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Abstract: To enhance the performance of visual SLAM in underwater environments, this paper 
presents an enhanced front-end method based on visual feature enhancement. The method 
comprises three modules aimed at optimizing and improving the matching capability of visual 
features from different perspectives. Firstly, to address issues related to insufficient underwater 
illumination and uneven distribution of artificial light sources, a brightness consistency recovery 
method is proposed. This method employs an adaptive histogram equalization algorithm to balance 
the brightness of images. Secondly, a method for denoising underwater suspended particulates is 
introduced to filter out noise from the images. After image-level processing, a combined underwater 
acousto-optic feature association method is proposed, which associates acoustic features from sonar 
with visual features, thereby providing distance information for the visual features. Finally, 
utilizing the AFRL dataset, the improved system incorporating the proposed enhancement methods 
is evaluated for performance against the OKVIS framework. The system achieves better trajectory 
estimation accuracy compared to OKVIS and demonstrates robustness in underwater 
environments. 

Keywords: underwater SLAM; underwater image processing; visual feature point enhancement; 
association of acoustic and visual feature 

 

1. Introduction 

Exploration of underwater environments has been severely constrained by harsh conditions and 
limited perception [1]. The utilization of robot-assisted technology for underwater exploration can 
alleviate the cognitive burden on divers and enhance work efficiency. Improving the robot’s capacity 
to perceive the surrounding environment can significantly broaden the diver’s field of vision, while 
the diversity and redundancy in information acquisition can offer more effective assistance for diver 
decision-making [2]. In recent years, numerous camera-based SLAM frameworks have emerged, 
capable of generating reliable state estimation results in both indoor and outdoor settings [3]. 
However, these frameworks are predominantly designed for terrestrial environments and lack 
consideration for underwater applications, resulting in suboptimal performance when deployed in 
underwater settings [4]. 

In underwater environments, the uneven attenuation of natural light within water results in 
color deviation and contrast degradation in images. Scenes lacking natural light are often illuminated 
using artificial light sources, which, being single-point light sources with limited power, cast 
numerous shadows in irregular underwater environments. Additionally, regardless of the lighting 
method used, suspended substances in the water cause diffuse reflection, disrupting the normal 
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propagation of light [5]. These conditions render cameras more susceptible to factors such as limited 
visibility, color absorption, fogging, and fluctuations in light intensity when capturing underwater 
images, leading to image blurring compared to terrestrial shooting conditions [6]. Consequently, the 
application of optical cameras reliant on visual information is restricted in underwater environments 
[6]. As a result, when utilizing a vision-based state estimation system with continuous images 
captured underwater, various adverse factors mentioned above can significantly impact the 
extraction of stable feature points for motion estimation from feature matching. This may lead to the 
generation of numerous anomalous feature points due to various noise disturbances, ultimately 
resulting in decreased estimation accuracy or tracking failure [7]. 

To enhance the feasibility of visual odometry in underwater environments, this paper proposes 
an improved VIO front-end method based on visual feature enhancement. The main contributions 
are as follows: 

1. Image-Level Enhancements: The proposed method integrates image brightness enhancement 
and suspended particulate removal techniques. This significantly increases the probability of 
successful detection of visual feature points after application. 

2. Geometric Feature Association: From a spatial geometry perspective, a feature association 
method that integrates sonar acoustic features with visual features is proposed, enabling visual 
features to obtain depth information. 

3. Benchmarking with AFRL Dataset: A comparative analysis is conducted using the AFRL 
dataset against the classical OKVIS visual SLAM framework. This tests the limitations of traditional 
frameworks in underwater datasets and demonstrates the feasibility of the proposed method. 

2. Related Work 

In recent years, significant strides have been made in developing image-based visual state 
estimation algorithms, thanks to the relentless efforts of researchers. These algorithms are applicable 
for state estimation using data from monocular, binocular, and RGBD cameras [8], and they exhibit 
commendable performance in both indoor and outdoor settings. Within the visual odometry (VO) 
framework, ORB-SLAM [9] stands out for its capability to extract feature points across different 
images. By matching and tracking these feature points over time, ORB-SLAM computes changes in 
their positions, enabling the derivation of the camera’s motion trajectory and attitude relative to the 
features. In contrast, the LSD-SLAM [10] algorithm does not rely on traditional feature point 
extraction. Instead, it directly utilizes grayscale information from images to perform depth estimation 
and motion tracking. This approach yields dense feature and depth information, thereby enhancing 
map density while preserving local feature details. 

However, owing to the specific characteristics of underwater environments, conventional visual 
SLAM methods cannot be readily adapted for underwater use. Visual odometry systems are notably 
sensitive to fluctuations in lighting conditions, and the uneven absorption of light in underwater 
environments can markedly impede the extraction and matching of feature points by the feature 
checker. In scenarios where water depth surpasses 30 meters, natural light becomes nearly non-
existent, prompting the necessity of employing active lighting methods [11] for underwater optical 
imaging systems. Ancuti [12] introduced a systematic processing method for enhancing underwater 
images, rooted in the principle of minimizing information loss to improve color and visibility. They 
proposed a dark channel a priori algorithm, which mitigates the influence of the red channel while 
accounting for the effects of optical radiation absorption and scattering on image degradation, 
thereby enhancing the visual quality of the image. Similarly, Barris [13] proposed a light propagation 
model based on visual quality perception. Building upon existing physical models, they integrated 
the physics of light propagation to mitigate the impact of optical radiation attenuation, further 
enhancing the quality of underwater images. 

Water in natural environments frequently harbors a substantial quantity of suspended matter, 
encompassing sediments, sand, and dust particles produced by diverse planktonic organisms. The 
irregular morphology and surface roughness of these suspended objects pose challenges in 
maintaining consistent observations, as the perceived information varies with viewing angles [14]. 
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Consequently, image fidelity diminishes, contours become indistinct, and the signal-to-noise ratio 
declines. These suspended materials can be considered noise in image feature extraction, significantly 
impacting the extraction, matching, and tracking of visual feature points in images. As a result, the 
operational efficiency of underwater feature-point-based visual odometry is markedly reduced 
compared to on-ground scenarios. Therefore, it is essential to filter underwater suspended particles 
from images. 

The null domain denoising method partially mitigates noise by eliminating components at 
specific frequencies. Nonetheless, when noise in underwater images and their structural texture 
intersect in the frequency domain, it results in blurred image texture and unclear edges. This issue 
can be addressed by a nonlinear median filter enhanced through the weighted median method. 
Linear filters in the wavelet domain are exemplified by the Wiener filter [15]. However, the 
degradation process of the actual signal may not conform to a Gaussian distribution, rendering this 
type of filter potentially detrimental to the visual quality of the denoised image. Celebi [16] 
introduced a wavelet domain spatially adaptive Wiener filter image denoising algorithm to enhance 
the visual quality of the image post noise reduction. Additionally, C. J. Prabhakar [17] proposed an 
adaptive wavelet band thresholding method for reducing noise in underwater images. This method 
aims to filter out additive noises in the image, including scattering and absorption effects, as well as 
suspended particles visible to the naked eye, resulting from sand and dust on the seabed. 

In recent years, there has been a growing focus on the study of vision-based multi-sensor fusion 
SLAM systems in underwater environments. The ORB-SLAM system demonstrated successful 
application in a lake characterized by clear water quality and favorable lighting conditions, yielding 
promising results [18]. Additionally, Hogue proposed an underwater robot state estimation 
algorithm grounded in multi-state constrained Kalman filtering. This algorithm incorporates 
pressure sensor information alongside the fusion of camera and IMU data, enabling direct acquisition 
of water depth data. The integration aims to enhance system estimation accuracy along the vertical 
orientation [19]. Furthermore, the SVIN [20] system, an extension of OKVIS, integrates sonar 
detection information into the VIO system to introduce additional constraints for position estimation, 
thereby enhancing the stability of position estimation. However, there are few papers that discuss 
the comprehensive optimization of underwater SLAM systems by integrating both image processing 
and utilizing distance sensor sonar information. This is also the primary focus of the present paper. 

3. System Overview 

In this paper, the existing VIO framework is used as the basis for pre-processing the camera 
images. The paper continues to utilize the visual feature extraction methods, the IMU-integrated VIO 
front-end framework, and the back-end BA optimization method from the framework. The key 
improvements of this paper focus on the visual image processing at the front end and the integration 
of sonar measurement information. Labeling the camera coordinate system, the IMU coordinate 
system, the sonar coordinate system, and the world coordinate system as , , ,C I S W , with the state 

vector denoted as , ,
TT

wi x y zw wp wp wpp     , the bit position denoted using the quaternion T
wiq , the 

linear velocity as Tw wv , the bias of the gyroscope as gb , and the bias of the accelerometer as ab , 
and all the variables denoted in the world coordinate system, the state of the system R  can be 
denoted as Rx : 

, , , ,
TT T T T T

R wi wi wi g aw wx p q v b b      (1) 

The overall flow of the system is depicted in the system block diagram. Initially, data from each 
sensor undergoes preprocessing to yield the camera image, the IMU pre-integration term, and the 
position information of the sonar features. The original images are processed through brightness 
recovery and suspended matter removal modules, followed by the extraction and matching of visual 
feature points. The IMU data is used to correct aberrations caused by motion during the sonar 
scanning cycle. Next, sonar features are matched with camera features, and the distance information 
from sonar detection is utilized to refine the depth estimation of camera feature points. The sonar 
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feature information corresponding to the camera features is then used to enhance the accuracy of the 
camera features on the image plane, thereby reducing the reprojection error. Finally, a joint error 
optimization is conducted, incorporating the reprojection error of the camera features, IMU error, 
and sonar distance error, to estimate feature points and the robot’s state. 

 

Figure 1. System Architecture Diagram. 

3. Proposed Method 

3.1. Underwater Image Brightness Consistency Recovery 

Visual odometry is more sensitive to changes in light, and the uneven absorption of light in the 
water body will greatly affect the extraction and matching of feature points by the feature checker. 
Different wavelengths of light in the water have different attenuation characteristics, in the visible 
range, the longer wavelengths of red light in the water has a larger attenuation rate, the weakest 
penetration rate, usually only 3-4 meters, and blue light, green light and other shorter wavelengths 
of light can be propagated in the water for a longer distance, the uneven attenuation of this light will 
lead to underwater optical image distortion, usually manifested as the image of the bluish, greenish. 
This color distortion will lead to a reduction in image contrast and increase the difficulty of feature 
point extraction. 

In the underwater cave environment, the main source of light is the searchlight carried by the 
exploration platform, which is an artificial light source with strong directionality, limited by the 
power of the light source, the brightness difference between the inside and outside of the artificial 
light source illumination range is large. The use of searchlights in the illumination of the designated 
target, but also because of the light path of the mask blocking, resulting in more shadow areas. These 
influences are manifested in the image as an uneven distribution of brightness, i.e., the image is 
roughly characterized by high brightness in the central area and low brightness in the surrounding 
area. And part of the protruding object back to the light source is a low brightness black area. 

To improve the contrast of underwater images, image contrast enhancement processing is 
usually performed using the HE (histogram equalization) method. However, in use, if the algorithm 
is used directly to process underwater images, it will appear to increase the brightness of high-
brightness regions and decrease the brightness of low-brightness regions, thus exacerbating the 
overexposure and underexposure of the image. In order to reduce the occurrence of such situations, 
it is necessary to restore the light intensity of the underwater image before image enhancement to 
reduce the brightness differences in the image regions caused by uneven illumination of the artificial 
light source. 

To establish an underwater light model, the image information recorded by the camera is 
regarded as the superposition of the reflected light in the scene and the scattered light in the water, 
and the light intensity at each position in the image can be expressed as the following equation: 
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 , , , ,1i j i j i j i jp q aω ω α      (2) 

Where ,i jp  represents the light intensity of the image at the  ,i j  position, the gray value of 

the image at that position. ,i jq  is the reflected light intensity at the location, ,i ja  is the scattered 
light intensity, and ω is the component weight. Due to the limitation of the irradiation range of the 
artificial light source resulting in different light intensity at different locations, the light range 
attenuation coefficient ,i jα  is introduced to represent the attenuation coefficient at the image 
location  ,i j . 

10 10

, ,
9 9

/ 400i j i m j n
m n

pµ  
 

    (3) 

 
10 10

22
, , ,

9 9

/ 399i j i m j n i j
m n

pσ µ 
 

    (4) 

The maximum value maxµ  of the mean gray value of the pixel points in the coverage range of 
each window is selected as the base brightness, and the range attenuation coefficient at this position 
is considered to be 1. According to the invariance of the light distribution, the mean and the standard 
deviation of the pixel distribution of each window should be roughly the same in the case of sufficient 
light. Therefore, the light attenuation coefficients at different positions can be obtained from the 
difference of each window ,i jµ . 

, , max/i j i jα µ µ  (5) 
Since the range of the window ,i jI  is small, it can be approximated that the scattered light 

intensity a  within the range of ,i jI  is unchanged, at any position within the window, the scattered 

light intensity is constant, so the variance 2
,i jσ  can be deduced as the following equation: 

 

   
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i j i j q i j

p
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σ µ

ω ω ω ω α
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ω α σ

 
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   
 
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 
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 

 

 

 
(6) 

where 2
_ ,q i jσ  is the variance of the reflected light distribution in window ,i jI  and ,i jq  is the mean 

of the reflected light in that window. Find the maximum value of the standard deviation , ,/i j i jσ α  
after removing the effect of the attenuation coefficient in all windows, denoted as _ maxασ . 

, max
_ max

,

max i j

i j
α

σ µ
σ

µ
  (7) 

Approximating the weight of the scattered light at this position as 0, i.e., 1ω  , based on the 
standard deviation invariance assumption 2 2

_ , _ maxq i j ασ σ , the weight of the receivable reflected light 

,i jω  satisfies the following equation: 

, , max
,

, _ max , _ max

i j i j
i j

i j a i j a

σ σ µ
ω

α σ µ σ
   (8) 

In the absence of natural light interference, the minimum value of the reflected light pixel gray 
value q  in each window ,i jI  is close to 0: 

, _ min 0I
i jq   (9) 
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under these conditions: 

 
 

, _ min , _ min , , , , ,

, , ,

1

1

I I
i j i j i j i j i j i j i j

i j i j i j

p q ω α α ω α

α ω α

  

 
 (10) 

where , _ min
I
i jp  denotes the minimum value of the light intensity of the image in window ,i jI . So the 

light attenuation coefficient ,i jα  at each position in the image can be expressed as: 

 
, _ min

,
, ,1

I
i j

i j
i j i j

p
a

ω α



 (11) 

Based on the attenuation coefficient ,i jα  and the scaling coefficient ,i jω , the pixel q  can be 
calculated: 

  _ max
, , , _ min

,

I
i j i j i j

i j

q p p ασ
σ

   (12) 

After performing the necessary calculations on the pixel points, it is possible to restore the image 
pixel values to reflect conditions q  of uniform and sufficient lighting. This approach helps to 
mitigate the problem of insufficient contrast enhancement caused by uneven illumination to a certain 
extent. 

Then, the underwater images are processed using an adaptive histogram equalization (AHE) 
algorithm based on illumination consistency reduction. Initially, the images are divided into 
numerous small regions, and each region undergoes histogram equalization (HE) tailored to its local 
characteristics. For darker regions, the brightness is increased to enhance contrast and visual effect, 
while for brighter regions, the brightness is reduced to prevent overexposure or distortion. 

Figure 2 presents the results of the original image, HE processed image, and AHE processed 
image. It is evident that the image directly processed by HE exhibits a larger area of overexposure 
and white noise. This occurs because the HE algorithm processes the entire image globally, directly 
adjusting the gray level distribution across the entire image. When higher brightness areas exist in 
the original image, enhancing the overall contrast results in the brightness values of these highlighted 
areas being further amplified, leading to overexposure and noise. Conversely, for darker regions, the 
gray levels are reduced, diminishing the contrast of useful information, which leads to the loss of 
some fine image details and a reduction in the number of feature points. In contrast, after AHE 
processing, the contrast near the rock surface is improved, and the contours of objects in the distant 
background become clearer. Compared with using the HE algorithm directly, AHE avoids the 
problems of brightness anomalies and white noise caused by global histogram equalization. 

 
Figure 2. Gray-scale image, HE-processed image, illuminance-consistent AHE-processed image and 
corresponding histograms. 
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Histograms are often utilized to infer the quality of an image. An image that includes all possible 
gray levels and has uniformly distributed gray levels across its pixel values is characterized by high 
contrast and varied gray tones. Consequently, if the gray values of an image are randomly 
distributed, its histogram should ideally resemble a normal distribution. In the case of the HE 
processed image, the corresponding histogram exhibits a trend resembling a normal distribution. 
However, the presence of an unusually large number of pixels with certain gray levels, which are 
transitionally broadened during the equalization process, leads to the appearance of spikes in the 
histogram. These spikes indicate the presence of noise or specific textures and details in the image, 
reflecting the limitations of global histogram equalization in handling diverse image regions 
uniformly. For the AHE processed image, the histogram distribution is closer to a normal distribution 
compared to the original image. The peaks of the gray values of the pixels are also reduced to a certain 
extent, indicating that the brightness uniformity processing has been effective. This improvement 
helps avoid issues of excessive brightness values in local areas of the image, resulting in a more 
balanced and visually coherent image. The enhancement provided by AHE thus effectively mitigates 
the problems associated with global histogram equalization, such as overexposure and noise, while 
preserving fine image details and improving overall feature detection. 

3.2. B. Underwater Suspended Particulate Filtration 

Image blurring caused by underwater suspended particulate matter is induced by irregular tiny 
particles floating in the load-bearing object, similar to the image blurring caused by haze conditions 
on the ground. Therefore, the suspended matter in the water can be regarded as a kind of noise and 
processed using an image defogging algorithm. The underwater environment is complex and 
dynamic. Even within the same body of water, variations in factors such as season, water 
temperature, and light conditions can affect the quality of images captured by the camera. 
Consequently, it is essential to determine the necessity of filtering suspended particulate matter based 
on specific image conditions. The presence of suspended particulate matter introduces a gray haze, 
which can be identified through blurring detection techniques. 

By detecting the image gradient, the degree of blurring in an image can be assessed. The image 
gradient is calculated by determining the rate of change along the x-axis and y-axis of the image, 
thereby obtaining the relative changes in these axes. In image processing, the gradient of an image 
can be approximated as the difference between neighboring pixels, using the following equation: 

( , ) ( 1, ) ( , )f x y f x y f x y
x


  


 (13) 

( , ) ( , 1) ( , )f x y f x y f x y
y


  


 (14) 

A Laplacian operator with rotational invariance can be used as a filter template for computing 
the partial derivatives of the gradient. The Laplacian operator is defined as the inner product of the 
first-order derivatives of the two directions, denoted as  : 

2 2
2

2 2( , ) f ff x y
x y

 
  

 
 (15) 

In a two-dimensional function ( , )f x y , the second-order differences in the x and y directions are: 

2

2 ( 1, ) ( 1, ) 2 ( , )f f x y f x y f x y
x


    


 (16) 

2

2 ( , 1) ( , 1) 2 ( , )f f x y f x y f x y
y


    


 (17) 

The equation is expressed in discrete form to be applicable in digital image processing 
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2 ( , ) ( 1, ) ( 1, )
( , 1) ( , 1) 4 ( , )
f x y f x y f x y

f x y f x y f x y
    
    

 (18) 

If the pixels have high variance, the image exhibits a wide frequency response range, indicating 
a normal, accurately focused image. Conversely, if the pixels have low variance, the image has a 
narrower frequency response range, suggesting a limited number of edges. Therefore, the average 
gradient, which represents the sharpness and texture variation of the image, is used as a measure: a 
larger average gradient corresponds to a sharper image. Abnormal images are detected by setting an 
appropriate threshold value to determine the acceptable range of sharpness. When the calculated 
result falls below the threshold, the image is considered blurred, indicating that the concentration of 
suspended particulate matter is unacceptable and requires particulate matter filtering. If the result 
exceeds the threshold, the image is deemed to be within the acceptable range of clarity, allowing for 
the next step of image processing to proceed directly. 

The issue of blurring in underwater camera images resulting from suspended particulate matter 
can be addressed by drawing parallels with haze conditions on the ground. Viewing suspended 
particulate matter in water as a form of noise, an image defogging algorithm (DCP) can be employed 
to mitigate the blurring effect. 

It is hypothesized that in a clear image devoid of suspended particulate matter, certain pixels 
within non-water regions, such as rocks, consistently exhibit very low intensity values: 

 
   

  , ,
min mindark c

y x c r g b
J x J y

Ω 
  (19) 

Dark channels in underwater images stem from three primary sources: shadows cast by 
elements within the underwater environment, such as aquatic organisms and rocks; brightly colored 
objects or surfaces, like aquatic plants and fish; and darkly colored objects or surfaces, such as rocks. 
Hence, the blurring observed in these images can be likened to the occlusion experienced in haze-
induced scenarios. Consequently, suspended particulate matter can be regarded as noise and filtered 
accordingly. 

Before applying the DCP method to filter suspended particles from underwater images, it is 
crucial to acknowledge a significant disparity between underwater images and foggy images. The 
selective absorption of light by the water body results in a reduced red component in the image, 
which can potentially interfere with the selection of the dark channel. To effectively extract the dark 
channel of the underwater image, the influence of the red channel must be mitigated. Therefore, the 
blue-green channel is selected for dark channel extraction. 

The imaging model of foggy image is expressed as 

       1I x J x t x A t x      (20) 

where  I x  is the image to be de-fogged,  J x is the fog-free image to be recovered, the 

parameter A is the optical component, which is a constant value in Eq. and  t x  is the transmittance. 

The two sides of the equation are deformed by assuming that the transmittance  t x  is constant 

within each window and defining it as  t x , and then two minimum operations are performed on 
both sides to obtain the following equation 

The imaging model of the image with the presence of more suspended particulate matter is 
expressed as: 

 

 
 

   min min min 1
c c

c cc y x cy x

I y J y
min t t x

A AΩΩ 

   
              

   (21) 

Where cJ  denotes each channel of the color image,  xΩ  denotes a window centered on pixel 
x , c  denotes the R, G and B color channels. Since imaging is different from foggy day imaging, in 
order to avoid the uneven attenuation of light interfering with the selection of the dark channel, it is 
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necessary to exclude the influence of the red channel and select only the blue-green channel for dark 
channel extraction. 

According to the dark primary color theory, the intensity of the dark channel of the fog-free 
image tends to zero. It means the intensity of the dark channel in the fogged image is greater than 
that of fog-free image. Because in foggy environments, the light is subjected to scattering by particles, 
which results in additional light, and the intensity of the fogged image is higher than that of the fog-
free image. 

 
 

  0dark c

y x c
J x min min J y

Ω

    
 (22) 

and it can be deduced that: 

 

 
0

c

cy x c

I y
min min

AΩ

 
     

 (23) 

The intensity of the dark channel of a fogged image is used to approximate the concentration of 
fog, which is expressed as the density of suspended particulate matter in the underwater image. 
Considering the situation in the actual underwater environment, retaining a certain degree of 
suspended particulate matter, the transmissivity can be recorded as: 

 
 

 
1

c

cy x c

I y
t x min min

AΩ
ω



 
      

 (24) 

For each pixel the minimum value in the color channel component is deposited into a grayscale 
image of the same size, and then this grayscale image is minimum filtered. However, in some cases, 
extreme values of the transmittance can occur. In order to prevent the value J from being abnormally 
large when the value t  is very small, leading to the overall overexposure of the image screen, a 
threshold value 0t  is set, and the final image recovery formula is as follows: 

   
  0max ,

I x A
J x A

t x t


 
  

 (25) 

The defogging algorithm proves effective in reducing noise and halo effects. As depicted in 
Figure 3, it is evident that post-processing with the dark-channel priority algorithm enhances object 
details and sharpens object edges, thereby improving clarity. 

 

Figure 3. Original image and processed image using DCP. 

3.3. Acoustic and Visual Feature Association for Depth Recovery 

The demanding underwater conditions pose significant challenges to the extraction and tracking 
of visual feature points, resulting in a noticeable degradation in the accuracy of depth direction 
information estimation. Leveraging the precise distance information provided by the sonar, the 
camera’s feature scale can be effectively recovered. This study enhances the feature extraction 
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capability through image-level processing and subsequently utilizes sonar distance data to further 
augment the matching proficiency of feature points. 

The sonar’s spatial detection range is typically visualized as a spherical configuration with the 
sonar device at its center. When targeting a specific direction, this detection process effectively 
confines the search area to a prism-shaped region. Leveraging the sonar’s horizontal resolution, 
individual beams are associated with a fan-shaped ring in cross-section, facilitating target range 
determination. As a result, the sizing of these fan-shaped rings serves as a criterion for filtering 
candidate matches between the sonar and camera feature points. 

The uncertainty linked to sonar detection range escalates in tandem with the separation between 
targets. As targets move farther away, a single sonar beam encompasses a broader expanse, especially 
evident in the vertical dimension where the aperture of the sonar beam widens. In earlier processing 
approaches, a common practice involved extracting the point with the highest bin value within a 
beam and then calculating the spatial distance to its centroid, deemed as the spatial feature point for 
the sonar. However, the uncertainty linked to sonar features stems from two key factors. Firstly, the 
sparse resolution of sonar, coupled with the influence of the underwater environment on the 
distortion of bin values, hampers the accurate reflection of the true distance to targets. Secondly, as 
one moves away from the center of the sonar, a bin value corresponds to a spatial region rather than 
a precise point, as illustrated in Figure 4. 

 
Figure 4. Beam coverage increases with distance and may cover many feature points. 

Therefore, accurately correlating sonar feature points with visual feature points is challenging, 
and this paper explores an alternative approach. Firstly, the spatial position of a coarse visual feature 
point is calculated. Then, for each beam, the maximum bin value is identified. In the sequence, the 
two values before and after this maximum bin value are also considered, totaling five bin values. A 
joint spatial region is constructed from the geometry of these five bin values within the sonar’s beam 
structure. Any feature points falling within this region are considered the candidates to be mutually 
correlated with the corresponding sonar feature point, as shown in Figure 5. 
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Figure 5. Candidates matching of visual feature points with one sonar feature point. 

Typically, the distribution of feature points in an image exhibits strong randomness, with local 
areas containing more edges and corners, resulting in a higher concentration of extracted feature 
points. To enhance computational efficiency, a quadtree method is commonly employed to achieve a 
uniform distribution of feature points. Traditional quadtree homogenization involves recursively 
partitioning the feature points in the image into four equally divided regions. The recursion 
terminates based on a predetermined condition related to the number of feature points in the image. 
Ultimately, only one feature point is retained in each final segmented region after equalization. 

 
Figure 6. Using Quadtree for features unification. 

After undergoing the aforementioned association method, the visual features associated with a 
single sonar feature may be one or multiple. In the case of multiple visual features, these visual 
features may span across multiple image regions after quadtree segmentation. During the 
partitioning process, when a group of mutually correlated points are connected to form a polygon, 
the quadtree’s partitioning region for this group of points should be larger than its Minimum 
Bounding Rectangle (MBR). As shown in Figure 7, In the partitioning process shown in the bottom-
left corner, although it ensures that each small area contains visual feature points, the visual feature 
points associated with a sonar feature are divided into different child node regions. However, as 
shown in the top-right corner, one node’s region contains the entire set of points. 

 

Figure 7. Different polygenes in partitions of quadtree. 

In traditional quadtrees only leaf nodes can be assigned object (one polygon), hence an object 
may be assigned to more than one leaf node，it means these leaf nodes share same depth from sonar 
feature. While in the proposed quadtree segmentation, if the range matrix of a node contains the MBR 
of an indexed object and the range matrices of its four child nodes do not contain the MBR of that 
indexed object (intersecting or diverging), the object is added to that node. In this way, the root node 
intermediate nodes are able to be assigned indexed objects and the objects assigned to each node are 
not duplicated. 

The termination condition for quadtree recursion in this method does not solely rely on the 
number of feature points but must also consider the resolution capabilities of the sonar. By 
incorporating the detection distance and resolution of the sonar, the maximum detection range of its 
sonar opening can be calculated. When the size of the divided area in the quadtree becomes smaller 
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than the area of the polygenes, simple image segmentation becomes ineffective in providing optimal 
information for feature matching between the sonar and the camera. Thus, image segmentation is 
terminated to conserve computational resources. 

3. Results and Experiments 

The system proposed in this paper for underwater SLAM will undergo testing utilizing an AFRL 
dataset [21], which encompasses a binocular camera, an inertial measurement unit, a sonar, and a 
water pressure sensor. The specific sensor model is as follows.: 

• Two IDS UI-3251LE cameras, 
• IMAGENEX 831L Sonar, 
• Microstrain 3DM-GX4-15 IMU, 
• Bluerobotics Bar30 pressure sensor. 

The two cameras are synchronized in hardware via an Arduino board, capturing 15 frames per 
second at a resolution of 1600x1400 pixels. The sonar scans the plane with an angular resolution of 
0.9°, with a maximum effective detection distance of 6 meters and a scanning period of 4 seconds. 
The effective range of the sonar detection beam intensity values is between 6 and 255. The IMU 
provides angular velocity and acceleration data at a frequency of 100Hz. The depth sensor measures 
depth at a frequency of 15Hz. All acquired and processed data are recorded in a package file using 
ROS. The detailed ROS topics for the sensor are as shown in Table 1. The dataset was collected from 
a cave in Ginnie Spring, Florida, USA. The sonar was configured with a higher rate to accommodate 
the underwater environmental scene. As natural lighting was lacking in the cave, an underwater 
searchlight was utilized to supplement the scene during video recording. However, due to 
constraints related to the searchlight’s light angle and power, it could only illuminate within a certain 
angle corresponding to the direction of the underwater robot’s travel. This led to significant 
differences in illumination between the center and edge areas, resulting in poorer camera light 
conditions compared to shallow water environments. In this dataset, the presence of dynamic 
obstacles such as fish and crabs, coupled with substantial amounts of suspended particulate matter 
in the underwater environment, will significantly affect both acoustic signal-based sonar and optical-
based underwater cameras. 

Table 1. Topic information of different sensors in the dataset. 

Sensor Ros topic Data 

Camera 
/slave1/image_raw/compressed Left camera image 
/slave2/image_raw/compressed Right camera image 

IMU /imu/imu 
Angular velocity and 

acceleration data 
Sonar /imagenex831l/range_raw Acoustic image 

Pressure sensor /bar30/depth Bathymetric data 

Firstly, feature extraction is tested using a feature detector to extract SIFT features from the 
original image and the processed image, which employed adaptive histogram equalization (AHE) 
combine with dark channel priority (DCP) suspension removal algorithm, comparing the image 
before and after processing. The experiment first tested four different scenarios, corresponding to 
subfigures in Figure 8 below. From the comparison, it can be seen that the processed images 
successfully extracted more feature points and distributed them more uniformly. 
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(a) (b) 

  
(c) (d) 

Figure 8. Visual feature points extraction contrast in different scenarios. 

To further quantify the comparison results directly, the experiment counted the number of 
feature points extracted from four sets of images. As shown in Table 2, it’s clear that the number of 
feature points goes up after using the HE algorithm, which is the first method discussed in this paper. 
Especially for the fourth image, which has a greenish tint and looks blurry. After applying both the 
AHE and suspension removal algorithms together, meaning the first and second image processing 
methods combined, it’s obvious that even more feature points are extracted. 

Table 2. Comparison of the number of feature points before and after image processing. 

 1 2 3 4 

Original 
Image 

    
 103 351 806 2 

HE Image 

    
 135 460 821 288 

Improvin
g AHE+ 

Suspende
d Matter 
Removal 

    
 198 682 1125 523 

Next, the matching capability of the visual feature points in the processed images was tested. In 
the matching process, the red connecting line represents that the pair of matching has higher 
confidence while the green connecting line represents that the pair of matching has lower confidence. 
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It can be observed that after processing, in all four scenes, the majority of feature point matches 
maintained a high level of confidence. 

  
(a) (b) 

  
(c) (d) 

Figure 9. Test of visual feature points matching for processed images. 

To quantitatively evaluate the performance of the proposed method, this paper conducted 
statistical comparisons between the number of matched feature points in the original, unprocessed 
images and the processed ones, as shown in Table 3. 

Table 3. Numbers of successfully matching pairs for different scenes. 

 1 2 3 4 
Original Image 85 321 613 0 

Enhanced Image 125 456 746 233 

In Scene 1, feature points primarily cluster in the exposed rocky areas above and to the lower 
right of the image, resembling ground scenes. However, there exists a shadowed area beneath the 
rock where direct light cannot reach, resulting in lower confidence levels for feature point matching 
near this shadowed region. Consequently, such areas appear as lightly colored matches in the image. 
The background area at the far end is also constrained by the searchlight’s power, resulting in the 
area appearing black and rendering feature extraction impossible. Nevertheless, the overall quantity 
and quality of matches meet the system’s basic requirements. In scene 2, the primary concentration 
of feature points also lies within the upper right and lower left exposed rock areas. The shadowed 
area within the camera’s view is reduced, and appropriate illumination contributes to high 
confidence levels in the feature points. The only region in this image lacking sufficient brightness for 
feature extraction and matching is the crevice area between the rocks, attributable to inadequate 
illumination. In Scene 3, feature points are not only present on the rock surface but also in certain 
areas of the seabed, facilitating feature extraction. And the method proposed in this paper can still 
further increase the number of feature point matches based on this foundation. In scene 4, the surfaces 
of the rocks are covered with flocculent graded sediment, which may hinder the efficiency of relying 
on corner points and edges for feature extraction. This is reflected in the lower confidence level of 
feature matching in the upper half of the image. In the original, unprocessed image, there were even 
no successful matches of any feature point pairs. However, after the image enhancement process, it 
is still able to successfully match the features. 

Comparing the number of feature point matches before and after image enhancement reveals 
that more matches can be obtained from the enhanced image compared to the original ones. In the 
first, second, and third images, where feature extraction is feasible in the original image, the enhanced 
image demonstrates varying degrees of improvement in the number of feature matches where the 
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successfully matching feature pairs increase. The primary significance of image processing lies in 
enhancing the system’s robustness in coping with underwater extremes, a prominently demonstrated 
in the fourth image. In the fourth image, the contrast is most apparent. In the original image, the 
absence of feature matches, indicated by a count of zero, is attributed to the low number of extracted 
features and the challenge of finding their counterparts in the other image. However, following the 
image enhancement process, the number of extracted features can be restored to normal levels. 

As OKVIS visual SLAM framework is utilized for ARFL data evaluation, this paper enhanced 
front-end processing by integrating three proposed functional modules, thus reconstructing the 
front-end accordingly of OKVIS. The resulting system, termed the “improved system,” was 
comprehensively compared with OKVIS results and ground truth in Figure 10. In the trajectory plots, 
the dashed line represents the ground truth, the blue trajectory depicts the path generated by the 
improved system, and the green trajectory represents OKVIS’s path. Observation reveals that the 
blue trajectory closely aligns with the reference trajectory, whereas the green trajectory exhibits 
numerous cumulative errors and considerable fluctuations. 

  
(a) (b) 

Figure 10. Trajectory Plot of the Dataset (a) Comparison of trajectories for OKVIS, our work and 
ground truth; (b) Local amplification of three axes. 

On the x-axis, the difference between the two methods is minimal, but the trajectory of the 
improved system exhibits smoother motion compared to OKVIS, which demonstrates more 
fluctuations. This trend is also noticeable along the y-axis, particularly in the middle section. In terms 
of the z-axis direction, the OKVIS trajectory exhibits significant errors in the middle and front 
sections, with substantial drift evident towards the tail end. Conversely, the improved system 
consistently maintains a high level of alignment with the ground truth, demonstrating remarkable 
consistency throughout. Next, statistical analysis and presentation of trajectory errors were 
performed using the EVO plugin, the results are shown from Figure 11 and Table 4. 
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(a) (b) 

  
(c) (d) 

Figure 11. Display of absolute trajectory error using EVO (a) Absolute trajectory error (APE) between 
the improved method and ground truth; (b) Display of APE statistics for improved method compared 
with ground truth (c) APE between OKVIS and ground truth (d) Display of APE statistics for OKVIS 
compared with ground truth. 

Table 4. This is a table. Tables should be placed in the main text near to the first time they are cited. 

 The improved system results 
compared with groundtruth 

OKVIS results compared with 
groundtruth 

max 0.829411 2.627724 
mean 0.366091 1.148321 

median 0.309184 1.020354 
min 0.077178 0.295083 
rmse 0.420158 1.267575 
sse 7.414390 93.191309 
std 0.206181 0.536756 

Based on the Figures and tables provided, the results obtained from the improved method 
outperform those of the OKVIS run comprehensively. In terms of both maximum and average error 
metrics, the improved method consistently maintains values below 1 when compared to the ground 
truth. Conversely, the OKVIS results exhibit larger errors, with the maximum error reaching 2.5, 
indicating significant trajectory shifts in certain instances. Additionally, the sum of squared errors 
surpasses 50 for OKVIS, suggesting highly unstable trajectories characterized by increased 
fluctuations and significant drift towards the tail section. 

5. Conclusions 

OKVIS is a well-established VIO (Visual-Inertial Odometry) visual SLAM framework. However, 
our data testing indicates that directly applying this framework to underwater environments does 
not yield effective results. The primary factor affecting accuracy is the insufficient number of visual 
feature points extracted and successfully matched in underwater images, which significantly 
degrades estimation accuracy, particularly in the vertical direction. This issue arises because 
underwater robots may experience jitter or rapid lens switching during ascent and descent, reducing 
the already limited number of matches and potentially causing misalignment. 

Conversely, the enhanced system, after processing in image enhancing and feature association 
between camera and sonar, demonstrated commendable performance on the test dataset. It 
maintained strong consistency with the ground truth trajectory and exhibited robust performance, 
with no significant fluctuations throughout the trajectory. Experimental results suggest that the 
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underwater visual SLAM system, augmented with image enhancement and distance sensor 
assistance, has shown substantial performance improvements. Nevertheless, future research will aim 
to determine whether the image enhancement method demonstrates good generalization 
performance in bright water areas and whether the segmented association method can effectively 
enhance system performance across different positions of sonar beams. 
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