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Abstract: Ranked Set Sampling (RSS) is a useful technique for improving the estimator of population 
mean when the sampling units in a study can be easily ranked than the actual measurement. RSS 
performs better than simple random sampling (SRS) when the mean of units corresponding to each 
rank is used. The performance of RSS can be increased further by assigning weights to the ranked 
observations. In this paper, we propose weighted RSS procedures to estimate the population mean 
of positively skew distributions. It is shown that the gain in the relative precisions of the population 
mean for chosen distributions are uniformly higher than those based on RSS. The gains in relative 
precisions are substantially high. Further, the relative precisions of our estimator are slightly higher 
than the ones based on Neyman’s optimal allocation model for small sample sizes. Moreover, it is 
shown that, the performance of the proposed estimator increases as the skewness increases by using 
the example of lognormal family of distributions. 

Keywords: ordered observations; Neyman’s allocation; relative precision; skewness; unbiased 
estimator; weight 
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1. Introduction 

The Ranked Set Sampling (RSS) procedure has been used advantageously in agriculture, 
forestry, environmental, ecological and recently in human studies where the exact measurement of 
units is either difficult or expensive. For example, in forestry, the measurement of stem volume of 
standing trees is difficult but the ranking of the trees using their height and diameter at breast height 
is rather easy.  For such situations, McIntyre (1952) introduced RSS to estimate the population mean. 
The RSS is a cost-efficient alternative to simple random sampling (SRS) if observations can be ranked 
according to the characteristic under investigation by means of visual inspection or other methods 
not requiring actual measurements. McIntyre (1952) indicated that the RSS procedure is superior to 
SRS procedure to estimate the population mean. However, Dell and Clutter (1972) and Takahasi and 
Wakimoto (1968) provided mathematical foundation for RSS. Dell and Clutter (1972) also showed 
that the estimator for population mean based on RSS is at least as efficient as the estimator based on 
SRS with the same number of measurements even though when there are ranking errors. Bhoj (2001) 
introduced RSS with unequal samples. Bhoj and Kushary (2016) proposed RSS with unequal samples 
for positively skew distributions with heavy right tails. RSS is a nonparametric procedure. However, 
recently, RSS has also been used in the parametric setup (see Bhoj and Ahsanullah (1996); Bhoj (1997a, 
1997b); Lam et al. (1994); Stokes (1995). 

The selection of ranked set sample of size k involves drawing k random samples with k units in 
each sample. The units in each sample are ranked by using judgment or other methods not requiring 
actual measurements. The unit with lowest rank is measured from the first sample, the unit with 
second lowest rank is measured from the second sample, and the procedure is continued until the 
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unit with the highest rank is measured from the last sample. The k2 ordered observations in k samples 
can be displayed in the matrix form as: 𝑦(ଵଵ), 𝑦(ଵଶ), … , 𝑦(ଵ௞) 𝑦(ଶଵ), 𝑦(ଶଶ), … , 𝑦(ଶ௞) … 𝑦(௞ଵ), 𝑦(௞ଶ), . . . , 𝑦(௞௞) 
We measure only k൫𝑦(௜௜), 𝑖 = 1,2. . . , 𝑘൯ diagonal observations, and they constitute the RSS. We note 
that these k observations are independently but not identically distributed. In RSS, k is usually small 
to reduce the ranking errors and therefore, to increase the sample size, the above procedure is 
repeated 2≥m times to get the sample of size mkn = . In this paper, we assume m=1. 

In the present paper, our main interest is to estimate the population mean for positively skew 
distributions with longer right tail. We propose estimators based on weighted ranked set sampling 
(WRSS) and compare their performance with the ones based on the usual RSS procedure and 
Neyman’s optimal allocation model. In section 2, we summarize the estimators of population mean 
based on RSS procedure and Neyman’s optimal solution. In section 3, we propose our WRSS 
procedure to estimate the population mean of skew distributions. First, we introduce WRSS 
procedure where we assign one low weight to the highest order statistics and calculated the relative 
precisions of the estimator based on WRSS, RSS and Neyman’s optimal procedure with respect to the 
estimator based on SRS. The procedures are used to obtain the relative precisions by using the four 
positively skew distributions. We also computed one set of weights for all four distributions for each 
k. In section 4, we derived optimal weights for the lowest and highest order statistics for the chosen 
distributions for each k.  We then obtained one set of weights for the lowest and highest order 
statistics for each k which will maximize the sum of relative precisions of four distributions. In section 
5, we generalize the use of all optimal weights for all order statistics for k=4 and k=5 for each 
distribution. We also obtained one set of weights for each k for the four chosen distributions. In 
section 6, to see the effect of increasing skewness, the relative precisions of estimators for lognormal 
family of distributions have been compared. In section 7, we summarize the results with 
recommendations. 

2. Estimation of Mean 

We consider first the usual RSS to estimate the population mean. Let 𝑦(௜௜), 𝑖 = 1,2, … , 𝑘 denote 
the value of characteristic under study of 𝑖௧௛ order statistic. The mean and variance of the 𝑖௧௛ rank 
order statistic for set size k are denoted by 𝜇(௜௜) and 𝜎(௜௜)ଶ , respectively. We denote the population 
mean and variance by 𝜇 and 𝜎ଶ, respectively. Then the unbiased estimator for 𝜇 based on RSS is 
given by 𝜇̅ = ଵ௞ ∑ 𝑦(௜௜)௞௜ୀଵ , 

with the variance 𝑉𝑎𝑟(𝜇̅) = ଵ௞మ ∑ 𝜎(௜௜)ଶ௞௜ୀଵ . 
The relative precision of 𝜇̅  compared to the estimator based on SRS with the same number of 
observations k (Bhoj and Chandra, 2019) is 

𝑅𝑃ଵ = 
2

2

σ
σ

, (2.1)

where 𝜎ଶ = ଵ௞ ∑ 𝜎(௜௜)ଶ௞௜ୀଵ  is the average within-rank variance. 
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For the skewed distribution, Neyman’s allocation 𝑚௜ = ௡ఙ(೔೔)∑ ఙ(೔೔)ೖ೔సభ provides the optimal allocation 

and the relative precision of the unbiased estimator of 𝜇 based on this model with respect of SRS 
with the same number of observations n and is given by (Bhoj and Chandra, 2019). 𝑅𝑃ଷ = ఙమఙ̄మ, (2.2)

where, 𝜎 = ଵ௞ ∑ 𝜎(௜௜)௞௜ୀଵ is the average within-rank standard deviation. 
There are some unequal allocation models for the skew distributions in the literature (see, ‘t’ and 

‘s, t’ model (Kaur et al., 1997); Systematic model (Tiwari and Chandra, 2011) and simple model 
(Chandra et al., 2018 and Bhoj and Chandra, 2019)). The Neyman’s allocation does not provide the 
integer values of 𝑚௜ which are necessary for any application. The procedure of making them integer 
is shown in Bhoj and Chandra (2019) and used in this paper. It is noted that the inequality 𝑅𝑃ଷ > 𝑅𝑃ଵ 
always holds for the skew distributions. 

3. WRSS with One Optimal Weight 

In this section, we propose a weighted ranked set sampling (WRSS) with the optimal weight for 
the largest order statistic since the largest order statistic has the highest variance and higher bias of 
the estimator for the mean when we deal with the positively skew distributions. We define that the 
weights  𝑤௜ ൫𝑤𝑖𝑡ℎ 0 ≤ 𝑤௜ ≤ 1 𝑎𝑛𝑑 ∑ 𝑤௜ = 1௞௜ୀଵ ൯ as, 𝑤௜ ∝ 1, for 𝑖 = 1, 2, … , 𝑘 − 1 

𝑤௞ ∝ ଵ஼ೖ, 

The exact values of weights are proposed as follows:  𝑤௜ = ଵ(௞ିଵ)ା భ಴ೖ, for 𝑖 = 1, 2, … , 𝑘 − 1, 

𝑤௞ = 1𝐶௞ ቆ(𝑘 − 1) + 1𝐶௞ቇ 

Our weighted estimator for the population mean 𝜇 is  𝜇̄ௐభ = ∑ 𝑤௜𝑦(௜௜)௞௜ୀଵ ,  (3.1)

The relative precision of our biased estimator 𝜇̄ௐభwith respect to the estimator based on SRS is 𝑅𝑃ଶ = 𝜎ଶሾ1 + 𝐶௞(𝑘 − 1)ሿଶ𝑘 ቂ𝐶௞ଶ ∑ 𝜎(௜௜)ଶ + 𝜎(௞௞)ଶ௞ିଵ௜ୀଵ + ൛𝜇൫1 + 𝐶௞(𝑘 − 1)൯ − 𝐶௞ ∑ 𝜇(௜௜) − 𝜇(௞௞)௞ିଵ௜ୀଵ ൟଶቃ (3.2)

The value of 𝐶௞ is to be chosen such that the 𝑅𝑃ଶ is maximum. To find the optimum value of 𝐶௞ (for 
each k), the excel program of 𝑅𝑃ଶ was developed and using the different iterations on 𝐶௞, the values 
of 𝑅𝑃ଶ was tested until it gets maximum. All the other values above and below from this optimal 𝐶௞, 𝑅𝑃ଶ starts decreasing. 

We computed 𝐶௞  for all four chosen distributions lognormal (LN(0, 1)), Pareto (P(3.5) and 
P(4.5)) and Weibull (W(0.5)) and k=2(1)5. The values of 𝑅𝑃ଶ, 𝐶௞, 𝑅𝑃ଷ and 𝑅𝑃ଵ for these distributions 
and k=2(1)5 are presented in Table 1. The values of 𝑅𝑃ଶ are much higher than 𝑅𝑃ଵ, i.e., the relative 
precisions of the estimator based on RSS procedure. Furthermore, the 𝑅𝑃ଶ are higher than 𝑅𝑃ଷ, i.e., 
those based on Neyman’s optimal allocation model for all four distributions when 𝑘 ≤ 4. All relative 
precisions increase as k increases for LN(0,1), P(3.5) and P(4.5). However, for W(0.5), 𝑅𝑃ଶ decreases 
as k increases. This may be because the distribution W(0.5) has extremely large skewness and kurtosis. 
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Table 1. The RPs (𝑅𝑃ଵ, 𝑅𝑃ଶ, 𝑅𝑃ଷ) at an individual optimal 𝐶௞ of each distribution for k = 2(1)5. 

Set size (k) 2 3 4 5 

LN(0,1) 

𝐶௞ 4.3798 3.2859 2.8028 2.5263 

1RP  1.1872 1.3393 1.4711 1.5891 

2RP  2.5946 2.7278 2.8083 2.8845 

3RP  1.5765 2.1182 2.6219 3.1347 

P(3.5) 

𝐶௞ 4.7900 3.5693 3.0417 2.7427 

1RP  1.1707 1.3073 1.4238 1.5269 

2RP  2.7528 2.8579 2.9189 2.9805 

3RP  1.5834 2.1273 2.6370 3.1434 

P(4.5) 

𝐶௞ 3.8151 2.8990 2.4962 2.2678 

1RP  1.2134 1.3901 1.5451 1.6847 

2RP  2.3679 2.5338 2.6535 2.7676 

3RP  1.5544 2.0810 2.5995 3.0878 

W(0.5) 

𝐶௞ 6.7391 4.4803 3.5837 3.0972 

1RP  1.1268 1.2362 1.3345 1.4250 

2RP  3.6271 3.3698 3.2166 3.1379 

3RP  1.6306 2.2105 2.7913 3.3840 

Now we attempt to compute one set of values of 𝐶௞ for four values of sample sizes, which will 
work well for all chosen four distributions. In these computations, 𝐶௞ was determined so that the 
sum of 𝑅𝑃ଶ for the four distributions is close to the maximum. This optimum value of 𝐶௞ was found 
using the same iteration procedure in the developed excel program. 

The values of optimum 𝐶௞, and 𝑅𝑃ଶ for the chosen four distributions and four sample sizes are 
presented in Table 2. The values of 𝑅𝑃ଶ in Table 2 are slightly smaller than the ones in Table 1 as is 
expected. However, the pattern of 𝑅𝑃ଶ remained the same. 

Table 2. The RP values (𝑅𝑃ଵ, 𝑅𝑃ଶ, 𝑅𝑃ଷ and total 𝑅𝑃ଶ) at combined optimal 𝐶௞ for k = 2(1)5. 

Set size (k) 2 3 4 5 𝐶௞ 5.0655 3.6004 2.9955 2.6618 
Total 𝑅𝑃ଶ 11.2063 11.3956 11.5215 11.7050 

Total Maximum 𝑅𝑃ଶ* 11.3424 11.4893 11.5973 11.7705 

LN(0,1) 
1RP  1.1872 1.3393 1.4711 1.5891 

2RP  2.5809 2.7207 2.8036 2.8811 

3RP  1.5765 2.1182 2.6219 3.1347 

P(3.5) 
1RP  1.1707 1.3073 1.4238 1.5269 

2RP  2.7507 2.8578 2.9186 2.9794 

3RP  1.5834 2.1273 2.6370 3.1434 

P(4.5) 
1RP  1.2134 1.3901 1.5451 1.6847 

2RP  2.3205 2.4963 2.6199 2.7363 

3RP  1.5544 2.0810 2.5995 3.0878 

W(0.5) 1RP  1.1268 1.23617 1.3345 1.4250 

2RP  3.5542 3.3208 3.1793 3.1082 
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3RP  1.6306 2.2105 2.7913 3.3840 
*Total Maximum 𝑅𝑃ଶ is the sum of 𝑅𝑃ଶ of all the distributions at their respective optimum 𝐶௞. 

4. WRSS with Two Optimal Weights 

In this Section, we propose a WRSS with two optimal weights for the two extreme order 
statistics. Here the weights  𝑤௜ ൫𝑤𝑖𝑡ℎ 0 ≤ 𝑤௜ ≤ 1 𝑎𝑛𝑑 ∑ 𝑤௜ = 1௞௜ୀଵ ൯ for k>2 are defined as 𝑤ଵ ∝ ଵ஼భ, 𝑤௜ ∝ 1, for 𝑖 = 2, 3, … , 𝑘 − 1 

𝑤௞ ∝ ଵ஼ೖ, 

The proposed exact weights are as follows:  𝑤ଵ = ଵ஽஼భ, 𝑤௜ = ଵ஽, for i = 2, 3, … , 𝑘 − 1 

𝑤௞ = ଵ஽஼ೖ, 

where 𝐷 = (𝑘 − 2) + ଵ஼భ + ଵ஼ೖ 

Our estimator of population mean is 𝜇̄ௐమ = ∑ 𝑤௜𝑦(௜௜)௞௜ୀଵ   (4.1)

The relative precision of 𝜇̄ௐమwith respect to the estimator based on SRS is 𝑅𝑃ଶ = 𝜎ଶ𝐷ଶ𝑘 ቈ∑ 𝜎(௜௜)ଶ௞ିଵ௜ୀଶ + 𝜎(ଵଵ)ଶ𝐶ଵଶ + 𝜎(௞௞)ଶ𝐶௞ଶ + ቄ𝜇𝐷 − ∑ 𝜇(௜௜)௞ିଵ௜ୀଶ − 𝜇(ଵଵ)𝐶ଵ − 𝜇(௞௞)𝐶௞ ቅଶ቉ 
(4.2)

We calculate the optimal values of 𝐶௞ and 𝐶ଵ using the iteration method. Based on these values, we 
computed 𝑅𝑃ଶ along with 𝑅𝑃ଵ and 𝑅𝑃ଷ for chosen four distributions and sample sizes k=3, 4 and 5 
are presented in Table 3. The gains in precisions of the estimator 𝜇̄ௐమ over 𝜇̄ௐభ are marginal. The 
gains of 𝑅𝑃ଶ  based on 𝜇̄ௐమ  are substantially higher than the estimator based on RSS. 𝜇̄ௐమ  is 
superior to the estimator based on Neyman’s optimal allocation model for all k for the LN(0,1) and 
P(3.5) distributions. The values of 𝑅𝑃ଶ are higher than those of 𝑅𝑃ଷ for the other two distributions 
for k=3 and 4. The gains of 𝑅𝑃ଷ over 𝑅𝑃ଶ for k=5 for these two distributions are marginal. 

Table 3. The RPs (𝑅𝑃ଵ, 𝑅𝑃ଶ, 𝑅𝑃ଷ) at individual optimal 𝐶௞, 𝐶ଵ of each distribution for k = 3(1)5. 

Set size (k) 3 4 5 

LN(0,1) 

𝐶௞ 3.3322 3.8383 4.3430 𝐶ଵ 1.0217 1.9580 6.9907 

1RP  1.3393 1.4711 1.5891 

2RP  2.7280 2.8982 3.1621 

3RP  2.1182 2.6219 3.1347 

P(3.5) 

𝐶௞ 3.6003 4.1931 4.8037 𝐶ଵ 1.0134 2.0183 9.4583 

1RP  1.3073 1.4238 1.5269 

2RP  2.8579 3.0154 3.2847 
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3RP  2.1273 2.6370 3.1434 

P(4.5) 

𝐶௞ 2.8188 3.2036 3.6176 𝐶ଵ 0.9587 1.6485 3.9315 

1RP  1.3901 1.5451 1.6847 

2RP  2.5344 2.7072 2.9638 

3RP  2.0810 2.5995 3.0878 

W(0.5) 

𝐶௞ 3.3947 3.7117 3.9996 𝐶ଵ 0.6463 1.0814 2.4127 

1RP  1.2362 1.3345 1.4250 

2RP  3.4286 3.2176 3.1936 

3RP  2.2105 2.7913 3.3840 

As we did in case of 𝜇̄ௐభ, we attempt to compute one set of values of 𝐶௞ and 𝐶ଵ for three values 
of sample sizes which will work well for all chosen four distributions. In these computations, 𝐶௞ and 𝐶ଵ were determined so that the sum of relative precisions of 𝜇̄ௐమ for the four distributions is close 
to the maximum relative precision. The values of 𝐶௞  and 𝐶ଵ, 𝑅𝑃ଵ, 𝑅𝑃ଶ and 𝑅𝑃ଷ for three sample 
sizes and four chosen distributions are presented in Table 4. The relative precisions of 𝜇̄ௐమ in Table 
4 are higher than those of 𝜇̄ௐభfor each k in Table 2. The pattern of relative precisions are same as seen 
in Table 3. 

Table 4. The RPs (𝑅𝑃ଵ, 𝑅𝑃ଶ, 𝑅𝑃ଷ and total 𝑅𝑃ଶ) at combined optimal 𝐶௞, 𝐶ଵ for k = 3(1)5. 

Set size (k) 3 4 5 𝐶௞  3.4245 3.8499 4.2613 𝐶ଵ 0.9241 1.7370 5.3284 
Total 𝑅𝑃ଶ 11.4036 11.7566 12.5655 

Total Maximum 𝑅𝑃ଶ* 11.5489 11.8384 12.6042 

LN(0,1) 
1RP  1.3393 1.4711 1.5891 

2RP  2.7169 2.8937 3.1605 

3RP  2.1182 2.6219 3.1347 

P(3.5) 
1RP  1.3073 1.4238 1.5269 

2RP  2.8549 3.0112 3.2772 

3RP  2.1273 2.6370 3.1434 

P(4.5) 
1RP  1.3901 1.5451 1.6847 

2RP  2.4947 2.6841 2.9504 

3RP  2.0810 2.5995 3.0878 

W(0.5) 
1RP  1.2362 1.3345 1.4250 

2RP  3.3371 3.1677 3.1773 

3RP  2.2105 2.7913 3.3840 
*Total Maximum 𝑅𝑃ଶ is the sum of 𝑅𝑃ଶ of all the distributions at their respective 𝐶௞ and 𝐶ଵ. 

5. WRSS with All Optimal Weights 

Now, we extend WRSS with optimal weights for all order statistics for k=4 and 5. We take 𝐶 =𝑤ଵ + 𝑤௞, and determine the optimal values of C and 𝑤௞ by minimizing MSE of the estimator by using 𝑤௜ ∝ 1, for 𝑖 = 2, … , 𝑘 − 1. 
In the next step we use 
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𝑤௜ = (1 − 𝐶)𝑓௜, 𝑖 = 2, … , 𝑘 − 1 with ∑ 𝑓௜௞ିଵ௜ୀଶ = 1. 

The values of 𝑓௜  are chosen so that the value of 𝑅𝑃ଶ  is maximized. Then we repeat the 
procedure of computing the optimal values of C and 𝑤௞ with these new 𝑤௜′𝑠 . The procedure is 
repeated until the value of 𝑅𝑃ଶ achieves the maximum value. We did this by using the developed 
computer program in Excel. 

The values of 𝑅𝑃ଶ are presented in Table 5. We observe that the values of 𝑅𝑃ଶ presented in 
Table 4 are higher than the values of 𝑅𝑃ଶ based on one or two optimal weights which are given in 
Tables 1 and 3. 

Table 5. The RPs (𝑅𝑃ଵ, 𝑅𝑃ଶ and 𝑅𝑃ଷ) at individual optimal C, 𝑤௞ and 𝑓௜′𝑠 of each distribution for k = 
4 and 5. 

 LN(0,1) P(3.5) P(4.5) W(0.5) 

k=4 

𝐶 0.2136 0.2070 0.2693 0.2191 𝑤௞ 0.0937 0.0870 0.1069 0.0830 𝑓ଶ 0.5902 0.5827 0.5704 0.6484 𝑓ଷ 0.4098 0.4173 0.4296 0.3516 𝑅𝑃ଵ 1.4711 1.4238 1.5451 1.3345 𝑅𝑃ଶ 2.9401 3.0510 2.7304 3.2862 𝑅𝑃ଷ 2.6219 2.7913 2.6370 2.5995 

k=5 

𝐶 0.0827 0.0767 0.0905 0.0799 𝑤௞ 0.0702 0.0648 0.0785 0.0686 𝑓ଶ 0.3346 0.3260 0.3590 0.3491 𝑓ଷ 0.4011 0.4013 0.3774 0.4143 𝑓ସ 0.2643 0.2727 0.2636 0.23660 𝑅𝑃ଵ 1.5891 1.5269 1.6847 1.4250 𝑅𝑃ଶ 3.2583 3.3652 3.0329 3.3215 𝑅𝑃ଷ 3.1347 3.1434 3.0878 3.3840 

As we did in section 3 and 4, we computed one set of values of C, 𝑤௞ and different fractions 𝑓௜ 
for k=4 and k=5 which work well for all chosen four distributions. In these computations, these values 
were determined so that the sum of 𝑅𝑃ଶ′𝑠 for the four distributions is close to the maximum relative 
precision. These values along with 𝑅𝑃ଵ, 𝑅𝑃ଶ and 𝑅𝑃ଷ for k=4 and k=5 and four chosen distributions 
are presented in Table 6. As we expected the values of 𝑅𝑃ଶ are smaller in Table 6 when compared to 
the values of 𝑅𝑃ଶ in Table 5. However, the pattern of relative precisions remains the same. 

Table 6. The values of 𝑅𝑃ଶ and total 𝑅𝑃ଶ at combined optimal values of 𝐶, 𝑤௞ and 𝑓௜ᇱ𝑠 for k = 4 and 
5. 

Set 
size 

𝐶 𝑤௞ 𝑓ଶ 𝑓ଷ 𝑓ସ 
𝑅𝑃ଶ Total 𝑅𝑃ଶ 

Total Max 𝑅𝑃ଶ* LN(0,1) P(3.5) P(4.5) W(0.5) 
k=4 0.2210 0.0911 0.5967 0.4033  2.9367 3.0467 2.7018 3.2452   
k=5 0.0824 0.0700 0.3397 0.3992 0.2611 3.2577 3.3587 3.0164 3.3078 11.9303 12.0077 

*Total Maximum 𝑅𝑃ଶ is the sum of 𝑅𝑃ଶ of all the distributions at their respective 𝐶 , 𝑤௞ and 𝑓௜ᇱ𝑠. 

6. WRSS with Increasing Skewness 

In this section, we wish to study the performance of the three methods, RSS, WRSS and 
Neyman’s optimum allocation model with increasing values of skewness of a family of distributions. 
For this purpose, the lognormal distribution, 𝐿𝑁(0, 𝑏) has been considered. The pdf of 𝐿𝑁(𝑎, 𝑏) is 
given by 
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𝑓(𝑥) = ଵ௫௕√ଶగ 𝑒𝑥𝑝 ൤ିଵଶ ቀ௟௢௚ ௫ି௔௕ ቁଶ൨ , 𝑓𝑜𝑟𝑥 > 0, 𝑎 > 0, 𝑏 > 0,
  

 with 

population mean=𝑒𝑥𝑝 ቀ𝑎 + ௕ଶଶቁ and variance=𝑒𝑥𝑝(2𝑎 + 2𝑏ଶ) −𝑒𝑥𝑝(2𝑎 + 𝑏ଶ) 

Then skewness (Sk) and shape parameter (p) are given by 𝑆𝑘 = ඥ𝛽ଵ = ඥ𝑒𝑥𝑝(𝑏ଶ) − 1(𝑒𝑥𝑝(𝑏ଶ) + 2) and 𝑝 = 𝐸𝑥𝑝(𝑏ଶ). 

The performance of these three methods relative to SRS with k=4 is presented in Table 7 for lognormal 
family of distributions for a range of values of population standard deviation. The variances of the 
order statistics of the family of distributions were computed by using the variances of order statistics 
for different values of shape parameter (p) which are readily available in Balakrishnan and Chen 
(1999). From Table 7, we observe that as skewness increases the performance of (i) RSS method 
decreases, and (ii) Neyman’s and WRSS methods increases. The values of 𝑅𝑃ଶ based on all and two 
optimal weights are higher than 𝑅𝑃ଷ for all values of shape parameters, However, 𝑅𝑃ଶ based on one 
optimal weight is higher than 𝑅𝑃ଷ for all p>1.9. The rate of increase of relative precisions of the 
proposed estimators based on WRSS are more than that of estimator based on Neyman’s method (See 
Figure 1). 

Table 7. The values of 1RP , 2RP and 3RP for Lognormal 𝐿𝑁(0, 𝑏)distributions for k=4. 

p 𝑆𝑘 
𝐶௞ 
for 𝜇̄ௐభ 

For 𝜇̄ௐమ For 𝜇̄ௐయ 𝑅𝑃ଵ 
𝑅𝑃ଶ 𝑅𝑃ଷ 𝐶௞ 𝐶ଵ C 𝑤௞ 𝑓ଶ 𝑓ଷ 𝜇̄ௐభ 𝜇̄ௐమ 𝜇̄ௐయ 

1.8 3.40 2.07 2.715 1.633 0.301 0.124 0.556 0.444 1.702 2.490 2.552 2.568 2.520 
1.9 3.70 2.16 2.848 1.674 0.289 0.119 0.561 0.439 1.665 2.521 2.587 2.606 2.535 
2.0 4.00 2.24 2.978 1.714 0.279 0.115 0.565 0.435 1.632 2.553 2.623 2.644 2.550 
2.1 4.30 2.33 3.105 1.753 0.268 0.112 0.569 0.431 1.603 2.587 2.660 2.684 2.564 
2.2 4.60 2.41 3.229 1.790 0.258 0.108 0.573 0.427 1.576 2.621 2.697 2.724 2.577 
2.3 4.90 2.48 3.351 1.825 0.249 0.105 0.577 0.424 1.552 2.656 2.735 2.765 2.590 
2.4 5.21 2.56 3.471 1.859 0.240 0.102 0.580 0.420 1.530 2.692 2.774 2.806 2.603 
2.5 5.51 2.64 3.588 1.891 0.231 0.099 0.583 0.417 1.510 2.728 2.813 2.848 2.615 
2.6 5.82 2.71 3.704 1.923 0.223 0.097 0.587 0.413 1.491 2.765 2.852 2.890 2.626 
2.7 6.13 2.79 3.818 1.953 0.215 0.094 0.590 0.410 1.474 2.802 2.891 2.932 2.637 
2.8 6.44 2.86 3.930 1.981 0.207 0.092 0.593 0.407 1.458 2.839 2.931 2.975 2.648 
2.9 6.75 2.94 4.040 2.009 0.200 0.090 0.595 0.405 1.444 2.876 2.970 3.017 2.658 
3.0 7.07 3.01 4.149 2.035 0.193 0.088 0.598 0.402 1.430 2.914 3.010 3.060 2.668 

Note: Here  𝜇̄ௐయrepresents the proposed estimator based on all optimal weights 𝑅𝑃ଶ(1), 𝑅𝑃ଶ(2) and 𝑅𝑃ଶ(3) are 
the 𝑅𝑃ଶ𝑠 based on one, two and all optimal weights, respectively. 
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Figure 1. Comparison of rate of relative precisions with increasing skewness. 

7. Conclusions and Discussion 

In this paper, we proposed weighted ranked set sampling procedure to estimate the population 
mean of the distributions which are positively skew with heavy right tail. We chose four 
distributions: lognormal (LN(0, 1)), Pareto (P(3.5) and P(4.5)) and Weibull (W(0.5)). The means and 
variances of order statistics for these distributions are readily available in Harter and Balakrishnan 
(1996). We proposed three weighted ranked set sampling procedures. The first procedure is based on 
one optimal weight for the largest order statistics, the second procedure is to use the two optimal 
weights for the two extreme order statistics, and the third is the one which is based on k optimal 
weights.  We calculated the relative precisions for each of these four distributions by using the WRSS 
procedure for each sample size. These relative precisions are much higher than the relative precisions 
of RSS estimator of mean. Furthermore, relative precisions of our estimators are higher than those 
which are based on Neyman’s optimal procedures for 𝑘 ≤ 4. The relative precisions of our estimator 
are even higher than Neyman’s procedure for k=5 for some distributions. Furthermore, we attempted 
to compute one set of weight(s) for each k for all the distributions and compared the relative 
precisions of our estimator with those of RSS and Neyman’s estimators. Although there is slight loss 
in the values of relative precisions, they are still higher than those of Neyman’s model for 𝑘 ≤ 4 for 
all four distributions and either more than or very close to Neyman’s model for k=5. In general, as is 
expected, the relative precisions of our estimator based on all optimal weights are higher than the 
relative precisions of our estimator based on two and one optimal weight(s). The gain in relative 
precisions is however marginal.  

We studied the performance of our proposed estimators for increasing skewness of a family of 
lognormal distributions. The relative precision of our estimator based on one optimal weight is higher 
than those of Neyman’s estimator when the shape parameter exceeds 1.9. The relative precisions of 
our estimator based on two and k optimal weights is uniformly higher than those of Neyman’s 
estimator for all values of shape parameter considered in Table 7. From Figure 1, we see that with the 
increasing values of skewness, the rate of increase of relative precisions of our proposed estimators 
based on WRSS are more than that of estimator based on Neyman’s method. 

Based on the numerical computations of relative precisions, we recommend our estimator based 
on WRSS procedures for estimator of population mean of skew distributions with heavy right tail for 
small values of set sizes. 

Conflict of Interest: There is no conflict of interest. 
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