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Abstract: Growth differentiation factor 15 (GDF-15) is a multifunctional cytokine that belongs to the
transforming growth factor-beta (TGF-3) superfamily. GDF-15 is involved in immune tolerance and is elevated
in several acute and chronic stress conditions, often correlating with disease severity and patient prognosis in
cancer, metabolic and cardiovascular. Despite these clinical associations, the molecular mechanisms
orchestrating its effects remain to be elucidated. The effects of GDF-15 are pleiotropic, but cell specific, and
dependent on the microenvironment. While GDF-15 expression can be stimulated by inflammatory mediators,
its predominant effects are anti-inflammatory and pro-fibrotic. Macrophages serve as both producers and
receptors of GDF-15. The role of GDF-15 in the macrophage system has been increasingly investigated in recent
years. In this review, we summarize the major physiological and pathological contexts in which GDF-15
interacts with macrophages. We also discuss the major challenges and future perspectives in the therapeutic
translation of GDE-15.
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1. Introduction

Macrophages are ubiquitous in almost all human tissues and profoundly influence the healing
and remodeling of damaged tissue. At the core of their impressive versatility lies their ability to
rapidly polarize in response to stimuli. For example, during healing processes, macrophages remove
local debris via phagocytosis and secrete various factors that promote angiogenesis and scar
formation through auto- and paracrine mechanisms [1,2]. This dynamic adaptability to their
environment has made macrophages essential to the body's natural tissue maintenance mechanisms
[3].

During the inflammatory phase of injury, there is an increase in macrophage infiltration,
accompanied by an enhanced production of proinflammatory cytokines. This, in turn, induces the
recruitment and proliferation of macrophage progenitor cells. A phenotypic transition to M2 favors
the resolution of inflammation through the secretion of IL-10, transforming growth factor (3 (TGF-{),
and vascular endothelial growth factor (VEGF), which supports fibroblast proliferation and promotes
angiogenesis. The macrophage infiltration then decreases until wound resolution progresses [4,5].

The ontogeny of macrophages may influence their function during healing processes. Tissue-
resident macrophages can originate from resident cells that locally proliferate, from a spleen
monocyte reservoir, or from blood peripheral circulating bone marrow-derived monocytes (BMDM)
[6]. The initial proinflammatory response seems to be supported by spleen-derived monocytes that
differentiate into M1. In contrast, the resolution-like M2 phenotype appears to be derived from
resident macrophages and circulating monocytes [6].

On the opposite end of the healing spectrum lies fibrosis, a process resulting from excessive
extracellular matrix (ECM) accumulation and defective remodeling [7]. Macrophages contribute to
fibrogenesis by recruiting and activating fibroblasts, secreting TGF-31, and modulating the tissue
microenvironment. They also contribute to the resolution of fibrosis by secreting matrix
metalloproteinases (MMPs) that degrade the ECM, such as MMP2 and MMP13, and by participating
in the clearance of senescent cells [8].
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The balance between reparative processes and fibrotic responses is regulated by the interplay of
local inflammatory cues. For instance, members of the TGF-3 superfamily exert dualistic effects,
depending on their content, concentration, spatial and temporal production and clearance, as well as
the activation status of target cells [9]. Our review focuses on growth differentiation factor 15 (GDF-
15), a member of the transforming growth factor-beta (TGF-f3) superfamily, which can be both
produced and cleared by macrophages. GDF-15 production can be induced by inflammatory
mediators, yet the majority of its effects are anti-inflammatory and pro-fibrotic. We have summarized
the available data on the role of GDF-15 in pathologies in which monocytes and macrophages play a
major role.

2. GDF-15 Is a Member of the TGF-§ Superfamily

GDEF-15, also known as macrophage inhibitory cytokine-1 (MIC-1), placental transforming
growth factor-g (PTGF-), prostate-derived factor (PDF), and NSAID-activated gene-1 (NAG-1), is a
multifunctional cytokine and is a distant member of the glial cell-derived neurotrophic factor (GDNF)
family and the TGF-p superfamily [10-12]. Numerous TGF-f3 family members are known to be
produced by macrophages and to target macrophages, including TGF-1, GDFN, and bone
morphogenetic protein 2 (BMP-2) [13-15]. GDF-15 was discovered in the late 1990s when it was
identified as an autocrine cytokine capable of reducing the proinflammatory macrophage activation
after lipopolysaccharide (LPS) stimulation in the human myelomonocytic cell line U93737. In parallel,
Lawton et al. discovered its expression in the placenta during early and late gestation [16]. Moreover,
Paralkar et al. found elevated expression of this protein in the prostate and named it PDF [17]. A few
years later, Baek et al., observed the upregulation of GDF-15 in HCT-116 colon cancer cells upon
treatment with non-steroidal anti-inflammatory drugs (NSAIDs) [18].

GDF15 gene is found throughout the animal kingdom and is well-conserved in vertebrates,
particularly in mammals [19,20]. It is located on chromosome 19p12-13.1 and consists of two exons
(309 bp and 891 bp) separated by a 2,9 kb intron [16]. Analogous to other members of the TGF-f3
family, GDF-15 has a dimeric disulfide-bonded configuration and is synthesized as a proprotein [10].
Its general structure includes a propeptide followed by an RXXR furine-like site and the mature
protein. GDF-15 conserves the seven cysteine domains typical of the TGF-3 family, sharing a 20%
amino acid identity that gives rise to its cysteine knot crystal motif (Figure 1a and c) [12]. In addition
to its proximity to the TGF-3 family, GDF-15 resembles the structure of the GDNF family ligands,
sharing 16% amino acid identity (Figure 1b and c) [10]. GDF-15 immature form consists of 308 amino
acids, including a 9-amino acid signal peptide, a 167-amino acid propeptide, and a 112-amino acid
mature protein. As part of its post-translational modifications, the immature form undergoes
proteolytic cleavage, leaving the mature (13 kD) and propeptide (30 kD) forms, which are later
cleaved at the RXXR furine-like site [12]. This site is recognized and cleaved by proprotein convertase
subtilisin/kexin type (PCSK)-3, -5, and -6 or by MMPs, facilitating GDF-15 maturation [21-23]. After
dimerization, the mature form, consisting of 224 amino acids (25 kD), and the propeptide are secreted.
In contrast to the general structure of the TGF-p family, the propeptide of GDF-15 lacks cysteine
residues [12]. Interestingly, the propeptide appears to function autonomously [24]. Latent stromal
stores of this immature form have been found in various tissues and pathologies, such as in prostate
cancer. These stores serve as a reservoir for GDF-15 [25]. Moreover, the secretion of the propeptide is
faster than that of the mature GDEF-15 [26].
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Figure 1. GDF-15 crystal protein structure and phylogenetic associations. (a) Crystal structure of the
GDEF-15 protein. Obtained from InterPro: https://www .ebi.ac.uk/interpro/structure/PDB/5vt2/#table
[27]; (b) Phylogenetic tree illustrating relationships among GDF-15, TGF-f3, and GDNF superfamily
members. Generated using TaxOnTree (bioinfo.icb.ufmg.br/taxontree/#x); (c) Protein sequence
alignment of GDF-15 compared to TGF-3 and GDNF superfamily members. Sequence alignment was
performed using Protein BLAST (blast.ncbi.nlm.nih.gov). cov: percentage of coverage, pid:
percentage of identity.

2.1 Producing Cells and Regulators of GDF-15 Expression

Under physiological conditions, GDF-15 is produced at high levels by trophoblasts in the
terminal villi of the placenta, with levels reaching up to 54,000 pg/mL [28,29]. Other human tissues
produce lower levels of GDF-15, including stomach, skeletal muscle, subcutaneous adipose tissue,
prostate epithelium, bladder, kidney, and lung [30-37]. Furthermore, GDF-15 has been found in most
human fluids, including blood, amniotic fluid, bronchoalveolar fluid, and cerebrospinal fluid [28,34]

(Figure 2).
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Figure 2. GDF-15 RNA and protein expression in the human body. GDF-15 expression is elevated in various
tissues, including kidney, bladder, brain, and female and male tissues. RNA expression levels are represented

using normalized transcript expression values (nTPM). Adapted from: Human Protein Atlas
https://www.proteinatlas.org/ENSG00000130513-GDF15/tissue.

A diverse array of cell types, such as fibroblasts, adipocytes, macrophages, epithelial and
endothelial cells contribute to the production of GDF-15 (Table 1). However, most of them express
GDE-15 under stress conditions, such as exposure to LPS, bleomycin and oligomycin [38—40]. GDF-
15 production is specialized in some organs, such as in the stomach, where it is produced by chief
cells, located at the bottom of the gastric glands [37]. Among the blood cells, the myeloid population
exhibits higher expression levels of GDF-15 compared to the lymphoid population. Following
clodronate-induced depletion of myeloid cells in mice, GDF-15 mRNA levels significantly dropped,
highlighting a major myeloid contribution to systemic GDF-15 levels [41]. During the hematopoietic
differentiation of CD34+ progenitors, erythroid precursors secrete high levels of GDF-15. In contrast,
the myeloid cell lineage exhibited minimal levels of GDF-15 during maturation [42]. During
erythroblast maturation, GDF-15 levels are found up to 74000 pg/mL [43]. Megakaryocytes were also
shown to be key cells expressing GDF-15 in the bone marrow. In primary myelofibrosis,
megakaryocytes are the most GDF-15 expressing cells in the bone marrow microenvironment [44].

Table 1. GDF-15 producing cells.
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Cancer cells

Primary cells Species Conditions Measurement Reference
Adipose tissue Obesity RT-PCR [41]
Human o )
macrophages Rosiglitazone-treated Microarray [45]

Human nasal
o Human LPS treatment RT-PCR [46]
epithelial cell
Lung fibroblasts Mouse Bleomycin treatment RT-PCR [47]
Cardiomyocytes Rat Stretch conditions RT-PCR [48]
Immunohistoch
Chief cells Rat/Human Obesity ) [37]
emistry
Erythroid cells Human Maturation RT-PCR [49]
Primary Immunohistoch
Megakaryocytes Human : . . [44]
myelofibrosis emistry
Primary
Human 7 and 14d RT-PCR, ELISA  [43]
erythroblasts
Hepatocytes Human Metformin treatment RT-PCR [50]
Cell lines
Macrophages-like cells
THP-1 Human
LPS treatment RT-PCR [51]
RAW?264.7 Mouse
Endothelial cells
Endothelial
colony-forming
Human 7d RT-PCR, ELISA  [52]
cells generated
from blood
Human aortic
_ Human hrCRP RT-PCR, ELISA  [53]
endothelial cells
Connective and soft tissue cells
Human SAT-differentiated RT-PCR, ELISA  [38]
Adipocytes Human Oligomycin ELISA
treatment
Mouse rIL-4 and rIL-13 RT-PCR, ELISA  [54]
Embryonic ) )
) ) Tunicamycin
adipocyte-like Mouse RT-PCR [39]
treatment
cell line (3T3-L1)
Myoblasts RT-PCR,
Mouse [55]
(C2C12) Western blot
Trophoblastic
cells (BeWo) Human 24h ELISA [28]
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Alveolar basal ]
Bleomycin treatment,

epithelial cells Human RT-PCR [40,56]
Cba treatment

(A549)

Colorectal
NSAID, Northern/

cancer cells Human ) [18]
Indomethacin Western blot

(HCT-116)

H h, 1

YPOpHaryngea Head and neck

carcinoma cells Human Western blot [57]
cancer

(FaDu cells)

Prostate cancer

cells Human Prostate cancer Western blot [58]

(LNCaP-C81 cell

line)

CRP: C-reactive protein; hr: human recombinant; GDF-15: growth differentiation factor 15; ELISA: enzyme-
linked immunosorbent assay; LPS: lipopolysaccharide; NSAID: non-steroidal anti-inflammatory drug; RT-PCR:
reverse transcription real-time polymerase chain reaction; SAT: Subcutaneous adipose tissue; THP-1: human
acute monocytic leukemia cell line.

Several transcriptional factors have been identified that induce GDF-15 expression (Table 2). For
example, upon exposure to C-reactive protein (CRP), p53 binds to the GDF-15 promoter and induces
GDE-15 transcription in human aortic endothelial cells [53]. This highlights an association between
the two biomarkers, GDF-15 and CRP, which are co-elevated in acute inflammatory conditions. Also
induces GDF-15 expression following damage induced in enterocytes. In this context, GDF-15
functions as a pro-apoptotic factor and triggers the expression of activating transcription factor 3
(ATEF3), a pro-survival protein induced during cellular stress [56]. The interaction between ATF3 and
GDE-15 also been reported in human colorectal cancer cells [59].

Table 2. Transcription factors regulating GDF-15 expression.

Expressed
Transcription in Cells Conditions Referen
factors macrophage ce
s
Human nasal epithelial LPS treatment [46]
cells
. Metformin
ATF4 Murine hepatocytes treatment [50]
+ Murine embryonic Tunicamvein
adipocyte-like cell line treatme};lt [39]
(3T3-L1)
PMA-differentiated THP-1,
PBMCs SFAs treatment [62]
CHOP Murine C2C12 myoblasts C.R.IFl [55]
N deficiency
Murine hepatocytes Metformin [50]
treatment
Hypopharyngeal
EGRI N carcinoma cell line (FaDu), [57]

human epithelial
carcinoma cell line (KB)
Adenocarcinoma alveolar

KLES ¥ basal epithelial cells (A549) 5a treatment [56]

d0i:10.20944/preprints202405.1794.v1
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Immortalized mouse
NE-1cB * embryonic Fibroblasts ' [63]

Murine and human

NRF2 + BMDM NSAIDs [61]
Human aortic endothelial CRP .
p53 + supplementati [53]
cells
on
Human colorectal cancer
Spl, 5p3 ¥ cells (HCT-116) ' [18]
STAT6 + Murine adipocytes IL-13 treatment [54]
Human and murine
TFEB + adipose tissue Obesity [41]
macrophages
YAP* i Breast cancer cells and ' [64]
cytotrophoblast

*YAP has been shown to act as a negative regulator of GDF-15 expression. ATF: activating transcription factor;
BMDM: blood peripheral circulating bone marrow-derived monocytes; CHOP: C/EBP homologous protein;
CRIF1: Cytokine response 6 (CR6)-interacting factor 1; CRP: C-reactive protein; EGR1: early growth response 1;
KLF: Kruppel-like factor; NF-«kB: nuclear factor kappa-light-chain-enhancer of activated B cells; NRF2: Nuclear
factor erythroid 2-related factor 2; NSAID: non-steroidal anti-inflammatory drug; PBMC: peripheral blood
mononuclear cells; PMA: phorbol 12-myristate 13-acetate; SFA: saturated fatty acids; STAT6: signal transducer
and activator of transcription 6; TFEB: transcription factor EB; THP-1: human acute monocytic leukemia cell line;
YAP: Yes-associated protein.

Transcription factor EB (TFEB), a regulator of energy expenditure and an inducer of autophagy,
binds to the GDF-15 promoter and increases GDF-15 expression following exposure to lysosomal
stressors in adipose tissue macrophages. This mechanism mediates a reduction in metabolic
inflammation during high-fat-induced obesity in mice [41]. In adipocytes, signal transducer and
activator of transcription 6 (STAT6) triggers the expression of GDF-15 when exposed to IL-13
treatment. This process seems to enhance glucose tolerance [54]. In addition, under mitochondrial
stress, C/EBP homologous protein (CHOP) promotes GDF-15 expression in murine myoblasts and
hepatocytes [55]. Another known transcription factor is early growth response 1 (EGR1), which forms
a positive feedback loop with GDF-15 and acts as a promoter for EGR1 [57]. Proliferator-activated
receptor Y (PPARY) and retinoid X receptor ot (RXRax) are regulatory elements of the GDF15 locus in
monocyte-derived macrophages that are active during muscle regeneration [60]. Nuclear factor
erythroid 2-related factor 2 (NRF2), a factor involved in the transcription of antioxidant proteins, also
promotes GDF-15 expression in BMDMs treated with NSAIDs [61]. Table 2 highlights the diverse
range of GDF-15 inducers.

2.2. Known Receptors and Target Cells of GDF-15

In 2017, GDNF family receptor a-like (GFRAL), a member of the GDNF receptor a family, was
identified as a receptor for GDF-15. This receptor is highly expressed in the area postrema and
nucleus of the solitary tract of the hindbrain in mice, non-human primates, and humans [65-67].
Using an unbiased ligand-receptor coupling approach, Mullican et al. and Yang et al. found that GDEF-
15 binds exclusively to GFRAL, excluding high-affinity binding to other receptors, including those of
the TGF-p receptor family [66,67]. Other potential ligands for GFRAL, such as TGF- and GDNEF-
similar ligands (GFLs), were also ruled out, highlighting an exclusive partnership between GDF-15
and GFRAL [66]. Together with Emerson et al, these three research groups dissected the mechanism
of GDF-15-GFRAL binding and its effect on appetite regulation [67]. Moreover, the receptor tyrosine-
protein kinase (RET) was found to be a co-receptor necessary for the metabolic effects of GDF-15
through GFRAL [65,67]. Upon its binding, GDF-15 promotes the physical interaction between GFRAL
and RET, and mediates the activation of RET phosphorylation and the intracellular phosphorylation
cascade of extracellular-signal-regulated kinase (ERK), protein kinase B (Akt), and phospholipase C
[65,66].
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Like GFRAL, RET expression is particularly high in the area postrema and nucleus of the solitary
tract in the hindbrain of both mice and non-human primates. Beyond this, GFRAL is also expressed
in the human spleen, thymus, testis, and adipose tissue, as well as in isolated adipocytes, but not in
macrophages [32,40]. RET is expressed in most mouse tissues except liver, kidney, and adrenal glands
[66]. GFRAL/RET expression was also shown in osteoblasts in a murine model of prostate cancer
bone metastasis [58]. In the immune cells, GFRAL is expressed by regulatory T cells (Treg) treated
with recombinant human GDEF-15 (rGDF-15) [68]. These findings highlight that GFRAL expression
extends beyond the boundaries of the central nervous system, possibly increasing in response to
pathological stimuli, and varies among different cell types.

To date, other receptors have been investigated as possible mediators of GDF-15 peripheral
actions. For instance, rGDF-15 was shown to increase the phosphorylation of downstream
components of the TGF-fI receptor cascade, namely Smad2/3, in fibroblasts and in human colorectal
carcinoma cells, which was associated with metastasis induction [40,69]. In human acute monocytic
leukemia (THP-1) cells and neutrophils, rGDF-15 binds to the TGF-{I receptor and effectively blocks
the cytokine-induced phosphorylation cascade, promoting anti-inflammatory activity [70]. However,
concerns have been raised about the validity of these results due to reported TGF-3 contamination of
rGDEF-15 [71]. Other alternative mechanisms could explain the peripheral effects of GDF-15, such as
the existence of a soluble GFRAL that would form a complex with GDF-15 and facilitate its
recognition and internalization in further tissues [72]. Another consideration is that GDF-15 may bind
to other receptors depending on the cell type and underlying pathological condition. Therefore, the
involvement of TGF-3 receptors or other receptors in the response of cells to GDEF-15 is still
controversial.

Using His-tag mediated pull-down assays and mass spectrometry, Wang et al. identified CD48
as a receptor for GDF-15 in Jurkat T cells. The interaction between GDF-15 and CD48 leads to
inhibition of CD48 cascade pathways, resulting in downregulation of STIP1 Homology And U-Box
Containing Protein 1 (STUB1) and subsequent accumulation of Forkhead-Box-Protein P3 (FOXP3),
thereby facilitating Treg activation. This binding was found to be exclusive to GDF-15 and not to
TGEF-{ [73].

GDE-15 is also recognized as a common endocytic ligand for both stabilin-1 and 2 [74]. Stabilin-
1 (STABI1, FEEL-1, CLEVER-1, KIAA(246) is a multifunctional scavenger receptor that mediates the
endocytic and phagocytic internalization of various unwanted self-ligands, thereby contributing to
tissue homeostasis [75]. Stabilin-1 expression is observed in sinusoidal endothelial cells within the
spleen, liver, and lymphatic vessels. It is also present in resident macrophages, excluding Kupffer
cells, and in tumor-associated macrophages (TAMs). Macrophages in inflamed or healing cardiac
tissue also show expression of stabilin-1 [76-81]. Macrophages express stabilin-1 in response to IL-4
and dexamethasone, thus stabilin-1 is considered a marker of M2 polarization [82]. Stabilin-1
expression in TAMs supports tumor growth in animal models and correlates with poor prognosis for
patients with various cancers [79,83,84]. Some ligands known to interact with stabilin-1 extracellular
domain include modified low-density lipoproteins (LDL), such as oxidized LDL (oxLDL) and
acetylated LDL (acLDL), and advanced glycation end products (AGEs), secreted protein acidic and
rich in cysteine (SPARC), placental lactogen and epidermal growth factor (EGF) [81,85][86,87]. As an
endocytic receptor, stabilin-1 engages the clathrin-dependent pathway to facilitate the intracellular
trafficking of internalized ligands. This process involves sorting within endosomes, leading to either
lysosomal degradation or storage in secretory vesicles [76,85,88]. Using GGA adaptors, stabilin-1 can
also sort intracellular ligands from the biosynthetic pathways into the lysosomal secretory route in
macrophages [87].

We identified GDF-15 as a directly interacting protein of stabilin-1 through yeast two-hybrid
screening. This interaction was confirmed by affinity chromatography and endocytosis assays.
Furthermore, we observed that impaired clearance of GDEF-15 in STAB-1-/-STAB-2-/- mice
contributed to severe glomerular fibrosis and mild perisinusoidal hepatic fibrosis [74]. However, the
fate of GDF-15 after internalization by these receptors remains unclear.

In vitro studies have investigated the target cells of rGDF-15 primarily by assessing its impact
on the transcriptome through RT-PCR. Table 3 summarizes the major effects of rGDF-15. Takenochi
et al. showed that rGDF-15 supplementation increases fibroblast activation measured by increased
secretion of alpha-smooth muscle actin (a-SMA). This effect was not mediated by the GFRAL/RET


https://doi.org/10.20944/preprints202405.1794.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 May 2024

d0i:10.20944/preprints202405.1794.v1

activation pathway [40]. Other myeloid cells strongly affected by rGDF-15 treatment are erythrocytes.
rGDEF-15 supplementation leads to decreased erythroid colony formation and decreased transcription
of erythroid differentiation factors [49]. In vitro rGDF-15 supplementation has also been linked to
increased angiogenesis and increased VEGFA expression in glioblastoma cells [89].

Table 3. Effects of rGDF-15.

Effects Evidence Method Target Cond GDF-15 Concentr Refere
cells itions source ation nce
(ng/mL)
Increased M2 and  Increased Arg-1  RT-PCR,Flow THP-land rGDF CHO;E. 100 [40]
decreased M1 expression cytometry RAW264.7 15 for coli
polarization 48h
Decreased IL-6,
TNF-a, MCP-1,
and IL-10
secretion,
decreased CDB80,
increased CD163
mRNA levels
Fibroblast Increased a- Western blot WI-38 Prein CHO;E. 0-100 [40]
activation SMA protein cubati coli
expression on for
48h;
rGDF
15 for
72h
Increased Western blot WI-38 Prein CHO; E. 100 [40]
Smad2/3 cubati coli
phosphorylation on for
through TGF-{3 I 48h;
receptor rGDF
15 for
20
min-
1h
Reduced Decreased RT-PCR, Flow K562 Treat CHO 2-50 [49]
metabolic activity ~ optical density cytometry, ment
in erythroid cells ~ with increasing MTT cell with
GDF-15 metabolic B-
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Reduced Decreased CFSE K562 GDEF- CHO 10-50 [49]
proliferation in optical density proliferation 15 for
erythroid cells with increasing assay 5d
GDEF-15
concentration in
MTT assay
Increased Increased Tube U373, 3din CHO 100 [89]
angiogenesis VEGFA formation HBMVEC  cultur
expression assay, RT-PCR e

Arg-1: Arginase-1; CFSE: carboxyfluorescein succinimidyl ester; CHO: chinese hamster ovary; GDF-15: growth
differentiation factor 15, HBMVEC: human brain microvascular endothelial cells; K562: lymphoblast; MCP-1:
Monocyte Chemoattractant Protein-1; RT-PCR: reverse transcription real-time polymerase chain reaction; TGF-
pB: transforming growth factor-beta; THP-1: human acute monocytic leukemia cell line; TNF-a: tumor necrosis
factor a; U373: glioblastoma cells; VEGF: vascular endothelial growth factor; WI-38: fibroblasts from lung tissue.

3. GDF-15 in Health and Pathology

GDE-15 basal plasmatic levels range from 337 to 1060 pg/mL. These levels may increase during
certain physiological changes, such as muscle contraction and exercise [32,48], and under the
pathological conditions reviewed in the following sections. Circulating GDF-15 increases with age
and is unaffected by gender [32,39,90]. Notably, GDF-15 is significantly elevated at birth and during
the first 4 months of life, reaching around three times the average adult concentration [91]. Its levels
also progressively rise during pregnancy, correlating with gestational week and peaking in the third
trimester [28].

Under physiological conditions, GDF-15 expression positively correlates with higher maturation
states in the erythroid lineage. Furthermore, supplementing erythroid cells with GDF-15 results in
reduced metabolic activity and proliferation [49]. Moon et al. found that rGDF-15 enhances the
regulatory effect of Treg cells on activated T cells. Moreover, rs7226, a single nucleotide
polymorphism associated with increased production of GDF-15 in humans, correlates with an
increased count of lymphocytes and monocytes and decreased concentrations of innate immune cells
and granulocytes [68].

In general, GDF-15 is overexpressed in cellular stress states and its function seems to be
protective. Several pathological conditions show elevated plasma GDEF-15 levels, including
metabolic, cardiovascular, hematological diseases and cancer, reaching concentrations up to one
hundred times the physiological value (see Table 4) [90].

Table 4. GDF-15 serum levels in pathology.

Condition Concentration (pg/mL) Reference
a-thalassemia syndrome 5900 + 1200 [43]
Benign prostate hyperplasia 731 +500 [92]
p-thalassemia major 66000 + 9600 [43]
Chronic pancreatitis 2368 + 2431 [93]
Colorectal carcinoma 783 +491 [94]
SARS-CoV-2in ICU 12400 [95]
Endometrial cancer 1077 [96]
Exercise 200 -1000 [32]
Heart failure 2705 [97]
Hereditary hemochromatosis 720 =50 [43]
Mitochondrial myopathy 2711 + 2459 [98]
Ovarian cancer 96,1 - 1876 [98]
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Pancreatic cancer 5388 + 3720 [93]
Preeclampsia 421 +187 [99]
Pregnancy 6300-15300 [28]
Prostate cancer 860 + 850 [92]
Renal cell carcinoma 1100 + 150 [100]
Sepsis 4900 [51]
Sickle cell anemia 880 + 160 [43]
Smoking 1835 [47]
Stable coronary heart disease 915 -1827 [101]
Systemic sclerosis 1367 [47]

GDEF-15: growth differentiation factor 15; ICU: intensive care unit

The most studied role of GDF-15 is its anorexigenic effect. GDF-15 mediates weight loss by
reducing energy intake, an effect that is a direct consequence of GDF-15-GFRAL binding [72]. Its
circulating levels have been consistently found to be elevated in obesity [102,103]. Pena-Leon et al.
demonstrated in a mouse model that plasma levels of GDF-15 decrease during fasting and are
restored after refeeding. This effect was associated with GDF-15 production by chief cells of the
gastric mucosa. This group also showed that high GDF-15 in obesity is associated with increased
post-transcriptional processing of the GDF-15 precursor, pro-GDF-15, which is highly accumulated
in the gastric mucosa. Moreover, this post-transcriptional processing seems to be impaired in the
fasting state [37].

GDE-15 supplementation improves the metabolic profile in high-fat diet-induced obese mice,
showing a significant reduction in body weight, food intake, and glycemia. These effects may be due
to taste aversion rather than increased gastric motility [102,103]. This anorexic effect is effectively
abolished by blocking with a monoclonal antibody directed against GDF-15 and by GDF-15 or
GFRAL knockout (KO) [66,102]. Recent studies have suggested that GDF-15 effect on body weight
may be also associated with increased energy expenditure and thermogenesis [104]. Recently, Feng
Lu et al. found that GDF-15/GFRAL binding is an important determinant of the efficacy of ketogenic
diet-induced weight loss. They found that GDF-15 hepatic production significantly increases after
introduction of ketogenic diet in obese pigs and mice, which was an effect of increased PPARY, a
known transcription factor of GDF-15. Additionally, they found that the ketogenic diet-induced
weight loss was mainly an effect of decreased energy intake, which corroborates previous studies
highlighting the anorexigenic role of GDF-15 [105]. A recent review summarizes the relationship
between GDEF-15 and body weight [106].

High plasmatic GDF-15 levels are also found in association with impaired glucose tolerance,
insulin resistance, diabetes, and diabetes-related complications, but its role in glucose homeostasis is
unclear. Other references provide a detailed review of this matter [107,108]. GDF-15 is not only
elevated during pregnancy but has also been showed diagnostic relevance in preeclampsia and
gestational diabetes mellitus [109,110].

3.1. GDF-15/Macrophage Interaction in Physiological and Pathological Conditions

In murine and human BMDM, as well as in THP-1 and RAW264.7 cells, GDF-15 expression is
increased under stimulation of pro- and anti-inflammatory mediators, including IL-4, IL-1f3, tumor
necrosis factor a (TNF-a), IL-2 and macrophage colony-stimulating factor (M-CSF) [45,51]. At the
same time, GDF-15 has been widely associated with M2 differentiation and with the inhibition of M1
polarization [40,51,54]. Pence et al. examined the relationship between human serum GDEF-15 levels
and different parameters of monocyte immunosenescence. They observed significantly elevated
levels of GDF-15 in the elderly population compared to younger individuals. Also, circulating GDF-
15 levels displayed a negative correlation with maximal monocyte respiratory capacity [114]. The
particular interplay between GDF-15 and macrophages in various pathological contexts will be
reviewed in the following sections.

d0i:10.20944/preprints202405.1794.v1
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3.1.1. Sepsis and Inflammation

Serum GDEF-15 levels are elevated in sepsis, regardless of the pathogen involved, and have been
correlated with prognosis, severity, and survival, as well as, in SARS-CoV-2 in adults and children
[51,115-120]. Assessment of the diagnostic value of GDF-15 highlighted its role as a biomarker of
sepsis severity, including septic shock. GDE-15 showed a positive correlation with procalcitonin, IL-
6, and IL-10 [51]. GDF-15 KO mice were protected against cecal ligation- and puncture-induced
sepsis, showing less severe symptoms, lower markers of inflammation, and lower bacterial load [117].
Several other studies have proposed GDF-15 as a protective factor in sepsis [30,121,122]. High GDF-
15 levels during bacterial inflammation stimulate beta-adrenergic sympathetic outflow and hepatic
triglyceride production, mediate cardiac protection and improve thermal homeostasis [123].
Supporting this mechanism, Kim et al found increased catecholamine synthesis-related gene
expression and increased thermogenesis in mice overexpressing GDF-15 [41]. Recently, Wang et al.
proved that GDF-15-treated mice show increased skeletal muscle noradrenaline and oxygen
consumption, which is associated with increased maintenance of energy expenditure [124].

In vitro stimulation with LPS induces a dose- and time-dependent increase in both GDF-15
expression and secretion in THP-1 and RAW264.7 macrophages [51]. Similarly, in vivo LPS injection
increases plasmatic GDF-15 concentrations in mice, rats, and humans (in humans, LPS was
administered at a dose of 1 ng/kg) [30,125]. Pretreatment with rGDF-15 resulted in a dose-dependent
decrease in the expression of proinflammatory cytokines such as TNF-a, IL-6, monocyte
chemoattractant protein-1 (MCP-1), and IL-10. GDF-15 also appears to improve the phagocytic and
bactericidal function of macrophages in the THP-1 and RAW264.7 cell lines [51]. Similar experiments
by Govaere et al. showed decreased TNF-a and CCL2 secretion after treatment with rGDF-15 in THP-
1 cells challenged with LPS [111]. Possible molecular pathways responsible for the decreased
secretion of proinflammatory cytokines under GDF-15 exposure have been considered. Zhang et al.
found that rGDF-15 promoted phosphatidylinositol 3-kinase (PI3K)/Akt phosphorylation in
macrophages under LPS-induced inflammation. This effect was reduced by treatment with the
PI3K/Akt inhibitor [119]. Other research groups proposed the decrease in phosphorylation of
JAK1/STAT3 and nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-kB) after rGDF-15 treatment as cascade pathways [121]. The inhibitory effects of GDF-15 on
NF-«B have also been shown by others [63,126]. However, no specific receptor has been proposed to
mediate this effect.

3.1.2. Fibrosis

GDE-15 has been linked to fibrotic diseases. Recent mouse model experiments related to fibrosis
are summarized in Table 5. Govaere et al. and Chung et al. found that GDF-15 expression in hepatic
tissue positively correlated with fibrosis progression in non-alcoholic fatty liver disease and carbon
tetrachloride- (CCl4) induced liver injury, respectively [111,127]. In contrast, Li et al. observed
decreased GDEF-15 expression levels in mouse and human liver fibrotic tissue compared to healthy
liver tissue during fibrosis progression [128]. These research groups showed that GDF-15 deficient
mice display increased liver fibrosis, which can be mitigated with rGDF-15 treatment. Chung et al.
also demonstrated that mitochondrial damage, caused by oligomycin and rotenone, induces GDF-15
expression. In a co-culture model involving hepatocytes and Kupffer cells, they observed that the
absence of GDF-15 production by hepatocytes resulted in increased expression of proinflammatory
cytokines following LPS stimulation by Kupffer cells. GDF-15 deficiency altered immune infiltration
in hepatic tissue, increasing the number of CD4+, CD8+ T cells and neutrophils while leaving the
monocyte population unaffected. This effect was reversed through the supplementation with rGDF-
15 [127]. These findings highlight the paracrine effects of GDF-15 in fibrosis progression.

Table 1. GDF-15 effects in fibrosis mice models.

Setting Intervention Finding Reference



https://doi.org/10.20944/preprints202405.1794.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 May 2024

d0i:10.20944/preprints202405.1794.v1

13

CCl4-
induced liver
fibrosis

CRISPR-Cas GDEF-
15 KO

Histopathology (H&E

and Sirius red staining):

increased fibrosis.

Immunohistochemistry:

increased macrophage
F4/80 and neutrophil
MPO infiltration,
upregulated Ly6Chi
Serum: increased
hepatic enzymes

DDC-
induced liver
fibrosis

CRISPR-Cas GDEF-
15 KO

Histopathology (H&E

and Sirius red staining):

increased fibrosis and
collagen deposition

CCl4-
induced liver
fibrosis

AAVS gene vector
GDF-15
overexpression

Histopathology (H&E

and Sirius red staining):

reduced liver injury
and fibrosis.

Serum: reduced hepatic
enzyme levels in blood.
mRNA levels (RT-
PCR): reduced IL-1f3,
TNEF-«, and NOS2.
Increased YM1, Argl
and CD206

DDC-
induced liver
fibrosis

CRISPR-Cas GDEF-
15 KO

Histopathology (H&E

and Sirius red staining):

reduced liver injury
and fibrosis

CCl4-
induced liver
fibrosis

Tail vein infusion
with GDF15-
preprogrammed
macrophages 24 h

Histopathology (H&E

and Sirius red staining):

reduced liver injury
and fibrosis.

Serum: reduced hepatic
enzyme levels

[128]

Hyperoxia
95% after
birth

GDF15-/- mice

Higher mortality and
lower body weight.
Immunofluorescence
for von Willebrand
factor: impaired
alveolarization and
lung vascular
development, lower
macrophage F4/80
infiltration

[129]

Ethanol-
induced liver
disease

Genetic ablation
of hepatocyte-
derived

GDEF-15

Annexin V apoptosis
assay: decrease in
Kupffer cell apoptosis
in liver perivenous
region

[130]
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Ethanol- GDF15 KO Histopathology (H&E [127]
induced liver and OilRed O
disease staining): increased
hepatic fat
accumulation.
Serum: increased
hepatic enzymes and
triglyceride.
Increased TNF-a and
IL-6
CCl4- GDF15 KO Histopathology (H&E
induced liver and Oil Red O
fibrosis staining): increased
hepatic fat
accumulation, Serum:
increased hepatic
enzymes and
triglyceride.
Increased TNF-a and
IL-6
CCl4- rGDEF-15 Histopathology (H&E
induced liver 0,5mg/kgi.v. and Oil Red O
fibrosis staining): reduced
GDF15 KO collagen accumulation.
Western blot: inhibition
of NF-«B, JNK, and p38
signaling pathways
Coronary Allogenic cardiac ~ Flow cytometry of cell [131]
artery progenitor cells suspension: Decrease in
ligation- transplant with M2 phenotype and
induced GDE-15KD Treg activation
myocardial
infarction
Sterile rGDEF-15 im. Flow cytometry: [60]
muscle decrease CD45+ muscle
injury with infiltration. Increased
cardiotoxin MCHII expression by
injection monocyte-derived

macrophages, anti-
inflammatory
phenotype

DDC: 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine; CCl4: carbon tetrachloride; GDF-15: growth differentiation
factor 15; H&E: Hematoxylin-eosin, i.v.: intravenous; i.m.: intramuscular; KO: knock-out; KD: knock-down; NE-
kB: nuclear factor kappa-light-chain enhancer of activated B cells; NOS2: nitric oxide synthase 2; TNF-a: tumor
necrosis factor a.

GDE-15 deficient mice display an increased macrophage infiltration in hepatic tissue and a
phenotype shift from Ly6Clow to Ly6Chi macrophages. Li et al. highlighted an inhibitory effect of
GDE-15 on NF-«B signaling by showing an increased activation of the pathway in the GDF-15 KO
mice. The effects of GDF-15 on fibrosis progression may result from decreased M1 polarization and
reduced proinflammatory cytokine expression in the liver. However, the observed effects were not
explained due to the binding of GDF-15 to a peripheral receptor or a macrophage receptor.
Additionally, Li et al. tested the systemic effect of parenteral GDF-15 preprogrammed macrophages
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in mice with CCl4-induced liver fibrosis. The study revealed a decrease in the severity of hepatic
fibrosis [128].

Kim et al. proposed a mechanism linking liver fibrosis to increased levels of liver and portal
catecholamines along with GDF-15 [130]. This association was explained by the increased ethanol-
induced oxidative stress in the mitochondria, with catecholamines facilitating increased levels of
CYP2E1, which correlated with increased GDF-15 levels. In hepatic cells deficient in GDF-15, there
was a significant decrease in Kupffer cell apoptosis and in the expression of apoptotic genes. This
research group identified beta-1 adrenergic receptor 1/2 (ADRB1/2) as the receptor responsible for
inducing apoptosis in Kupffer cells when exposed to ethanol-induced damage. ADRB1/2 is a
catecholamine receptor, which is stimulated by GDF-15. These findings shed light on the mechanism
by which GDF-15 functions as a stress-induced cytokine, promoting apoptosis of inflammatory
Kupffer cells. These cells play a key role in the fibrotic changes of alcohol-induced liver injury,
thereby mitigating further hepatic damage [130].

GDE-15 also associates with lung fibrosis. GDF-15-deficient neonatal mice, which were briefly
exposed to hyperoxia, presented decreased survival rates along with impaired alveolarization and
perturbed macrophage activation in lung tissue [129]. In a bleomycin-induced lung fibrosis mouse
model, GDF-15 expression and protein levels are increased in lung tissue, bronchoalveolar fluid, and
plasma of mice with pulmonary fibrosis. Within the lung tissue, the highest GDF-15 positivity was
found in epithelial cells and macrophages [40].

3.1.3. Regenerative Processes

Titanium is a widely used implant material in fields such as orthopedics, cardiology, and
dentistry [132]. Our group has shown that macrophages exposed to titanium nanoparticles (TiNPs)
increased the expression and secretion of GDF-15 [133]. Siddiqui et al. investigated the role of GDF-
15 in prostate cancer bone metastasis. They found that prostate cancer cells highly express and secrete
GDE-15, which further induces the expression of osteoclastogenesis-related genes in osteoclasts and
the expression of MCP-1/CCL2, which is involved in macrophage recruitment to osteoblasts in mice
[58]. This suggests that GDF-15 may activate osteoclastogenesis through a paracrine mechanism and
further recruit macrophages in the bone. Furthermore, this group found the presence of GFRAL/RET
in osteoblasts and showed that GFRAL silencing decreases the osteoclastogenesis and macrophage
recruitment markers expression, induced by GDF-15 [58]. This proposes a novel GDF-15/GFRAL/RET
functional interaction. We also found that TiNPs decrease the expression of stabilin-1, the clearance
receptor of GDF-15, in macrophages, and decrease their endocytic function [133]. This mechanism
could further increase the local levels of GDF-15 surrounding titanium implant microenvironment
and contribute to inadequate implant osseointegration and aseptic loosening.

3.1.4. Cancer

GDE-15 has been recognized as a potential diagnostic and prognostic biomarker for several
gastrointestinal tumors, including pancreatic, colorectal, esophageal, hepatocellular, and gastric
cancers [107]. In addition, other cancers such as glioblastoma, breast, lung, cervical, ovarian,
endometrial, lung, prostate, renal, urothelial, thyroid, and melanoma have also shown elevated levels
of the cytokine [89,100,108,134].

GDE-15 appears to have a dualistic function in the process of carcinogenesis. It has an inhibitory
effect on tumor growth in the early stages and subsequently facilitates progression and metastasis in
the advanced stages [135].

Overall, GDF-15 has been reported to exert pleiotropic effects on carcinogenesis, as shown in
Figure 3. Concerning primary tumor growth, rGDF-15 has been shown to promote the proliferation
of esophageal carcinoma cells [136]. In contrast, in bladder cancer, GDF-15 has been shown to
decrease cell proliferation and invasion [35]. Likewise, patients with renal cell carcinoma (RCC) and
increased GDEF-15 protein levels in tumor tissue show a better outcome. Yang et al. proposed GDEF-
15 as a possible regulator of ferroptosis in RCC [137]. However, the specific pathway surrounding
this hypothesis needs to be investigated. In addition, GDF-15 promotes angiogenesis by activating
the hypoxia-inducible factor-la (HIF-1a)/VEGF signaling pathway in colon, gastric, and breast
cancer cells [100,138,139]. This is supported by the observation that rGDF-15 promotes p53
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degradation, increased HIF-la accumulation, and vessel formation in human umbilical vein

endothelial cells [140].

¢ HIF-1a/VEGF pathway activation (100, 138-139]
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Figure 3. Effects of GDF-15 in carcinogenesis. Image created by biorender.com

GDE-15 also plays a role in the tumor microenvironment. Recently, Chitinase-3-like protein 1
(YKL-40) produced by macrophages was shown to promote GDF-15 expression in tumor cells. The
interaction of YKL-40 and GDF-15 leads to tumor invasion and suppression of the immune response
of CD8+ T lymphocytes through the induction of PD-L1 in gallbladder tumor cells [141]. This has also
been demonstrated in glioblastoma cells [142]. In support of this observation, patients with low
plasmatic levels of GDF-15 show better response rates to anti-programmed cell death protein-1 (PD-
1)/PD-L1 inhibitors in advanced non-small cell lung cancer and in melanoma [143,144].

Recently, Haake et al. reported that GDF-15 produced by melanoma cells inhibits lymphocyte
adhesion to endothelium and migration through inhibition of the lymphocyte function-associated
antigen (LFA-1)/intercellular adhesion molecule 1 (ICAM-1) axis in T lymphocytes. This inhibition
results in reduced lymphocyte infiltration at the tumor site when GDF-15 tissue levels are elevated.
In addition, combined anti-GDF-15 and anti-PD-1 therapy results in increased T lymphocyte
infiltration in mouse models of pancreatic cancer [144]. The use of GDF-15 as a marker for patients
who would benefit from such therapy may be a valuable option in such cancers, where anti-PD-1/PD-
L1 inhibitors are used as first-line therapy in intermediate- and poor-risk metastatic tumors.

Other authors linked GDF-15 to chemotherapy resistance, as in the case of Zheng et al. who
showed that TAMs derived from a mouse xenograft model of colorectal cancer secrete high levels of
GDE-15 and contribute to the reduced chemosensitivity in colorectal cancer cells by increasing fatty
acid oxidation metabolism [145]. A similar mechanism has been suggested by Yu et al. in gastric
cancer [146].

Bonaterra et al. showed that the presence of GDF-15 in prostate cancer tissue was associated
with macrophage infiltration, and the presence of GDF-15+ macrophages was associated with high-
grade malignancy [147]. This was also highlighted by Sadasivan et al. who found a higher risk of
biochemical recurrence in patients whose prostate cancer biopsy was enriched for M2 macrophages
and characterized by elevated GDF-15 expression [148].

Lv et al. studied the effect of GDF-15 enriched conditioned medium from M1-polarized THP-1
macrophages on SCC25, a tongue squamous cell carcinoma cell line, and showed that
phosphorylation of ErbB2 and its signaling proteins ERK and AKT was increased. This effect was
reduced by knocking out GDF-15 in SCC25 cells [149]. This activation pattern has been widely
implicated in tumor progression in several cancer types, particularly breast cancer [141,150]. These
observations again highlight a tumorigenic effect of GDF-15. However, a direct correspondence
between the presence of GDF-15 in the tumor microenvironment and squamous cell carcinoma
progression has not been established [149]. Ratman et al. highlighted the interaction between NF-xB
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and GDF-15 in the tumor microenvironment by showing that constitutive activation of NF-kB in
pancreatic cancer cells leads to secretion of GDF-15, a known NF-«kB inhibitor, and induces a
decreased cytotoxic capacity in TAMs [63].

Elevated GDEF-15 has been strongly associated with metastasis in prostate, esophageal,
hepatocellular, colorectal, pancreatic, gastric, and endometrial cancers [151]. Esophageal, breast, and
colon cancer models show that GDF-15 correlates with the loss of E-cadherin and that the inhibition
of GDF-15 expression decreases cell migration and invasion ability [70,152,153]. In contrast, in A549
lung cancer cells, overexpression of GDF-15 reduces cell growth and migration and decreases the
spread of lung and bone metastases [154]. The exact effects and mechanisms explaining GDF-15
behavior in cancer are still controversial and often paradoxical. Regarding the interplay between
GDE-15 and macrophages in metastasis, Ding et al. showed that GDF-15 secreted by macrophages
contributes to an invasive phenotype in colon cancer cells, an effect that was reversed by GDF-15
neutralizing antibodies. The proposed mechanism was increased phosphorylation of c-Fos via Erk1/2
activation by GDF-15, which induced the expression of epithelial-mesenchymal transition in colon
cancer cells [155].

3.1.5. Metabolic and Cardiovascular Disorders

Jung et al. investigated the effect of reduced mitochondrial oxidative function on insulin
resistance in mice. They found that adipose tissue resident macrophages express low levels of GDF-
15 and show a shift toward M1 polarization. Further experiments showed that treatment with rGDF-
15 decreased the expression of IL-6, nitric oxide synthase 2, and TNF-a, and promoted M2
polarization by increasing the production of Argl and resistin-like alpha [45]. Campderrds et al.
found that GDF-15 produced by murine brown adipocytes suppressed the expression of TNF-a,
CCL2, and IL-6 in M1-polarized RAW264.7. In contrast, M2 gene expression was not affected by GDE-
15 [156].

Besides its anorexigenic effect and its effect on glucose metabolism, GDF-15 has also been
proposed as a biomarker for increased mortality risk and recurrent myocardial infarction (MI) after
acute coronary syndrome. Similarly, GDF-15 serves as a biomarker in heart failure, a common
complication in patients with coronary heart disease and in atrial fibrillation [101,157-159]. In fact,
GDE-15 is positively correlated with cardiovascular mortality and all-cause mortality [160]. Mice
deficient in GDF-15 have higher mortality after induced MI They also display an increased
recruitment of polymorphonuclear leukocytes, monocytes, and macrophages in the myocardial tissue
as compared to controls. Additionally, this recruitment is reduced upon treatment with rGDEF-15,
which decreases leukocyte adhesion, arrest, and transmigration on the endothelium [161]. Taken
together, GDF-15 elevated levels after MI may exert a protective function by reducing immune cell
recruitment and, thereby, MI complications, such as cardiac remodeling and heart failure.

In the context of allogeneic transplantation of cardiac progenitor cells (CPCs) as a therapy for
myocardial infarction, downregulation of GDF-15 in CPCs resulted decreased activation of Tregs and
M2 macrophages, preventing an adequate engraftment into the injured myocardium [131]. In
contrast, GDF-15 secreted by CPCs inhibited NF-«kB activation and promoted a shift toward M2
polarization and Tregs activation, ultimately associated with a cardioprotective outcome. In this
series of experiments, the effects of GDF-15 as part of the secretome of CPCs were shown to be
mediated by Tregs, as CPCs injected in absence of Tregs failed to promote the protective effects [131].

GDEF-15 has emerged as a significant player in mechanisms involved in atherosclerosis and
macrophage function. For example, treatment of THP-1 with rGDF-15 is associated with lipid
accumulation, whereas GDF-15 knockdown resulted in reduced lipid burden. In addition, rGDF-15
increased the levels of autophagy-related proteins, suggesting a possible role for GDF-15 in
autophagosome formation in foam cells [162]. Heduschke et al. supported these findings by showing
that siGDF-15 decreased the autophagic activity in THP-1, an effect that was reversed by rGDF-15
supplementation in THP-1 cells [163]. The observation that GDF-15 decreases the release of
proinflammatory cytokines has been reported to be associated with the decreased expression of TLR4
in macrophages under oxLDL treatment [164]. This suggests a potential immunomodulatory role of
GDE-15 in the progression of atherosclerosis by reducing the proinflammatory plaque surroundings.

4. Conclusions
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The reviewed studies emphasize the significant interplay of GDF-15 in the regulation of immune
responses and paracrine effects involving the macrophage system. Although the interplay between
GDE-15 and the macrophage system has been identified since the discovery of GDFE-15, there is still
a knowledge gap regarding the extent to which this interaction impacts human pathology as well as
in the understanding of the dynamic mechanism of GDF-15 production and responses of the target
cells. In order to understand the sequence of events in GDF-15 controlled process, further
experimentation is needed and mechanisms of target cell responses to GDF-15 have to be deciphered.
One notable gap is the lack of identification of macrophage receptors for GDF-15 that can clarify its
immunomodulatory effects.

5. Future Directions

Due to its crucial roles in multiple biological processes, GDF-15 has been identified as a potential
therapeutic target for various diseases. Currently, there is an ongoing recruitment for Phase I/II
clinical trials investigating the impact of neutralizing GDF-15. Visugromab is an anti-GDF-15
monoclonal antibody currently being evaluated in a Phase II clinical trial as a combination therapy
with the checkpoint inhibitor anti-PD-1/PD-L1 for treating advanced solid tumors (NCT04725474).
AV-380 and Ponsegromab, also anti-GDF-15, are under evaluation as potential therapies for cancer-
induced cachexia in non-small cell lung, pancreatic, and colorectal cancer patients, as well as, in
metastatic colorectal cancer through Phase I and II studies (NCT05865535)(NCT05546476).
Additionally, a current application for monoclonal anti-GDEF-15 is in the treatment of heart failure,
with Ponsegromab undergoing recruitment in a Phase II study (NCT05492500). Finally, a multicenter
Phase II study on Visugromab is recruiting participants to assess the effects of combination therapy
with Nivolumab on muscle-invasive bladder carcinoma (NCT06059547). The Phase I/Ila clinical trial
of AZD8853 in patients with metastatic solid tumors was terminated prematurely due to an overall
evaluation of its risk-benefit profile (NCT05397171).

In overall, targeting GDF-15 is a very appealing therapeutic field for those pathologies where
GDE-15 activity has demonstrated a clear impact, such as fibrosis-associated diseases. Conversely,
animal studies on GDF-15 modulation in sepsis and cancer display significant discrepancies.
Consequently, a comprehensive investigation of tissue-specific and context-dependent effects is
necessary to clarify these inconsistencies.

Further research should focus on deciphering the complex molecular mechanisms governing the
actions of GDEF-15, exploring its potential as a therapeutic target, and elucidating the contextual
factors that impact its expression in diverse conditions. In addition, exploring the role of cell-specific
receptors in mediating the effects of GDF-15 presents an exciting opportunity for further
investigation. A thorough comprehension of the role of GDF-15 in fibrosis may facilitate the
development of innovative therapeutic interventions and improve the clinical management of fibrotic
diseases, as well as, prevent the possible adverse effects of the GDF-15-based therapies.

As reviewed here, the new findings on GDF-15 in the macrophage system reveal a significant
potential for displaying immunomodulatory properties in contexts involving remodeling, such as MI
and fibrosis. For example, macrophages expressing GDF-15 have been suggested as a novel
macrophage type with distinct transcriptomics, which mediates remodeling in sterile muscle injury,
specifically by enhancing myoblast proliferation and decreasing inflammatory infiltration [60].
Figure 4 summarizes the reported cellular effects of GDF-15 in the macrophage system as well as its
systemic interactions.
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Abbreviation list

a-SMA alpha Smooth Muscle Actin

acLDL acetylated LDL

ADRB1/2 beta-1 adrenergic receptor 1/2

AGEs advanced glycation end products

Akt protein kinase B

Arg-1 Arginase 1

ATF activating transcription factor

bp base pairs

BM bone marrow

BMDM blood peripheral circulating bone marrow-derived
monocytes

BMP bone morphogenetic protein

CCL chemokine (C-C motif) ligand

CCl4 carbon tetrachloride

CD cluster of differentiation

CHOP C/EBP homologous protein

CFSE carboxyfluorescein succinimidyl ester

CHO chinese hamster ovary

CPC cardiac progenitor cells

CRIF1 cytokine response 6 (CR6)-interacting factor 1

CRP c reactive protein

DDC 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine

ECM extracellular matrix

EGF epidermal growth factor

EGR1 early growth response 1

ELISA enzyme-linked immunosorbent assay
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ERK extracellular-signal-regulated kinase
FOXP3 Forkhead-Box-Protein P3
GDF growth differentiation factor
GDNF glial cell-derived neurotrophic factor
GFRAL GDNF family receptor a-like
HBMVEC human brain microvascular endothelial cells
HIF hypoxia-inducible factor
ICAM-1 intercellular adhesion molecule 1
IL interleukin
im. intramuscular
iLv intravenous
KLF kruppel-like factor
LDL low-density lipoprotein
LFA-1 lymphocyte function-associated antigen
LPS lipopolysaccharide
M-CSF macrophage colony-stimulating factor
MCP-1 monocyte chemoattractant protein-1
MI myocardial infarction
MIC-1 macrophage inhibitory cytokine-1
MMP matrix metalloproteinase
mRNA messenger RNA
NAG-1 NSAID-activated gene-1

nuclear factor kappa-light-chain-enhancer of activated B
NF-«xB

cells
NOS2 nitric oxide synthase 2
NRF2 nuclear factor erythroid 2-related factor 2
NSAIDs non-steroidal anti-inflammatory drugs
oxLDL oxidized LDL
PBMC peripheral blood mononuclear cell
PD-1 programmed cell death protein-1
PDF prostate-derived factor
PI3K phosphatidylinositol 3-kinase
PPAR proliferator-activated receptor
PCSK proprotein convertase subtilisin/kexin
PTGF-$ placental transforming growth factor-3
RCC renal cell carcinoma
RET receptor tyrosine-protein kinase
RNA ribonucleic acid
RT-PCR reverse transcription real-time polymerase chain reaction
RXRa retinoid X receptor at
SAT subcutaneous adipose tissue
SPARC secreted protein acidic and rich in cysteine
STAT signal transducer and activator of transcription
STUB1 STIP1 Homology And U-Box Containing Protein 1
TAMs tumor-associated macrophages
TGF transforming growth factor
TFEB transcription factor EB
THP-1 human acute monocytic leukemia cell line
TiNPs titanium nanoparticles
TNF tumor necrosis factor
VEGF vascular endothelial growth factor

YAP yes-associated protein
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YKL-40 chitinase-3-like protein 1 (CHI3L1)
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