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Abstract: Artificial Intelligence (AI) systems involve diverse components, such as data, models, users and

predicted outcomes. To elucidate these different aspects of AI systems, multifaceted explanations that combine

diverse explainable AI (XAI) methods are beneficial. However, popularly adopted user-centric XAI evaluation

methods do not measure these explanations across the different components of the system. In this position

paper, we advocate for an approach tailored to evaluate XAI methods considering the diverse dimensions of

explainability within AI systems using a normalised scale. We argue that the prevalent user-centric evaluation

methods fall short of facilitating meaningful comparisons across different types of XAI methodologies. Moreover,

we discuss the potential advantages of adopting a standardised approach, which would enable comprehensive

evaluations of explainability across systems. By considering various dimensions of explainability, such as data,

model, predictions, and target users, a standardised evaluation approach promises to facilitate both inter-system

and intra-system comparisons for user-centric AI systems.
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1. Introduction

Artificial Intelligence (AI) systems constitute multiple components, such as the data, models,
predictions and the users who will use such systems. Explainable AI (XAI) methods are designed to
elucidate these different components of “black-box” AI systems [1,2]. The act of offering explanations
throughout the distinct components of an AI system is also referred to as dimensions of explainability [3,
4]. Recent works have demonstrated the benefits of combining different types of XAI methods in
multifaceted explanations, particularly for non-expert users in AI [5–7].

Additionally, it has been argued that the No Free Lunch theorem in Machine Learning [8] (i.e.,
there is no one-size fits all algorithm for all tasks or datasets) also applies to XAI, as specific XAI
methods can only explain certain specific dimensions of explainability [7]. Thus, it is essential to
include multiple types of XAI methods for a holistic explanation of AI systems. For example, an XAI
system with both feature importance explanations and counterfactual explanations can provide more
holistic explanations rather than a system using only one of these methods. However, these methods
elucidate completely different dimensions of explainability. The former tries to explain the importance
of certain factors considered by the model for generating predictions (i.e., model-centric explanations),
whereas the latter provides various conditions for obtaining a different prediction (i.e., outcome-centric
explanations). Therefore, a specific XAI method can elucidate a specific dimension of explainability.

The process of user-centric evaluation for XAI predominantly involves user-reported scores for
metrics such as understandability, trust, actionability, stability, usefulness, and etc., from the participants
involved in user studies [9–12]. Despite the significance of such methods, their implications can be
limited for evaluating an XAI system as they do not consider different explainability dimensions other
than the user perspective. Moreover, it could be difficult to compare diverse XAI methods only based
on user perspectives due to certain limitations, such as users agreeing to misleading explanations even
when the system makes incorrect predictions [13–15].
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To overcome these challenges, researchers have also adopted other approaches that provide an
objective evaluation of XAI methods, such as task-driven approaches [16,17], algorithmic evaluation
metrics [18], and model-specific measurement metrics similar to Quantus [19]. However, estimating
the individual impact of a particular XAI method becomes challenging in the presence of multiple
combined XAI methods within a system. Thus, despite various objective and subjective metrics for
measuring XAI methods [20], comparing diverse methods considering the different dimensions of
explainability remains an unsolved problem [5]. To enable comparative evaluation studies, there is an
evident need for a normalised XAI evaluation approach that considers both subjective and objective
metrics across the various dimensions of explainability. This necessity raises an essential open research
question: “How can we compare XAI methods elucidating different dimensions of explainability when used in
XAI systems?”

In this position paper, we discuss the necessity of a standardised approach for evaluating diverse
explainability methods used within XAI systems, considering the diverse explainability dimensions.
We also discuss the potential advantages of adopting a standardised approach, which would enable
comprehensive evaluations of explainability across systems. We believe that existence of such an
approach can be extremely beneficial for the Human Centred XAI (HCXAI) community for evaluating
XAI systems.

2. The Needs for a Standardised Evaluation Approach for Explainable AI Systems

A standardised evaluation methodology for assessing the explainability of diverse XAI methods
within AI systems could effectively mitigate challenges associated with cross-dimensional comparisons.
Such an approach should integrate both objective and subjective evaluation metrics, standardised to a
consistent scale. By normalising evaluation scores across dimensions, such an approach could facilitate
meaningful comparisons of the efficacy of various XAI methods in elucidating the multifaceted
components of AI systems.

We highlight the following needs that could be fulfilled by a standardised evaluation approach
for XAI systems:

• Holistic Measurement: This metric should provide a standardised and holistic measure of the
effectiveness of different XAI methods in elucidating the multiple components of AI systems. This
addresses the need for a comprehensive evaluation that goes beyond individual metrics.

• Flexibility: The standardised approach should offer flexibility in incorporating existing evaluation
metrics across individual dimensions of explainability. This should encompass objective measures
assessing training data quality, model performance, and considerations for prediction uncertainty
alongside user-centric evaluations such as trustworthiness, understandability, and others.

• Model-Agnostic Property: This normalised evaluation approach should be model-agnostic, i.e.,
it could be applied to evaluate any XAI method or AI models. A model-agnostic evaluation
approach could broaden its applicability to different application domains and diverse AI systems.

• Intra-System and Inter-System Comparison: The normalised approach should be used for comparing
two or more XAI systems. It should also allow individual XAI methods across the different
explainability dimensions. However, the main goal of such an approach is to compare different
XAI methods within a system, using both subjective and objective measures.

3. Summary

To summarise, in this position paper, we discuss the needs for an approach designed to assess
different dimensions of explainability of diverse XAI methods within XAI systems. We also discuss
the benefits and opportunities for leveraging this approach for evaluating XAI systems. We eagerly
seek feedback from the workshop participants to refine and operationalise these ideas into a robust
evaluation framework.
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