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Abstract: Securing the structural safety of blades has become crucial, owing to the increasing size and weight
of blades resulting from the recent development of large wind turbines. Composites are primarily used for
blade manufacturing because of their high specific strength and specific stiffness. However, in composite
blades, joints may experience fractures from the loads generated during wind turbine operation, leading to
deformation caused by changes in the structural stiffness. In this study, 7,132 debonding damage data,
classified by damage type, position, and size, are selected to predict debonding damage based on natural
frequency. The change in the natural frequency caused by debonding damage is acquired through finite
element (FE) modeling and modal analysis. Synchronization between the FE analysis model and manufactured
blades is achieved through modal testing and data analysis. Finally, the relationship between the debonding
damage and the change in natural frequency is examined using artificial neural network techniques.

Keywords: artificial neural network; composite blade; debonding; machine learning; modal analysis; natural
frequency

1. Introduction

Owing to recent problems, such as environmental pollution, there is a growing interest in wind
power, an eco-friendly energy source. The size of wind turbines has been increasing annually for
larger annual energy production (AEP) in limited land. Because this increases the length and weight
of components, blades are manufactured using composites with high specific strength and specific
stiffness [1-4]. Composite blades may suffer debonding damage that separates the spar cap-shear
web joints and the joints of the leading and trailing edges owing to problems in the manufacturing
process, drag and centrifugal force during operation as well as external factors. Because it causes
damage to the wind turbine blades, technology to detect debonding damage is required to secure
structural safety and power generation efficiency [5-7]. Damage detection techniques that are
currently available include visual inspection, ultrasonic waves, thermal image cameras, and machine
vision [8-11]. Du et al. [12] introduced damage detection techniques for wind turbine blades using
thermal imaging cameras or acoustic emission techniques. Kim et al. [13] introduced damage
detection techniques for blades using image detection and tracking techniques. However, these
studies could only detect external damage to blades, and damage detection through internal sensors
could not be applied to the wind turbine blades already installed. To address these problems,
research has been conducted using vibration to detect the changes in stiffness caused by internal
damage through the change in the natural frequency [14]. Joshuva et al. [15] acquired vibration
response data by attaching acceleration sensors to a 50 W-class wind turbine model, and compared
and presented the vibration data caused by blade damage. Awadallah et al. [16] acquired vibration
response data by attaching acceleration sensors to 400 W blades and classified different vibration
characteristics depending on damage through machine learning. These studies, however, were
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conducted on ultra-small wind turbine models, which had structural differences from large wind
turbine blades (e.g., shear web and spar cap), and they only considered the external damage to ultra-
small wind turbine blades. In general, it is difficult to analyze the vibration data of large blades
because they vary in a complex manner depending on various damage factors, such as the size,
position, and number of internal debonding damages. Therefore, studies have been conducted to
address data or problems that are difficult to analyze using machine learning. Kim et al. [17] predicted
damage using machine learning models to diagnose defects in a rotating body. Adrian et al. [18]
explained the learning model coordination method according to the characteristics of the data to be
used. It is practically difficult to apply these two studies to damage detection for composite blades
because the objects are structurally different. Thus, a previous study [19] proposed a damage
prediction algorithm based on the change in the natural frequency caused by debonding damage to
a 5 MW blade. From the study, the possibility of predicting the debonding damage through natural
frequency was determined; however, it was difficult to consider the vibration characteristics that vary
depending on the complex damage factors of the blades. Therefore, research on the improvement of
the accuracy of machine learning algorithms by securing more detailed damage information and
natural frequency data is required to consider complex factors.

This study aims to predict the debonding damage to composite blades for 20 kW-class wind
turbines considering the internal structure of the blades using the artificial neural network (ANN)
technique based on natural frequency characteristics according to the stiffness change. To this end,
joints subjected to damage, the damage position, and the damage size were defined first, and 7,132
debonding damage data for composite blades were modeled using ABAQUS [20], a finite element
analysis (FEA) software program. The modal test was conducted by manufacturing a blade in the
same way as the FEA model, and the model was improved through the acquired natural frequency
data. To predict the debonding damage by acquiring natural frequency data according to the
debonding damage of the model, the debonding damage accuracy for composite blades was
improved by designing and reinforcing the ANN model of MATLAB [21], a numerical analysis
software program.

2. Damage Prediction Model Development

The blade used to predict the debonding damage was the blade model for 20 kW-class wind
turbines developed in Kunsan National University by reflecting the spar cap and shear web, which
are the structural characteristics of large composite blades [22]. This model is shown in Figure 1 and
the specifications are listed in Table 1.

Figure 1. Blade model.

Table 1. Blade specification.

Rated Power 20 kW
Cut-in wind speed 3 m/s
Rated wind speed 11 m/s

Number of blade 3

Blade length 495m
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2.1. Damage Selection

In this study, debonding damage that may occur at six blade joints (Figure 2) was classified based
on the damage type, damage start position, and damage size, and 7,132 damage data were selected.
First, as shown in Figure 3, the damage type was classified into three types. Type 1 has one damage
in a single web while type 2 has two damages in a single web. Type 3 has one damage in each of the
two webs. The damage start position includes points that are 18% away from the root of the blade
where debonding damage has the greatest impact on the safety of the blade, and the points 0.5 m, 1.3
m, and 2.1 m away from the root were selected to consider all the shear web-spar cap joints. The
damage size was selected differently depending on the type to examine changes in the natural
frequency for the entire range of damaged joints as shown in Figure 4a—c. For type 1, 0.2 m-sized
damage began at the damage start point of the joint and increased by 0.2 m to 1.8 m. For type 2, 0.1
m-sized damage began at the damage start point and increased by 0.1 m to 0.5 m. In type 3, the
maximum damage size was selected differently depending on the damage start point to express the
occurrence of one debonding damage at each of the two joints. At the 0.5 m point from the root, 0.2
m-sized damage began and increased by 0.2 m to 1.8 m. At the 1.3 m point from the root, 0.2 m-sized
damage began and increased by 0.2 m to 1.6 m. Finally, at the 2.1 m point from the root, 0.2 m-sized
damage began and increased by 0.2 m to 0.8 m.
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Figure 3. Blade damage type.
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Figure 4. Damage selection criteria by type.

2.2. Acquisition of Unique Characteristics

Modal analysis or natural frequency analysis identify the natural frequency of a structure and
its geometric deformation according to the natural frequency of each mode. They are used to predict
the resonance of a structure or its geometric deformation by vibration. In this study, modal analysis
of debonding damage was conducted using ABAQUS, an FEA software program. The FE model used
S4R shell elements, and the numbers of elements and nodes were 40,153 and 41,736, respectively. The
blade model without damage was constructed by bonding the spar cap-shear web joints and the joints
of the leading and trailing edges using the multi-point constraint (MPC) technique. Subsequently,
7,132 damage models were constructed by removing the bonds of the debonding damage occurrence
points according to the damage selection criteria in section 2.1. Modal analysis was conducted by
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restraining the degrees of freedom of the root of the model in the X, Y, and Z axes as initial constraints.
Based on this, the first to sixth natural frequency data were acquired for 7,132 debonding damage
models.

2.3. Prediction Model Construction

The ANN technique, a type of supervised learning, was used to analyze changes in the natural
frequency data for each damage model according to the damage selection criteria in section 2.1. The
ANN technique is mainly used to solve problems in certain areas without clear definitions, such as
images, voice recognition, inference, and association, because it facilitates fast calculations through
the patterns trained with various types of input/output data and can express a number of
input/output relationships with multiple hidden layers. It is necessary to prevent overfitting, which
cannot properly perform the prediction of other data learning models owing to excessive fitting to
one learning model during the learning process. To this end, the data required for machine learning
were classified into data for training, testing, and validation. In addition, the cross validation
technique that re-selects new training datasets and repeats training was used to minimize data
redundancy.

3. Modal Test for Model Synchronization
3.1. Blade Manufacturing

In this study, composite blades for 20 kW-class wind turbines were manufactured for the
validation of the blade debonding damage prediction algorithm in Section 2. The weight difference
from the FEA model was less than 5%. The specifications of the blades are listed in Table 2. The modal
test was conducted to improve the FEA model through the acquisition and analysis of the vibration
characteristics. In addition, four blades with debonding damage were manufactured for the
algorithm validation.

Table 2. Blade specifications.

GFRP CFRP
Properties i-
P UD DB I UD DB
axial
Long. Elastic
modulus 40,100 12,000 30,500 133,000 82,000
[GPa]
Trans. Elastic
modulus 12,300 12,000 15,100 9,000 80,500
[GPa]
Shear modulus | 11,000 7,100 4,400 80,500
[GPa]
Long.
. , . 0.26 0.55 0.43 0.34 0.4
Poisson’s ratio
Layer
Thickness 0.91 0.59 0.91 0.1 091
[mm]

3.3. Modal Test

To acquire and analyze the vibration characteristics of the composite blades, a fixing jig and a
blade were combined and an impact was applied to the blade using an impact hammer. Vibration
response and natural frequency data were then acquired using a non-contact sensor. Table 3 lists the
specifications of the PRT sensor and high-speed camera used for measurement. Vibration response
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data were measured at a point 2.7 m away from the root because of the measurement range limit of
the sensor. The related contents are shown in Figures 5-7.

Table 3. Sensor specifications.

Properties PRT sensor high speed camera Data logger
Model ILD 1700-100 Photron Fastcam Mini GTDL-360
Maximum
measurement 100 kHz 2 kHz 1 kHz
rate [Hz]
|
PRT sensor

1 3k

impact

X
hammer [_» ‘ high speed camera

=

data logger

Figure 5. Schematic diagram of modal test.

2,700mm |

PRT sensor, High speed camera

4950mm

Figure 6. Position of PRT sensor and high speed camera.

Figure 7. Composite blade modal test.
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4. Results and Discussion
4.1. Blade Model Synchronization

Natural frequency data were acquired by conducting the test described in Section 3.3 and
constructing a model without damage. Figure 8 shows the vibration response data and natural
frequency data while Table 4 lists the modal test results.

—— PRT sensor (2.7m) High speed camera (2.7m)

I

Digtance[mm]|_

(=]

05 10 15 20 05 1.0 15 20
Time[s] Time[s]

(a) (b)

Figure 8. Vibration response data using (a) PRT sensor and (b) high speed camera.

Table 4. Modal test result.

Mode Frequency(PRT) | Frequency(camera)
1 4.81 4.82
2 11.76 11.76
3 16.41 16.40
4 3291 32.9
5 50.53 50.5
6 56.3 56.28

4.2. Natural Frequency Analysis

The blade model was synchronized so that the error from the results in Table 4 could be less than
5%. The modal analysis of 7,132 blade damage models was then conducted using the method
described in Section 2.2. Figure 9 shows the first to sixth natural frequency results of the blade without
damage and the corresponding behavior.
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Figure 9. Blade modal analysis results and motion.

4.3. Damage Prediction Model Results

The debonding damage prediction accuracy was examined using the ANN technique based on
the natural frequency data acquired through modal analysis. The input data were the first to sixth
natural frequency data, and the target data were set to predict joints subjected to the debonding
damage, damage start position, and damage size. Tables 5 and 6 list the information on the input and
target data. The number of hidden layers was set to two considering the forms and numbers of the
input and target data as well as the learning time. Each hidden layer contained 100 neurons. Figure
10 shows the damage prediction results by type. The x-axis represents the target damage information
to be predicted while the y-axis indicates the damage information predicted through machine
learning. As shown in Figure 10a, the damage prediction accuracy of type 1 was found to be 97%,
whereas the damage size from 200 to 1,800 mm was not completely distinguished. Figure 10b shows
that the damage prediction accuracy of type 2 was 86%. Unlike type 1, 1,800 mm damage was
predicted even though the maximum damage size was set to 500 mm. Finally, as shown in Figure
10c, the damage prediction accuracy of type 3 was 86%, and it was found that the damage size was
not completely predicted owing to the large difference from the diagonal values obtained using a
regression equation caused by complex changes in the natural frequency depending on the damage.

Table 5. Input data.

Natural frequency (Hz)
No. 1st 2nd 3rd 4t 5t 6th
1 4.63 12.34 16.03 33.84 52.18 54.64
2 4.57 12 15.84 | 33.58 52.06 | 54.33
3 4.54 11.95 15.78 33.45 52 54.16
Input 4 4.53 11.93 15.77 | 33.33 51.94 | 54.09
data

7,129 4.63 12.31 15.98 33.74 51.65 54.43
7,130 4.62 12.30 15.96 33.73 51.54 54.42
7,131 4.62 12.28 15.93 33.67 51.39 54.42
7,132 4.62 12.27 15.90 33.53 51.09 54.33
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Table 6. Target data.

.. location | length | . . location | length
No. ’Oint 1 1 ]O;“t 2 2
(mm) | (mm) (mm) | (mm)
1 0 0 0 0 0 0
2 1 500 200 0 0 0
3 1 500 600 0 0 0
Target 4 1 500 1,000 0 0 0
data
7129 | 5 2,100 800 6 2,100 200
7130 | 5 2,100 800 6 2,100 400
7,131 5 2,100 800 6 2,100 600
7,132 5 2,100 800 6 2,100 800
| =R
i bl 0 3,
L
wl Ay iedls
“ sles 1.
T e T e ST e T
(a) Type 1 (97%) (b) Type 2 (86%) (c) Type 3 (86%)

Figure 10. Damage prediction accuracy by type

4.4. Learning Model Improvement for Higher Accuracy

To supplement the results that failed to accurately predict the damage information from the
complex changes in the natural frequency caused by changes in the damage factors, a secondary
learning model was established by raising the weight of the first to third natural frequencies, which
exhibited larger changes in the event of debonding damage, and increasing the number of hidden
layers to five for more complex forms of data prediction despite the increased learning time. The
prediction accuracy of the model was examined. As shown in Figure 11a, the damage prediction
accuracy of type 1 was found to be 91%, and the damage size from 200 to 1,800 mm was predicted
unlike the prediction results before the improvement. As shown in Figure 11b, the type 2 damage
prediction accuracy was improved to 99%, and the damage start position and damage size were
predicted within the selected range. Finally, Figure 11c shows that the damage prediction accuracy
of type 3 was improved to 99%, and predictions were performed within the selected range. For all the
types, the damage prediction results were distributed according to the damage selection criteria
compared to the results before the improvement. These results confirmed the accuracy improvement
of the debonding damage prediction model based on the natural frequency of composite blades.
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Figure 11. Damage prediction accuracy by type through learning model improvement.

4.5. Composite Blade Damage Detection Performance Verification

To verify the performance of the improved algorithm, the natural frequency data of the blades
with debonding damage were measured and the ability of machine learning to obtain the debonding
damage information was examined. Figure 12 shows the damage detection accuracy of the
manufactured blades. The damage prediction accuracy was found to be 67%, but no damage
prediction tendency was observed. This appears to be because there was a difference between the
damage prediction algorithm based on the modal analysis results and the damage characteristics of
the manufactured blades. To address this problem, the algorithm was improved by examining the
detailed damage information of the manufactured blades and performing further training with 1,000
sets of similar damage characteristics. Figure 13 shows the accuracy of the improved algorithm based
on the manufactured blade data. The damage prediction accuracy was found to be 86%, and a damage
prediction tendency was observed unlike in the initial model. This indicates that the damage
prediction algorithm for composite blades requires the development of a learning model using the
dataset based on the FEA of the target blade and the improvement of learning using the dataset based
on the actual environment.

All: R=0.66544
1800 = oo

1600 2 Data

1400 | |- ¥=T

1200
1000
800
600

400

Output ~= 0.68"Target + 76

200 o0 O O @MOo@m O 0O

o . . .
500 1000 1500
Target

Figure 12. Damage prediction accuracy of manufactured blades.
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Figure 13. Damage prediction accuracy improvement model.

4. Conclusions

In this study, the accuracy of a damage prediction algorithm was analyzed by acquiring the data
on the change in the natural frequency caused by debonding damage to the inside of composite
blades, and the following results were obtained.

(1) The prediction accuracy was identified by the debonding damage type, and it was found that
the prediction results were different from the damage selection criteria.

(2) The learning model was improved to reflect complex data characteristics, and this improved
the prediction accuracy in accordance with the damage selection criteria.

(3) For the application of the damage prediction algorithm in the operation phase, it is deemed
necessary to improve the accuracy of the algorithm through field data and periodic measurement
data.
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