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Abstract: Recently, attention mechanisms have developed into an important tool for performance 
improvement of deep neural networks. In computer vision, attention mechanisms are generally 
divided into two main branches: spatial and channel attention. Both attention categories have their 
own advantages. The fusion of both attentions achieves higher performance, on the cost of the 
computational load. This paper introduces an innovative and lighter n-shifted sigmoid channel and 
spatial attention (CSA) module to reduce the computational cost and to improve the 3D scene relevant 
features selection. To validate the proposed attention module, 3D scene object detection in the deep 
Hough voting point sets is considered as the testing application. The proposed attention module with 
its piecewise n-shifted sigmoid activation function improves the network’s learning and 
generalization capacity which effectively predict bounding box parameters directly from 3D scenes 
and detect objects more accurately. This advantage is achieved by selectively attending to more 
relevant features of the input data. When used in the deep Hough voting point sets, the proposed 
attention module outperforms state-of-the-art 3D detection methods on the sizable SUNRGBD 
dataset. Experiments conducted showed an increase of 12.02 mean accuracy precision (mAP) when 
compared to the celebrated VoteNet (without attention). It also got 9.92 mAP higher compared to 
the MLVCNet, and 10.32 mAP higher than the Point Transformer. The proposed model not only 
decreases the sigmoid vanishing gradient problem but also brings out valuable features by fusing 
channel-wise and spatial information while improving accuracy results in 3D object detection. 

Keywords: attention mechanism; Hough voting; point clouds; activation function 
 

1. Introduction 

Attention mechanisms have been attracting increasing attention in research communities since 
they focus on key features while suppressing redundant ones [1–3]. Latest studies have demonstrated 
that correctly integrating attention mechanisms into convolution blocks substantially enhance the 
performance of a wide range of computer vision tasks such as image classification, object detection, 
instance segmentation, etc. 

In computer vision, the attention mechanisms are divided into two main types: channel attention 
and spatial attention. Recent studies such as GCNet [1] and CBAM [10] have combined both channel 
attention and spatial attention to achieve significant improvement in object detection [16]. However, 
these models commonly suffered from either substantial computational burdens or converging 
challenges. Despite that, other researchers were able to simplify the structure for both channel and 
spatial attention like ECA-Net [7] which makes the process of computing channel weights in SE block 
much easier by using a 1-D convolution. SGE [8] groups the channels dimension into several sub-
features to symbolize different semantics and implements a spatial module to every feature group 
through a feature vectors scale over all locations with an attention mask. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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The main question is to find out if it is possible to fuse different attention modules in a lighter 
but more efficient manner. ShuffleNet v2 [9] is the first to attempt an answer to the question because 
it can efficiently construct a multi-branch structure and process various divisions in parallel. 
Subsequently, several convolution layers are adopted to capture a higher-level representation of the 
input. Then, the two divisions are concatenated to render the number of channels and the number of 
input similar. Finally, the “channel shuffle” operator (defined in [10]) is adopted to allow for 
information communication between the two divisions. Moreover, SGE [8] introduces a grouping 
strategy to improve calculation speed, which divides the input feature map into groups following 
channel dimensions. 

This paper proposes to introduce a novel n-shifted channel and spatial attention module to be 
used in the well celebrated Votenet [12]. To our knowledge this will be the first time a deep Hough 
voting model for object detection will be used in conjunction with any attention module to improve 
detection accuracy while selectively attending to more relevant features of the input data. 

For both spatial and channel attentions, the authors use an n-shifted sigmoid gating approach 
as an activation function for best function approximation and faster convergence. This allows a better 
modelling of the interconnections between the channels, the preservation of meaningful features 
while subduing less beneficial features. 

This paper introduces a n-shifted sigmoid channel and spatial attention module to deduce 3D bounding 
boxes of the objects in the scene and suggest object proposals from a point cloud focused 3D object 
detection. This model is based on recent advances in 3D deep learning models for point clouds and is 
inspired by both an innovative channel and spatial attention module and the generalized Hough voting 
process [13]. Table 1 describes the advantages of the proposed model when compared to the existing 
ones on feature extraction, attention benefits, predictions, and accuracy. In the proposed model, 
PointNet++ [14], a point cloud deep learning model, alleviates the need to convert point clouds to 
regular structures. 

Table 1. Comparison of benefits of n shifted channel and spatial attention in VoteNet to the other 
methods in SOTA in 3D object detection. 

n-sigmoid Channel and Spatial Attention VoteNet Other related Networks 

Enhanced feature refinement 

Improved attention focus 

More robust predictions 

Higher detection accuracy 

Standard feature extraction 

Traditional attention 

Moderate detection accuracy 

Decent object localization and limited 

refinement 

As the point cloud generated by depth sensors only captures surfaces of objects, 3D object centers 
are likely to be in empty space, far away from any point. As a result, point based networks have 
difficulty aggregating scene context in the vicinity of object centers. To increase the capacity of the 
network to recognize objects in the 3D scene, an n-shifted sigmoid channel and spatial attention 
module is added to the deep learning model. 

In essence, this paper proposes to endow a deep point sets Hough voting network with a 
combined n-shifted piecewise sigmoid gating mechanism. By voting, the new method essentially 
generates new points that lie close to objects centers, which can be grouped and aggregated to 
generate box proposals. 

Specifically, after passing the input point cloud through a backbone network, the authors sample 
a set of seed points and generate votes from their features. Votes are targeted to reach object centers. 
As a result, vote clusters emerge near object centers and in turn can be aggregated through an efficient 
learned module to generate box proposals. The result is a powerful 3D object detector that is purely 
geometric and can be applied directly to point clouds. The authors validate this approach on the SUN 
RGBD dataset [15]. 

In summary, the contributions of this work are: 
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1. To introduce an efficient n-shifted piecewise sigmoid channel and spatial 3D attention module to 
improve the network’s learning and generalization capability while reducing the inherent sigmoid 
vanishing gradient problem. 

2. To demonstrate that the proposed attention module can just be plugged into existing models and 
boost their performance. 

3. To validate that performance is greatly improved in the deep point sets Hough voting process using 
the SUNRGB-D dataset by inserting the proposed lightweight attention module.  
The rest of this paper is arranged as follows. In Section 2, the related works are discussed. In 

Section 3, the proposed methodology is presented, where the n-sigmoid CSA deep Hough voting 
network is thoroughly described for a more accurate 3D objects detection. In Section 4, the 
implementation details are discussed followed by the experiments and their results in Section 5. 
Section 6 offers the conclusions and future works. 

2. Related Works 

Attention mechanisms. The attention has been exploried extensively since it predisposes the 
distribution of the most informative features while suppressing the less useful ones. Squeeze-and-
Excitation (SE) [16] developed channel-wise relationships using two FC layers. ECA-Net [7] 
implemented a 1-D convolution filter to produce channel weights and meaningfully decreased the 
SE model complexity. Zhu et al. [17] proposed the non-local module that computes the correlation 
matrix between each spatial point in an extensive attention map. CBAM [18], GCNet [1], and SGE [8] 
fused the channel attention and spatial attention in series, while DANet [2] adaptively incorporated 
local features with their global dependencies. 

Feature grouping. Attention mechanisms allow a model to concentrate on specific parts of the 
input data, while feature grouping aggregates all the pertinent features to extract and exhibit more 
information. Together, attention mechanism and feature grouping enable the extraction of 
meaningful patterns and relationships within complex data. 

The transformer [19] architecture employed self-attention to establish dependencies between 
different positions in a sequence, enabling the model to focus on relevant context while processing 
the input. This attention mechanism, when combined with feature grouping strategies, helps in 
capturing long-range dependencies and contextual information, leading to improved performance in 
various natural language processing tasks. Bi-LS-AttM [20] showcased the application of attention 
mechanism for image captioning, emphasizing how attention facilitates the grouping of relevant 
image features for generating descriptive captions. These papers emphasize the key role of attention 
mechanisms in leading feature grouping strategies while enhancing performance in various 
computer vision tasks. 

Activation functions. Activation functions cause nonlinearity in neural networks [21]. 
Conventional activation functions (such as sigmoid and tanh) are continuous and differentiable, but 
the sigmoid has only a positive value, while the tanh has a negative one [22]. Most enhancements of 
the sigmoid function generally focus on varying the slope of the sigmoid or shifting the original 
sigmoid, as opposed to the new proposed sigmoid that is a piecewise log-shifted function in a finite 
input–output space. The sigmoid activation function is often used in feed-forward neural networks 
(FFNN) [23] to introduce nonlinearity. To accelerate network convergence, CNNs mostly use the 
hyperbolic tangent as an activation function. One of the latest advances in activation functions is the 
non-negative rectified linear unit (ReLU), where the identity map in the positive portion solved the 
gradient vanishing challenge [22]. 

3. The Proposed n-Sigmoid Channel Spatial Attention 

3.1. 3D n-Sigmoid Channel and Spatial Attention Mechanism 

Attention mechanisms, which enable a neural network to accurately focus on all the relevant 
elements of the input, have become an essential component to improve the performance of deep 
neural networks. 
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In this paper, the authors propose a lighter but more efficient n-shifted sigmoid channel and 
spatial attention module to improve computational overhead where both spatial and channel 
attentions are combined and to enhance 3D scene relevant/important features selection (Figure 1). 
This module is integrated into the VoteNet architecture to improve the model’s ability to handle 
complex 3D object detection. 

 
Figure 1. An overview of the proposed attention module. The module adopts a channel split to 
process the features of each group in parallel. For the channel attention branch, both the average and 
max pooling generate improve channel-wise statistics and use a pair of parameters to scale the 
channel vector. For spatial attention branch, the module adopts group norm to generate spatial-wise 
statistics and use a compact feature. The two branches are then multiplied together to emphasize 
regions where both channel and spatial attentions are high, potentially focusing more on salient 
features. 

In Figure 1, the multiplication is an elementwise product between channel and spatial attention. 
The n-shifted sigmoid CSA does split the channel to allow parallel processing of each group sub-
features. For the channel attention branch, it uses a pair of parameters to scale and shift the channel 
vector. For spatial attention branch, it adopts a group normalization to generate spatial-wise statistics. 
The two branches are then multiplied together elementwise before all sub-features are aggregated. 

The new n-sigmoid CSA layer strategically combines channel and spatial attention mechanisms 
to enable the network to focus on crucial features while preserving spatial information. Specifically, 
the CSA layer is designed to carry significant improvements to the feature learning process, which 
plays a pivotal role in accurately predicting and localizing 3D objects in point clouds [24]. 

Contrary to common usage in image related CNNs, here the attention module is not repeatedly 
placed after each encoder (Set Abstraction) and decoder (Feature Propagation) of the VoteNet 
backbone but rather once only after the backbone that learns the features and before the voting 
module that estimate the object centers. 

This innovative procedure is able to improve the accuracy score due to several reasons, including 
(1) upgraded discriminative features where the integration of the CSA module enhances the 
discriminative power of the features used in the Hough voting, (2) a context-aware voting where the 
model adapts its voting strategy based on the learned context, (3) an adaptive attention where the 
model dynamically adjusts the importance of different votes based on the spatial and channel-wise 
context. 

The CSA layer operates by dividing the feature map 𝑥  𝜖 𝑅௖௫௛௫௪   where c, h, w are channel 
number, spatial height, and width. n-shifted sigmoid CSA divides 𝑥 into 𝑔 groups according to the 
channel dimension. At the start of each attention unit, the input of 𝑋 is split into two branches, 
namely the channel attention branch and the spatial attention branch (employed in [12]) and, at the 
end, their their concatenation by elementwise product has an improvement on the accuracy results. 
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The channel attention branch employs average pooling to capture the essence of the input features 
across different channels (Figure 2). 

Beyond the previous works, the authors propose that max-pooling be also simultaneously used 
to gather another important clue about distinctive object features to infer finer channel-wise attention. 
Thus, both average-pooled and max-pooled features are used concurrently. Using both features 
greatly improves the networks representation power more than using each independently. 

 
Figure 2. Diagram of the Channel attention sub-module. The channel sub-module uses max-pooling 
and average pooling where the outputs are multiplied before the n-shifted sigmoid is added together 
with a pair of parameters to scale the channel vector. 

In Figure 2, the channel sub-module utilizes both max-pooling and average-pooling outputs.  
The enhanced application for the channel attention branch (shown in Figure 3) is to first use 

global averaging pooling (Eq. 1) together with the global maximum pooling (Eq. 3) to generate 
channel-wise statistics as s ∈ RC/2G×1×1. 

 
Figure 3. Diagram of the Spatial attention overview. Group normalization (GN) is adopted to generate 
spatial-wise statistics before a compact feature Fc(.) is created. 

This operation consists in: 
1. Average Pooling Branch: 

• Average pooling operation 𝑥𝑛௔௩௚ = ଵ𝑯𝑾 ∑ ∑ 𝑥𝑛(𝑖, 𝑗)𝑾𝒋ୀ𝟏𝑯𝒊ୀ𝟏          (1) 

• n-shifted sigmoid activation: 
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𝑥𝑛௔௩௚ = 𝑛𝜎 (𝑥𝑛௔௩௚)                            (2) 
where 𝑛𝜎 is the n-shifted activation function 
2. Max Pooling Branch: 

• Max pooling operation: 𝑥𝑛௔௩௚ = max 𝑖, 𝑗( 𝑥𝑛௜,௝)                            (3) 
• n-shifted sigmoid activation: 𝑥𝑛௠௔௫ = 𝑛𝜎 (𝑥𝑛௠௔௫)                                (4) 

where 𝑛𝜎 is the n-shifted activation function 
In both pooling branches, a compact feature is created to enable guidance for precise and 

adaptive selection. This is achieved by a gating mechanism using n-shifted sigmoid activation [22] 
on both the average pooling (Eq. 2) and the max pooling (Eq. 4) operations. 

The final output of the channel attention (Eq. 5-6) can be obtained by multiplying both averaged 
and max_pooled tensors and adding the n-shifted sigmoid: 𝑥𝑛′ = [𝑥𝑛௔௩௚      𝑥𝑛௠௔௫]                                       (5)                           𝑥𝑛 = 𝑛𝜎 (𝑊ଵ . (𝑥𝑛′) + 𝑏ଵ) . 𝑥𝑛′                                        (6) 

where 𝑊ଵ ∈ Rc/2g × 1 × 1, 𝑏ଵ  ∈ RC/2g × 1 × 1    are parameters used to scale 𝑥𝑛′  
This customized non-linear activation function, the n-shifted sigmoid, is tailored to accentuate 

relevant features while suppressing noise and irrelevant information. 
On the other hand, the spatial attention branch focuses on “where” most scene informatiton 

lies, and is complementary to channel attention. At the onstart, a group normalization (GN) [26] is 
used over 𝑥 to obtain spatial-wise statistics. Fc are the compact feature generated from the spatial 
branch. Fc (·) does improve 𝑥𝑠. The final output of spatial attention is: 𝑥𝑠 = 𝑛𝜎 (𝑊ଶ . 𝐺𝑁(𝑥𝑠) + 𝑏ଶ ) . 𝑥𝑠                                     (6) 

where Wଶ  ∈ Rc/2g × 1 × 1, bଶ  ∈ RC/2g × 1 × 1  and are parameters of shape RC/2g × 1 × 1   𝑛𝜎 is the n-sigmoid 
activation (Eq. 6). 

So, channel attention utilizes group normalization 𝐺𝑁 to process the features, followed by the 
application of the same n-sigmoid activation function to refine the spatial information. The n-shifted 
sigmoid activation function exhibits a distinctive behavior that allows for controlled feature 
enhancement based on a learned scaling factor.  

It effectively emphasizes significant features while dampening the impact of less important ones, 
thereby enabling the model to focus on relevant information critical for accurate 3D object detection. 
This controlled non-linearity facilitates the n-shifted sigmoid CSA layer in adaptively reshaping the 
feature space, leading to a more discriminative and informative representation for subsequent stages 
of the network.  

The last but very important step is to multiply both channel and spatial attention (Eq. 7) that will 
act as a gating mechanism where each channel’s importance is modulated by its spatial relevance. 
Here the channel and spatial attentions are multiplied element-wise to preserve the feature 
representations influenced by both the the channel and spatial attention mechanisms. This provides 
a different form of modulation where multiplication is expected to emphasize regions where both 
channel and spatial attentions are high, potentially focusing more on salient features.  

 𝑜𝑢𝑡 = [𝑥𝑛௔௩௚ * 𝑥𝑛௠௔௫]                                       (7) 
where xn is the channel attention and xs is the spatial attention. 

Python code of the proposed n-shifted sigmoid CSA 
import torch  
import torch.nn as nn f 
rom torch.nn.parameter import Parameter  
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class csa_layer(nn.Module):  
"""Constructs a Channel Spatial Group module.  
Args: k_size: Adaptive selection of kernel size """  
 
def __init__ (self, channel, groups=64):  
super (csa_layer, self). __init__ ()  
self.groups = groups  
self.avg_pool = nn. AdaptiveAvgPool3d (1)  
self.max_pool = nn. AdaptiveMaxPool3d (1 
)  
self.cweight_avg = Parameter(torch.zeros(1, channel // (4 * groups), 1, 1))  
self.cbias_avg = Parameter(torch.ones(1, channel // (4 * groups), 1, 1))  
self.cweight_max = Parameter(torch.zeros(1, channel // (4 * groups), 1, 1))  
self.cbias_max = Parameter(torch.ones(1, channel // (4 * groups), 1, 1))  
self.sweight = Parameter(torch.zeros(1, channel // (2 * groups), 1, 1))  
self.sbias = Parameter(torch.ones(1, channel // (2 * groups), 1, 1))  
self.sigmoid = nn.Sigmoid() self.gn = nn.GroupNorm(channel // (2 * groups), channel // (2 * 
groups))  
 
def forward (self, x):  
b, c, h, w = x.shape  
x = x.reshape(b * self.groups, -1, h, w)  
x_0, x_1 = x.chunk(2, dim=1)  
 
# Channel attention 
# Average pooling branch  
xn_avg = self.avg_pool(x_0)  
xn_avg = self.cweight_avg * xn_avg + self.cbias_avg  
xn_avg = x_0 * self.sigmoid(xn_avg)  
 
# Max pooling branch  
xn_max = self.max_pool(x_0)  
xn_max = self.cweight_max * xn_max + self.cbias_max  
xn_max = x_0 * self.sigmoid(xn_max)  
 
# Concatenate average and max pooled tensors  
xn = torch.cat ([xn_avg, xn_max], dim=1)  
 
# Spatial attention  
xs = self.gn(x_1)  
xs = self.sweight * xs + self.sbias  
xs = self.sigmoid(xs)  
# Multiply channel and spatial attentions  
out = xn * xs  
 
return out 
The idea of introducing this new n-shifted sigmoid CSA attention module present several 

innovations that include: 
1. Combination of Average and Max Pooling: Several attention mechanisms normally use either 

average pooling or max pooling to aggregate channel-wise data. Merging both average and max 
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pooling allows the model to capture various aspects of the feature maps, thereby enhancing the 
capacity to attend to relevant features. 

2. Multiplying Channel and Spatial: While addition is a common operation for combining attention 
mechanisms, multiplying channel and spatial attentions together can provide a totally different 
type of data regarding the scene in question. Multiplication will lay emphasis on regions where 
both channel and spatial attentions are important, thus focusing more on salient features. 

3. The use of n-shifted sigmoid activation as a gating mechanism in the attention module. 
4. The flexibility that permits the model to learn various types of interactions between spatial and 

channel attentions. Furthermore, the exploitation of trainable parameters from both max and 
average pooling as well as from channel and spatial attention, empowers the model to 
adaptively learn. 

3.2. 3D n-Sigmoid CSA Module Integrated in the Point Cloud Learning Using Hough Voting  

The integration of the CSA layer into the VoteNet model (Figure 2) aims at proving the ability 
of the n-sigmoid attention module to better capture intricate patterns and complex relationships 
within the point clouds [29]. 

In the 3D n-sigmoid CSA layer’s forward function, a global average pooling is used as a 3D 
Adaptive Average Pooling operation, allowing the extraction of relevant features from the 3D spatial 
scene [27]. In this paper, the channel attention structure implies the utilization of the n_sigmoid 
activation function which enhances feature discrimination and learning adaptability within the 
volumetric feature space. Additionally, the spatial attention mechanism employs a Group 
Normalization operation tailored for 3D data, promoting effective feature normalization, and 
enhancing feature representations within the spatial domain [28]. All these steps contribute to the 
resulting improved feature discrimination and subsequent feature fusion. 

 

Figure 4. An overview of the n-shifted sigmoid based VoteNet [10] pipeline. 

The proposed n-sigmoid attention mechanism primarily operates within the feature extraction 
while positively affecting the voting stages. Essentially, it acts on the features extracted from point 
clouds data enabling the network to focus on relevant information and suppress irrelevant and noisy 
elements during voting process (Figure 5) 

This, in turn, enables the model to generate more accurate and reliable predictions, improving 
both the localization and classification of 3D objects. The CSA layer effectively enhances the feature 
extraction process [30], improving the model’s capacity to discern subtle details and patterns that are 
essential for robust 3D object detection. 
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Figure 5. Simplified illustration of the 3D n-sigmoid CSA operation in the Hough Voting point cloud 
learning set. 

This improvement contributes significantly to the overall performance and reliability of the 
VoteNet model, positioning it as a formidable solution for intricate 3D object analysis tasks in point 
clouds. By leveraging the enhanced channel and spatial attention mechanisms of the CSA layer, the 
modified VoteNet demonstrates improved discriminative capabilities, leading to superior object 
detection performance while the integration of the n_sigmoid activation function [22] augments the 
network’s nonlinear processing allowing for a more refined emphasis on critical features while 
suppressing noise and irrelevant information. 

In essence, the modified n-sigmoid CSA VoteNet architecture represents a significant 
advancement in 3D object detection methodologies, showcasing enhanced accuracy, robustness, and 
adaptability in challenging real-world scenarios. 

4. Implementation Details 

To validate the n-sigmoid CSA, the authors have used the VoteNet network for object detection 
with input of 3D point cloud of N points from indoor scenes. PointNet++ [12] is the backbone feature 
learning network. The entire n-sigmoid CSA based VoteNet is trained end-to-end from scratch with 
an Adam optimizer, batch size of 8 and an initial learning rate of 0.001. The learning rate is set to 
decrease by 10x after 80 epochs and to decrease by another 10x after 120 epochs. 

Training the model to convergence on one Tesla T4 GPU takes around 30 hours on SUNRGBD 
when uninterrupted. Same as the original VoteNet, the proposed n-sigmoid Channel Spatial 
Attention VoteNet (n-sigmoid CSA-VoteNet) can collect 3D point clouds of a scene and generate 
proposals in one forward pass. The proposals are post-processed by a 3D NMS module with an IoU 
threshold of 0.25. 

5. Experiments 

In this section, the authors first compare the proposed n-sigmoid Channel and Spatial Attention 
(n-sigmoid CSA) with current state-of-the-art methods on several evaluation metrics that involve 
efficiency, accuracy…. After that, an ablation study is provided to understand the importance of the 
proposed attention mechanism on the process of voting point clouds and demonstrate the proposed 
method’s advantages in its efficiency and accuracy in the model complexity study. 

5.1. 3D n-Sigmoid CSA Module Integrated in the Point Cloud Learning Using Hough Voting  

Dataset. SUNRGBD [15] is a single-view dataset for 3D scenes. It is made of 5,285 training and 
5,050 testing RGB-D images in the dataset, where each object is indeed annotated with a bounding 
box and is part of 35 semantic classes. The authors only use the 3D coordinates as input and report 
on the overall metrics of mean average precision (mAP) and average recall (AR). 
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Methods in comparison. The procedure to assert the validity of the proposed attention module 
consists of two steps. First it is to compare the n-sigmoid Channel and Spatial Attention in VoteNet 
(CSA-VoteNet) with a wide range of state-of-the-art methods (as shown in Table 2). Then, the authors 
compare the n-sigmoid CSA-VoteNet with other Attention models including the VoteNet itself. 

All attention modules presented in Table 3A are slight modifications of the VoteNet official 
implementation where different 3D attention modules are added. Table 3B exhibits the results on the 
recall metric using SUNRGBD dataset. Even though CAA [31] and Point Transformer [32] had shown 
good performances assessed under either precision-related or recall-related metrics, the proposed n-
sigmoid CSA-VoteNet achieves the best overall result (69.72 mAP) among all the attention modules. 
Most importantly, the advantages of the proposed n-sigmoid CSA-VoteNet stems from two 
significant facts: on the one hand, it assigns different relevance weights to different elements of the 
input data during the voting process; on the other hand, the attention map enables the network to 
emphasize important features and suppress irrelevant or noisy ones. 

Table 2. 3D n-sigmoid CSA-VoteNet object detection on SUNRGBD compared with other state-of-
the-art methods. (IoU threshold = 0.25). 

Methods Input Bathtub bed 
Book 

shelf 
chair desk dresser 

night- 

stand 
sofa table toilet mAP 

DSS [33] 

COG [34] 

2D-driven [35] 

F-PointNet [36] 

VoteNet [12] 

MLCVNet [37] 

DeMF [38] 

CSA-VoteNet 

(ours) 

GEO + RGB 

GEO + RGB 

GEO + RGB 

GEO + RGB 

GEO only 

GEO only 

GEO + RGB 

GEO only 

44.2 

58.3 

43.5 

43.5 

74.4 

79.2 

79.5 

80.9 

78.8 

63.7 

64.5 

81.1 

83.0 

83.0 

87.0 

88.1 

11.9 

31.8 

31.4 

33.3 

28.8 

31.9 

44.1 

49.6 

61.2 

62.2 

48.3 

64.2 

75.3 

75.8 

80.7 

83.8 

20.5 

45.2 

27.9 

24.7 

22.0 

26.5 

33.8 

49.7 

6.4 

15.5 

25.9 

32.0 

29.8 

31.3 

46.4 

45.2 

15.4 

27.4 

41.9 

58.1 

62.2 

61.5 

66.3 

72.8 

53.5 

51.0 

50.4 

61.1 

64.0 

66.3 

72.5 

72.4 

50.3 

51.3 

37.0 

51.1 

47.3 

50.4 

52.8 

59.8 

78.9 

70.1 

80.4 

90.9 

90.1 

89.1 

92.7 

94.9 

42.1 

47.6 

45.1 

54.0 

57.5 

59.8 

65.6 

69.72 

Table 3. Comparing n-sigmoid CSA-VoteNet with other attention mechanism baseline using VoteNet 
on SUNRGBD on both Average Precision and Recall. 

A: The results of Average Precision on SUNRGBD [15] dataset of SA_VoteNet compared to other attention mechanisms. (IoU 

threshold = 0.25)  

Methods bed table sofa chair toilet desk dresser 
night-

stand 

book-

shelf 

bath-

tub 
mAP 

VoteNet [12] 

A-SCN [39] 

Point-attention [40] 

CAA [31] 

Point-transformer 

[32] 

Offset-attention 

[41] 

CSA-VoteNet 

(ours) 

83.3 

81.8 

84.4 

83.7 

83.9 

82.8 

88.1 

49.8 

48.9 

49.0 

50.2 

50.4 

49.8 

59.8 

64.1 

63.8 

61.9 

63.4 

63.7 

60.5 

72.4 

74.1 

74.0 

73.8 

74.9 

75.2 

73.0 

83.8 

89.3 

88.3 

87.4 

89.7 

86.6 

86.5 

94.9 

23.8 

24.5 

25.7 

25.7 

26.3 

23.6 

49.7 

26.4 

26.7 

24.6 

30.6 

28.1 

27.1 

45.2 

60.7 

57.5 

56.0 

64.7 

62.5 

56.5 

72.8 

30.9 

24.9 

28.2 

27.5 

35.8 

25.6 

49.6 

72.8 

65.4 

73.1 

77.6 

72.2 

71.2 

80.9 

57.7 

55.6 

56.4 

58.8 

58.5 

55.7 

69.72 

B: The results of Recall on SUN RGB-D [15] dataset of SA-VoteNet compared to other attention mechanisms. (IoU threshold 

= 0.25) 
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Methods bed table sofa chair toilet desk 
dresse

r 

night

-

stan

d 

book

-

shelf 

bath-

tub 
AR 

VoteNet [12] 

A-SCN [39] 

Point-attention 

[40] 

CAA [31] 

Point-

transformer [32] 

Offset-attention 

[41] 

CSA-VoteNet 

(ours) 

95.2 

94.1 

94.8 

94.1 

93.4 

94.1 

95.5 

85.5 

83.3 

83.6 

84.7 

84.5 

83.5 

82.9 

89.5 

88.4 

88.9 

89.7 

89.4 

87.8 

91.6 

86.7 

87.3 

86.3 

86.8 

86.1 

86.1 

87.3 

97.4 

96.7 

95.4 

97.4 

94.7 

97.4 

97.6 

78.8 

78.8 

78.7 

79.3 

77.4 

78.9 

77.6 

81.0 

77.3 

78.2 

80.6 

80.6 

78.2 

83.2 

87.8 

85.4 

88.2 

89.8 

89.4 

88.2 

88.4 

68.6 

67.6 

62.5 

65.9 

71.9 

64.9 

73.2 

90.4 

80.8 

86.5 

90.4 

90.4 

86.5 

91.0 

86.1 

84.0 

84.3 

85.9 

85.8 

84.6 

86.8 

5.2. 3D n-Sigmoid CSA Module Integrated in the Point 

This ablation study does provided an understanding of the importance of the proposed attention 
mechanism. Its use in the process of Hough voting on point clouds establish the proposed method’s 
benefits, effectiveness and accuracy in the model complexity study. Table 4 shows the improvement 
obtained in the VoteNet pipeline when the n-shifted sigmoid CSA is added when compared to other 
state-of-the-art networks (both with or without attention).  

Table 4. Comparing CSA Hough Voting with attention mechanism baseline (IoU threshold at 0.25 
and 0.5) on SUNRGBD dataset. 

Methods mAP @ 0.25 mAP @ 0.5 
Methods without 
attention 
H3DNet [43] 
LGR-Net [44] 
HGNet [45] 
SPOT [46] 
Feng [47] 
MLCVNey [37] 
VENet [46] 
DeMF [38] 
CAGroup3D [49] 
TR3D+FF [50] 
Point-GCC+TR3D+FF [52] 
Methods with attention 
VoteNet [12] 
ImVoteNet 40] 
CSA-VoteNet (Ours) 

 
60.0 
62.2 
61.6 
60.4 
59.2 
59.2 
62.5 
65.6 
66.8 
69.4 
69.7 
 
57.7 
- 
69.72 

 
39.0 
- 
- 
36.3 
- 
- 
39.2 
45.4 
50.2 
53.4 
54.0 
 
41.3 
43.4 
54.17 
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When comparing with the no-attention module in 3D object detection, the proposed network 
still emerges best since it outperforms all the existing methods notably with 69.72 mAP @ IoU 0.25 
and 54.17 @ IoU 0.5.  

Results summarized in Table 4 show that SA Hough Voting outperforms all previous methods 
(by at least 4.12 mAP on the DeMF [36]) using the SUNRGBD dataset. Also, a per-category evaluation 
for SUNRGBD is provided. In Table 3 (A and B), the proposed n-sigmoid CSA-VoteNet demonstrated 
superior results when compared to other attention mechanisms baseline using VoteNet on 
SUNRGBD dataset. Just to roundup the whole research, Table 4 establishes a comparison with any 
other no-attention mechanism in the 3D object detection domain. The proposed method tremendous 
improvements when only the geometric input (point clouds) is used. 

Advantage of using both average and max pooling techniques in the n-shifted sigmoid CSA. 
The authors have also performed experiments to confirm the advantage of using both pooling 
methods as opposed to using only either the average or the max pooling operation in the proposed 
attention module. Table 5 presents the results obtained that show that accuracy is neatly improved 
when using both average and max pooling operations together while using max pooling operation 
yields better results than the average pooling results. 

Table 5. Model results on using concatenated average pooling or either of the pooling operations. 

Methods mAP @ 0.25 mAP @ 0.5 
VoteNet without attention 
n-sigmoid CSA VoteNet with both avg and max 
pooling 
n-sigmoid CSA VoteNet with max pooling only 
n-sigmoid CSA VoteNet with avg pooling only 

57.7 
69.72 
69.11 
68.84 

41.3 
54.17 
53.67 
53.22 

The training results obtained show that the improvement in the accuracy score, when using both 
the average and max pooling operation, is due to context-aware voting where the model adapts its 
voting strategy based on the learned context.  In essence, in this proposed adaptive attention 
module, the model dynamically adjusts the importance of different votes based on the spatial and 
channel-wise setting. 

Advantage of using the n-shifted sigmoid instead of the traditional sigmoid. The authors have 
also performed experiments to confirm the benefit of using the n-shifted sigmoid as opposed to using 
the traditional sigmoid as a gating mechanism in the proposed attention module. Table 6 presents 
the results obtained that show that accuracy is neatly improved when using the n-shifted sigmoid 
activation function. The authors believed that the improvement in accuracy is due to the n-shifted 
sigmoid activation function ability to improve feature discrimination and to enhance spatial and 
channel attention. 

Table 6. Model results on using n-shifted sigmoid or traditional sigmoid. 

Methods mAP @ 0.25 mAP @ 0.5 
VoteNet without attention 
n-shifted sigmoid CSA VoteNet  
traditional sigmoid CSA VoteNet  
p-sigmoid CSA VoteNet 

57.7 
69.72 
69.21 
69.32 

41.3 
54.17 
53.96 
53.92 

5.3. Discussion 

In this experiment analysis, the advantages of using the attention mechanism are described in 
the Hough voting system. 

The integration of an n-shifted sigmoid CSA mechanism within VoteNet does provide key 
benefits that enhance the network’s performance and capabilities in various ways such as: 
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An improved relevance weighting. By incorporating this attention mechanism, VoteNet does 
assign different relevance weights to different elements of the input data during the voting process. 
This allows the network to focus on critical features and downplay less relevant ones, leading to more 
accurate and precise decisions. 

To verify that the n-shifted sigmoid CSA does improve relevance weighing of scene objects, the 
authors compare the performance of a model with and without the proposed n-shifted sigmoid CSA 
mechanism. 

Figure 6 shows that accuracy significantly increases after the n-shifted sigmoid CSA is added to 
the VoteNet meaning that the relevance weighting is greatly enhanced. It is observable that the 
accuracy increase is very remarkable for some elements like the bookshelf, the desk. This could be 
due to specific factors in the dataset such as proximity, cluttering…The objects detected (bounding 
boxes) in the scene result from the voting strategy based on this relevance weighting which allows 
for salient objects to be voted for. 

 

Figure 6. Accuracy results of the n-shifted sigmoid CSA VoteNet (with attention) and the VoteNet 
(without attention) on each element. 

An enhanced feature representation. Attention mechanisms enable the network to emphasize 
important features and suppress irrelevant or noisy ones, facilitating the extraction of more 
informative and discriminative feature representations.  

To verify that the n-shifted sigmoid CSA does enhance feature representation of scene objects, 
the authors compare the performance of first, the proposed n-shifted sigmoid CSA model with 
channel and spatial attention concatenation and secondly, the proposed n-shifted sigmoid CSA 
model with channel and spatial attention multiplication instead. 

Here the channel and spatial attentions are multiplied elementwise to preserve the feature 
representations influenced by both the channel and spatial attention mechanisms. This provides a 
different form of modulation where multiplication is expected to emphasize regions where both 
channel and spatial attentions are high, potentially focusing more on salient features. 

Figure 7 shows that accuracy significantly increases when multiplication is used instead of mere 
concatenation. Thereby demonstrating that feature representation of scene objects does emphasize 
important features and neglect others. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 May 2024                   doi:10.20944/preprints202405.1941.v1

https://doi.org/10.20944/preprints202405.1941.v1


 14 

 

 

Figure 7. Accuracy results of the n-shifted sigmoid CSA VoteNet (with concatenation) and the n-
shifted sigmoid CSA VoteNet (with multiplication) on each element. The mAP @ 0.25 accuracy is 69.29 
for the n-shifted sigmoid CSA VoteNet (with concatenation). 

In summary, all these benefits collectively lead to more accurate, robust, and context-aware 3D 
object detection and localization, making n-shifted sigmoid CSA-VoteNet more effective in handling 
diverse real-world scenarios. 

5.4. Model Complexity 

Table 7 presents a set of reference data (model size, inference time…) regarding the proposed 
model’s complexity by comparing different object detection modules. For the SUNRGBD dataset, the 
model sizes of the network are also included to show its impact on complexity and speed especially 
when the Shuffle Attention has been used because of its ability to reduce the computational overhead. 
Although some networks such as F-PointNet [34] does achieve relatively higher performances 
regarding speed, it also requires more computational resources such as longer training time or larger 
memory consumption.  

Table 7. Model size and processing time on SUNRGBD dataset. 

Methods Model size 
Inference time 

(seconds/epoch) 

Training time 

(seconds/epoch) 

F-PointNet [34] 

3D-SIS [48] 

H3DNet [39] 

VENet [44] 

VoteNet [12] 

CSA-VoteNet (ours) 

47.0 MB 

19.7 MB 

- 

- 

11.2 MB 

13.6 MB 

0.09 

- 

- 

0.10 

0.16 

0.25 

- 

- 

42.0 

85 

45.8 

123.2 

Despite the model’s light size increase, it is easy to notice that the model still performs acceptably 
when it comes to speed compared to the original VoteNet despite reducing its performance with a 
result of 123.2 seconds in training time. 
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6. Conclusions 

In this paper, the authors proposed a novel and effective n-shifted sigmoid Channel and Spatial 
Attention module that not only reduces computational overhead but also enhance the 3D scene 
relevant features selection of 3D convolutional neural networks. Specifically, it improves the seed 
points feature representation to effectively predict bounding box parameters directly from 3D scenes 
and detect objects more accurately. 

The new attention mechanism is placed just before the voting module to improve the accuracy 
score since it improves the discriminative features, provides more context-aware decisions before the 
voting process, focuses on adaptive attention to dynamically adjusts the importance of different votes 
based on the spatial and channel-wise context. 

The proposed method achieved state-of-the-art detection accuracy on the SUNRGBD dataset 
with only geometric information given, demonstrating the effectiveness of the proposed approach in 
the Deep Hough voting network. Experimental results have shown that the proposed n-shifted 
sigmoid Channel and Spatial Attention is an extremely light plug-and-play module, that is able to 
significantly improve the performance of numerous deep CNN architectures. 

For future research, the focus will be to implement a 3D instance segmentation using the n-
shifted sigmoid CSA-VoteNet by using methods like non maximum clustering of the points clouds 
inside the bounding boxes for instance. 
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