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Abstract: Catalytic studies for hydrogen production via steam reforming of ethanol (SRE) are essential for
process optimization. Likewise, selecting the ideal support for the active phase can be critical to achieve high
conversion rates during the catalytic steam reforming. In this work, copper-based catalysts were synthesized
using two different supports, NaY zeolite and Nb20s5/Al203 mixed oxides. The materials were prepared using
wet impregnation and characterized for their physicochemical properties using different analytical techniques.
Differences in catalyst morphologies were readily attributed to the characteristics of the support. The Cu/NaY
catalyst showed better textural properties than Cu/Nb20s/AL20s, resulting in a homogeneous metal dispersion
over the support surface. Both catalytic systems were active in SRE, but Cu/NaY resulted in higher ethanol
conversions compared to Cu/Nb20s/ALl:Os. Hence, the performance of copper-based catalysts was influenced
significantly by the textural properties of the support.

Keywords: ethanol steam reforming; hydrogen production; copper-based catalysts; zeolite; mixed
oxides

1. Introduction

The increasing global demand for energy, coupled with the socioenvironmental impacts of an
energy matrix that is still heavily reliant on traditional fossil fuels such as coal, crude oil, and natural
gas [1,2], are crying out for the development of sustainable production processes to support the
transition to a new and more diversified energy matrix. Among the sustainable alternatives for this
energy transition, hydrogen (Hz) stands out as one of the most prominent.

H: can be obtained through different pathways such as electrolysis [3,4], biological reactions [5],
biomass gasification [6], steam reforming [7,8], and partial oxidation of both hydrocarbons and
alcohols [9]. Among these possibilities, the use of ethanol as feedstock for Hz production in fuel cells
has considerable advantages. These include easier storage, handling, and safe transportation due to
its low toxicity and volatility. Additionally, ethanol is a renewable feedstock when obtained through
biomass fermentation, is rich in Hz, and has a nearly closed carbon cycle that helps in the abatement
of greenhouse gas emissions [10,11]. Thus, the steam reforming of ethanol (SRE) emerges as an
attractive solution for Hz production due to its high Hz yield and thermodynamic feasibility [12].

SRE for H2 production is a catalytic process. Therefore, H: yield depends on the properties of the
catalyst to be employed [13]. This includes the catalytic support for the active phase [14] and the
method used for catalyst preparation [15]. In general, the catalyst design is crucial for a successful
SRE process. Different catalytic systems have been investigated for SRE using noble and non-noble
metal-based catalysts [16]. Among them, copper-based catalysts [17-19] have the advantage of being

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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cost-effective and widely available compared to other metals. Additionally, the presence of copper
active sites promotes ethanol steam reforming to produce H2 and CO or its dehydrogenation to
acetaldehyde followed by decarbonylation, producing CHs and CO [20-22]. Hence, copper-based
catalysts have potential for SRE applications.

The choice of support for the active phase is extremely important for SRE because it plays a
significant role in H2 selectivity and catalyst stability [23,24]. In general, efficient SRE supports must
have favorable textural properties and moderate acidity, in addition to being relatively cheap, readily
available, and easily accessible. In this study, two supports were selected and evaluated for their
effect on H2 production by SRE using copper as the catalytic active phase.

The first selected support was NaY, a commercially available zeolite that is known for its high
heat resistance, unique ordered three-dimensional porous structure, and larger pores compared to
the dimensions of the ethanol molecule, as well as low production costs [25,26]. For instance, NaY
can be synthesized from alternative, abundant, and inexpensive materials such as rice husks [27,28]
and wheat straw [29] ashes. Several studies have already demonstrated the application of NaY as a
catalyst support for SER [30-32]. The other selected support was a Nb20s/Al20s mixed oxide. Alumina
is a widely used as a support in heterogeneous catalysis [33-37] due to its large surface area, good
stability, and wide commercial availability [38]. Nb2Os is also a notable material in the field of
catalysis, known for its non-toxic nature, suitable acid properties [39,40], excellent chemical stability,
high thermodynamic stability, low cost, and high commercial availability [41,42]. The combination
of Nb20s with alumina is favorable because, being an n-type semiconductor, NbzOs can interact with
copper in catalytic active reaction sites [43,44]. Additionally, Nb20Os is structurally similar to
commercial catalysts for methanol reforming (Cu/ZnO/Al:Os). Since ZnO is also an n-type
semiconductor oxide, Nb20s may have similar catalytic properties.

This study aimed to evaluate the effect of both NaY and Nb20s/Al2Os supports on Hz production
by SRE using copper as the catalytic active phase. Copper was anchored on the support surface by
wet impregnation. Then, the obtained catalysts were characterized using several analytical
techniques and subjected to SRE using an experimental reaction module.

2. Materials and Methods

2.1. Material

Materials were synthesized using copper nitrate (Cu(NOs)2-3H20, 98%) from Sigma-Aldrich,
commercial alumina (Al20s, 90%) from Merck, NaY zeolite from Sigma-Aldrich, and niobic acid (HY-
340) from the Brazilian Metallurgy and Mining Company (CBMM). HY-340 was heat-treated to
obtain niobium pentoxide (Nb20s).

2.2. Methods

2.2.1. Catalyst Preparation

The catalysts were prepared using a simple wet impregnation methodology under solvent
excess, consisting of the following steps: initially, appropriate quantities of the copper precursor
(Cu(NOs)2-:3H20) were dissolved in water and mixed with the support (NaY or Nb20s/Al20s) in a
rotary evaporator. The mixture was evaporated for 2 h at 343 K for complete water evaporation. After
this, the materials were placed in an oven at 353 K for about 10 h. Then, the dried materials were
crushed and subjected to a thermal treatment in a muffle furnace at 773.15 K for 5 h, using a heating
rate of 10 K min-!. At the end of the process, two catalysts named Cu/NaY and Cu/ Nb20s/Al:Os were
obtained.

2.2.2. Catalyst Characterization

Scanning Electron Microscopy (SEM) was performed using a Zeiss EVO MA15 microscope
coupled with an X-Max 20 mm? Energy Dispersive Spectrometer (EDS). X-ray Diffraction (XRD)
analyses were conducted on a Shimadzu XDR-7000 diffractometer using CuKa radiation.
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Measurements were taken at 40 kV and 30 mA using a Cu tube with a wavelength of 1.54 nm, with a
scan rate of 2° min-! and an interval of 5 <20 < 80. The FWHM of the XRD peaks was used to estimate
the average particle size using the Scherrer equation (Eq. 1).

D _ 09x4 1
(hkl) _ﬁ(hkz)xﬂ' (1)

The textural properties of the catalysts were determined by N2 adsorption/desorption at 77 K
using a NOVA-4000-Quantachrome adsorption analyzer. Infrared spectroscopy analyses (FTIR) were
performed using a Varian 640-IR spectrometer with potassium bromide (KBr) as the dispersing agent
in the region from 4000 to 400 cm!. Temperature-programmed desorption of NHs (TPD-NHs) and
Temperature-programmed reduction (TPR) were carried out using a Quantachrome Chembet-3000
multi-use unit coupled with a ThermoStar-GSD 301 mass spectrometer. In both analyses, 0.1 g sample
was placed in a "U"-shaped quartz reactor, which was first subjected to a 20 cm?/min N2 flow at 300°C
for 1 h to remove humidity and possibly adsorbed materials. For TPD-NHs analysis, the samples
were reduced with 1.75% Ha diluted in N2 for 1 h using a heating rate of 10°C/min from room
temperature to 500°C and remaining at this temperature for another 1 h. NHs adsorption was
performed at 100°C for 30 min with a flow rate of 15 cm?/min of 5% NHs diluted in Nz. Subsequently,
the system was purged for 2 h with a flow rate of 20 cm3/min N2. Finally, the sample was heated to
700°C at a heating rate of 10°C/min under N2 flow for NHs desorption. TPR was performed with a
reducing gas feed containing 1.75% H2 in N2 at a flow rate of 20 cm®/min, from room temperature to
1000°C with a heating rate of 10°C/min.

2.2.3. Catalytic Performance Evaluation

SRE was carried out using two catalysts, Cu/NaY and Cu/Nb20s/Al:0s. Tests were performed in
an experimental unit consisting of a preheating system, a 20 cm long stainless-steel reactor with an
internal diameter of 2.54 cm, a condenser, and a phase collector/separator. The reactant mixture was
introduced through the system inlet using a peristaltic pump.

Before the catalytic tests, the catalysts were activated in situ with an 85 cm?/min N2 flow rate
containing 40% H: by volume using the following heating steps: 30 min at 100°C, 1 h at 200°C, and 4
h at 500°C. After this, the H2 flow was stopped, and the N2 flow was adjusted to 85 mL/min for 4 h to
purge H: from the entire reaction system. Subsequently, catalytic tests were conducted at 300°C and
450°C using a mass hourly space velocity of 40 dm®/h.get, 5 g catalyst (40 mesh, positioned at the
center with the reactor ends filled with silica of the same particle size), and a H2O/C2HsOH molar
ratio of 10/1 without the presence of an inert. The gaseous products were analyzed in a Trace GC
ThermoQuest gas chromatograph with a Carboxen 1010 PLOT column, with argon as carrier gas,
detection by TCD, and the following temperature programming: 7 min at 45°C; 25°C/min to 180°C;
and 5 min at 180°C. The liquid phase was analyzed using a Varian 3300 gas chromatograph, with a
10% Carbowax 20M CHR W HP column, helium as carrier gas, detection by TCD, and the following
temperature programming: 2 min at 50°C; 25°C/min to 100°C; and 2 min at 100°C.

Evaluation of catalytic performance for H2 production and product selectivity (dry basis) were
based on ethanol conversion following Egs. (2) and (3),

oM —FgifH
Ceron (%) = (W) x 100, ()
S.(%) = Z (ﬂ) x 100
0= L\n, 3)
13

where F is the molar flow rate, n; is the average molar flow rate of the product component, i is the
component of the mixture, and n; is the average molar flow rate of the products, excluding water.

3. Results and Discussion

3.1. Catalyst Characterization
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3.1.1. Morphology

SEM was used to analyze the microstructural morphology of the catalysts. Figure 1a shows the
NaY support, and Figure 1b the synthesized Cu/NaY catalyst. Even after the wet impregnation of
copper on the NaY support, the polyhedral shapes of the zeolite remained regular and homogeneous,
indicating no change in its morphological structure. By contrast, Figure 1c shows the Nb20s support
while Figure 1d shows the synthesized Cu/Nb20s/Al20s catalyst. Unlike Cu/NaY, the particles are
randomly distributed with various geometries and distinct sizes. These morphological properties
were attributed to the nature of the support used, which does not present a well-defined
microstructural morphology and evenly distributed particle sizes.

Figure 1. SEM at 4000x of (a) NaY, (b) Cu/NaY, (c) Nb20s and (d) Cu/Nb20s/AL20s.

Elemental mapping was performed by EDS to identify chemical elements at the catalyst surface,
using a magnification of 4,000x. Figure 2 shows that all proposed elements were detected, indicating
the effectiveness of the proposed wet impregnation process. Additionally, Cu seemed to be better
dispersed on NaY compared to Nb20s/Al20s, which presented higher Cu concentration in some
regions. This is strongly linked to the superior textural properties of the zeolite, which allowed for a
better distribution of the metal particles.

d0i:10.20944/preprints202405.2026.v1
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Figure 2. Elemental mapping of (a) Cu/NaY and (b) Cu/Nb20s/AL20s.

Table 1 presents the EDS mass composition of the catalysts. Cu was present in both catalysts in
very similar percentages. Furthermore, a Si/Al ratio of 2.58 confirmed the presence of unmodified
NaY zeolite after the wet impregnation synthesis.

Table 1. Elemental analysis of Cu/NaY and Cu/Nb20s/Al20s.

Sample Element (%)
Cu Na Al Si o) Nb C
Cu/NAY 11.90 3.87 3.00 7.76 26.75 - 3.01
Cu/Nb20s5/Al20s3 11.17 - 2.84 - 15.72 10.82 0.88

3.1.2. Crystallinity

The XRD technique was employed to determine the crystallinity and purity of the synthesized
catalysts. The experimental XRD patterns obtained for Cu/NaY and Cu/Nb20s/Al:0s are shown in
Figure 3. For the Cu/NaY catalyst, the diffraction peaks at 20 = 6.18°, 15.61°, 18.66°, 23.64°, 26.98°, and
31.36° are indexed to the cubic crystal structure of NaY, which corresponds to the Fd-3m space group
in card #00-039-1380. The diffraction peaks at 20 = 35.57°, 38.72°, 48.81°, 58.30°, 61.60°, 66.32°, and
68.12° are indexed to the monoclinic crystal system of CuO, referring to card #01-089-5895. The X-ray
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diffractogram of the Cu/NaY catalyst indicated that there were no modifications in the original crystal
structure of the zeolite, probably due to the fine distribution of copper on the zeolite structure [45].

The Cu/Nb20s/Al20s catalyst presented diffraction peaks at 20 =35.57°, 38.72°, 48.81°, and 56.72°,
which are indexed to the monoclinic crystal system of CuO in card #01-089-5895. The diffraction peak
at 20 = 67.03° is indexed to the hexagonal crystal system of Al2Os in card #00-013-0373, while the
diffraction peaks at 20 = 22.60°, 28.58°, 36.71°, and 46.23° are indexed to the hexagonal crystal system
of Nb20s in card #00-028-0317. Both copper oxide and niobium pentoxide are present in the
diffractogram with significant intensities, indicating that the precursors maintained their defined
crystal lattice even after the catalyst synthesis. Also, alumina diffraction peaks are almost
imperceptible, indicating a high dispersion of alumina in niobium oxide [46].

The crystallite size has important implications for the rate of molecular diffusion and the
contribution of the external surface area to adsorption and desorption rates. For the calculation of the
crystallite size of the active phase in both catalysts, the (-111) diffraction peak at 20 = 35.57° of copper
oxide was considered. The result was approximately 55 nm for both catalysts, indicating that the
change of support did not cause alteration in the crystallite size of the active phase. For the calculation
of the support crystallite sizes, the (533) diffraction peak at 20 =23.64° of NaY and the (100) diffraction
peak at 20 = 28.58° of Nb20s were considered, resulting in 114 nm and 43 nm, respectively. Kugai et
al. [47] concluded that the smaller the crystallite size of the support, the greater the dispersion of the
active phase and consequently the higher the catalytic activity, indicating that the catalyst
performance strongly depends on surface area and crystallite sizes.

. Cu/NaY s Cu0
(a) NaY¥ . NaY

Intensity (a.u.)

" N sk b A "
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& w
* & T . '
3
2z
E Cu/Nb,O/ALO, » Cud
E — ALO, A AlLO,
—— Nb,0, & Nb,0,

20(9

Figure 3. DRX patterns of (a) Cu/NaY and (b) Cu/Nb20s/Al20s.

3.1.3. Textural Parameters
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The determination of textural parameters of the synthesized materials and their precursors is
relevant to understand their SRE catalytic performance. The parameters obtained through N:
physisorption are presented in Table 2, while the N2 adsorption/desorption isotherms are shown in
Figure 4. For the Cu/NaY catalyst, the isotherm exhibits characteristics of type IV according to
LU.P.A.C. [48], which is attributed to the presence of micropores associated with mesopores. The
formation of a round knee-like feature at the beginning of the isotherm is related to the formation of
adsorbed N2 monolayers inside micropores [49], while the increase in relative pressure improves
adsorption as the material mesopores are filled. For the Cu/Nb20s/Al2Os catalyst, the obtained
isotherm is of type V, which is also associated with mesoporous materials with weak adsorbate-
adsorbent interactions. In both isotherms, there was hysteresis in N2 desorption, which is
characteristic of capillary condensation in mesoporous materials [50]. For Cu/NaY, the hysteresis of
type H4 is associated with narrow slit-like pores, while for Cu/Nb20s/Al20s, the hysteresis of type H3
refers to non-rigid aggregates of plate-like particles forming slit pores, typical of non-uniform pore
sizes and shapes as observed by SEM.

Concerning the obtained values for textural parameters, the surface areas of the catalytic
supports were similar to other studies involving NaY [51,52], Nb205[10,42] and Al2Os [53,54]. For the
catalysts, a noticeable reduction in surface area and pore volume was observed, compared to their
corresponding precursors. This effect is strongly associated with the possible obstruction of smaller
pore diameters (micropores) by deposition of copper oxides inside the catalyst structure, as
evidenced by the reduction in micropore volume. However, despite this reduction, a significant
variation in textural properties was detected among our catalysts. This reinforces the possible
influence of the support type on the catalyst performance, as it plays a fundamental role in the
reaction. Cu/NaY has a significantly higher surface area than Cu/Nb20s/Al:0s, which is expected to
result in a superior catalytic performance of the former compared to the latter. This advantageous
characteristic of Cu/NaY has been attributed to the three-dimensional pore structure of zeolite NaY

[55].
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Figure 4. N2 adsorption/desorption isotherms of the catalysts (a) Cu/NaY and (b) Cu/Nb20s/Al20s.
Table 2. Textural parameters of the catalysts and precursors.
Surface area Pore volume Micropore Pore diameter
Sample

(m2 g1) (cm3 g1) volume (cm? g?) (nm)

Nb20s 71.73 0.37 0.32 8.24
NaY 588.49 0.1479 0.0281 1.74
AlOs 99.26 0.1799 0,0389 7.24
Cu/NaY 210.4 0.118 0.1114 2.24
Cu/Nb20s/Al20s 26 0.0617 0.0106 9.56

The FTIR spectra of the synthesized catalysts and both Nb20s and NaY supports are shown in
Figure 5a,b, respectively. The band at approximately 3500 cm™, observed in all spectra, reveals the
presence of surface hydroxyl groups in these materials [26,56]. The main NaY vibration modes were
identified as the strong band located at 1029 cm™ and the lower intensity band at 469 cm-, which
correspond to the internal vibrations of the tetrahedral units of the zeolite, while the bands identified
at 1150, 794, and 570 cm™ were attributed to the external linkages between the (Si/Al)Os tetrahedra
[57]. Sensitive bands did not show significant changes in the Cu/NaY spectrum compared to those of
NaY. On the other hand, the band at 570 cm!, attributed to the polyhedral ring in the zeolite structure,
showed a slight alteration that may be associated with the binding of copper. According to previous
studies, copper oxide (CuO) bands are present between the wavenumbers of 610 and 500 cm* [57,58].

A e,
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——CuNaY
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Figure 5. Infrared spectra of the catalysts (a) Cu/NaY and Cu/Nb205/Al20s and of the precursors (b)
NaY and Nb20s.

The FTIR spectrum of Nb20s (Figure 5b) shows strong and broad bands in the region between
500 and 900 cm'. The band centered at 896 cm is attributed to the Nb-O stretching vibration and the
band at 760 cm-! to the Nb-O-Nb vibration [59]. The narrower band at 1622 cm-! is attributed to water
molecules adsorbed on the Nb20Os surface [60]. The presence of niobium pentoxide was confirmed by
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the presence of its main vibration modes in the FTIR spectrum of the Cu/Nb20s/Al2Os catalyst (Figure
5a). Alterations were also noted in the intensity of the two bands between 500 and 900 cm, and in
the resolution between them, when compared to the Nb20s spectrum. These changes are associated
to the binding with copper, as we are once again referring to the region of copper oxide bands.

3.1.4. Temperature-Programmed Desorption (TPD)

Analyses of both catalysts by TPD-NHs are shown in Figure 6. The NHs desorption profiles for
Cu/NaY and Cu/Nb20s/Al2Os were confined to the 140°C to 460°C and 150°C to 620°C temperatures
ranges, respectively, showing that the support type influenced the acidity of the catalyst. The peak
location and wide temperature range for Cu/NaY suggest the presence of sites of weak and
intermediate acid strength. By contrast, the higher temperature range for Cu/Nb20s/Al:Os is
attributable to the presence of intermediate to strong acid sites. Also, Cu/NaY had a higher
concentration of acid sites compared to Cu/Nb20s/Al20s (Table 3). In general, the higher acidity of
Cu/NaY may be justified by its higher surface area.

(a) Cu/NaY
3
=
=
L
z
(=]
5
[}
=
Z

T T T T T
100 200 300 400 500 600 700
Temperature (°C)
(b) Cu/Nb,0/ALO,

NH, Desorption (a.u.)

T T T T
100 200 300 400 500 600 700
Temperature (°C)

Figure 6. NHs desorption curves of the catalysts (a) Cu/NaY and (b) Cu/Nb20s/AL20s.

Table 3. Acidity of the synthesized catalysts by TPD-NH..

Sample Chemisorbed NHs (mmol/g) Temperature (°C)
Cu/NaY 1.598 247
Cu/Nb205/Al20s 0.059 336

The maximum NHs desorption temperature for the Cu/NaY catalyst was slightly higher than
that for NaY alone, which typically ranges between 150°C and 250°C [61-63]. This is an indication
that the incorporation of Cu into the zeolite structure increased the strength of its acid sites. On the
other hand, the impregnation of Cu onto Nb20s/Al:Os did not have a significant influence on the
desorption temperature range.
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3.1.5. Temperature-Programmed Reduction (TPR)

Both catalysts displayed a wide reduction range in their TPR profiles (Figure 7). However, the
position of the maximum reduction temperature of CuO for Cu/Nb20s/Al20s was shifted to higher
values compared to Cu/NaY, which may indicate a greater interaction of Cu with Nb20s/AL:Os
compared to NaY. Reduction at temperatures below 300°C indicated that CuO was dispersed on the
catalyst surface with little interaction with the support. Above this temperature, total copper
reduction was prevented in both catalytic systems by the interaction between CuO and the support
surface [17,64]. Additionally, Cu/Nb20s/AL2Os showed a reduction peak with a maximum around
928°C, which was attributed to the partial reduction of Nb20s to NbO:2 [43,65]. The hydrogen
consumption of the Cu/NaY catalyst was 6.16 mmol/get, while that of Cu/Nb205/Al:0s was 6.38
mmol/get, a slightly higher value due to the partial reduction of Nb20Os.

Cu/NaY

()

H, Consumption

T T T T T T T T
100 200 300 400 500 600 700 800 900 1000

Temperature (°C)

(b) —— Cu/Nb,0,/ALO,

H, Consumption

T T T T T T T T
100 200 300 400 500 600 700 800 900 1000
Temperature (°C)

Figure 7. TPR profiles of (a) Cu/NaY and (b) Cu/Nb20s/Al2Os catalysts.

3.2. Catalytic Performance Evaluation

Figure 8 shows the selectivity data for both Cu/Nb20s/Al20s and Cu/NaY at 300°C and 450°C.
The differences between catalytic performances show that both support and temperature influenced
the reaction efficiency. Conversion increased with increasing temperature for both catalysts, but the
effect was more pronounced for the Cu/Nb20s/Al20s catalyst. On the other hand, the selectivity for
H: and acetaldehyde decreased with increasing temperature, and the quantity of by-products
(especially ethylene) increased, with this effect being greater for the Cu/Nb20s/Al:Os catalyst.

For both catalysts at 300°C, the main reaction was ethanol dehydrogenation (Eq. 4) forming
acetaldehyde and H, while higher temperatures favored dehydration forming ethylene (Eq. 5). Also,
the use of NaY at 450°C favored parallel reactions forming CO and CHa [30]. This is probably due to
the presence of more pronounced acid sites in the zeolyte at lower temperatures, as observed by TPD-
NHs analysis of the Cu/NaY catalyst, where acid sites are found between 100 and 450°C (Figure 6).
Also, the high surface area of this catalyst contributed to the greater exposure of acid sites, as well as
the catalytically active copper sites on the catalyst surface, promoting parallel reactions that are part
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of the ethanol reforming reaction pathway. This explains the detection of reaction intermediates such
as acetaldehyde.
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Figure 8. Average selectivity of (a) Cu/Nb20s/Al20Os and (b) Cu/NaY at 300°C and 450°C.

The selectivity of Cu/Nb20s/Al20s to C2Hs was higher than that of Cu/NaY. The TPD-NHs of this
catalyst showed acid sites of greater strength due to the desorption of NHs at higher temperatures,
which may be connected to the higher formation of C2Has [65]. Lorenzut et al. [66] observed the same
low selectivity behavior for Cu catalysts supported on ZnO/AL2:Os. Also, the support seemed to have
influenced the reaction pathway, since Nb20s is an n-type semiconductor that may have driven the
selectivity toward ethanol and water. For the Cu/Nb20s/Al2Os catalyst, the formation of CO2 was
limited at both temperatures, while for Cu/NaY, CO: formation was more pronounced at 450°C,
indicating the occurrence of ethanol reforming.

Both catalysts exhibited more stability at 300°C (Figure 9) because, at 450°C, CzH4 formation
accelerated deactivation by coke deposition [67]. Overall, the results highlight the strong influence of
the catalytic support on the steam reforming of ethanol for Hz production. The Cu/NaY catalyst
showed higher ethanol conversion compared to Cu/Nb20s/Al20s, suggesting that support properties
such as surface area, pore volume, and pore size significantly influenced the catalytic performance.
The porous structure and higher surface area of NaY may have facilitated copper dispersion and
interaction with the reactants, enhancing the catalytic activity. Additionally, zeolites have a structure
with a regular arrangement of uniform micropores that promote greater selectivity for Ha formation.
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Furthermore, the acidity measurements revealed that the incorporation of copper into NaY increases
the strength of the acid sites, as indicated by the higher desorption temperature found for Cu/NaY
compared to pure NaY in other studies [68-70]. This increased acidity may have contributed to the
improvement of the catalytic activity by influencing the adsorption and breakdown of ethanol
molecules. Therefore, a careful selection of the support is crucial for optimizing the performance of
copper catalysts in H2 production by SRE.
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Figure 9. Molar rate as a function of time for Cu/Nb20s/Alz0:s at (a) 300°C and (b) 450°C and Cu/NaY
at (c) 300°C and (d) 450°C.

The maximum H: production with the Cu/NaY catalyst, considering the average H> production
rate of 0.57 mL/s at 450°C, was 4.7 x 10 g/s, regardless of the reaction pathway whereby H: was
formed. Since the calorific value of Hz is 142 k]/g, this H2 production represents 6.6 W for a catalyst
mass of 5 g, or 1.33 W/gat. Hence, 1.5 kg Cu/NaY would be required to power a 1 kW cell with an
efficiency of 50%.

4. Conclusions

The steam reforming of ethanol was viable using copper-based catalysts supported on NaY
zeolite (Cu/NaY) and niobium-aluminum oxides (Cu/Nb20s/Al20s). The physicochemical properties
of the two catalysts were different due to differences in the support properties. Nevertheless, copper
particles were well dispersed in both catalysts, contributing to achieving better catalytic
performances. Both catalysts were active in the steam reforming of ethanol, but Cu/NaY was best for
H: production at 450°C, with CO: formation remaining constant throughout the reaction course.
Therefore, this catalyst has potential for large-scale operations and, with the addition of a small
amount of acidity dopants, it may become even more selective for H2 production by ethanol
reforming. Finally, the support effect was demonstrated as a relevant parameter for optimal SER
catalytic performance.
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