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Abstract: Growth differentiation factor 15 (GDF-15) is a multifunctional cytokine that belongs to the 
transforming growth factor-beta (TGF-β) superfamily. GDF-15 is involved in immune tolerance and is elevated 
in several acute and chronic stress conditions, often correlating with disease severity and patient prognosis in 
cancer, metabolic and cardiovascular. Despite these clinical associations, the molecular mechanisms 
orchestrating its effects remain to be elucidated. The effects of GDF-15 are pleiotropic, but cell specific, and 
dependent on the microenvironment. While GDF-15 expression can be stimulated by inflammatory mediators, 
its predominant effects are anti-inflammatory and pro-fibrotic. Macrophages serve as both producers and 
receptors of GDF-15. The role of GDF-15 in the macrophage system has been increasingly investigated in recent 
years. In this review, we summarize the major physiological and pathological contexts in which GDF-15 
interacts with macrophages. We also discuss the major challenges and future perspectives in the therapeutic 
translation of GDF-15. 
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1. Introduction 
Macrophages are ubiquitous in almost all human tissues and profoundly influence the healing 

and remodeling of damaged tissue. At the core of their impressive versatility lies their ability to 
rapidly polarize in response to stimuli. For example, during healing processes, macrophages remove 
local debris via phagocytosis and secrete various factors that promote angiogenesis and scar 
formation through auto- and paracrine mechanisms [1,2]. This dynamic adaptability to their 
environment has made macrophages essential to the body's natural tissue maintenance mechanisms 
[3]. 

During the inflammatory phase of injury, there is an increase in macrophage infiltration, 
accompanied by an enhanced production of proinflammatory cytokines. This, in turn, induces the 
recruitment and proliferation of macrophage progenitor cells. A phenotypic transition to M2 favors 
the resolution of inflammation through the secretion of IL-10, transforming growth factor β (TGF-β), 
and vascular endothelial growth factor (VEGF), which supports fibroblast proliferation and promotes 
angiogenesis. The macrophage infiltration then decreases until wound resolution progresses [4,5]. 

The ontogeny of macrophages may influence their function during healing processes. Tissue-
resident macrophages can originate from resident cells that locally proliferate, from a spleen 
monocyte reservoir, or from blood peripheral circulating bone marrow-derived monocytes (BMDM) 
[6]. The initial proinflammatory response seems to be supported by spleen-derived monocytes that 
differentiate into M1. In contrast, the resolution-like M2 phenotype appears to be derived from 
resident macrophages and circulating monocytes [6]. 

On the opposite end of the healing spectrum lies fibrosis, a process resulting from excessive 
extracellular matrix (ECM) accumulation and defective remodeling [7]. Macrophages contribute to 
fibrogenesis by recruiting and activating fibroblasts, secreting TGF-β1, and modulating the tissue 
microenvironment. They also contribute to the resolution of fibrosis by secreting matrix 
metalloproteinases (MMPs) that degrade the ECM, such as MMP2 and MMP13, and by participating 
in the clearance of senescent cells [8]. 
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The balance between reparative processes and fibrotic responses is regulated by the interplay of 
local inflammatory cues. For instance, members of the TGF-β superfamily exert dualistic effects, 
depending on their content, concentration, spatial and temporal production and clearance, as well as 
the activation status of target cells [9]. Our review focuses on growth differentiation factor 15 (GDF-
15), a member of the transforming growth factor-beta (TGF-β) superfamily, which can be both 
produced and cleared by macrophages. GDF-15 production can be induced by inflammatory 
mediators, yet the majority of its effects are anti-inflammatory and pro-fibrotic. We have summarized 
the available data on the role of GDF-15 in pathologies in which monocytes and macrophages play a 
major role. 

2. GDF-15 Is a Member of the TGF-β Superfamily 
GDF-15, also known as macrophage inhibitory cytokine-1 (MIC-1), placental transforming 

growth factor-β (PTGF-β), prostate-derived factor (PDF), and NSAID-activated gene-1 (NAG-1), is a 
multifunctional cytokine and is a distant member of the glial cell-derived neurotrophic factor (GDNF) 
family and the TGF-β superfamily [10–12]. Numerous TGF-β family members are known to be 
produced by macrophages and to target macrophages, including TGF-β1, GDFN, and bone 
morphogenetic protein 2 (BMP-2) [13–15]. GDF-15 was discovered in the late 1990s when it was 
identified as an autocrine cytokine capable of reducing the proinflammatory macrophage activation 
after lipopolysaccharide (LPS) stimulation in the human myelomonocytic cell line U93737. In parallel, 
Lawton et al. discovered its expression in the placenta during early and late gestation [16]. Moreover, 
Paralkar et al. found elevated expression of this protein in the prostate and named it PDF [17]. A few 
years later, Baek et al., observed the upregulation of GDF-15 in HCT-116 colon cancer cells upon 
treatment with non-steroidal anti-inflammatory drugs (NSAIDs) [18]. 

GDF15 gene is found throughout the animal kingdom and is well-conserved in vertebrates, 
particularly in mammals [19,20]. It is located on chromosome 19p12-13.1 and consists of two exons 
(309 bp and 891 bp) separated by a 2,9 kb intron [16]. Analogous to other members of the TGF-β 
family, GDF-15 has a dimeric disulfide-bonded configuration and is synthesized as a proprotein [10]. 
Its general structure includes a propeptide followed by an RXXR furine-like site and the mature 
protein. GDF-15 conserves the seven cysteine domains typical of the TGF-β family, sharing a 20% 
amino acid identity that gives rise to its cysteine knot crystal motif (Figure 1a and c) [12]. In addition 
to its proximity to the TGF-β family, GDF-15 resembles the structure of the GDNF family ligands, 
sharing 16% amino acid identity (Figure 1b and c) [10]. GDF-15 immature form consists of 308 amino 
acids, including a 9-amino acid signal peptide, a 167-amino acid propeptide, and a 112-amino acid 
mature protein. As part of its post-translational modifications, the immature form undergoes 
proteolytic cleavage, leaving the mature (13 kD) and propeptide (30 kD) forms, which are later 
cleaved at the RXXR furine-like site [12]. This site is recognized and cleaved by proprotein convertase 
subtilisin/kexin type (PCSK)-3, -5, and -6 or by MMPs, facilitating GDF-15 maturation [21–23]. After 
dimerization, the mature form, consisting of 224 amino acids (25 kD), and the propeptide are secreted. 
In contrast to the general structure of the TGF-β family, the propeptide of GDF-15 lacks cysteine 
residues [12]. Interestingly, the propeptide appears to function autonomously [24]. Latent stromal 
stores of this immature form have been found in various tissues and pathologies, such as in prostate 
cancer. These stores serve as a reservoir for GDF-15 [25]. Moreover, the secretion of the propeptide is 
faster than that of the mature GDF-15 [26]. 
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Figure 1. GDF-15 crystal protein structure and phylogenetic associations. (a) Crystal structure of the 
GDF-15 protein. Obtained from InterPro: https://www.ebi.ac.uk/interpro/structure/PDB/5vt2/#table  
[27]; (b) Phylogenetic tree illustrating relationships among GDF-15, TGF-β, and GDNF superfamily 
members. Generated using TaxOnTree (bioinfo.icb.ufmg.br/taxontree/#x); (c) Protein sequence 
alignment of GDF-15 compared to TGF-β and GDNF superfamily members. Sequence alignment was 
performed using Protein BLAST (blast.ncbi.nlm.nih.gov). cov: percentage of coverage, pid: 
percentage of identity. 

2.1 Producing Cells and Regulators of GDF-15 Expression 

Under physiological conditions, GDF-15 is produced at high levels by trophoblasts in the 
terminal villi of the placenta, with levels reaching up to 54,000 pg/mL [28,29]. Other human tissues 
produce lower levels of GDF-15, including stomach, skeletal muscle, subcutaneous adipose tissue, 
prostate epithelium, bladder, kidney, and lung [30–37]. Furthermore, GDF-15 has been found in most 
human fluids, including blood, amniotic fluid, bronchoalveolar fluid, and cerebrospinal fluid [28,34] 
(Figure 2). 
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Figure 2. GDF-15 RNA and protein expression in the human body. GDF-15 expression is elevated in various 
tissues, including kidney, bladder, brain, and female and male tissues. RNA expression levels are represented 
using normalized transcript expression values (nTPM). Adapted from: Human Protein Atlas 
https://www.proteinatlas.org/ENSG00000130513-GDF15/tissue. 

A diverse array of cell types, such as fibroblasts, adipocytes, macrophages, epithelial and 
endothelial cells contribute to the production of GDF-15 (Table 1). However, most of them express 
GDF-15 under stress conditions, such as exposure to LPS, bleomycin and oligomycin [38–40]. GDF-
15 production is specialized in some organs, such as in the stomach, where it is produced by chief 
cells, located at the bottom of the gastric glands [37]. Among the blood cells, the myeloid population 
exhibits higher expression levels of GDF-15 compared to the lymphoid population. Following 
clodronate-induced depletion of myeloid cells in mice, GDF-15 mRNA levels significantly dropped, 
highlighting a major myeloid contribution to systemic GDF-15 levels [41]. During the hematopoietic 
differentiation of CD34+ progenitors, erythroid precursors secrete high levels of GDF-15. In contrast, 
the myeloid cell lineage exhibited minimal levels of GDF-15 during maturation [42]. During 
erythroblast maturation, GDF-15 levels are found up to 74000 pg/mL [43]. Megakaryocytes were also 
shown to be key cells expressing GDF-15 in the bone marrow. In primary myelofibrosis, 
megakaryocytes are the most GDF-15 expressing cells in the bone marrow microenvironment [44]. 

Table 1. GDF-15 producing cells. 
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Primary cells Species Conditions Measurement Reference 

Adipose tissue 
macrophages 

Human 
Obesity RT-PCR [41] 

Rosiglitazone-treated Microarray [45] 

Human nasal 
epithelial cell 

Human LPS treatment RT-PCR [46] 

Lung fibroblasts Mouse Bleomycin treatment RT-PCR [47] 

Cardiomyocytes Rat Stretch conditions RT-PCR [48] 

Chief cells Rat/Human Obesity 
Immunohistoch
emistry 

[37] 

Erythroid cells  Human Maturation RT-PCR [49] 

Megakaryocytes Human 
Primary 
myelofibrosis 

Immunohistoch
emistry 

[44] 

Primary 
erythroblasts 

Human 7 and 14d RT-PCR, ELISA [43] 

Hepatocytes Human Metformin treatment RT-PCR [50] 

Cell lines 
Macrophages-like cells 
THP-1 Human 

LPS treatment RT-PCR [51] 
RAW264.7  Mouse 
Endothelial cells     
Endothelial 
colony-forming 
cells generated 
from blood 

Human 7d RT-PCR, ELISA [52] 

Human aortic 
endothelial cells 

Human hrCRP RT-PCR, ELISA [53] 

Connective and soft tissue cells 

Adipocytes 

Human SAT-differentiated RT-PCR, ELISA [38] 

Human 
Oligomycin 
treatment 

ELISA  

Mouse rIL-4 and rIL-13 RT-PCR, ELISA [54] 
Embryonic 
adipocyte-like 
cell line (3T3-L1) 

Mouse 
Tunicamycin 
treatment 

RT-PCR [39] 

Myoblasts 
(C2C12) 

Mouse . 
RT-PCR, 
Western blot  

[55] 

Trophoblastic 
cells (BeWo) 
  

Human 24h ELISA [28] 

Cancer cells     
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Alveolar basal 
epithelial cells 
(A549) 

Human 
Bleomycin treatment, 
C5a treatment  

RT-PCR [40,56] 

Colorectal 
cancer cells 
(HCT-116) 

Human 
NSAID, 
Indomethacin 

Northern/ 
Western blot  

[18] 

Hypopharyngeal 
carcinoma cells 
(FaDu cells) 

Human 
Head and neck 
cancer 

Western blot  [57] 

Prostate cancer 
cells  
(LNCaP-C81 cell 
line) 

Human Prostate cancer Western blot  [58] 

CRP: C-reactive protein; hr: human recombinant; GDF-15: growth differentiation factor 15; ELISA: enzyme-
linked immunosorbent assay; LPS: lipopolysaccharide; NSAID: non-steroidal anti-inflammatory drug; RT-PCR: 
reverse transcription real-time polymerase chain reaction; SAT: Subcutaneous adipose tissue; THP-1: human 
acute monocytic leukemia cell line. 

Several transcriptional factors have been identified that induce GDF-15 expression (Table 2). For 
example, upon exposure to C-reactive protein (CRP), p53 binds to the GDF-15 promoter and induces 
GDF-15 transcription in human aortic endothelial cells [53]. This highlights an association between 
the two biomarkers, GDF-15 and CRP, which are co-elevated in acute inflammatory conditions. Also 
induces GDF-15 expression following damage induced in enterocytes. In this context, GDF-15 
functions as a pro-apoptotic factor and triggers the expression of activating transcription factor 3 
(ATF3), a pro-survival protein induced during cellular stress [56]. The interaction between ATF3 and 
GDF-15 also been reported in human colorectal cancer cells [59]. 

Table 2. Transcription factors regulating GDF-15 expression. 

Transcription 
factors 

Expressed 
in 

macrophage
s 

Cells Conditions Referen
ce 

ATF4 
+ 

Human nasal epithelial 
cells LPS treatment [46] 

Murine hepatocytes Metformin 
treatment [50] 

Murine embryonic 
adipocyte-like cell line 

(3T3-L1) 

Tunicamycin 
treatment [39] 

CHOP 

PMA-differentiated THP-1, 
PBMCs SFAs treatment [62] 

+ 
Murine C2C12 myoblasts CRIF1 

deficiency [55] 

Murine hepatocytes Metformin 
treatment [50] 

EGR1 + 

Hypopharyngeal 
carcinoma cell line (FaDu), 

human epithelial 
carcinoma cell line (KB) 

. [57] 

KLF5 + Adenocarcinoma alveolar 
basal epithelial cells (A549) C5a treatment [56] 
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NF-κB + Immortalized mouse 
embryonic Fibroblasts  . [63] 

NRF2 + Murine and human 
BMDM NSAIDs [61] 

p53 + Human aortic endothelial 
cells 

CRP 
supplementati

on 
[53] 

Sp1, Sp3 +  Human colorectal cancer 
cells (HCT-116) . [18] 

STAT6 + Murine adipocytes IL-13 treatment [54] 

TFEB + 
Human and murine 

adipose tissue 
macrophages 

Obesity [41] 

YAP* - Breast cancer cells and 
cytotrophoblast . [64] 

*YAP has been shown to act as a negative regulator of GDF-15 expression. ATF: activating transcription factor; 
BMDM: blood peripheral circulating bone marrow-derived monocytes; CHOP: C/EBP homologous protein; 
CRIF1: Cytokine response 6 (CR6)-interacting factor 1; CRP: C-reactive protein; EGR1: early growth response 1; 
KLF: Kruppel-like factor; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; NRF2: Nuclear 
factor erythroid 2-related factor 2; NSAID: non-steroidal anti-inflammatory drug; PBMC: peripheral blood 
mononuclear cells; PMA: phorbol 12-myristate 13-acetate; SFA: saturated fatty acids; STAT6: signal transducer 
and activator of transcription 6; TFEB: transcription factor EB; THP-1: human acute monocytic leukemia cell line; 
YAP: Yes-associated protein. 

Transcription factor EB (TFEB), a regulator of energy expenditure and an inducer of autophagy, 
binds to the GDF-15 promoter and increases GDF-15 expression following exposure to lysosomal 
stressors in adipose tissue macrophages. This mechanism mediates a reduction in metabolic 
inflammation during high-fat-induced obesity in mice [41]. In adipocytes, signal transducer and 
activator of transcription 6 (STAT6) triggers the expression of GDF-15 when exposed to IL-13 
treatment. This process seems to enhance glucose tolerance [54]. In addition, under mitochondrial 
stress, C/EBP homologous protein (CHOP) promotes GDF-15 expression in murine myoblasts and 
hepatocytes [55]. Another known transcription factor is early growth response 1 (EGR1), which forms 
a positive feedback loop with GDF-15 and acts as a promoter for EGR1 [57]. Proliferator-activated 
receptor γ (PPARγ) and retinoid X receptor α (RXRα) are regulatory elements of the GDF15 locus in 
monocyte-derived macrophages that are active during muscle regeneration [60]. Nuclear factor 
erythroid 2-related factor 2 (NRF2), a factor involved in the transcription of antioxidant proteins, also 
promotes GDF-15 expression in BMDMs treated with NSAIDs [61]. Table 2 highlights the diverse 
range of GDF-15 inducers. 

2.2. Known Receptors and Target Cells of GDF-15 

In 2017, GDNF family receptor α-like (GFRAL), a member of the GDNF receptor α family, was 
identified as a receptor for GDF-15. This receptor is highly expressed in the area postrema and 
nucleus of the solitary tract of the hindbrain in mice, non-human primates, and humans [65–67]. 
Using an unbiased ligand-receptor coupling approach, Mullican et al. and Yang et al. found that GDF-
15 binds exclusively to GFRAL, excluding high-affinity binding to other receptors, including those of 
the TGF-β receptor family [66,67]. Other potential ligands for GFRAL, such as TGF-β and GDNF-
similar ligands (GFLs), were also ruled out, highlighting an exclusive partnership between GDF-15 
and GFRAL [66]. Together with Emerson et al, these three research groups dissected the mechanism 
of GDF-15-GFRAL binding and its effect on appetite regulation [67]. Moreover, the receptor tyrosine-
protein kinase (RET) was found to be a co-receptor necessary for the metabolic effects of GDF-15 
through GFRAL [65,67]. Upon its binding, GDF-15 promotes the physical interaction between GFRAL 
and RET, and mediates the activation of RET phosphorylation and the intracellular phosphorylation 
cascade of extracellular-signal-regulated kinase (ERK), protein kinase B (Akt), and phospholipase C 
[65,66]. 
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Like GFRAL, RET expression is particularly high in the area postrema and nucleus of the solitary 
tract in the hindbrain of both mice and non-human primates. Beyond this, GFRAL is also expressed 
in the human spleen, thymus, testis, and adipose tissue, as well as in isolated adipocytes, but not in 
macrophages [32,40]. RET is expressed in most mouse tissues except liver, kidney, and adrenal glands 
[66]. GFRAL/RET expression was also shown in osteoblasts in a murine model of prostate cancer 
bone metastasis [58]. In the immune cells, GFRAL is expressed by regulatory T cells (Treg) treated 
with recombinant human GDF-15 (rGDF-15) [68]. These findings highlight that GFRAL expression 
extends beyond the boundaries of the central nervous system, possibly increasing in response to 
pathological stimuli, and varies among different cell types. 

To date, other receptors have been investigated as possible mediators of GDF-15 peripheral 
actions. For instance, rGDF-15 was shown to increase the phosphorylation of downstream 
components of the TGF-βI receptor cascade, namely Smad2/3, in fibroblasts and in human colorectal 
carcinoma cells, which was associated with metastasis induction [40,69]. In human acute monocytic 
leukemia (THP-1) cells and neutrophils, rGDF-15 binds to the TGF-βI receptor and effectively blocks 
the cytokine-induced phosphorylation cascade, promoting anti-inflammatory activity [70]. However, 
concerns have been raised about the validity of these results due to reported TGF-β contamination of 
rGDF-15 [71]. Other alternative mechanisms could explain the peripheral effects of GDF-15, such as 
the existence of a soluble GFRAL that would form a complex with GDF-15 and facilitate its 
recognition and internalization in further tissues [72]. Another consideration is that GDF-15 may bind 
to other receptors depending on the cell type and underlying pathological condition. Therefore, the 
involvement of TGF-β receptors or other receptors in the response of cells to GDF-15 is still 
controversial. 

Using His-tag mediated pull-down assays and mass spectrometry, Wang et al. identified CD48 
as a receptor for GDF-15 in Jurkat T cells. The interaction between GDF-15 and CD48 leads to 
inhibition of CD48 cascade pathways, resulting in downregulation of STIP1 Homology And U-Box 
Containing Protein 1 (STUB1) and subsequent accumulation of Forkhead-Box-Protein P3 (FOXP3), 
thereby facilitating Treg activation. This binding was found to be exclusive to GDF-15 and not to 
TGF-β [73].  

GDF-15 is also recognized as a common endocytic ligand for both stabilin-1 and 2 [74]. Stabilin-
1 (STAB1, FEEL-1, CLEVER-1, KIAA0246) is a multifunctional scavenger receptor that mediates the 
endocytic and phagocytic internalization of various unwanted self-ligands, thereby contributing to 
tissue homeostasis [75]. Stabilin-1 expression is observed in sinusoidal endothelial cells within the 
spleen, liver, and lymphatic vessels. It is also present in resident macrophages, excluding Kupffer 
cells, and in tumor-associated macrophages (TAMs). Macrophages in inflamed or healing cardiac 
tissue also show expression of stabilin-1 [76–81]. Macrophages express stabilin-1 in response to IL-4 
and dexamethasone, thus stabilin-1 is considered a marker of M2 polarization [82]. Stabilin-1 
expression in TAMs supports tumor growth in animal models and correlates with poor prognosis for 
patients with various cancers [79,83,84]. Some ligands known to interact with stabilin-1 extracellular 
domain include modified low-density lipoproteins (LDL), such as oxidized LDL (oxLDL) and 
acetylated LDL (acLDL), and advanced glycation end products (AGEs), secreted protein acidic and 
rich in cysteine (SPARC), placental lactogen and epidermal growth factor (EGF) [81,85][86,87]. As an 
endocytic receptor, stabilin-1 engages the clathrin-dependent pathway to facilitate the intracellular 
trafficking of internalized ligands. This process involves sorting within endosomes, leading to either 
lysosomal degradation or storage in secretory vesicles [76,85,88]. Using GGA adaptors, stabilin-1 can 
also sort intracellular ligands from the biosynthetic pathways into the lysosomal secretory route in 
macrophages [87].  

We identified GDF-15 as a directly interacting protein of stabilin-1 through yeast two-hybrid 
screening. This interaction was confirmed by affinity chromatography and endocytosis assays. 
Furthermore, we observed that impaired clearance of GDF-15 in STAB-1-/-STAB-2-/- mice 
contributed to severe glomerular fibrosis and mild perisinusoidal hepatic fibrosis [74]. However, the 
fate of GDF-15 after internalization by these receptors remains unclear.  

In vitro studies have investigated the target cells of rGDF-15 primarily by assessing its impact 
on the transcriptome through RT-PCR. Table 3 summarizes the major effects of rGDF-15. Takenochi 
et al. showed that rGDF-15 supplementation increases fibroblast activation measured by increased 
secretion of alpha-smooth muscle actin (α-SMA). This effect was not mediated by the GFRAL/RET 
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activation pathway [40]. Other myeloid cells strongly affected by rGDF-15 treatment are erythrocytes. 
rGDF-15 supplementation leads to decreased erythroid colony formation and decreased transcription 
of erythroid differentiation factors [49]. In vitro rGDF-15 supplementation has also been linked to 
increased angiogenesis and increased VEGFA expression in glioblastoma cells [89]. 

Table 3. Effects of rGDF-15. 

Effects  Evidence Method Target 
cells 

Cond
itions 

GDF-15 
source 

Concentr
ation 

(ng/mL) 

Refere
nce 

Increased M2 and 
decreased M1 
polarization 

Increased Arg-1 
expression 

RT-PCR, Flow 
cytometry 

THP-1 and 
RAW264.7 

rGDF
15 for 
48h 

CHO; E. 
coli 

100  [40] 

Decreased IL-6, 
TNF-α, MCP-1, 

and IL-10 
secretion, 

decreased CD80, 
increased CD163 

mRNA levels 
Fibroblast 
activation 

Increased α-
SMA protein 

expression 

Western blot WI-38  Prein
cubati
on for 
48h; 

rGDF
15 for 
72h 

CHO; E. 
coli 

0-100  [40] 

Increased 
Smad2/3 

phosphorylation 
through TGF-β I 

receptor 

Western blot WI-38  Prein
cubati
on for 
48h; 

rGDF
15 for 

20 
min-

1h 

CHO; E. 
coli 

100  [40] 

Reduced 
metabolic activity 
in erythroid cells 

Decreased 
optical density 
with increasing 

GDF-15 
concentration 

RT-PCR, Flow 
cytometry, 
MTT cell 
metabolic 

activity assay 

K562  Treat
ment 
with 

β-
thalas
semia 
seru
m 

contai
ning 

48 
ng/m
L of 

GDF-
15 or 
GDF-
15 for 
24h, 
48h 
and 
72h 

CHO  2-50  [49] 
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Reduced 
proliferation in 
erythroid cells 

Decreased 
optical density 
with increasing 

GDF-15 
concentration in 

MTT assay 

CFSE 
proliferation 

assay 

K562  GDF-
15 for 

5d 

CHO 10-50  [49] 

Increased 
angiogenesis 

Increased 
VEGFA 

expression 

Tube 
formation 

assay, RT-PCR 

U373, 
HBMVEC 

3 d in 
cultur

e 

CHO 100  [89] 

Arg-1: Arginase-1; CFSE: carboxyfluorescein succinimidyl ester; CHO: chinese hamster ovary; GDF-15: growth 
differentiation factor 15; HBMVEC: human brain microvascular endothelial cells; K562: lymphoblast; MCP-1: 
Monocyte Chemoattractant Protein-1; RT-PCR: reverse transcription real-time polymerase chain reaction; TGF-
β: transforming growth factor-beta; THP-1: human acute monocytic leukemia cell line; TNF-α: tumor necrosis 
factor α; U373: glioblastoma cells; VEGF: vascular endothelial growth factor; WI-38: fibroblasts from lung tissue. 

3. GDF-15 in Health and Pathology 
GDF-15 basal plasmatic levels range from 337 to 1060 pg/mL. These levels may increase during 

certain physiological changes, such as muscle contraction and exercise [32,48], and under the 
pathological conditions reviewed in the following sections. Circulating GDF-15 increases with age 
and is unaffected by gender [32,39,90]. Notably, GDF-15 is significantly elevated at birth and during 
the first 4 months of life, reaching around three times the average adult concentration [91]. Its levels 
also progressively rise during pregnancy, correlating with gestational week and peaking in the third 
trimester [28].   

Under physiological conditions, GDF-15 expression positively correlates with higher maturation 
states in the erythroid lineage. Furthermore, supplementing erythroid cells with GDF-15 results in 
reduced metabolic activity and proliferation [49]. Moon et al. found that rGDF-15 enhances the 
regulatory effect of Treg cells on activated T cells. Moreover, rs7226, a single nucleotide 
polymorphism associated with increased production of GDF-15 in humans, correlates with an 
increased count of lymphocytes and monocytes and decreased concentrations of innate immune cells 
and granulocytes [68]. 

In general, GDF-15 is overexpressed in cellular stress states and its function seems to be 
protective. Several pathological conditions show elevated plasma GDF-15 levels, including 
metabolic, cardiovascular, hematological diseases and cancer, reaching concentrations up to one 
hundred times the physiological value (see Table 4) [90]. 

Table 4. GDF-15 serum levels in pathology. 

Condition Concentration (pg/mL) Reference 

α-thalassemia syndrome 5900 ± 1200 [43] 

Benign prostate hyperplasia 731 ± 500 [92] 

β-thalassemia major 66000 ± 9600 [43] 

Chronic pancreatitis 2368 ± 2431 [93] 

Colorectal carcinoma 783 ± 491 [94] 

SARS-CoV-2 in ICU 12400 [95] 

Endometrial cancer 1077 [96] 

Exercise 200 -1000 [32] 

Heart failure 2705 [97] 

Hereditary hemochromatosis 720 ± 50 [43] 

Mitochondrial myopathy 2711 ± 2459 [98] 

Ovarian cancer 96,1 - 1876 [98] 
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Pancreatic cancer 5388 ± 3720 [93] 

Preeclampsia 421 ± 187 [99] 

Pregnancy 6300-15300 [28] 

Prostate cancer 860 ± 850 [92] 

Renal cell carcinoma 1100 ± 150 [100] 

Sepsis 4900 [51] 

Sickle cell anemia 880 ± 160 [43] 

Smoking 1835 [47] 

Stable coronary heart disease 915 - 1827 [101] 

Systemic sclerosis 1367 [47] 
GDF-15: growth differentiation factor 15; ICU: intensive care unit 

 
The most studied role of GDF-15 is its anorexigenic effect. GDF-15 mediates weight loss by 

reducing energy intake, an effect that is a direct consequence of GDF-15-GFRAL binding [72]. Its 
circulating levels have been consistently found to be elevated in obesity [102,103]. Pena-Leon et al. 
demonstrated in a mouse model that plasma levels of GDF-15 decrease during fasting and are 
restored after refeeding. This effect was associated with GDF-15 production by chief cells of the 
gastric mucosa. This group also showed that high GDF-15 in obesity is associated with increased 
post-transcriptional processing of the GDF-15 precursor, pro-GDF-15, which is highly accumulated 
in the gastric mucosa. Moreover, this post-transcriptional processing seems to be impaired in the 
fasting state [37]. 

GDF-15 supplementation improves the metabolic profile in high-fat diet-induced obese mice, 
showing a significant reduction in body weight, food intake, and glycemia. These effects may be due 
to taste aversion rather than increased gastric motility [102,103]. This anorexic effect is effectively 
abolished by blocking with a monoclonal antibody directed against GDF-15 and by GDF-15 or 
GFRAL knockout (KO) [66,102]. Recent studies have suggested that GDF-15 effect on body weight 
may be also associated with increased energy expenditure and thermogenesis [104]. Recently, Feng 
Lu et al. found that GDF-15/GFRAL binding is an important determinant of the efficacy of ketogenic 
diet-induced weight loss. They found that GDF-15 hepatic production significantly increases after 
introduction of ketogenic diet in obese pigs and mice, which was an effect of increased PPARγ, a 
known transcription factor of GDF-15. Additionally, they found that the ketogenic diet-induced 
weight loss was mainly an effect of decreased energy intake, which corroborates previous studies 
highlighting the anorexigenic role of GDF-15 [105]. A recent review summarizes the relationship 
between GDF-15 and body weight [106]. 

High plasmatic GDF-15 levels are also found in association with impaired glucose tolerance, 
insulin resistance, diabetes, and diabetes-related complications, but its role in glucose homeostasis is 
unclear. Other references provide a detailed review of this matter [107,108]. GDF-15 is not only 
elevated during pregnancy but has also been showed diagnostic relevance in preeclampsia and 
gestational diabetes mellitus [109,110]. 

3.1. GDF-15/Macrophage Interaction in Physiological and Pathological Conditions 

In murine and human BMDM, as well as in THP-1 and RAW264.7 cells, GDF-15 expression is 
increased under stimulation of pro- and anti-inflammatory mediators, including IL-4, IL-1β, tumor 
necrosis factor α (TNF-α), IL-2 and macrophage colony-stimulating factor (M-CSF) [45,51]. At the 
same time, GDF-15 has been widely associated with M2 differentiation and with the inhibition of M1 
polarization [40,51,54]. Pence et al. examined the relationship between human serum GDF-15 levels 
and different parameters of monocyte immunosenescence. They observed significantly elevated 
levels of GDF-15 in the elderly population compared to younger individuals. Also, circulating GDF-
15 levels displayed a negative correlation with maximal monocyte respiratory capacity [114]. The 
particular interplay between GDF-15 and macrophages in various pathological contexts will be 
reviewed in the following sections. 
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3.1.1. Sepsis and Inflammation 
Serum GDF-15 levels are elevated in sepsis, regardless of the pathogen involved, and have been 

correlated with prognosis, severity, and survival, as well as, in SARS-CoV-2 in adults and children 
[51,115–120]. Assessment of the diagnostic value of GDF-15 highlighted its role as a biomarker of 
sepsis severity, including septic shock. GDF-15 showed a positive correlation with procalcitonin, IL-
6, and IL-10 [51]. GDF-15 KO mice were protected against cecal ligation- and puncture-induced 
sepsis, showing less severe symptoms, lower markers of inflammation, and lower bacterial load [117]. 
Several other studies have proposed GDF-15 as a protective factor in sepsis [30,121,122]. High GDF-
15 levels during bacterial inflammation stimulate beta-adrenergic sympathetic outflow and hepatic 
triglyceride production, mediate cardiac protection and improve thermal homeostasis [123]. 
Supporting this mechanism, Kim et al found increased catecholamine synthesis-related gene 
expression and increased thermogenesis in mice overexpressing GDF-15 [41]. Recently, Wang et al. 
proved that GDF-15-treated mice show increased skeletal muscle noradrenaline and oxygen 
consumption, which is associated with increased maintenance of energy expenditure [124]. 

In vitro stimulation with LPS induces a dose- and time-dependent increase in both GDF-15 
expression and secretion in THP-1 and RAW264.7 macrophages [51]. Similarly, in vivo LPS injection 
increases plasmatic GDF-15 concentrations in mice, rats, and humans (in humans, LPS was 
administered at a dose of 1 ng/kg) [30,125]. Pretreatment with rGDF-15 resulted in a dose-dependent 
decrease in the expression of proinflammatory cytokines such as TNF-α, IL-6, monocyte 
chemoattractant protein-1 (MCP-1), and IL-10. GDF-15 also appears to improve the phagocytic and 
bactericidal function of macrophages in the THP-1 and RAW264.7 cell lines [51]. Similar experiments 
by Govaere et al. showed decreased TNF-α and CCL2 secretion after treatment with rGDF-15 in THP-
1 cells challenged with LPS [111]. Possible molecular pathways responsible for the decreased 
secretion of proinflammatory cytokines under GDF-15 exposure have been considered. Zhang et al. 
found that rGDF-15 promoted phosphatidylinositol 3-kinase (PI3K)/Akt phosphorylation in 
macrophages under LPS-induced inflammation. This effect was reduced by treatment with the 
PI3K/Akt inhibitor [119]. Other research groups proposed the decrease in phosphorylation of 
JAK1/STAT3 and nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B 
cells (NF-κB) after rGDF-15 treatment as cascade pathways [121]. The inhibitory effects of GDF-15 on 
NF-κB have also been shown by others [63,126]. However, no specific receptor has been proposed to 
mediate this effect. 

3.1.2. Fibrosis 

GDF-15 has been linked to fibrotic diseases. Recent mouse model experiments related to fibrosis 
are summarized in Table 5. Govaere et al. and Chung et al. found that GDF-15 expression in hepatic 
tissue positively correlated with fibrosis progression in non-alcoholic fatty liver disease and carbon 
tetrachloride- (CCl4) induced liver injury, respectively [111,127]. In contrast, Li et al. observed 
decreased GDF-15 expression levels in mouse and human liver fibrotic tissue compared to healthy 
liver tissue during fibrosis progression [128]. These research groups showed that GDF-15 deficient 
mice display increased liver fibrosis, which can be mitigated with rGDF-15 treatment. Chung et al. 
also demonstrated that mitochondrial damage, caused by oligomycin and rotenone, induces GDF-15 
expression. In a co-culture model involving hepatocytes and Kupffer cells, they observed that the 
absence of GDF-15 production by hepatocytes resulted in increased expression of proinflammatory 
cytokines following LPS stimulation by Kupffer cells. GDF-15 deficiency altered immune infiltration 
in hepatic tissue, increasing the number of CD4+, CD8+ T cells and neutrophils while leaving the 
monocyte population unaffected. This effect was reversed through the supplementation with rGDF-
15 [127]. These findings highlight the paracrine effects of GDF-15 in fibrosis progression. 

Table 1. GDF-15 effects in fibrosis mice models. 

Setting Intervention Finding Reference 
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CCl4-
induced liver 
fibrosis 

CRISPR-Cas GDF-
15 KO 

Histopathology (H&E 
and Sirius red staining): 
increased fibrosis.  
Immunohistochemistry: 
increased macrophage 
F4/80 and neutrophil 
MPO infiltration, 
upregulated Ly6Chi  
Serum: increased 
hepatic enzymes 

[128] 

DDC-
induced liver 
fibrosis 

CRISPR-Cas GDF-
15 KO 

Histopathology (H&E 
and Sirius red staining): 
increased fibrosis and 
collagen deposition  

CCl4-
induced liver 
fibrosis 

AAV8 gene vector 
GDF-15 
overexpression  

Histopathology (H&E 
and Sirius red staining): 
reduced liver injury 
and fibrosis. 
Serum: reduced hepatic 
enzyme levels in blood.  
mRNA levels (RT-
PCR): reduced IL-1β, 
TNF-α, and NOS2. 
Increased YM1, Arg1 
and CD206 

DDC-
induced liver 
fibrosis 

CRISPR-Cas GDF-
15 KO 

Histopathology (H&E 
and Sirius red staining): 
reduced liver injury 
and fibrosis 

CCl4-
induced liver 
fibrosis 

Tail vein infusion 
with GDF15-
preprogrammed 
macrophages 24 h 

Histopathology (H&E 
and Sirius red staining): 
reduced liver injury 
and fibrosis. 
Serum: reduced hepatic 
enzyme levels  

Hyperoxia 
95% after 
birth 

GDF15-/- mice  Higher mortality and 
lower body weight. 
Immunofluorescence 
for von Willebrand 
factor: impaired 
alveolarization and 
lung vascular 
development, lower 
macrophage F4/80 
infiltration 

[129] 

Ethanol-
induced liver 
disease 

Genetic ablation 
of hepatocyte-
derived 
GDF-15   

Annexin V apoptosis 
assay: decrease in 
Kupffer cell apoptosis 
in liver perivenous 
region 

[130] 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 May 2024                   doi:10.20944/preprints202405.1794.v1

https://doi.org/10.20944/preprints202405.1794.v1


 14 

 

Ethanol-
induced liver 
disease 

GDF15 KO Histopathology (H&E 
and Oil Red O 
staining): increased 
hepatic fat 
accumulation. 
Serum: increased 
hepatic enzymes and 
triglyceride. 
Increased TNF-α and 
IL-6 

[127] 

CCl4-
induced liver 
fibrosis 

GDF15 KO Histopathology (H&E 
and Oil Red O 
staining): increased 
hepatic fat 
accumulation, Serum: 
increased hepatic 
enzymes and 
triglyceride. 
Increased TNF-α and 
IL-6 

CCl4-
induced liver 
fibrosis 
GDF15 KO 

rGDF-15 
0,5 mg/kg i.v.  

Histopathology (H&E 
and Oil Red O 
staining): reduced 
collagen accumulation. 
Western blot: inhibition 
of NF-κB, JNK, and p38 
signaling pathways 

Coronary 
artery 
ligation-
induced 
myocardial 
infarction 

Allogenic cardiac 
progenitor cells 
transplant with 
GDF-15 KD  

Flow cytometry of cell 
suspension: Decrease in 
M2 phenotype and 
Treg activation 

[131] 
 
 

Sterile 
muscle 
injury with 
cardiotoxin 
injection 

rGDF-15 i.m.  Flow cytometry: 
decrease CD45+ muscle 
infiltration. Increased 
MCHII expression by 
monocyte-derived 
macrophages, anti-
inflammatory 
phenotype 

[60] 

DDC: 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine; CCl4: carbon tetrachloride; GDF-15: growth differentiation 
factor 15; H&E: Hematoxylin-eosin, i.v.: intravenous; i.m.: intramuscular; KO: knock-out; KD: knock-down; NF-
κB: nuclear factor kappa-light-chain enhancer of activated B cells; NOS2: nitric oxide synthase 2; TNF-α: tumor 
necrosis factor α. 

GDF-15 deficient mice display an increased macrophage infiltration in hepatic tissue and a 
phenotype shift from Ly6Clow to Ly6Chi macrophages. Li et al. highlighted an inhibitory effect of 
GDF-15 on NF-κB signaling by showing an increased activation of the pathway in the GDF-15 KO 
mice. The effects of GDF-15 on fibrosis progression may result from decreased M1 polarization and 
reduced proinflammatory cytokine expression in the liver. However, the observed effects were not 
explained due to the binding of GDF-15 to a peripheral receptor or a macrophage receptor. 
Additionally, Li et al. tested the systemic effect of parenteral GDF-15 preprogrammed macrophages 
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in mice with CCl4-induced liver fibrosis. The study revealed a decrease in the severity of hepatic 
fibrosis [128]. 

Kim et al. proposed a mechanism linking liver fibrosis to increased levels of liver and portal 
catecholamines along with GDF-15 [130]. This association was explained by the increased ethanol-
induced oxidative stress in the mitochondria, with catecholamines facilitating increased levels of 
CYP2E1, which correlated with increased GDF-15 levels. In hepatic cells deficient in GDF-15, there 
was a significant decrease in Kupffer cell apoptosis and in the expression of apoptotic genes. This 
research group identified beta-1 adrenergic receptor 1/2 (ADRB1/2) as the receptor responsible for 
inducing apoptosis in Kupffer cells when exposed to ethanol-induced damage. ADRB1/2 is a 
catecholamine receptor, which is stimulated by GDF-15. These findings shed light on the mechanism 
by which GDF-15 functions as a stress-induced cytokine, promoting apoptosis of inflammatory 
Kupffer cells. These cells play a key role in the fibrotic changes of alcohol-induced liver injury, 
thereby mitigating further hepatic damage [130].  

GDF-15 also associates with lung fibrosis. GDF-15-deficient neonatal mice, which were briefly 
exposed to hyperoxia, presented decreased survival rates along with impaired alveolarization and 
perturbed macrophage activation in lung tissue [129]. In a bleomycin-induced lung fibrosis mouse 
model, GDF-15 expression and protein levels are increased in lung tissue, bronchoalveolar fluid, and 
plasma of mice with pulmonary fibrosis. Within the lung tissue, the highest GDF-15 positivity was 
found in epithelial cells and macrophages [40]. 

3.1.3. Regenerative Processes 

Titanium is a widely used implant material in fields such as orthopedics, cardiology, and 
dentistry [132]. Our group has shown that macrophages exposed to titanium nanoparticles (TiNPs) 
increased the expression and secretion of GDF-15 [133]. Siddiqui et al. investigated the role of GDF-
15 in prostate cancer bone metastasis. They found that prostate cancer cells highly express and secrete 
GDF-15, which further induces the expression of osteoclastogenesis-related genes in osteoclasts and 
the expression of MCP-1/CCL2, which is involved in macrophage recruitment to osteoblasts in mice 
[58]. This suggests that GDF-15 may activate osteoclastogenesis through a paracrine mechanism and 
further recruit macrophages in the bone. Furthermore, this group found the presence of GFRAL/RET 
in osteoblasts and showed that GFRAL silencing decreases the osteoclastogenesis and macrophage 
recruitment markers expression, induced by GDF-15 [58]. This proposes a novel GDF-15/GFRAL/RET 
functional interaction. We also found that TiNPs decrease the expression of stabilin-1, the clearance 
receptor of GDF-15, in macrophages, and decrease their endocytic function [133]. This mechanism 
could further increase the local levels of GDF-15 surrounding titanium implant microenvironment 
and contribute to inadequate implant osseointegration and aseptic loosening. 

3.1.4. Cancer 

GDF-15 has been recognized as a potential diagnostic and prognostic biomarker for several 
gastrointestinal tumors, including pancreatic, colorectal, esophageal, hepatocellular, and gastric 
cancers [107]. In addition, other cancers such as glioblastoma, breast, lung, cervical, ovarian, 
endometrial, lung, prostate, renal, urothelial, thyroid, and melanoma have also shown elevated levels 
of the cytokine [89,100,108,134]. 

GDF-15 appears to have a dualistic function in the process of carcinogenesis. It has an inhibitory 
effect on tumor growth in the early stages and subsequently facilitates progression and metastasis in 
the advanced stages [135]. 

Overall, GDF-15 has been reported to exert pleiotropic effects on carcinogenesis, as shown in 
Figure 3. Concerning primary tumor growth, rGDF-15 has been shown to promote the proliferation 
of esophageal carcinoma cells [136]. In contrast, in bladder cancer, GDF-15 has been shown to 
decrease cell proliferation and invasion [35]. Likewise, patients with renal cell carcinoma (RCC) and 
increased GDF-15 protein levels in tumor tissue show a better outcome. Yang et al. proposed GDF-
15 as a possible regulator of ferroptosis in RCC [137]. However, the specific pathway surrounding 
this hypothesis needs to be investigated. In addition, GDF-15 promotes angiogenesis by activating 
the hypoxia-inducible factor-1α (HIF-1α)/VEGF signaling pathway in colon, gastric, and breast 
cancer cells [100,138,139]. This is supported by the observation that rGDF-15 promotes p53 
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degradation, increased HIF-1α accumulation, and vessel formation in human umbilical vein 
endothelial cells [140]. 

 

Figure 3. Effects of GDF-15 in carcinogenesis. Image created by biorender.com 

GDF-15 also plays a role in the tumor microenvironment. Recently, Chitinase-3-like protein 1 
(YKL-40) produced by macrophages was shown to promote GDF-15 expression in tumor cells. The 
interaction of YKL-40 and GDF-15 leads to tumor invasion and suppression of the immune response 
of CD8+ T lymphocytes through the induction of PD-L1 in gallbladder tumor cells [141]. This has also 
been demonstrated in glioblastoma cells [142]. In support of this observation, patients with low 
plasmatic levels of GDF-15 show better response rates to anti-programmed cell death protein-1 (PD-
1)/PD-L1 inhibitors in advanced non-small cell lung cancer and in melanoma [143,144]. 

Recently, Haake et al. reported that GDF-15 produced by melanoma cells inhibits lymphocyte 
adhesion to endothelium and migration through inhibition of the lymphocyte function-associated 
antigen (LFA-1)/intercellular adhesion molecule 1 (ICAM-1) axis in T lymphocytes. This inhibition 
results in reduced lymphocyte infiltration at the tumor site when GDF-15 tissue levels are elevated. 
In addition, combined anti-GDF-15 and anti-PD-1 therapy results in increased T lymphocyte 
infiltration in mouse models of pancreatic cancer [144]. The use of GDF-15 as a marker for patients 
who would benefit from such therapy may be a valuable option in such cancers, where anti-PD-1/PD-
L1 inhibitors are used as first-line therapy in intermediate- and poor-risk metastatic tumors. 

Other authors linked GDF-15 to chemotherapy resistance, as in the case of Zheng et al. who 
showed that TAMs derived from a mouse xenograft model of colorectal cancer secrete high levels of 
GDF-15 and contribute to the reduced chemosensitivity in colorectal cancer cells by increasing fatty 
acid oxidation metabolism [145]. A similar mechanism has been suggested by Yu et al. in gastric 
cancer [146]. 

Bonaterra et al. showed that the presence of GDF-15 in prostate cancer tissue was associated 
with macrophage infiltration, and the presence of GDF-15+ macrophages was associated with high-
grade malignancy [147]. This was also highlighted by Sadasivan et al. who found a higher risk of 
biochemical recurrence in patients whose prostate cancer biopsy was enriched for M2 macrophages 
and characterized by elevated GDF-15 expression [148]. 

Lv et al. studied the effect of GDF-15 enriched conditioned medium from M1-polarized THP-1 
macrophages on SCC25, a tongue squamous cell carcinoma cell line, and showed that 
phosphorylation of ErbB2 and its signaling proteins ERK and AKT was increased. This effect was 
reduced by knocking out GDF-15 in SCC25 cells [149]. This activation pattern has been widely 
implicated in tumor progression in several cancer types, particularly breast cancer [141,150]. These 
observations again highlight a tumorigenic effect of GDF-15. However, a direct correspondence 
between the presence of GDF-15 in the tumor microenvironment and squamous cell carcinoma 
progression has not been established [149]. Ratman et al. highlighted the interaction between NF-κB 
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and GDF-15 in the tumor microenvironment by showing that constitutive activation of NF-κB in 
pancreatic cancer cells leads to secretion of GDF-15, a known NF-κB inhibitor, and induces a 
decreased cytotoxic capacity in TAMs [63]. 

Elevated GDF-15 has been strongly associated with metastasis in prostate, esophageal, 
hepatocellular, colorectal, pancreatic, gastric, and endometrial cancers [151]. Esophageal, breast, and 
colon cancer models show that GDF-15 correlates with the loss of E-cadherin and that the inhibition 
of GDF-15 expression decreases cell migration and invasion ability [70,152,153]. In contrast, in A549 
lung cancer cells, overexpression of GDF-15 reduces cell growth and migration and decreases the 
spread of lung and bone metastases [154]. The exact effects and mechanisms explaining GDF-15 
behavior in cancer are still controversial and often paradoxical. Regarding the interplay between 
GDF-15 and macrophages in metastasis, Ding et al. showed that GDF-15 secreted by macrophages 
contributes to an invasive phenotype in colon cancer cells, an effect that was reversed by GDF-15 
neutralizing antibodies. The proposed mechanism was increased phosphorylation of c-Fos via Erk1/2 
activation by GDF-15, which induced the expression of epithelial-mesenchymal transition in colon 
cancer cells [155]. 

3.1.5. Metabolic and Cardiovascular Disorders 

Jung et al. investigated the effect of reduced mitochondrial oxidative function on insulin 
resistance in mice. They found that adipose tissue resident macrophages express low levels of GDF-
15 and show a shift toward M1 polarization. Further experiments showed that treatment with rGDF-
15 decreased the expression of IL-6, nitric oxide synthase 2, and TNF-α, and promoted M2 
polarization by increasing the production of Arg1 and resistin-like alpha [45]. Campderrós et al. 
found that GDF-15 produced by murine brown adipocytes suppressed the expression of TNF-α, 
CCL2, and IL-6 in M1-polarized RAW264.7. In contrast, M2 gene expression was not affected by GDF-
15 [156]. 

Besides its anorexigenic effect and its effect on glucose metabolism, GDF-15 has also been 
proposed as a biomarker for increased mortality risk and recurrent myocardial infarction (MI) after 
acute coronary syndrome. Similarly, GDF-15 serves as a biomarker in heart failure, a common 
complication in patients with coronary heart disease and in atrial fibrillation [101,157–159]. In fact, 
GDF-15 is positively correlated with cardiovascular mortality and all-cause mortality [160]. Mice 
deficient in GDF-15 have higher mortality after induced MI. They also display an increased 
recruitment of polymorphonuclear leukocytes, monocytes, and macrophages in the myocardial tissue 
as compared to controls. Additionally, this recruitment is reduced upon treatment with rGDF-15, 
which decreases leukocyte adhesion, arrest, and transmigration on the endothelium [161]. Taken 
together, GDF-15 elevated levels after MI may exert a protective function by reducing immune cell 
recruitment and, thereby, MI complications, such as cardiac remodeling and heart failure. 

In the context of allogeneic transplantation of cardiac progenitor cells (CPCs) as a therapy for 
myocardial infarction, downregulation of GDF-15 in CPCs resulted decreased activation of Tregs and 
M2 macrophages, preventing an adequate engraftment into the injured myocardium [131]. In 
contrast, GDF-15 secreted by CPCs inhibited NF-κB activation and promoted a shift toward M2 
polarization and Tregs activation, ultimately associated with a cardioprotective outcome. In this 
series of experiments, the effects of GDF-15 as part of the secretome of CPCs were shown to be 
mediated by Tregs, as CPCs injected in absence of Tregs failed to promote the protective effects [131].  

GDF-15 has emerged as a significant player in mechanisms involved in atherosclerosis and 
macrophage function. For example, treatment of THP-1 with rGDF-15 is associated with lipid 
accumulation, whereas GDF-15 knockdown resulted in reduced lipid burden. In addition, rGDF-15 
increased the levels of autophagy-related proteins, suggesting a possible role for GDF-15 in 
autophagosome formation in foam cells [162]. Heduschke et al. supported these findings by showing 
that siGDF-15 decreased the autophagic activity in THP-1, an effect that was reversed by rGDF-15 
supplementation in THP-1 cells [163]. The observation that GDF-15 decreases the release of 
proinflammatory cytokines has been reported to be associated with the decreased expression of TLR4 
in macrophages under oxLDL treatment [164]. This suggests a potential immunomodulatory role of 
GDF-15 in the progression of atherosclerosis by reducing the proinflammatory plaque surroundings. 

4. Conclusions 
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The reviewed studies emphasize the significant interplay of GDF-15 in the regulation of immune 
responses and paracrine effects involving the macrophage system. Although the interplay between 
GDF-15 and the macrophage system has been identified since the discovery of GDF-15, there is still 
a knowledge gap regarding the extent to which this interaction impacts human pathology as well as 
in the understanding of the dynamic mechanism of GDF-15 production and responses of the target 
cells. In order to understand the sequence of events in GDF-15 controlled process, further 
experimentation is needed and mechanisms of target cell responses to GDF-15 have to be deciphered. 
One notable gap is the lack of identification of macrophage receptors for GDF-15 that can clarify its 
immunomodulatory effects. 

5. Future Directions 
Due to its crucial roles in multiple biological processes, GDF-15 has been identified as a potential 

therapeutic target for various diseases. Currently, there is an ongoing recruitment for Phase I/II 
clinical trials investigating the impact of neutralizing GDF-15. Visugromab is an anti-GDF-15 
monoclonal antibody currently being evaluated in a Phase II clinical trial as a combination therapy 
with the checkpoint inhibitor anti-PD-1/PD-L1 for treating advanced solid tumors (NCT04725474). 
AV-380 and Ponsegromab, also anti-GDF-15, are under evaluation as potential therapies for cancer-
induced cachexia in non-small cell lung, pancreatic, and colorectal cancer patients, as well as, in 
metastatic colorectal cancer through Phase I and II studies (NCT05865535)(NCT05546476). 
Additionally, a current application for monoclonal anti-GDF-15 is in the treatment of heart failure, 
with Ponsegromab undergoing recruitment in a Phase II study (NCT05492500). Finally, a multicenter 
Phase II study on Visugromab is recruiting participants to assess the effects of combination therapy 
with Nivolumab on muscle-invasive bladder carcinoma (NCT06059547). The Phase I/IIa clinical trial 
of AZD8853 in patients with metastatic solid tumors was terminated prematurely due to an overall 
evaluation of its risk-benefit profile (NCT05397171). 

In overall, targeting GDF-15 is a very appealing therapeutic field for those pathologies where 
GDF-15 activity has demonstrated a clear impact, such as fibrosis-associated diseases. Conversely, 
animal studies on GDF-15 modulation in sepsis and cancer display significant discrepancies. 
Consequently, a comprehensive investigation of tissue-specific and context-dependent effects is 
necessary to clarify these inconsistencies.  

Further research should focus on deciphering the complex molecular mechanisms governing the 
actions of GDF-15, exploring its potential as a therapeutic target, and elucidating the contextual 
factors that impact its expression in diverse conditions. In addition, exploring the role of cell-specific 
receptors in mediating the effects of GDF-15 presents an exciting opportunity for further 
investigation. A thorough comprehension of the role of GDF-15 in fibrosis may facilitate the 
development of innovative therapeutic interventions and improve the clinical management of fibrotic 
diseases, as well as, prevent the possible adverse effects of the GDF-15-based therapies. 

As reviewed here, the new findings on GDF-15 in the macrophage system reveal a significant 
potential for displaying immunomodulatory properties in contexts involving remodeling, such as MI 
and fibrosis. For example, macrophages expressing GDF-15 have been suggested as a novel 
macrophage type with distinct transcriptomics, which mediates remodeling in sterile muscle injury, 
specifically by enhancing myoblast proliferation and decreasing inflammatory infiltration [60]. 
Figure 4 summarizes the reported cellular effects of GDF-15 in the macrophage system as well as its 
systemic interactions.   
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Figure 4. Overview of the effects of GDF-15 in the macrophage system. Image created by 
biorender.comAuthor Contributions: L.SB writing—original draft preparation, J.K. and H.K.; 
writing—review and editing. 
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Abbreviation list 

α-SMA  alpha Smooth Muscle Actin  
acLDL  acetylated LDL  
ADRB1/2 beta-1 adrenergic receptor 1/2 
AGEs advanced glycation end products 
Akt  protein kinase B  
Arg-1  Arginase 1  
ATF  activating transcription factor  
bp  base pairs  
BM  bone marrow  

BMDM blood peripheral circulating bone marrow-derived 
monocytes 

BMP  bone morphogenetic protein  
CCL  chemokine (C-C motif) ligand  
CCl4 carbon tetrachloride 
CD  cluster of differentiation  
CHOP  C/EBP homologous protein  
CFSE carboxyfluorescein succinimidyl ester 
CHO chinese hamster ovary 
CPC cardiac progenitor cells 
CRIF1  cytokine response 6 (CR6)-interacting factor 1  
CRP  c reactive protein  
DDC 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine 
ECM  extracellular matrix  
EGF  epidermal growth factor  
EGR1  early growth response 1  
ELISA  enzyme-linked immunosorbent assay  
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ERK  extracellular-signal-regulated kinase  
FOXP3 Forkhead-Box-Protein P3 
GDF  growth differentiation factor  
GDNF  glial cell-derived neurotrophic factor  
GFRAL  GDNF family receptor α-like  
HBMVEC human brain microvascular endothelial cells 
HIF  hypoxia-inducible factor  
ICAM-1 intercellular adhesion molecule 1 
IL  interleukin  
i.m. intramuscular 
i.v  intravenous 
KLF  kruppel-like factor  
LDL  low-density lipoprotein  
LFA-1 lymphocyte function-associated antigen 
LPS  lipopolysaccharide  
M-CSF  macrophage colony-stimulating factor  
MCP-1 monocyte chemoattractant protein-1 
MI  myocardial infarction  
MIC-1 macrophage inhibitory cytokine-1 
MMP  matrix metalloproteinase  
mRNA  messenger RNA  
NAG-1  NSAID-activated gene-1  

NF-κB  nuclear factor kappa-light-chain-enhancer of activated B 
cells  

NOS2  nitric oxide synthase 2  
NRF2 nuclear factor erythroid 2-related factor 2 
NSAIDs non-steroidal anti-inflammatory drugs 
oxLDL  oxidized LDL  
PBMC  peripheral blood mononuclear cell  
PD-1 programmed cell death protein-1 
PDF  prostate-derived factor  
PI3K  phosphatidylinositol 3-kinase  
PPAR  proliferator-activated receptor  
PCSK proprotein convertase subtilisin/kexin 
PTGF-β  placental transforming growth factor-β  
RCC renal cell carcinoma 
RET  receptor tyrosine-protein kinase  
RNA  ribonucleic acid  
RT-PCR  reverse transcription real-time polymerase chain reaction  
RXRα retinoid X receptor α 
SAT  subcutaneous adipose tissue  
SPARC  secreted protein acidic and rich in cysteine  
STAT  signal transducer and activator of transcription  
STUB1 STIP1 Homology And U-Box Containing Protein 1 
TAMs  tumor-associated macrophages  
TGF  transforming growth factor  
TFEB  transcription factor EB  
THP-1  human acute monocytic leukemia cell line  
TiNPs  titanium nanoparticles  
TNF  tumor necrosis factor  
VEGF  vascular endothelial growth factor  
YAP  yes-associated protein  
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YKL-40  chitinase-3-like protein 1 (CHI3L1)  
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