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Abstract: As the fast growth of information technology (IT), the safety of image transmission and 
the storing of images are increasingly concerned. Traditional image encryption algorithms have 
certain limitations in transmission and security, so there is an urgent need for a secure and reliable 
image encryption algorithm. A universal compression sensing (CS) image encryption (IE) algorithm 
based on DNA-triploid mutation (DTM) is presented in this paper. Firstly, by using CS algorithm 
an image is compressed while obtaining a range of chaotic sequences by iteration of chaotic map. 
Then DNA sequences are generated by encoding the image, and based on the DTM, new mutant 
DNA sequences are generated according to specific rules. Next, the chaotic sequences are operated 
at the DNA level to do confusion and diffusion operations on the image to ensure the security of the 
data. At last, DNA decoding is carried out to obtain the compressed-encrypted image. Both 
simulation experiments and performance tests fully show that a high level of security and reliability 
of the proposed algorithm in protecting image privacy is achieved. 

Keywords: privacy protection; DNA-triploid mutation; compression sensing; image encryption 

MSC: 37N99 

 

1. Introduction 

As IT develops rapidly, digital images are applied in many fields [1], such as medical images, 
security monitoring, digital art and so on. No matter which field it is applied to, privacy protection 
of digital images is always a problem that needs to be focused on. In order to protect private 
information, researchers have designed traditional encryption algorithms such as AES [2], RSA [3], 
DES [4] and so on, but due to the large amount of data contained by digital images, the effectiveness 
of the algorithms needs to be improved [5]. So, researchers have proposed many new encryption 
algorithms to improve the performance of encryption. 

Recently, chaotic systems are widely exploited in IE due to excellent characteristics. And the 
design of systems with complex dynamics has received wide attention [6]. Chaotic sequences 
produced by the iteration of chaotic systems are featured with unpredictability [7], sensitivity to 
initial values, and randomness [8,9], and therefore are often used as keys for IE. However, classical 
chaotic systems have some limitations such as small key space and phase space can be easily 
destroyed [10]. While because many nonlinear dynamic behaviors that can be generated by neural 
networks [11,12], IE algorithms can be provided with randomness and security. Memristor Rulkov 
Neuron Network (M-RNN) [13] is utilized for the presented algorithm. High efficiency, security and 
reliability can be provided to the encryption algorithm by the M-RNN with those characteristics, 
which can better protect the transmission of private information. 

Many encryption algorithms have been proposed based on chaos theory. For instance, 
Mohamed et al. raised a substitution matrix created by using chaotic state variables, using it as the 
key and the encryption algorithm itself for encryption [14]. Based on the combination of IE and 
chaotic systems, some researchers have combined encryption algorithms with DNA rules [15–19] to 
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create a more secure and efficient encryption algorithm that provides a more reliable algorithm for 
privacy protection. Fan. et al. raised the algorithm on the basis of horizontal confusion and diffusion 
of eight-base DNA [20]. Wang. et al. employed the look-up table algorithm to quickly get the results 
of DNA arithmetic and save the encryption time [21]. Furthermore a nonlinear feedback shift registers 
and image encryption with DNA computation algorithm was utilized to provide high security to the 
algorithm [22]. In addition, the encryption process can be made random and unpredictable by 
performing mutation operations on DNA sequences, thus increasing the difficulty of cracking. And 
in this algorithm an effective algorithm based on triplet mutation [23] is proposed and a series of 
encryption operations are performed at the DNA level by using chaotic sequences. The algorithm is 
able to resist attack tests well and protects image information without being destroyed which 
improves safety of image encryption.  

The quantity of data in an image is increased due to the need to convert binary data into a 
sequence of four bases when encrypting at the DNA level. In order to reduce the amount of data 
when encryption, the image can be compressed before performing the encryption algorithm. Gao et 
al. presented a compression technique using back propagation neural network [24], but because of 
the "jaggedness phenomenon" and step size selection, the training speed was slow. Liu et al. 
suggested an modified image compression algorithm which combined Huffman coding, integer 
wavelet transform and linear prediction [25], but it was low in the compression speed. While, CS [26] 
technique performs better in terms of compression speed and this algorithm uses CS. It utilizes the 
sparsity or low dimensional structure of the signal to efficiently rebuilt the original signal with few 
sampled data [27]. Discrete Cosine Transform (DCT) [28] algorithm is utilized in this algorithm to 
sparsely represent original signal by combining Hadamard matrix and the chaotic sequences to 
generate observation matrix. In the stage of signal reconstruction, to reconstruct the compressed 
signal, Orthogonal Matching Pursuit (OMP) [29] algorithm is applied. The size of the image data is 
significantly reduced by this algorithm, which helps to reduce transmission and storage costs. 

To conclusion, a universal compression-encryption technique using DTM is presented. Key 
highlights from this paper: 

1. The universal image is first compressed before encryption to decrease size of the image to be 
encrypted and increase encryption efficiency. 

2. The chaotic sequences generated by M-RNN through iteration are fully utilized to provide 
pseudo-randomness to the encryption algorithm by combining it with the encryption algorithm. 

3. Due to the high randomness in the way DNA sequences combined, confusion and diffusion 
operations at the DNA level provide a strong randomization. 

The paper is organized as follows. Rich dynamics of M-RNN chaotic map, the process of CS and 
the details of DTM are shown in Section 2. Specific steps of the IE algorithm are described in Section 
3. Effects of this algorithm are illustrated in Section 4. Performance tests and analysis are carried out 
in Section 5. What is done is summed up in final section. 

2. Preliminaries 

2.1. Chaotic System 

2.1.1. Chaotic Map 

The 2D hyperchaotic map M-RNN used is shown in Equation (1): 

( ) + = − + +


+ = − −

1 ( ) sin( ( )) ( )
( 1) ( ) sin( ( ))

x i ax i b gx i y i
y i cy i d gx i

, (1)

where activation gradients are g, a, b, c, d for the system parameters, and initial values are x0 and y0. 
Phase diagrams (PD) of M-RNN are given in Figure 1 (a), (b) and (c) with parameters (b, c, d, g) 

= (1, 0.9, -0.8, 3.1), and y0 = 0, x0 = -0.1 are the initial values. The PD for different initial values of 
parameter a are shown as a= -0.4, -0.6 and -0.8. The PD show that the system has a multi-structured 
phenomenon as the value of a increases. This phenomenon can generate high quality random 
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sequences. Bifurcation diagram (BD) and Lyapunov exponential spectrum (LEs) of M-RNN are 
shown in Figure 1 (e) and Figure 1 (d). When parameter ranges a ∈ [-0.98,0.98], it is in the full domain 
hyperchaotic state. In the full domain hyperchaotic state, the state variables of the system have high 
randomness, which can generate more random and complex key sequences and increase the security 
of the IE algorithm. The complexity diagram for parameters a and d can be seen in Figure 1 (f). The 
complexity of the system is close to 1, which indicates that the chaotic sequences iteratived by the 
hyperchaotic map have high complexity. 

 
Figure 1. M-RNN (a) PD of M-RNN when a=-0.4 (a) PD of M-RNN when a=-0.6 (a) PD of M-RNN 
when a=-0.8 (d) LEs of M-RNN (e) BD of M-RNN (f) complexity of parameters a and d. 

2.1.2. Randomness Test 

To prove reliability of chaotic map in IE, NIST test is performed, which represents a usual 
method to check the randomness of sequences with 15 different tests. Results of the tests are analyzed 
by standards of P-value and pass rate (PR). Sequences are considered to be random when 15 tests 
have all p-values equal to 0.01 or more and all PRs are greater than 96%. The results obtained after 
the NIST test are presented in Figure 2 and Figure 3, from which it is clear that all the tests pass the 
standards, and the chaotic sequences have a high degree of randomness, which makes them well 
suited for application in IE algorithm. 

 

Figure 2. P-value tests. 
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Figure 3. PR tests. 

2.2. Compression Sensing Technology 

The three processes of the CS are represented in Figure 4. DCT algorithm is used for representing 
the original signal sparsely and Hadamard matrices and chaotic sequences are combined to generate 
observation matrices. Sparse observations can be seen in Equation (2). 

 

Figure 4. CS process. 

= =y φx φψx , (2)

where φ is observation matrix. x is a bunch of signals of length N. Ψ is the sparse matrix that 
transforms the signal into the frequency domain S. y is the observation and is the final sampling 
result. 

Signal reconstruction is as presented in Equation (3). After obtaining reconstructed signal, 
original signal is reconstructed with transformed base values. In the signal reconstruction stage, OMP 
algorithm is utilized which has less complexity and closely related to the value in each iteration. 

= =
0

arg min . .x x s t φx y . (3)

2.3. DNA-Triploid Mutation 

In the nucleotide structure, four bases are included, guanine (G), cytosine (C), adenine (A) and 
thymine (T). Based on the Watson-Crick rule of complementarity, complementary base pairs are 
formed by A and T, and C and G. In binary coding of DNA, binary (11, 10, 01, 00) are assigned to 
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bases (T, A, G, C) to generate 24 coding rules in total. However, only eight coding rules are in line 
with the base complementarity rules, as presented in Figure 5. Furthermore, mutation of bases may 
be caused by the self-replication of DNA during the transmission of genetic information. 

 
Figure 5. DNA rules. 

Under the rules of the DNA triploid replication stage, a design for DNA mutation rule is 
performed. During triploid replication, each base is copied three times, so the presence of each base 
is more stable in the new DNA strand after mutation. This helps to reduce base pairing errors, 
improving the accuracy of DNA replication. In triploid organisms, DNA mutation is hypothesized 
to occur through the replication of one DNA strand into three strands, followed by the synthesis of a 
new mutant DNA strand based on specific rules. The synthesis rule defined by the algorithm takes 
binary numbers denoted by the basis and adds them together to generate a newly binary number 
which corresponds with the base number. In addition, eight DTM rules based on eight DNA coding 
rules are listed in Figure 6. The DTM provides a good algorithm for IE. 

 

Figure 6. DTM. 

3. Designed Algorithm 

For securing the image, an algorithm for encryption at the DNA level after compression is 
proposed. Take a color image as an example, first an image is input and then compressed in a certain 
compression ratio (CR). After that DNA encoding is performed on it and then triploid mutation is 
performed on the encoded image. Finally, perform confusion and diffusion operation at the DNA 
level, and then it is decoded to obtain the encrypted image. The specific algorithm is illustrated in 
Figure 7. 
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Figure 7. Encryption algorithm flowchart. 

3.1. Encryption Algorithm 

Step 1: Input an image and record the image S sized H×W×L. 
Step 2: CS. A certain CR is set, the following is the detailed image compression process. 

a. Sparse representation. Set a CR, and the sparse basis ψ is obtained by inputting the size of H into 
the sparse basis function DCT. Signal is transformed into the frequency domain and an 
expression of sparse representation presented in Equation (4). R, G, and B respectively for the 
sparse representation channels, with the corresponding results are denoted as R1, G1, B1. 

 =
 =
 =

'
1

'
1

'
1

R ψRψ
G ψGψ
B ψBψ

. (4
)

b. Signal observation. Input parameters and initial values of chaotic map, then perform the pre-
iteration process. Observation matrices φ1, φ2, and φ3 are obtained by combining Hadamard 
matrices with partial pre-iterative results. These observation matrices are utilized with R1, G1 
and B1 to obtain the observation results S1, S2, and S3, as shown in Equation (5). 

( )
( )
( )

 =


=


=

'

1 1 1 1

'

2 2 2 1

'

3 3 3 1

S φ φ R

S φ φ G

S φ φ B

. (5
)

c. Quantitative processing. The minimum and maximum observations mini, maxi by R, G and B 
groups are taken separately. According to those results, three groups of results D1, D2 and D3 are 
quantified and presented in Equation (6). At last, RGB images are reconstructed by quantization 
results, after CS the result is called SS1 with its size HH×WW×LL. 

 −
= −

 − = −
 −

=
−

1
1

2
2

3
3

min
round(255 )

max min
min

round(255 )
max min

min
round(255 )

max min

R

R R

G

G G

B

B B

S
D

S
D

S
D

. (6
)

Step 3: Generate the chaotic sequences. Input SS1 into hash-256 function to obtain four hash 
values ha, hb, hc and hd. Combine the hash values with the initial values to generate new initial values. 
Three new chaotic sequences chaoSeq1, chaoSeq2, chaoSeq3 are obtained by iterating through the M-
RNN chaotic map. Reshaping results are Seqq1, Seqq2 and Seqq3 which are shown in Equation (7). 









×



 = + × + 
= + + 

 = + × + 

10
1 1

10
2 2

10
3 3

100) 10 %256 1

100) 10 %256 1

100) 10 %256 1

Seqq chaoSeq

Seqq chaoSeq

Seqq chaoSeq

. (7
)

Step 4: Perform DNA encoding. Divide the compressed image SS1 into three channels for 
encoding operation respectively. The specific operation steps are as follows. 
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a. Convert decimal pixel values to binary. 
b. Encode the binary numbers into DNA sequences, the specific encoding rules as given above. 
c. Reshape them into three channels DD1, DD2, DD3 of size HH1×WW1. 

Since both the confusion and diffusion are operated at the DNA level, the chaotic sequences 
Seqq1, Seqq2 and Seqq3 need to be subjected to DNA encoding operations so as to obtain three chaotic 
sequence matrices XX, YY, ZZ of size HH1×WW1. 

Step 5: DNA mutation. DNA mutation is performed at each position in the three channels 
according to the eight mutation rules, which are listed above. The value DDi (i, j) of each channel after 
encoding and the same position of the three chaotic sequences Seqq1, Seqq2, Seqq3 are mutated based 
on certain mutation rules and the results are stored on D1, D2, D3. 

Step 6: Confusion operation. Recombine D1, D2, D3 into NNN of size 3HH1×4WW1. Perform point-
to-point confusion on the reorganized matrix. The confusion operation is performed by using an 
Arnold pseudo-random matrix. The new coordinate position vector k is calculated from the 
coordinates (i, j), and then the elements at coordinates (i, j) are exchanged with the elements at 
coordinates (k (1), k (2)) to obtain the confused matrix. Then reorganize the confused matrix into three 
matrices U1, U2 and U3 of size HH1×4WW1. 

Step 7: Diffusion operation. Reshape the three matrices into XX, YY, ZZ of the same size to get 
SS1, SS2, SS3. Respectively perform the xor operation at the DNA level between SS1, SS2, SS3 and XX, 
YY, ZZ. The xor operation is performed in parity. Take SS1 as an example, set a flag i, when i is even, 
SS1 and XX carry out the xor operation. When i is odd, SS1 and YY carry out the xor operation. The 
operation is carried out a total of HH1×4WW1 times. Finally, the matrix after the xor operation is 
reorganized into three matrices SD11, SD22, SD33 of size HH1×4WW1. 

Step 8: DNA decoding operation. Decode the three channels separately and then merge them 
together to get the cipher image TT1. 

3.2. Decryption Algorithm 

In this algorithm, decryption-decompression is shown in Figure 8. First encode the TT1. 
Specifically, the inverse diffusion and inverse confusion operations are first carried out. Then inverse 
DNA mutation is performed on it, and it is allowed to perform DNA decoding operations to obtain 
a decrypted image. Finally, the image is decompressed and the OMP is used for reconstruction to get 
the decompressed image. 

 

Figure 8. Decryption algorithm flowchart. 

4. Experimental Results and Simulation Effects 

In this chapter, extensive simulation experiments are conducted to assess both efficiency and 
security from the presented encryption algorithm. This algorithm is realized in Windows 10 system 
based on MATLAB R2019b platform with computer hardware environment of Intel CPU 1.60GHz; 
RAM 8.00GB; Core i5-10210U. 

Due to copyright problems, this experiment uses multiple images for simulation tests, and finally 
uses "1.1.tiff"(256 × 256 × 3), "1.2.tiff"(256 × 256× 3), "2.1.tiff"(512 × 512× 3), "2.2.tiff"(512 × 512 × 3), 
"3.1.tiff"(1024 × 1024 × 3), "3.2.tiff"(1024 × 1024 × 3) “4.1.tiff”(256 × 256) and “4.2.tiff”(256 × 256) to test 
the simulation of the algorithm. As shown in Figure 9, this algorithm can achieve encryption of the 
images with good results and restore the original images well. 
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Figure 9. Simulation results of the images during IE (a) original (b) cipher (c) decrypted. 

5. Security Analysis 

5.1. Performance of Compression 

The CR is set to 0.2, 0.4, and 0.6 respectively, and three images of different sizes are compressed 
and reconstructed. The results of the tests for compression and reconstruction of the same image 
using different CRs can be seen in Figure 10. The quality of reconstruction is represented as Peak 
signal-to-noise ratio (PSNR) by a comparison between reconstructed and original images given in 
Equation (8). Results of the reconstruction as presented in Fig. 11. From this, it is clear that even with 
low CRs, an excellent quality of the reconstructed image can be achieved. Comparison between the 
algorithm and other algorithms for reconstruction quality is given in Table 1 [30–32], which shows 
the advantages of this algorithm that reconstruction quality in this algorithm compared with other 
algorithms is better. 

( ) ( )
− −

= =


= −


   =    


21 1

0 0

2

10

1 , ,

10 log

C K

i j

I

MSE M i j R i j
CK

MAX
PSNR

MSE

, (8)
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where it is denoted as M and R for the before-compression image and the reconstructed image. 

 
Figure 10. Compression reconstruction effects under different CRs (a) 0.2 (b) 0.4 (c) 0.6. 

 

Figure 11. Comparison of PSNR with different CRs for different images. 

Table 1. Comparison of PSNR with other algorithms. 

Algorithm Sizes CRs PSNRaver 
Reference [30] 512×512 0.5 23.3608 

Proposed1 512×512 0.5 34.3512 
Reference [31] 256×256 0.5 28.0714 

Proposed2 256×256 0.5 28.6956 
Reference [32] 256×256 0.75 29.5600 

Proposed3 256×256 0.75 33.5205 

5.2. Analysis of Security Key 

5.2.1. Key Space 

Key to the algorithm is divided into three parts: chaotic system related parameters, the initial 
values and hash values. After a series of tests, the key space of each part and key space in total are 
given out, listed in Table 2. Encryption algorithm in general is considered to be resistant to brute force 
attacks when a larger than 2100 [33] key space is available. Comparison of key space in this algorithm 
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with that of other algorithms presented in Table 3 [34–37] directly shows that it has a sufficiently big 
key space, which ensures security of the encryption algorithm. 

Table 2. Key space. 

Parameters Key space 
b, g 1015 

a, c, d, y0, hc, hd 
x0, ha, hb 

1016 
1017 

Total key space 10177≈2587 

Table 3. Comparison between key space and other algorithms. 

Algorithms Reference [34] Reference [35]Reference [36] Reference [37] Proposed 
Key space 2256 2256 2197 2154 2587 

5.2.2. Key Sensitivity 

Key sensitivity test is a method for evaluating the security of an encryption algorithm. In testing 
key sensitivity of encryption process, a 10-15 perturbation is added to b to change the encryption 
process key. In the case of the encryption process, the number of pixels change rate (NPCR) is used 
as a measure to evaluate the key sensitivity, as shown in Equation (9). The NPCRs of different images 
are shown in Figure 12. Even a slight perturbation in the key during the encryption process may 
cause the encryption results to differ from the original results by more than 99.6094%. A 10-16 
perturbation is added in the decryption process for the three sets of parameters a, c and d. It is clear 
from Figure 13 that images after decryption are not restored correctly. As can be seen from the figures, 
even though the perturbations added are very small, decryption cannot be successfully made, which 
indicates that the key is very sensitive. 

( ) ( )
= =

= − ×1 2 1 2
1 1

1( , ) , , 100%
255

C K

i j

NPCR S S S i j S i j
CK

, (9)

where S1(i, j) and S2(i, j) are two cipher images that change only one pixel before and after the plaintext 
images. Cipher images are of size C×K. 

 
Figure 12. Results of key sensitivity tests. 
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Figure 13. Key sensitivity of decryption process (a) parameter a=a+10-16 (b) parameter c=c+10-16 (c) 
parameter d=d+10-16. 

5.3. Attack Resistance Test 

5.3.1. Differential Attack 

Information obtained by attackers through changing information in plaintext images to analyze 
changes in cipher images caused as differential attack. To measure ability of an algorithm to resist 
differential attacks, NPCR and uniform average changing intensity (UACI, Equation (10)) are 
utilized. IE algorithm can be successfully against differential attacks as proved by over 99.6094% of 
NPCR and close to 33.4635% of UACI. Test results in Table 4 show that both values are close to 
theoretical expectations of NPCR and UACI which indicate that a certain ability to resist differential 
attacks is provided by this algorithm. It is presented in Table 5 for a comparison with other algorithms 
for both NPCR and UACI [38–41].  

( ) ( ) ( )
= =

−
= ×

− 1 2
1 2

0 0

, ,1, 100%
255 0

C K

i j

D i j D i j
UACI D D

CK
. (10) 

Table 4. Differential attack test results. 

Images Sizes 
Cipher Images 

NPCR (%) UACI (%) 
R G B R G B 

1.1 256×256×3 99.6094 99.6100 99.6187 33.6512 33.5969 33.8661 
1.2 256×256×3 99.6151 99.6131 99.6098 33.5268 33.4695 33.8211 
2.1 512×512×3 99.6167 99.6118 99.6135 33.4630 33.4661 33.5041 
2.2 512×512×3 99.6094 99.6103 99.6102 33.4661 33.4947 33.4760 
3.1 1024×1024×3 99.6092 99.6098 99.6117 33.4661 33.4651 33.4602 
3.2 1024×1024×3 99.6099 99.6166 99.6099 33.4833 33.4601 33.4631 
4.1 256×256 99.6147 33.5980 
4.2 256×256 99.6132 33.4699 
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Table 5. Comparison of performance in resisting differential attacks with other algorithms. 

Algorithm NPCR (%) UACI (%) 
Reference [38] 99.6049 99.4838 
Reference [39] 99.6089 99.4374 
Reference [40] 99.5900 33.4467 
Reference [41] 99.6100 33.4500 

Proposed  99.6120 33.5166 
Theoretical value 99.6094 33.4635 

5.3.2. Plaintext Attack 

Plaintext attack is essential for encryption algorithms. In the plaintext attack tests, select both all 
black and white images for original images, as presented in Figure 14(a). The results after 
compression-encryption and reconstruction are presented in Figure 14(b) and Figure 14(c). The 
results of decryption-decompression show visually no difference with plaintext images, indicating 
that it is resistant to plaintext attacks. 

 

Figure 14. Result images of plaintext attacks. 

5.4. Statistical Characteristics Analysis 

5.4.1. Histogram 

In this section the distribution of image pixel points is analyzed by plotting histograms of 
images. For testing, two color images are chosen to observe distribution of pixels in plaintext images 
and decryption-decompression images presented in Figure 15. Waving patterns are displayed in 
histograms of original images, while encrypted images (CR=0.6) show relatively even. This means 
that the encrypted images have a high degree of randomness. Information in the original images from 
the histogram is made extremely hard for attackers to access. 
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Figure 15. Histograms. 

5.4.2. Correlation 

The Two neighboring pixels in plaintext images are highly correlated in vertical (V), horizontal 
(H) and diagonal (D) directions, while in cipher images correlation between neighboring pixels is 
low. The formula used to calculate correlation of neighboring pixels of the image as shown in 
Equation (11). 
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, (11) 

where variable x is denoted by U(x), V(x) represents the variance of variable x, gray scale values of x 
and y refer to the neighboring pixels, and samples in total are represented by T. 

It is evident from Figure 16 and Figure 17 (three channels of a color image are R, G and B, 
grayscale image is indicated by Gr, all-black image is b, and all-white image is w) that correlation 
coefficients for different plaintext images as well as compressed-encrypted images are listed. 
Obviously, correlation coefficients in cipher images are nearly zero. Distributions of neighboring 
pixels for both plaintext and cipher images are illustrated in Figure 18. Cipher image has more 
scattered neighboring pixels in all three directions as compared to the plaintext image as can be 
clearly seen in Figure 18. Thus, it is observed that related information with plaintext images can be 
well hidden by this encryption algorithm. 
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Figure 16. Correlation in plaintext images. 

 
Figure 17. Correlation in cipher images. 

 

Figure 18. Correlation diagram of image "1.1" in three directions of original image (a) H (b) V (c) D 
correlation diagram in three directions of cipher image (d) H (e) V (f) D. 
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5.4.3. Information Entropy 

To measure randomness of information, information entropy is a theory which has a value of 8 
[42]. When a measured information entropy is close to theoretical value, it indicates that the image 
pixels are well distributed. The values of information entropy for different images encrypted by this 
algorithm refer to Table 6. It is concluded that information entropy of the cipher images closely 
matches the theoretical one, illustrating that excellent effects of encryption is achieved. 

Table 6. Information entropy for different images. 

Image 
Cipher images (CR=0.6) 

R G B 
1.1 7.9711 7.9812 7.9860 
1.2 7.9922 7.9921 7.9923 
2.1 
2.2 
3.1 
3.2 
4.1 
4.2 

All black 
All white 

7.9979 
7.9981 
7.9887 
7.9995 

 
 
 
 

7.9978 
7.9981 
7.9840 
7.9995 
7.9915 
7.9981 
7.9911 
7.9922 

7.9980 
7.9981 
7.9898 
7.9995 

 
 
 
 

5.5. Robustness 

Noise attacks and shearing attacks are tested in this subsection to measure the robustness of this 
encryption algorithm. 

5.5.1. Noise Attack 

In the cipher images (CR=0.6) salt and pepper noise (SPN) of 0.01 and 0.05 are added respectively, 
and decrypted-decompressed results are presented in Figure 19. Results after adding SPN are 
successfully decrypted-decompressed and are still visually recognizable. The PSNR of each image 
after adding noise respectively as illustrated in Figure 20. As can be seen from the figures, after 
suffering from different sizes of SPN after compression, the PSNR is still close to 30dB, indicating 
that the algorithm can resist some levels of noise attacks. 

 

Figure 19. Image ‘1.1’, ‘1.2’, ’2.1’, ‘2.2’ restoration results of noise attacks (a) 0.01 SPN (b) 0.05 SPN. 
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Figure 20. Reconstructed image quality with different intensities of noise attacks (R1, G1, B1, 
SPN=0.01; R2, G3, B3, SPN=0.05). 

5.5.2. Shearing Attack 

Cutting 12.5% of the cipher images, the results after decrypted-decompressed are shown in 
Figure 21. With the CR of 0.6, even though 12.5% of the images are cut off, it is still possible to 
recognize major information about original images after decrypted-decompressed. The test results 
show that a certain extent of shearing attacks can be resisted in this algorithm. 

 

Figure 21. Results of shearing attack images (a) size of sheared (b) decrypted-decompressed. 

6. Conclusion 

A universal image compression-encryption algorithm based on DTM is proposed from this 
paper. Firstly, the image is compressed, and then chaotic sequences iterated by RNN are used to 
perform DTM operations. Finally, the encrypted image can be obtained by utilizing chaotic sequences 
in the DNA level with confusion and diffusion algorithms. In the simulation tests, images of different 
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sizes are chosen for encryption. The simulation results not only prove the effectiveness of the 
algorithm, but also show that the algorithm can encrypt universal images of different sizes. As shown 
by performance tests, a sufficiently big key space is provided by M-RNN to withstand brute force 
attacks. Moreover, this algorithm has the ability to withstand statistical analysis attacks and passes 
robustness tests. The security and reliability of the algorithm is proved. The compression operation 
is performed by the algorithm before encryption, which reduces the workloads of encryption at the 
DNA level and improves the efficiency of the algorithm.  

However, the algorithm also has certain limitation, which is that the reconstruction time after 
decryption is long. In the future, this problem will be addressed to improve the efficiency of 
decompression without affecting the security of the algorithm. 
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