = · · · = Or. That is, all

branches halt with the same output on tape 2. We consider this a halting computation with the common
output.

3. If there exist l and m such that the outputs of halting branches are not equal, Ol ̸= Om, then we consider
this computation to be non-halting.

Intuitively, a self-consistent computation has only one possible output, despite any apparent
non-determinism from time travel. This definition ensures that the computation respects Novikov’s
self-consistency principle, avoiding paradoxes or contradictions that could arise from sending symbols
back in time.

To illustrate these concepts, consider the following examples:

Example 1 (Consistent Computation). Let M be an SSTTM with the following behavior on input "01":

• At step 3, M sends the symbol "1" back to step 1, overwriting the original "0".
• M continues its computation and halts at step 5 with output "11".

This computation is self-consistent because there is only one possible output, "11", regardless of the
bifurcation caused by sending the symbol back in time. The branch that starts with the original input "01" will
also halt with output "11" after receiving the symbol "1" from the future.

Example 2 (Inconsistent Computation). Let M be an SSTTM with the following behavior on input "01":

• At step 3, M sends the symbol "0" back to step 1, overwriting the original "0".
• At step 4, M sends the symbol "1" back to step 2, overwriting the original "1".
• The branch that starts with the original input "01" halts at step 5 with output "00".
• The branch that receives the symbol "0" at step 1 halts at step 5 with output "01".

This computation is inconsistent because the two branches halt with different outputs, "00" and "01". The
sending of symbols back in time has created a paradox, violating Novikov’s self-consistency principle.

We can now define the output of a self-consistent computation. For a given SSTTM M:

• If M has a unique timeline with no time travel, the output is the tape 2 contents upon halting.
• If M bifurcates timelines by time travel, the output is the common tape 2 contents across all

branches when halting.
• If M bifurcates timelines by time travel but some branches have different traditional outputs, we

consider the self-consistent computation to be non-halting or entering an error or rejecting state.

Theorem 3. Checking that an output has been found in a self-consistent SSTTM computation within n finite
steps can be finitely decided by a traditional Turing Machine within also a finite number of steps.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2041.v1

https://doi.org/10.20944/preprints202405.2041.v1

10 of 15

Proof. Let M be an SSTTM, and w be an input. We will construct a traditional Turing Machine T that
can decide in finite time whether M has a consistent output on w across all bifurcations with n or fewer
steps.

T will simulate the computation tree of M on w in a breadth-first manner, tracking tape contents
at each timestep in each branch.

Formally, T operates as follows:

1. Create an initial configuration C0 of M on input w.
2. Set list L = [C0] to track configurations.
3. While L is non-empty:

(a) Remove the first configuration C from L.
(b) Simulate one step of C to generate configurations C′.
(c) If C halts, compare the output tape to C’s previously saved output tape.

i. If equal, continue to the next C.
ii. If unequal, reject.

(d) Add all C′ to the end of L.

4. If L empties with no rejection, accept.

Observe:

• Each C depends only on its parent configuration, so T can correctly recreate C.
• The branching factor of M is finite, so |L| is at most exponential in runtime.

Therefore, as L is finite, T will eventually simulate all configurations of M on w and detect any
inconsistencies or accept. As T only needs to track a finite number of configurations, this process
terminates in finite time.

This shows T can decide finitely if M has a consistent output across bifurcations within finite n
steps.

This formalization of self-consistency, along with the concrete examples and the connection to
Novikov’s self-consistency principle, provides a clearer understanding of what constitutes a valid
output for an SSTTM computation involving time travel. The theorem and proof demonstrate that
checking for self-consistency within a finite number of steps is decidable by a traditional Turing
Machine, ensuring that the notion of self-consistent computability is well-defined and computable.

This also formalizes which solutions we consider valid outputs of an SSTTM computation involv-
ing time travel. Even with timeline bifurcations, a self-consistent output requires agreement between
all branches. Consistency guarantees a well-defined result, avoiding paradoxes from contradictory
outputs. The problem with self-consistent computations is that they do not seem computable to decide
if you are on a halting state that is part of a self-consistent computation without simulating all the
bifurcations, but we will see if we can prove this is computable in our model. This means that there is
a Universal SSTTM that is properly utilizing the time-traveling internal state to simulate any of the
possible SSTTMs.

Theorem 4. There exists a Universal SSTTM U that has a self-consistent output indicating whether a given
SSTTM M has a self-consistent computation.

Proof. Let U be a Universal SSTTM, and M be an arbitrary SSTTM that U takes as input. We will show
that U can generate a self-consistent output indicating whether M has a self-consistent computation
on input w.

U simulates the computation tree of M(w) in a breadth-first manner, keeping track of tape contents
across all branches.

Formally, the operation of U is:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2041.v1

https://doi.org/10.20944/preprints202405.2041.v1

11 of 15

Universal SSTTM U:
1. C_0 ← initial configuration of M(w)
2. L ← [C_0]
3. while L is not empty:
4. C ← L.dequeue()
5. C’ ← simulate_one_step(C)
6. if C halts:
7. o_C ← get_output_tape(C)
8. send_to_all_prior_branches(o_C)
9. for each branch point B:
10. if o_C = o_B:
11. continue
12. else:
13. halt in state q_inconsistent
14. L.enqueue_all(C’)
15. if L is empty:
16. halt in state q_consistent

We observe:

• The branching factor of M is finite as it is an SSTTM. Thus, |L| is at most exponential in the
runtime, i.e., |L| ≤ ct for some constant c and runtime t.

• U can correctly recreate any configuration C from its parent.
• As L is finite, U will eventually simulate all possible configurations of M(w).

The number of simulation steps performed by U is bounded by the total number of configurations
in the computation tree of M(w). In the worst case, this is exponential in the runtime of M, i.e., O(ct)

for some constant c and runtime t. The size of each configuration is bounded by the size of M and the
length of the input w, i.e., O(|M|+ |w|).

Therefore, as U simulates all branches and compares outputs at each branch point, it will defini-
tively enter either qconsistent if M(w) is self-consistent, or qinconsistent if not. The total runtime of U is
bounded by O(ct · (|M|+ |w|)), which is exponential in the runtime of M and linear in the size of M
and w.

Thus, U generates a self-consistent output indicating if M(w) is self-consistent across all bifurca-
tions.

This demonstrates that consistency can be checked within the SSTTM model itself. The potentially
unbounded branching is handled by harnessing time travel to share information across timelines. Also,
the potentially unbounded branching makes the consistency of these computations, which is akin to a
Halting Problem, undecidable by a traditional deterministic Turing Machine. We can simulate time
bifurcations in a traditional Turing Machine by exploring them either in a depth-first or breadth-first
manner and using the dovetailing technique, but we can prove that the number of bifurcations can be
unbounded and undecidable in the traditional model.

Theorem 5. Given an SSTTM M, it is undecidable by a traditional Turing Machine whether simulating M
results in a finite or infinite number of bifurcations.

Proof. Let us assume for contradiction that there exists a traditional Turing Machine T that can
determine if the simulation of an arbitrary SSTTM M on input w results in a finite or infinite number
of bifurcations. Consider the set S = {⟨M, w⟩} of all possible pairs of an SSTTM M and input w. We
can enumerate this set as S = {⟨M1, w1⟩, ⟨M2, w2⟩, . . . }. We will construct a diagonalizing SSTTM N
that takes as input a pair ⟨Mi, wi⟩ and behaves as follows:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2041.v1

https://doi.org/10.20944/preprints202405.2041.v1

12 of 15

1. N simulates T on input ⟨Mi, wi⟩ to obtain T’s prediction of whether Mi on input wi will result in
a finite or infinite number of bifurcations.

2. If T predicts that Mi on input wi will result in a finite number of bifurcations, N simulates Mi on
input wi but introduces a time travel paradox that causes an infinite number of bifurcations. N
achieves this by sending a symbol back in time that contradicts the symbol that was originally
present at that position, creating a scenario similar to the grandfather paradox. This contradiction
leads to an infinite number of bifurcations, each corresponding to a different resolution of the
paradox.

3. If T predicts that Mi on input wi will result in an infinite number of bifurcations, N simulates Mi
on input wi without introducing any additional time travel. In this case, N will have the same
number of bifurcations as Mi, which is finite.

The construction of N is analogous to the classic diagonalization technique used in proofs of
undecidability, such as the proof of the undecidability of the Halting Problem. In that proof, a
diagonalizing Turing Machine is constructed that takes as input the description of a Turing Machine
and its input, and behaves differently than the input machine on that input. This leads to a contradiction
when the diagonalizing machine is given its own description as input.

Similarly, our diagonalizing SSTTM N takes as input a pair ⟨Mi, wi⟩ and behaves differently than
Mi on input wi with respect to the number of bifurcations, based on the prediction of the assumed
deciding machine T. This leads to a contradiction when N is given its own description and input as a
pair ⟨N, ⟨N, w⟩⟩.

If T predicts that N on input ⟨N, w⟩ will result in a finite number of bifurcations, then N will
introduce a time travel paradox causing an infinite number of bifurcations. Conversely, if T predicts
that N on input ⟨N, w⟩ will result in an infinite number of bifurcations, then N will not introduce any
additional time travel, resulting in a finite number of bifurcations. In either case, N behaves differently
than predicted by T, contradicting the assumption that T can correctly decide whether an SSTTM on a
given input will result in a finite or infinite number of bifurcations.

Therefore, by contradiction, there cannot exist a traditional Turing Machine T that can determine
if the simulation of an arbitrary SSTTM M on input w will result in a finite or infinite number of
bifurcations. The problem of predicting whether an SSTTM will have a finite or infinite number of
bifurcations is undecidable.

The core issue is that simulating all possible branches of an SSTTM to count bifurcations is
infeasible on a traditional Turing Machine. By harnessing time travel, SSTTMs can share information
across branches, but this capability cannot be reproduced without it.

4.2. Complexity Constraints

Theorem 6. Let M be a traditional Turing Machine running in time T(n) on input x. Construct an SSTTM
M′ which simulates M on x, sends x paired with the output back in time, then halts also with the correct output.
In the worst-case complexity, M′ must still run in Ω(T(n)) time to be self-consistent.

Proof. Let M be a traditional Turing Machine with time complexity T(n) on inputs of length n. We
construct an SSTTM M′ that operates as follows on input x of length n:

1. M′ simulates M(x) for T(n) steps, recording the output as o.
2. At the end of the simulation, M′ sends the pair ⟨x, o⟩ back in time to the initial configuration.
3. M′ then halts with output o.

This creates two branches in the timeline of M′:

1. The original branch B1 where M(x) is simulated for the full T(n) steps before M′ halts.
2. The new branch B2 starting with the output pair ⟨x, o⟩ sent back in time.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2041.v1

https://doi.org/10.20944/preprints202405.2041.v1

13 of 15

To ensure a self-consistent output o, the computation in branch B1 must fully complete. This
occurs with probability p, where p is the probability that M′ starts in the original timeline.

The key observations are:

• The worst-case runtime of branch B1 is T(n) to simulate M(x).
• The runtime of branch B2 is constant as it starts with the output.
• To be self-consistent, the output o must be produced in full in branch B1.

Therefore, the worst-case expected runtime of M′ across branches is Ω(T(n)). The potential
speedup of branch B2 does not improve this worst-case bound due to the need for self-consistency
with branch B1.

Now, let’s consider the average-case runtime of M′ under some assumptions about the branch
probability distribution. Suppose that the probability of starting in branch B1 is p and the probability
of starting in branch B2 is 1 − p. The average-case runtime of M′ can be expressed as:

E[runtime(M′)] = p · T(n) + (1 − p) · O(1)

= p · T(n) + O(1)

If p is a constant (independent of n), then the average-case runtime of M′ is Θ(T(n)), which
is asymptotically the same as the worst-case runtime. This suggests that, under a uniform branch
probability distribution, the average-case runtime of M′ is still constrained by the need for self-
consistency with branch B1.

However, if p is allowed to depend on n, then the average-case runtime of M′ could potentially
be improved. For example, if p = O(1/T(n)), then the average-case runtime of M′ would be:

E[runtime(M′)] = O(1/T(n)) · T(n) + O(1)

= O(1)

In this case, the average-case runtime of M′ would be constant, representing a significant speedup
over the worst-case runtime. However, it is important to note that this speedup comes at the cost of a
reduced probability of self-consistency, as the probability of starting in branch B1 decreases with n.

These observations suggest that the complexity constraints on SSTTMs can be sensitive to assump-
tions about the branch probability distribution. While the worst-case runtime is always constrained by
the need for self-consistency, the average-case runtime may be improved under certain probability
distributions that favor faster branches. However, this improvement in average-case runtime comes at
the cost of a reduced probability of self-consistency.

Further research could explore the trade-offs between average-case runtime and the probability
of self-consistency under different branch probability distributions. This could lead to a more nuanced
understanding of the complexity constraints on SSTTMs and the potential for leveraging time travel to
achieve speedups in specific scenarios.

In summary, because only branches that complete the original T(n) computation can produce
self-consistent output, probabilistic speedups in worst-case complexity cannot be obtained through
time travel in this model.

5. Conclusions

Time-Traveling Turing Machines provide a fascinating framework to investigate the interplay
between computation, consistency, and time. Our exploration suggests that while these machines hold
potential, they are bound by certain constraints, especially ensuring self-consistent timelines. Further
research is needed to unlock their full potential and address the myriad of challenges they present.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2041.v1

https://doi.org/10.20944/preprints202405.2041.v1

14 of 15

In this paper, we introduced Time-Traveling Turing Machines and rigorously characterized their
properties. We defined several models enabling limited forms of sending information back in time and
formalized the notion of consistency for computations involving time travel.

Our main results are:

• Single Symbol Time-Traveling Turing Machines (SSTTMs) can simulate other restricted models
like Internal Clock Time-Traveling Turing Machines and also models with arbitrary size data
traveling. This establishes a robust foundation for studying temporal effects in computation.

• Determining computational consistency is possible within the SSTTM model itself. We have
Universal SSTTMs that can function as watchers and controllers of SSTTM consistency. The
ability to send outputs back in time allows verifying correctness across branches.

• Requiring self-consistent outputs prohibits using time travel to speed up computation in the
worst-case time complexity. We cannot restrict a longer computation into a shorter computation
by removing some of the parallel time bifurcations.

Together, these findings help connect concepts of computation, time, prediction, and complexity.
However, our current models have several limitations that present opportunities for further research:

• Our models only allow sending limited symbols or tape contents back in time. Extending the
model to allow more general message passing, such as sending entire programs or algorithms,
could reveal new insights into the relationship between time travel and computational complexity.
For example, what are the implications of sending optimized machines from the future back in
time? This could lead to new connections between time travel, compression, and algorithmic
information theory.

• Our models focus on deterministic computation with a limited form of non-determinism in-
troduced by time travel. Exploring the interplay between time travel and other forms of non-
determinism, such as probabilistic or quantum computation, could yield new insights into the
nature of computation and the role of time. For example, how does the introduction of time
travel affect the computational power of Probabilistic or Quantum Turing Machines?

• Our models consider time travel within a single computational system. Extending the model
to allow interactions between multiple SSTTMs could lead to new questions about the nature
of causality, consistency, and communication in the presence of time travel. For example, how
can multiple SSTTMs coordinate to achieve a common computational goal while maintaining
consistency across their respective timelines?

In addition to these limitations and open problems, it is worth considering how our models
of Time-Traveling Turing Machines relate to other notions of closed timelike curves (CTCs) and
hypercomputation. CTCs have been studied extensively in the context of physics and have been shown
to enable hypercomputation in certain models of computation, such as Malament-Hogarth spacetimes
and Kerr black holes [12]. However, these models often rely on specific assumptions about the nature
of spacetime and the availability of infinite computational resources.

Our models of SSTTMs, in contrast, focus on the computational implications of time travel within
the framework of classical Turing Machines. While we have shown that SSTTMs can simulate certain
restricted models of hypercomputation, such as Internal Clock Time-Traveling Turing Machines, our
results also highlight the limitations of using time travel to achieve speedups in computation. In
particular, our results on the complexity constraints of SSTTMs suggest that time travel alone may not
be sufficient to achieve arbitrary levels of hypercomputation, at least within the framework of classical
computation.

Further research could explore the connections between SSTTMs and other models of hypercom-
putation, such as Oracle Machines and Infinite Time Turing Machines [13]. This could lead to a more
comprehensive understanding of the computational power of time travel and its relationship to other
forms of non-classical computation.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2041.v1

https://doi.org/10.20944/preprints202405.2041.v1

15 of 15

Overall, Time-Traveling Turing Machines establish a new lens for investigating the interplay
between computational theory and concepts of time, causality, and temporal logic. By formalizing the
notion of consistency in the presence of time travel and studying the computational power of SSTTMs,
we have opened up new avenues for research at the intersection of computer science, physics, and
philosophy. We hope that this work will inspire further exploration of the fascinating and perplexing
questions that arise when computation and time travel collide.

Acknowledgments: The author would like to thank the support of Trust Machines.

References

1. J.T. Gill, Computational Complexity of Probabilistic Turing Machines, in: Proceedings of the Sixth Annual ACM
Symposium on Theory of Computing, STOC ’74, Association for Computing Machinery, New York, NY, USA,
1974, pp. 91–95–.

2. P. Benioff, Models of Quantum Turing Machines, Fortschritte der Physik 46(4–5) (1998), 423–441.
3. I.D. Novikov, Time machine and self-consistent evolution in problems with self-interaction, Phys. Rev. D 45

(1992), 1989–1994.
4. S. Aaronson and J. Watrous, Closed timelike curves make quantum and classical computing equivalent,

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465(2102) (2008), 631–647.
5. T. Ord, Hypercomputation: computing more than the Turing machine, 2002.
6. C.H. Bennett, Logical Reversibility of Computation, IBM Journal of Research and Development 17(6) (1973),

525–532.
7. C. Moore, Unpredictability and undecidability in dynamical systems, Phys. Rev. Lett. 64 (1990), 2354–2357.
8. S.B. Khanehsar and F. Didehvar, Turing Machines Equipped with CTC in Physical Universes, CoRR abs/2301.11632

(2023).
9. D. Deutsch, Quantum mechanics near closed timelike lines, Phys. Rev. D 44 (1991), 3197–3217.
10. R. Freund and S. Ivanov, How to Go Beyond Turing with P Automata: Time Travels, Regular Observer w-

Languages, and Partial Adult Halting, Proceedings of the Thirteenth Brainstorming Week on Membrane Computing
(2015).

11. R. O’Donnell and A.C.C. Say, One Time-traveling Bit is as Good as Logarithmically Many, in: 34th International
Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014), V. Raman and
S.P. Suresh, eds, Leibniz International Proceedings in Informatics (LIPIcs), Vol. 29, Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2014, pp. 469–480. ISSN 1868-8969.

12. J.B. Manchak, Can We Know the Global Structure of Spacetime?, Studies in History and Philosophy of Science
Part B: Studies in History and Philosophy of Modern Physics 40(1) (2009), 53–56.

13. J.D. Hamkins and A. Lewis, Infinite time Turing machines, Journal of Symbolic Logic 65(2) (2000), 567–604–.
14. S. Aaronson, M. Bavarian and G. Gueltrini, Computability Theory of Closed Timelike Curves, 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2024 doi:10.20944/preprints202405.2041.v1

https://doi.org/10.20944/preprints202405.2041.v1

	Introduction
	Related Work
	Definitions
	Traditional Turing Machines
	Single Symbol Time-Traveling Turing Machine
	Internal Clock Time-Traveling Turing Machine
	Full Tape ICTTM

	Properties
	Self-Consistent Computability
	Complexity Constraints

	Conclusions
	References

