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Abstract: Mechanical ventilation is a life-saving treatment for critically ill patients who are struggling to breathe

independently due to injury or disease. Globally, large numbers of Individuals have always required mechanical

ventilation per year. The Covid-19 pandemic elevated the significance of the mechanical ventilation which

have played a significant role in sustaining Covid 19 infected critically ill patients who could not breathe on

their own. The pandemic drew the attention of the world to the shortage of ventilators globally.This research

work presents the formulation of a detailed Port Hamiltonian model of a mechanical ventilator integrated to the

human respiratory system. The interconnection and coupling conditions for the various subsystem within the

mechanical ventilator and the coupling between the mechanical ventilator and the human respiratory system is

also presented.A structure preservation discretization is provided along side numerical simulations and results.

The obtained results are found to be comparable to results presented in literature.The future work will include the

design of suitable controllers for system.

Keywords: Mechanical Ventilator; Port-Hamiltonian: human respiratory system: Dirac structure

1. Introduction

The World Health Organization (WHO) has "access to oxygen" on its model list as one of the
essentials required by an individual, especially when they are in a critical condition health-wise and
they are unable to breathe on their own. Access to oxygen is the only medicine listed that does not
have a substitute. Access to oxygen even after the worldwide pandemic is still a major dilemma in
middle and low-income countries [1]. A mechanical ventilator is a medical device that is employed in
assisting patients in cases where their respiratory system is not functioning well, thus the patient has
challenges in breathing or has shortness of breath. The mechanical ventilator can also be used in cases
where a patient has been sedated and is undergoing surgery.

The basic operation of a mechanical ventilator is to control a high-pressure region during the
inspiration stage. In the inspiration stage, the mechanical ventilator is paused. During expiration, air
flows out due to the lung’s natural recoil which creates a higher pressure in the alveoli. Due to the
high demand for mechanical ventilators both in the past and at present, it is imperative that efficient
and affordable mechanical ventilators should be researched, modelled, designed and implemented. To
ensure that robust mechanical ventilators are designed, it is important to formulate new models that
can be used in the research and testing stages of the mechanical ventilators.

2. Related works

Tran et al, [2], conducted research whose main goal was to design, control, model, and simulate a
mechanical ventilator that is light in weight, portable, and suitable for use at home. [2], modelled the
mechanical ventilator as a voltage source. El-Hadj et al [3], applied the fluid-structure Interaction (FSI)
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to a couple of computational fluid dynamics used for fluid flow with finite element analysis for the solid
domain. This facilitated the investigation of fluid behaviour, structural behavior, and interactions. Two
designs were proposed for the mechanical ventilator. The first design was reported to be uncontrollable
and the second design considers Computational Fluid Dynamics (CDF) with a moving boundary
which is applied to the piston cylinder based ventilator. Tharton et al [4], designed and developed
a ventilator prototype to be used by professionals in medical emergencies and in any other context
where the regular ventilator is not available. The mechanical ventilator was modelled using the crank
rocker mechanism in order to meet specific requirements for mechanical ventilator design. Pivk et
al, [5], developed an empirical model for a low-cost mechanical ventilator by observing the response
of each of the ventilator subsystems. The current progress made globally in the development of
affordable and effective designs is important. However, research in mechanical ventilator development
lacks model development. The Port-Hamiltonian approach applied in this research work acts as
a modelling template for future energy-based mechanical ventilator modelling and design. It is
important to develop designs that rest on a solid understanding of a significant aspect of the design.
Naggar, [6] developed a piecewise model of a mechanical ventilator which described the artificial
behaviour of a mechanical ventilator. A pressure-controlled ventilator is created and simulated. The
mechanical ventilator is modelled using a periodic function with inequalities to control the beginning
of inspiration and expiration periods. Shi et al, [7] developed a mathematical model of volume-
controlled mechanical ventilation. The model is viewed as a pneumatic system where the ventilator is
regarded as an air compressor. The exhalation valve is considered as throttle. The compressor and
the container represent the ventilator. Naggar et al, [8] proposed an integrated mathematical model
of the mechanical ventilator and the lung. Linear quadratic and exponential equations were used to
model the system. The integrated model was used to simulate volume-controlled artificial ventilation.
Giri et al, [9], proposed a simplified design of a mechanical ventilator, to reduce cost and automate
the mechanical ventilation process. The proposed design was simulated on the MATLAB platform.
Hannon et al, [10] presented a review on the advancement in the modelling of human anatomy,
physiology and pathophysiology via mathematical modelling and computer simulation. Clinical
applications in various disease states were emphasized. The research work discussed the current
limitations and potential of in-silico modelling. There are currently no existing Port Hamiltonian
models of mechanical ventilators intergrated with a human repiratory system. The main contribution
in this research work is the development of an intergrated Port-Hamiltonian model representation
of a mechanical ventilator-human respiratory system. The model consists of electromechanical and
electromagnetic components modelled in the finite-dimensional representation, interconnected with
fluid components in the infinite-dimensional representation. As a result, this Port-Hamiltonian model
is of a mixed finite/infinite dimensional nature.

3. Materials and Method

This section presents the mathematical preliminaries of the Port Hamiltonian approach that have
been followed in later sections. These definitions are standard definitions from literature and are
mostly derived from the following references: [11], [12] and [13]
Definition 1 (Dirac Structure)
A Dirac Structure (DS) is a pair of elements, f ∈ Rn and e ∈ Rn, that satisfies the set:

D ∶= {( f , e) ∈D, ( f̂ , ê) ∈D∣eT f̂ = −êT f }

The DS is a subset D ⊂ F ×E, where F and E represent the flows and efforts, respectively.

The DS in electric circuits can be represented as:
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Proposition 1:
The subspace

D ⊂ Rn ×Rn

is called a DS iff, there exist A, B ∈ Rn×n such that

ABT + ABT = 0 and rank([A B]) = n

satisfying the condition

D = {( f , e) ∈ Rn ×Rn∣A f = −Be}

Definition 2 (Resistive Relation)
Any relation R ⊂ Rn ×Rn is said to be resistive if ∀( fR, eR) ∈ R the

eTR fR ≤ 0

is satisfied.

Definition 3 (Port-Hamiltonian (pH) System).
The set (D,L,R), defines a pH system where:

• D ⊂ (FL ×FR ×FP) × (EL ×ER ×EP) is a DS
• L ⊂ FL ×EL is a LS and
• R ⊂ FR ×ER a Resistive relation.

The elements of the sets:

• FL ∈ RnL and EL ∈ RnL are known as flows and efforts
• FR ∈ RnR and ER ∈ RnR are known as resistive flows and efforts
• FP ∈ RnP and EP ∈ RnP are known as external flows and efforts, respectively.

where nL, nR and nP ∈ N0.
The dynamics of the pH system are given by the differential inclusion

(− d
dt

x(t), fR(t), fP(t), eL(t), eR(t), eP(t)) ∈D

where (x(t), eL(t)) ∈ L, ( fR(t), eR(t)) ∈ R and ( fP(t), eP(t)) ∈ P

Definition 4 (Interconnection of n pH Systems)
Let (Di,Li,Ri) denote the space of the ith pH system in a set of n pH systems that are to be inter-
connected. The space of flows is divided into an external part and a part to be linked and is given
by

Fi = FLi ×FRi ×FPi ×FPlink

Similarly, the space of efforts is divided into an external part and a part to be linked and is expressed as

Ei = FLi ×ERi ×EPi ×EPlink
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The interconnection of two pH systems (D1,L1,R1) and (D2,L2,R2)with respect to the link (FPlink, EPlink)
results in a new interconnected pH system, (D,L,R). This interconnected system is given by the
expression

(D1,L1,R1) ○ (D2,L2,R2) ∶= (D,L,R)

Definition 5 (Directed Graph).
A directed graph is a quadruple G ∶= (V, E, l, r)where

1. V is a set of vertices
2. E is a set of edges
3. l ∶ E → V maps each edge, e, to an initial vertex
4. r ∶ E → V maps each edge, e, to a terminal vertex

Definition 5.1 (Loop-free directed Graph).
If G is a directed graph, then G is said to be loop-free if for all e ∈ E,

l(e) ≠ r(e)

Definition 5.2 (Subgraphs).
Given the graphs G ∶= (V, E, l, r) and G′ ∶= (V′, E′, l, r), then G′ is said to be a subgraph of G′ if E′ ⊂ E
and V′ ⊂ V. Furthermore,

1. A subgraph is said to be an induced subgraph on V′ if E′ = E∣′V
2. A subgraph is said to be spanning if V′ = V
3. A subgraph is said to be a proper subgraph if E′ ≠ E
4. If both V and E are finite, then G is said to be finite

Definition 6 (Paths, Connectivity and Cycles).
Let G = (V, E, l, r) be a directed finite graph.

1. An n-tuple e = (e1, . . . , en) ∈ (E ∪−E)n is called a path from υ to ϖ, if

(a) l(e1), . . . , l(en) are distinct
(b) r(ei) = l(ei+1) for all i ∈ {1, . . . , n − 1}
(c) l(e1) = υ ∧ r(en) = ϖ

2. A path from υ to υ is called a cycle.
3. Two vertices, υ and ϖ are said to be connected if there exists a path from υ to ϖ.
4. The existence of paths from vertices gives an equivalence relation on the set of vertices.
5. A subgraph is a component of the graph.
6. A graph with only one component is said to be connected.

Definition 7 (Incidence Matrix).
Let G = (V, E, l, r) be a directed graph that is finite and loop-free such that E = e1, . . . , em and V =
υ1, . . . , υn. Then the jth row and kth columns of the incidence matrix, A0 ∈ Rn×m of G is given by

ajk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 l(ek) = υj,

−1 r(ek) = υj,

0 otherwise.

If the rank(A0) = n − k, then the graph G has k ∈ N components, such that k rows can be removed from
A0 resulting in matrix with same rank.
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Definition 8 (Kirchhoff-Dirac Structure, Kirchhoff-Lagrange Submanifold).
The Kirchhoff-Dirac structure of G can thus be defined by the set

DS
K(G) ∶= {(j, i, ϕ, u) ∈ Rn−∣S∣ ×Rm ×Rn−∣S∣ ×Rm∣[I A

0 0
](j

i
)+ [I A

0 0
](ϕ

u
) = 0} (1)

where i and u are the currents and voltages at the edges of the graph, respectively, whereas q and ϕ are
the charges and potentials at the vertices of the graph, respectively.

Assuming that S = {v1, . . . , v∣S∣}, the Kirchhoff-Lagrange submanifold of G with respect to S is
defined as

LS
K(G) ∶= 0×Rn−∣S∣ ⊂ Rn−∣S∣ ×Rn−∣S∣ (2)

where G = (V, E, l, r) is a directed graph that

1. Is finite
2. Is loop-free
3. Has an incidence matrix A0 ∈ Rn×m

If G1, . . . ,Gk are the components of G with corresponding vertices V1, . . . , Vk ⊂ V so that there exists a
subset S ⊂ V such that S containing at most one vertex from each component, i.e. ∀s, s′, ∈ S, i ≤ k ∶
v, v′ ∈ Vi ⇒ v = v′, then A ∈ R(n−k)×m can be constructed by deleting the rows corresponding to the
vertices S from A0 ∈ Rn×m.

Remark. According to Proposition 1, Equations 1 and 2 indicate that DS
K(G) is a DS and LS

K(G)
is a LS in the space Rn−∣S∣ ×Rn−∣S∣.

Definition 8 caters for an introduction of a pH system (DS
K(G), LS

K(G), {0})with dynamics

(− d
dt

q(t), i(t), ϕ(t), u(t)) ∈DS
K(G) (3)

where (q(t), ϕ(t)) ∈ LS
K(G).

Using the equivalence of (q(t), ϕ(t)) ∈ LS
K(G) to q(t) = 0 and ϕ(t) ∈ Rn−∣S∣, we see that equation

3 holds, iff, the condition holds.

q(t) = 0∧ Ai(t) = 0∧ ATϕ2(t) = −u(t).

bjl =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 el ∈ Cj with orientations that coincide,

−1 el ∈ Cj with orientations that do not coincide,

0 otherwise

On this basis, one can define a DS

D′K(G) ∶= {(j, i, ϕ, u) ∈ Rn−∣S∣ ×Rm ×Rn−∣S∣ ×Rm∣[I A
0 0

](j
i
)+ [I A

0 0
](ϕ

u
) = 0}

with dynamics

(− d
dt

ψ(t), i(t), ι(t), u(t)) ∈D′K(G)
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and an LS

L′K(G) ∶= {0} ×Rn−m+k

with dynamics

(ψ(t), ι(t)) ∈ L′K(G)

Together, they form a the pH system defined by the set (D′K(G), L′K(G), {0}).

3.1. Dirac Structure

A key feature of a Dirac structure is the fact that the standard composition of two Dirac structures is
again a Dirac structure. The implication of this statement is that any power-conserving interconnection
of a Port Hamiltonian system is also a Port Hamiltonian system itself. This constitutes the foundation
feature in the Port Hamiltonian approach to modelling, simulation and control of complex physical
systems. The intricate Dirac structure is the guide to the algebraic constraints of the interconnected
system as well as its Casimir functions [13]. The Casimir are significant in the set point regulation of
Port Hamiltonian systems. The framework for the Port Hamiltonian allows for port-based modelling.
Port-based modelling means that we are interconnecting many different elements through ports. Dirac
structures are the tools used to connect multiple elements. These various elements are energy-storing
elements, energy-dissipating elements and external elements which could be supplying energy. A
diagram to demonstrate the connection structure is given in Figure 1, [13]

Figure 1. The energy storage, routing and dissipation

4. Detailed Port-Hamiltonian Model of a Mechanical Ventilator

4.1. Description of the System

The overall mechanical ventilator system diagram is provided in Figure 2. The entire system
consists of various subsystems. In this research work, the main subsystem that contributes to the flow
of air and consequently the air pressure are discussed. Therefore, the following main subsystems
will be discussed: the DC Motor subsystem, Turbine pump/blower subsystem, Pump-shaft/impeller
subsystem and Solenoid valve subsystem,
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Figure 2. Schematic diagram of a Mechanical Ventilator

4.2. Blower Model

In this section, the dynamical system model equations for the blower model are presented in the
port-Hamiltonian framework. The blower model comprises three sub-systems, namely a DC Motor
which drives the blower-shaft/impeller, a blower-shaft/impeller that couples the DC motor to the
fluid, using the rotational motion of the motor to accelerate the fluid and finally the fluid being driven.

In the Port-Hamiltonian perspective, the state vector Xb ∈ R4, given by

Xb ∶= [pm, ϕm, Pb, Qb]
⊺

(4)

where pm ∈ R1 and ϕm ∈ R1 are the angular momentum and magnetic flux of the DC motor, respectively,
while Pb ∈ R1 and Qb ∈ R1 are the pressure and flow rate of the blower.

The total energy of the blower is given by the Hamiltonian

Hb[Xb] =
1
2
( p2

m
Im
+ ϕ2

m
Lm
+CbP2

b + IbQ2
b) (5)

where Im ∈ R1
+ is the inertia and Lm ∈ R1

+ is the inductance of the DC motor, while Cb ∈ R1
+ and Ib ∈ R1

+
is the hydraulic capacitance and inertance of the air in the blower, respectively.

Thus, the Port-Hamiltonian model of a blower is given by

Ẋb = (Jb −Rb)∇Hb[Xb] + Gbub (6)

Yb = G∗b∇Hb[Xb] (7)
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where

Jb ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Km 0 −(Ko pm)/Im

−Km 0 0 0
0 0 0 1/(Cb Ib)

(Ko pm)/Im 0 −1/(Cb Ib) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R4×4

Rb ∶= diag([bm Rm 0 (Rb pm)/(Ib Im)]) ∈ R4×4

∇Hb[Xb] ∶= [pm/Im ϕm/Lm CbPb IbQb] ∈ R4×1

Gb ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 −(1/Cb) 0
0 0 (1/Ib)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R4×3

ub ∶= [ Vm Qin Pin ] ∈ R3×1

where Km ∈ R1
+ is the motor torque constant, bm ∈ R1

+ is the viscous damping, Rm ∈ R1
+ is the armature

resistance and Ko ∈ R1
+ is the motor angular momentum/pressure coupling constant. The inputs to

the system are the DC motor voltage, the input volumetric flow rate and pressure given by V ∈ R1,
Qin ∈ R1 and Pin ∈ R1. One can easily show that Jm = −J ⊺m andRm = R⊺m ⪰ 0.

Taking the time derivative of the Hamiltonian

Ḣb[χb] = ub ⋅ Yb −∇Hb[Xb] ⋅ (Rb∇Hb[Xb]) (8)

This system has power and resistive ports.

5. Solenoid Valve Subsystem

Figure 3 shows a solenoid valve in the open and closed position. It is assumed that the air gaps are
sufficiently small such that the effect of fringing of the magnetic flux is negligible. Consider a solenoid
in which the permeability of the core and the length of the part of the magnetic circuit inside the core
are denoted by µc ∈ R1

+ and lc ∈ R1
+, respectively. The equivalent length of the solenoid’s magnetic

circuit, leq[⋅] ∶ R→ R is dependent on the displacement of the spool, qs ∈ R, and can be written as

leq[qs] = lc +
µc

µ0
(qstot − qs) (9)

where µ0 ∈ R1
+ are the permeability of air and qstot ∈ R1

+ is the total air-gap. The solenoid coordinate
systems is represented in Figure 4.
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Figure 4. Solenoid coordinate system

Figure 3. Diagram of a Solenoid valve in the i) open position which allows fluid flow and ii) closed
position which stops fluid flow

Thus, the inductance of the solenoid varies with displacement of the spool and hence can be
expressed by the function Ls[⋅] ∶ R→ R given by

Ls[qs] =
N2 Aeµc

leq[qs]
(10)

where N ∈ R1
+ is the number of turns in the coil of the solenoid and Ae ∈ R1

+ is the effective cross-
sectional area of the path of the magnetic flux. The magnetic and mechanical subsystems in the
solenoid valve are therefore coupled magnetically due to the dependence of the inductance on the
displacement of the spool.

The total energy of the solenoid is given by the Hamiltonian,Hs[⋅] ∶ R3 → R, which is a function
of the state vector Xs = [ϕs, ps, qs]

⊺ ∈ R3, expressed as the sum of the magnetic, kinetic and
potential energies denoted byHmagnetic[ϕs, qs] ∶ R2 → R,Hkinetic[ps] ∶ R→ R andHpotential[qs] ∶ R→ R,
respectively. Thus

Hs[Xs] = Hmagnetic[ϕs, qs] +Hkinetic[ps] +Hpotential[qs] (11)

given a magnetic flux ϕs ∈ R.
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Assuming that the pretension of the spring is set to q0 ∈ R, the Hamiltonian is

Hs[Xs] =
1
2
( ϕ2

s
L[qs]

+ p2
s

ms
+ ks(qs + qs0)

2)+msqsg (12)

where ps ∈ R is the momentum of the spool, ms ∈ R1
+ is the mass of the spool, ks ∈ R1

+ is the spring
stiffness and g ∈ R1

+ is the acceleration due to gravity.
Hence, the solenoid’s state and output dynamics are expressed in Port-Hamiltonian form in

equations 13 and 14 respectively

Ẋs = (Js −Rs)∇Hs[Xs] + Gsus (13)

Ys = G∗s us (14)

where

Js =
⎡⎢⎢⎢⎢⎢⎣

0 0 0
0 0 −1
0 1 0

⎤⎥⎥⎥⎥⎥⎦
, Rs =

⎡⎢⎢⎢⎢⎢⎣

Rs 0 0
0 bs 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
, Gs =

⎡⎢⎢⎢⎢⎢⎣

1 0
0 0 0
0 (As1 − As2) (As3 − As4)

⎤⎥⎥⎥⎥⎥⎦
,

G∗s = G⊺s , us = [
Vs

ps
] and ∇Hs[Xs] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕs
Ae N2µc

(lc −
µc(qs−qstot)

µ0
)

ps
ms

Ae N2µ2
c µ0

(µ0lc−µc(qs−qstot))
2 + ks(qs + qs0) +msg

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Rs ∈ R1
+ is the resistance of the coil, bs ∈ R1

+ is the viscous damping acting on the spool and ∇ is
the gradient operator. As1 , As2 ∈ R1

+ are the various cross-sectional areas of the lands of the spool and
the input vector us ∈ R2 consists of the input voltage Vs ∈ R1 and the supply pressure ps ∈ R1. It can be
seen that Js = −J ⊺s ∈ R3×3 possesses skew-symmetry, whileRs = R⊺s ∈ R3×3 is positive semi-definite.

Taking the time derivative of the Hamiltonian

Ḣs[χs] = us ⋅ Ys −∇Hs[Xs] ⋅ (Rs∇Hs[Xs]) (15)

This system has power and resistive ports.

5.1. Pipe Model

In this section, a port-Hamiltonian model of a single pipe segment is developed. The basis of
these developments is the Navier Stokes equations for one-dimensional non-stationary flow of gas in a
pipe. The following assumptions are taken for the sake of model simplification [14,15]:

1. The pipe is taken as rigid (it does not expand in cross-section as a result of fluid flow).
2. Frictional and gravitational effects are neglected (this will be relaxed in future works in this

research area),
3. The model parameters of the gas remain constant along the pipe cross-section but vary in time

along the pipe length. Thus they can be averaged about the cross-section and thus the gas flow is
one-dimensional.

4. The temperatures of the pipe walls are assumed to be constant and equal to the ambient room
temperature. Hence temperature effects are ignored.

Taking into account these assumptions, the coordinate system attached to a segment of pipe is illus-
trated in Figure 5.
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Figure 5. Pipe segment coordinate system

Thus, for a given time interval ts ≤ t < t f with start time ts and finish time t f , the length normalized
one-dimensional Euler equations for gas of density ρ(t, z) ∶ (ts, t f ] × (0, ℓ) → R1 flowing at a velocity
ν(t, z) ∶ (ts, t f ] × (0, ℓ) → R1 through a pipe of length ℓ ∈ R1

+ and cross-sectional area Ap ∈ R1
+ are given

by:

∂t(ρAp) + ∂z(ρApν) = 0 (16a)

∂t(ρApν) + ∂z(ρApν2 + pAp) = 0 (16b)

where p(t, z) ∶ (ts, t f ] × (0, ℓ) → R1 is the pressure and ∂i ∶= ∂/∂i is the partial derivative with respect to
the temporal and spatial variables given by the subscripts i ∈ {t, z}.

5.1.1. Port-Hamiltonian Formulation of Pipe-Flow Model

The fluid dynamics can be written in terms of mass per unit length, i.e. ϱ ∶= ρAp, as well as the
fluid momentum, m ∶= ϱν. Thus equations 16a and 16b can be expressed as

∂tϱ = −∂zm (17a)

∂tm = −∂z(
m2

ϱ
+ pAp) (17b)

Defining the state vector of the gas flow through a pipe segment as χp ∶= [
ϱ

m
], the energy of the gas can

be expressed in form of a HamiltonianHp[χp] ∶ R2 → R1 given by

Hp[χp] = ∫
ℓ

0
Hp[χp] dx = ∫

ℓ

0
(m2

2ϱ
+ ϱU[ϱ/Ap]) dx (18)

where Hp[⋅] ∶ R2 → R1 is the Hamiltonian density and U[⋅] ∶ R1 → R1 is the internal energy of the gas
which in the case of an isentropic fluid, can be expressed as a function of density.

The port-Hamiltonian dynamics take the following form

∂tχp = J [χp]δχpHp[χp] (19)

where J [χp], the formally skew-symmetric operator and δχpH[χp], the variational derivative of the
Hamiltonian density are expressed as

J [χp] = −[
0 ∂z

∂z 0
] and δχpHp[χp] =

⎡⎢⎢⎢⎢⎣

h − m2

2ϱ2

m
ϱ

⎤⎥⎥⎥⎥⎦
(20)

where h is the enthalpy, and J [χp] is a formally skew-symmetric operator.
The rate of change of the Hamiltonian can be found as

Ḣp = u⊺pyp (21)
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where

p =WBRext

⎡⎢⎢⎢⎣
δχpHp∣0
δχpHp∣ℓ

⎤⎥⎥⎥⎦
and p =WCRext

⎡⎢⎢⎢⎣
δχpHp∣0
δχpHp∣ℓ

⎤⎥⎥⎥⎦
(22)

with components given by

WB =
1√
2
[1 0 0 1
0 −1 1 0

], WC =
1√
2
[0 1 1 0
1 0 0 −1

], Rext =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 1
−1 0 1 0
1 0 1 0
0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
⎡⎢⎢⎢⎣

δχpHp∣0
δχpHp∣ℓ

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(h − m2

2ϱ2 )∣
0

(m
ϱ )∣0

(h − m2

2ϱ2 )∣
ℓ

(m
ϱ )∣ℓ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Expanding up and yp

up =
⎡⎢⎢⎢⎢⎢⎣

(m
ϱ )∣ℓ

(h − m2

2ϱ2 )∣
0

⎤⎥⎥⎥⎥⎥⎦
and yp =

⎡⎢⎢⎢⎢⎢⎣

(h − m2

2ϱ2 )∣
ℓ

−(m
ϱ )∣0

⎤⎥⎥⎥⎥⎥⎦
(23)

Thus, the rate of change of the Hamiltonian is

Ḣp = (h − m2

2ϱ2 )∣
ℓ

(m
ϱ
)∣

ℓ

− (m
ϱ
)∣

0
(h − m2

2ϱ2 )∣
0

(24)

5.2. Electric Circuit Model of the Lung

The port Hamiltonian formulation for nonlinear electric circuits is presented in this section. Since
the main focus of this article is on the mechanical ventilator model, the lung model is simplified by
considering an electric circuit analogy. The model under consideration is that of a fully sedated patient
who relies completely on the mechanical ventilator to breathe. The circuit model is shown in Figure 6.

Figure 6. Circuit diagram of an electric model of a lung of a fully sedated patient [16]

The circuit can be represented in the form of a network graph using graph theory. The graph of
the circuit given in Figure 6 is given in Figure 7. The model has n = ∣V∣ = 7 vertices.
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The complete graph of the circuit, A0, is

A0 =

RML RIT RTB RBA CT CB CA CL CCW uV
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 0 0 0 0 0 0 0 0 −1 1
−1 1 0 0 0 0 0 1 0 0 2
0 −1 1 0 1 0 0 0 0 0 3
0 0 −1 1 0 1 0 0 0 0 4
0 0 0 −1 0 0 1 0 0 0 5
0 0 0 0 −1 −1 −1 0 1 0 6
0 0 0 0 0 0 0 −1 −1 1 7

(25)

The ventilator input voltage is represented as a source S = (DS ,LS ,RS). The set of sources is
S = {v7} and the dimension ∣S∣ = 1 source. The circuit also consists of mC = 5 capacitors (storage
elements) that are represented as Ci = (DCi ,LCi ,RCi) where the ith index is used to distinguish be-
tween the components is i = {CL, CT, CB, CA, CCW}. Furthermore there are mR = 4 resistors
(dissipative elements) that are represented as Ri = (DRi ,LRi ,RRi) where the ith index is given by
i = {RML, RIT, RTB, RBA}.

Selecting node 7 as the ground, the reduced incidence matrix, A, is given by

A = [AR AC AS] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0 0 −1
−1 1 0 0 0 0 0 1 0 0
0 −1 1 0 1 0 0 0 0 0
0 0 −1 1 0 1 0 0 0 0
0 0 0 −1 0 0 1 0 0 0
0 0 0 0 −1 −1 −1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
AR

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
AC

¯
AS

(26)

where the dimensions of the components of A are dim(AR) = (n − ∣S∣) ×mR = 6× 4, dim(AC) =
(n − ∣S∣) ×mC = 6× 5 and dim(AS) = (n − ∣S∣) ×mS = 6× 1.

Figure 7. The graph associated with the circuit diagram given in Figure 6

The total energy of the circuit is given by the Hamiltonian

HC = ∑
∀i
HCi(qCi) =

1
2
∑
∀i

qCi

Ci
(27)

where qCi ∈ R
1 is the charge of the ith capacitor for i = {CL, CT, CB, CA, CCW}
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I AC AR AS
O O O O
O O O O
O O O O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜
⎝

− d
dt q

− d
dt qC
−iR
−iS

⎞
⎟⎟⎟⎟
⎠
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

O O O O
−A⊺R O I O
−A⊺C I O O
−A⊺S O O I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜
⎝

ϕ

uC
uR
uS

⎞
⎟⎟⎟⎟
⎠
= O (28)

where I and O are appropriately sized identity and zero matrices, respectively and q = 0 and ϕ is the
node potential. Expanding Equation 28

AC
d
dt

qC + AR(A⊺Rϕ) + AS iS = 0 (29)

−A⊺Cϕ + uC = 0 (30)

−A⊺Sϕ + uS = 0 (31)

The Dirac structure is given by the set where (D,L,R)

(− d
dt q, − d

dt qC , −iR, −iS , ϕ, uC , uR, uS) ∈ D (32a)

(q, qC , ϕ, uC) ∈ L (32b)

(−iR, eR) ∈ R (32c)

6. Model Network Topology

Definition 1. (Directed graph) [17] A directed graph, G denotes the pair (V ,A), where V(D) andA(D) denote
the set of vertices and arcs respectively. An arc is a distinct ordered pair of vertices.

The directed graph of a mechanical ventilator model is composed of the disjoint union of the
vertices associated with the patient, as well as the inspiratory and expiratory limbs of the ventilator
given by vO,VI and VE respectively. Similarly, the patient, inspiratory and expiratory arcs given by
aO,AI and AE, respectively. Each arc and vertex can further be subdivided into those associated with
blowers, valves, pipes and electric circuits present in the mechanical ventilator. Thus the totality of
vertices and arcs are given by

V(D) = {vO} ∪VI ∪VE = {vO} ∪ (VIb ∪VIv ∪VIp ∪VIe) ∪ (VEb ∪VEv ∪VEp ∪VEe)

and

A(D) = {aO} ∪AI ∪AE = {aO} ∪ (AIb ∪AIv ∪AIp ∪AIe) ∪ (AEb ∪AEv ∪AEp ∪AEe)

respectively, where the subscripts i ∈ {O, p, b, v, p, e} are used to indicate the patient, blowers, valves,
pipes and electric circuits components, respectively.

Figure 9 shows a detailed graph of the mechanical ventilator given in Figure 2 indicating the
patient vertex VO, the arcs and vertices along the inspiratory path given by

AI ∶= {AIV12 ,AIV23 ,AIV3B ,AIV23 ,AIBV4 ,AIV4S1 ,AIBV5 ,AIV5S2}

and

VI ∶= {VIV1 ,VIV2 ,VIV3 ,VIB ,VIV4 ,VIS1 ,VIV5 ,VIS2}

respectively, as well as the arcs and vertices along the expiratory path given by

AE ∶= {AOEV1 ,AEV12 ,AEV23} and VE ∶= {VEV1 ,VEV2 ,VEV3}
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respectively.

Figure 8. Simplified graph of the mechanical ventilator given in Figure 2 indicating the elements
belonging to the patient, given by the arcs AO21 ∈ AO and vertices {VO1 ,VO2} ∈ VO as well as elements
of the inspiratory and expiratory arcs and vertices given by and VI ,VE and AIO,AOE, respectively.

Figure 9. Detailed graph of the Mechanical Ventilator given in Figure 8 indicating the patient vertex
VO, as well as the arcs and vertices along the inspiratory and expiratory paths.

7. Model Interconnection/Coupling Conditions

In this section, the coupling conditions of the port-Hamiltonian network model of the mechanical
ventilator are given. The types of interconnections occurring in this model are given below:
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1. Pump-to-pipe interconnection The pressure and flow rate of the fluid exiting the pump, Pb and
Qb respectively, are equal to the pressure and flow rate at the inlet of the pipe given by p(0) and
m(0), respectively. Thus

Pb = p0 and Qb = m(0)

2. Pipe to valve interconnection The pressure and flow rate of the fluid entering/exiting a valve, Pv

and Qv respectively, are equal to the pressure and flow rate at the inlet/outlet of the pipe given
by p(0) and m(0) for the inlet and p(ℓ) and m(ℓ). Thus

Pv = p(0) and Qv = m(0) at the inlet

Pv = p(ℓ) and Qv = m(ℓ) at the outlet

3. Pipe to circuit interconnection The pressure and fluid flow-rate at the outlet of a pipe can act as
inputs to a circuit model, thus

p(ℓ) = vcin and m(ℓ) = icin

On the other hand, the output voltage and current of a circuit can be interconnected to a fluid pipe
at the inlet of the pipe. In this case, the output voltage and or current of the circuit should be equal
to the inlet pressure and inlet flow rate respectively. This relation can expressed mathematically
as:

vcout = p(0) and icout = m(0) at the inlet

The Hamiltonian of the complete system is given by the sum of the Hamiltonian’s of the individ-
ual systems

H = Hb +Hs +Hp +HC (33)

The rate of change of energy of the complete system is

Ḣ = Ṗb(∂z p(0) + Fp) + Q̇b(∂zm(0) +Mp)
+Ṗvin(∂z p(0) + Fvin) + Q̇vin(∂zm(0) +Mvin)
+Ṗvout(∂z p(ℓ) + Fvout) + Q̇vout(∂zm(ℓ) +Mvout)
+Ṗvout(∂z p(ℓ) + Fvout) + Q̇vout(∂zm(ℓ) +Mvout) +
Ḣb + Ḣs + Ḣc (34)

The terms Fp, Mp, Fvin , Mvin , Fvout and Mvout are the external pressure and flow rates acting on the
system. They should be equal to zero to complete the interconnection.

8. Structure Preserving Discretization

The port Hamiltonian model of the pipe is a partial differential equation, continuous in space.
As such it is difficult to simulate the dynamics of a pipe section. In order to do this, it is necessary
to approximate the model with a discrete model, in this case, a finite difference model which is an
approximation of the original system. Within the context of port Hamiltonian systems, an additional
requirement is the need to ensure that the discrete approximation maintains the structural properties
of the original system e.g. skew symmetry etc.

Each system state can be replaced with a discrete approximation consisting of a total on n
elements as can be seen in Figure 10. As such, ϱ ≈ ϱd = [ϱ1, ϱ2, ⋯, ϱn] ∈ Rn×1 and m ≈
md = [m1, m2, ⋯, mn] ∈ Rn×1. As such, state vector χp can be replaced by a discrete approx-
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imation χd = [ϱ1, ⋯, ϱn, m1, ⋯, mn] ∈ R2n×1. The ith element of ϱi, mi ∈ R1×1 is located at
z = {∆(i − 1), ∆(i − 1/2)}, where ∆ is the fixed discrete step size between points and i = 1, 2,⋯, n. In
addition, the efforts at the boundaries are given by δχ0H0 and δχnHn. Thus the Hamiltonian given in
Equation 18 can be approximated by a discrete approximation such thatHp[χp] ≈ ∆Hd[χd] so that the
discrete system effort is now δχd(Hd). A finite difference approximation of the spatial derivatives at
the ith point is

∂

∂z
ϱ(t, z)∣

i
≈ 1

∆
(ϱ(t, zi+0.5) − ϱ(t, zi−0.5)) and

∂

∂z
m(t, z)∣

i
≈ 1

∆
(m(t, zi+1) −m(t, zi)) (35)

The central difference approximation at the ith point is

∂t[
ϱi
mi
] = 1

∆
([ δmH[χi]

δϱH[χi+1]
] − [δmH[χi−1]

δϱH[χi]
]) (36)

In matrix form this is

∂tϱd = 1
∆

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
1 −1

⋱ ⋱
1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

δmH[χd] +
1
∆

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

δmH[χd] (37)

∂tmd = 1
∆

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
⋱ ⋱

1 −1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

δϱH[χd] +
1
∆

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
⋮
0
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

δϱH[χ0] (38)

which can be re-written as

∂tϱd = DδmH[χd] + GϱδmH[χ0] (39a)

∂tmd = −D⊺δϱH[χd] + GmδϱH[χn] (39b)

where

D = 1
∆

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
1 −1

⋱ ⋱
1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Gϱ =
1
∆

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Gm =
1
∆

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
⋮
0
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

The skew-symmetric operator is clear from Equation 39.

[ ∂tϱd
∂tmd

] = [ D
−D⊺

][δϱH[χd]
δmH[χd]

] + [ Gm

Gϱ
][ δϱH[χ0]

δmH[χn]
] (40)
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Figure 10. Staggered grid discretization of the one dimensional port Hamiltonian pipe dynamic model

9. Results and Discussion

The pipe and solenoid valve model parameters used in this work are given in Tables 1 and 2,
respectively.

Table 1. Pipe model parameters values.

Parameter Description Value Units

Ap Pipe cross-sectional
area

3.8013× 10−4 m2

Dp Pipe diameter 2.2× 10−3 m
ℓ Pipe length 1.5× 10−1 m
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Table 2. Solenoid model parameters values [18].

Parameter Description Value Units

Ae Effective
cross-sectional area

8× 10−5 m2

As1 Spool land area 2.657× 10−3 m2

As2 Spool land area 3.525× 10−3 m2

As3 Spool land area 5.586× 10−3 m2

As4 Spool land area 5.586× 10−3 m2

bs Viscous damping
factor

2× 10−1 Ns ⋅m

g Acceleration due to
gravity

9.81 m ⋅ s−2

ks Spring stiffness 1× 10−4 N ⋅m−1

lc Length of the part of
the magnetic circuit

inside the core

1.15× 10−2 m

ms Mass of the spool 2.7× 10−1 kg
N Number of turns in

the coil
1250 turns

qstot Total air-gap 3.3× 10−4 m
qs0 Pre-tension in the

spring
1.1× 10−3 m

Rs Resistance of the coil 13 Ω
µ0 Permeability of air 4π × 10−7 N ⋅ A−2

µc Permeability of the
magnetic core

4.8π × 10−5 N ⋅ A−2

Table 3. Lung circuit model parameters values [16].

Parameter Description Value Units

RML Resistance of the
Mouth to Larynx

1.021 cmH2O ⋅s⋅ l−1

RLT Resistance of the
Larynx to Trachea

3.369× 10−1 cmH2O ⋅s⋅ l−1

RTB Resistance of the
Trachea to Bronchi

3.063× 10−1 cmH2O ⋅s⋅ l−1

RBA Resistance of the
Bronchi to Alveoli

8.17× 10−2 cmH2O ⋅s⋅ l−1

CL Compliance of the
Larynx

1.27× 10−3 l/cmH2O

CT Compliance of the
Trachea

2.38× 10−3 l/cmH2O

CB Compliance of the
Bronchi

1.31× 10−2 l/cmH2O

CA Compliance of the
Alveoli

2× 10−1 l/cmH2O

CCW Compliance of the
Chest wall

2.445× 10−1 l/cmH2O
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9.1. Model Validation

The model was validated using parameters obtained from the literature. The simulated results
provided in the results and discussion section were found to be comparable to those in the existing
literature.

9.2. Simulation Environment

Simulations were conducted using MATLAB. Three conditions were used to simulate the me-
chanical ventilator behaviour with the following lung conditions: compliance 50 mL/cmH2O and
resistance 5cmH2O-s/L, compliance 20 mL/cmH2O and resistance 20cmH2O-s/L and compliance
10 mL/cmH2O and resistance 50cmH2O-s/L. For each condition, all the sizes were tested for 2 min
per size and the ventilation curves air volume, The conditions were chosen in order to have a fair
comparison with results that exist in literature that used similar lung compliance. pressure and flow
over time were obtained. The simulation results are shown in Figures 6.10 and 6.11, where A, B, C,
D, and E represent various cams sizes of the mechanical ventilator from extra small (A), small(B),
Medium(C), Large (D) and extra-large(E)

Figure 11. Air pressure, volume and flow versus time graph

Figure 12. Mechanical Ventilator Simulation results

The figure show ventilation curves for a lung under two conditions, for a partially damaged lung
whose compliance and resistance of 20 mL/cmH2O and 20cmH2O-s/L respectively. The lung with
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complete damage is represented by lung compliance and resistance of 10 mL/cmH2O and resistance
50cmH2O-s/L. As the cam size increases the ventilation curves maintain the same sinusoidal behavior.
For a damaged lung case study, minimum ventilation values of flow over time and air volume are
achieved. In a damaged lung, the compliance and resistance of the lung increases the pressure.

10. Conclusions and Recommendations

In these research work, the formulation of a detailed mechanical ventilator in the port Hamiltonian
framework. This is followed by a Port Hamiltonian model of the respiratory system and thereafter,
these two systems integrated. The work conducted demonstrates the the Port Hamiltonian approach
is a valid method in the modelling of integrated Mechanical ventilator human respiratory system.
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15. Kamiński, Z. A simplified lumped parameter model for pneumatic tubes. Mathematical and Computer
Modelling of Dynamical Systems 2017, 23, 523–535, [https://doi.org/10.1080/13873954.2017.1280512].

16. Albanese, A.; Cheng, L.; Ursino, M.; Chbat, N.W. An integrated mathematical model of the human
cardiopulmonary system: model development. American journal of physiology. Heart and circulatory physiology
2016, 310 7, H899–921.

17. Bondy, J.A.; Murty, U.S.R. Graph Theory with Applications; MacMillan, 1976.
18. Taghizadeh, M.; Ghaffari, A.; Najafi, F. Modeling and identification of a solenoid valve for PWM control

applications. Comptes Rendus Mécanique 2009, 337, 131–140. doi:https://doi.org/10.1016/j.crme.2009.03.009.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 May 2024                   doi:10.20944/preprints202405.1827.v1

https://doi.org/10.1155/2014/271053
https://doi.org/10.20428/JST.21.1.1
https://doi.org/https://doi.org/10.1016/j.matpr.2021.04.369
https://doi.org/https://doi.org/10.1016/j.matpr.2021.04.369
https://doi.org/10.1055/s-0042-1744446
https://doi.org/10.1137/040611677
https://doi.org/10.1016/S0393-0440(01)00083-3
http://xxx.lanl.gov/abs/https://doi.org/10.1080/13873954.2017.1280512
https://doi.org/https://doi.org/10.1016/j.crme.2009.03.009
https://doi.org/10.20944/preprints202405.1827.v1

	Introduction
	Related works
	Materials and Method
	Dirac Structure

	Detailed Port-Hamiltonian Model of a Mechanical Ventilator
	Description of the System
	Blower Model

	Solenoid Valve Subsystem
	Pipe Model
	Port-Hamiltonian Formulation of Pipe-Flow Model

	Electric Circuit Model of the Lung

	Model Network Topology
	Model Interconnection/Coupling Conditions
	Structure Preserving Discretization
	Results and Discussion
	Model Validation
	Simulation Environment

	Conclusions and Recommendations
	References

