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Abstract: Securing the structural safety of blades has become crucial, owing to the increasing size and weight 

of blades resulting from the recent development of large wind turbines. Composites are primarily used for 

blade manufacturing because of their high specific strength and specific stiffness. However, in composite 

blades, joints may experience fractures from the loads generated during wind turbine operation, leading to 

deformation caused by changes in the structural stiffness. In this study, 7,132 debonding damage data, 

classified by damage type, position, and size, are selected to predict debonding damage based on natural 

frequency. The change in the natural frequency caused by debonding damage is acquired through finite 

element (FE) modeling and modal analysis. Synchronization between the FE analysis model and manufactured 

blades is achieved through modal testing and data analysis. Finally, the relationship between the debonding 

damage and the change in natural frequency is examined using artificial neural network techniques. 

Keywords: artificial neural network; composite blade; debonding; machine learning; modal analysis; natural 

frequency 

 

1. Introduction 

Owing to recent problems, such as environmental pollution, there is a growing interest in wind 

power, an eco-friendly energy source. The size of wind turbines has been increasing annually for 

larger annual energy production (AEP) in limited land. Because this increases the length and weight 

of components, blades are manufactured using composites with high specific strength and specific 

stiffness [1–4]. Composite blades may suffer debonding damage that separates the spar cap-shear 

web joints and the joints of the leading and trailing edges owing to problems in the manufacturing 

process, drag and centrifugal force during operation as well as external factors. Because it causes 

damage to the wind turbine blades, technology to detect debonding damage is required to secure 

structural safety and power generation efficiency [5–7]. Damage detection techniques that are 

currently available include visual inspection, ultrasonic waves, thermal image cameras, and machine 

vision [8–11]. Du et al. [12] introduced damage detection techniques for wind turbine blades using 

thermal imaging cameras or acoustic emission techniques. Kim et al. [13] introduced damage 

detection techniques for blades using image detection and tracking techniques. However, these 

studies could only detect external damage to blades, and damage detection through internal sensors 

could not be applied to the wind turbine blades already installed. To address these problems, 

research has been conducted using vibration to detect the changes in stiffness caused by internal 

damage through the change in the natural frequency [14]. Joshuva et al. [15] acquired vibration 

response data by attaching acceleration sensors to a 50 W-class wind turbine model, and compared 

and presented the vibration data caused by blade damage. Awadallah et al. [16] acquired vibration 

response data by attaching acceleration sensors to 400 W blades and classified different vibration 

characteristics depending on damage through machine learning. These studies, however, were 
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conducted on ultra-small wind turbine models, which had structural differences from large wind 

turbine blades (e.g., shear web and spar cap), and they only considered the external damage to ultra-

small wind turbine blades. In general, it is difficult to analyze the vibration data of large blades 

because they vary in a complex manner depending on various damage factors, such as the size, 

position, and number of internal debonding damages. Therefore, studies have been conducted to 

address data or problems that are difficult to analyze using machine learning. Kim et al. [17] predicted 

damage using machine learning models to diagnose defects in a rotating body. Adrian et al. [18] 

explained the learning model coordination method according to the characteristics of the data to be 

used. It is practically difficult to apply these two studies to damage detection for composite blades 

because the objects are structurally different. Thus, a previous study [19] proposed a damage 

prediction algorithm based on the change in the natural frequency caused by debonding damage to 

a 5 MW blade. From the study, the possibility of predicting the debonding damage through natural 

frequency was determined; however, it was difficult to consider the vibration characteristics that vary 

depending on the complex damage factors of the blades. Therefore, research on the improvement of 

the accuracy of machine learning algorithms by securing more detailed damage information and 

natural frequency data is required to consider complex factors. 

This study aims to predict the debonding damage to composite blades for 20 kW-class wind 

turbines considering the internal structure of the blades using the artificial neural network (ANN) 

technique based on natural frequency characteristics according to the stiffness change. To this end, 

joints subjected to damage, the damage position, and the damage size were defined first, and 7,132 

debonding damage data for composite blades were modeled using ABAQUS [20], a finite element 

analysis (FEA) software program. The modal test was conducted by manufacturing a blade in the 

same way as the FEA model, and the model was improved through the acquired natural frequency 

data. To predict the debonding damage by acquiring natural frequency data according to the 

debonding damage of the model, the debonding damage accuracy for composite blades was 

improved by designing and reinforcing the ANN model of MATLAB [21], a numerical analysis 

software program. 

2. Damage Prediction Model Development 

The blade used to predict the debonding damage was the blade model for 20 kW-class wind 

turbines developed in Kunsan National University by reflecting the spar cap and shear web, which 

are the structural characteristics of large composite blades [22]. This model is shown in Figure 1 and 

the specifications are listed in Table 1.  

 

Figure 1. Blade model. 

Table 1. Blade specification. 

Rated Power 20 kW 

Cut-in wind speed 3 m/s 

Rated wind speed 11 m/s 

Number of blade 3 

Blade length 4.95 m 
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2.1. Damage Selection 

In this study, debonding damage that may occur at six blade joints (Figure 2) was classified based 

on the damage type, damage start position, and damage size, and 7,132 damage data were selected. 

First, as shown in Figure 3, the damage type was classified into three types. Type 1 has one damage 

in a single web while type 2 has two damages in a single web. Type 3 has one damage in each of the 

two webs. The damage start position includes points that are 18% away from the root of the blade 

where debonding damage has the greatest impact on the safety of the blade, and the points 0.5 m, 1.3 

m, and 2.1 m away from the root were selected to consider all the shear web-spar cap joints. The 

damage size was selected differently depending on the type to examine changes in the natural 

frequency for the entire range of damaged joints as shown in Figure 4a–c. For type 1, 0.2 m-sized 

damage began at the damage start point of the joint and increased by 0.2 m to 1.8 m. For type 2, 0.1 

m-sized damage began at the damage start point and increased by 0.1 m to 0.5 m. In type 3, the 

maximum damage size was selected differently depending on the damage start point to express the 

occurrence of one debonding damage at each of the two joints. At the 0.5 m point from the root, 0.2 

m-sized damage began and increased by 0.2 m to 1.8 m. At the 1.3 m point from the root, 0.2 m-sized 

damage began and increased by 0.2 m to 1.6 m. Finally, at the 2.1 m point from the root, 0.2 m-sized 

damage began and increased by 0.2 m to 0.8 m. 

 

Figure 2. Blade cross section. 

 

Figure 3. Blade damage type. 
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(a) 

 

(b) 

 

(c) 

Figure 4. Damage selection criteria by type. 

2.2. Acquisition of Unique Characteristics 

Modal analysis or natural frequency analysis identify the natural frequency of a structure and 

its geometric deformation according to the natural frequency of each mode. They are used to predict 

the resonance of a structure or its geometric deformation by vibration. In this study, modal analysis 

of debonding damage was conducted using ABAQUS, an FEA software program. The FE model used 

S4R shell elements, and the numbers of elements and nodes were 40,153 and 41,736, respectively. The 

blade model without damage was constructed by bonding the spar cap-shear web joints and the joints 

of the leading and trailing edges using the multi-point constraint (MPC) technique. Subsequently, 

7,132 damage models were constructed by removing the bonds of the debonding damage occurrence 

points according to the damage selection criteria in section 2.1. Modal analysis was conducted by 
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restraining the degrees of freedom of the root of the model in the X, Y, and Z axes as initial constraints. 

Based on this, the first to sixth natural frequency data were acquired for 7,132 debonding damage 

models. 

2.3. Prediction Model Construction 

The ANN technique, a type of supervised learning, was used to analyze changes in the natural 

frequency data for each damage model according to the damage selection criteria in section 2.1. The 

ANN technique is mainly used to solve problems in certain areas without clear definitions, such as 

images, voice recognition, inference, and association, because it facilitates fast calculations through 

the patterns trained with various types of input/output data and can express a number of 

input/output relationships with multiple hidden layers. It is necessary to prevent overfitting, which 

cannot properly perform the prediction of other data learning models owing to excessive fitting to 

one learning model during the learning process. To this end, the data required for machine learning 

were classified into data for training, testing, and validation. In addition, the cross validation 

technique that re-selects new training datasets and repeats training was used to minimize data 

redundancy. 

3. Modal Test for Model Synchronization  

3.1. Blade Manufacturing 

In this study, composite blades for 20 kW-class wind turbines were manufactured for the 

validation of the blade debonding damage prediction algorithm in Section 2. The weight difference 

from the FEA model was less than 5%. The specifications of the blades are listed in Table 2. The modal 

test was conducted to improve the FEA model through the acquisition and analysis of the vibration 

characteristics. In addition, four blades with debonding damage were manufactured for the 

algorithm validation. 

Table 2. Blade specifications. 

Properties 

GFRP CFRP 

UD DB 
Tri- 

axial 
UD DB 

Long. Elastic 

modulus 

[GPa] 

40,100 12,000 30,500 133,000 82,000 

Trans. Elastic 

modulus 

[GPa] 

12,300 12,000 15,100 9,000 80,500 

Shear modulus 

[GPa] 
3,400 11,000 7,100 4,400 80,500 

Long. 

Poisson’s ratio  
0.26 0.55 0.43 0.34 0.4 

Layer 

Thickness 

[mm] 

0.91 0.59 0.91 0.1 0.91 

3.3. Modal Test 

To acquire and analyze the vibration characteristics of the composite blades, a fixing jig and a 

blade were combined and an impact was applied to the blade using an impact hammer. Vibration 

response and natural frequency data were then acquired using a non-contact sensor. Table 3 lists the 

specifications of the PRT sensor and high-speed camera used for measurement. Vibration response 
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data were measured at a point 2.7 m away from the root because of the measurement range limit of 

the sensor. The related contents are shown in Figures 5–7. 

Table 3. Sensor specifications. 

Properties PRT sensor high speed camera Data logger 

Model ILD 1700-100 Photron Fastcam Mini GTDL-360 

Maximum  

measurement 

rate [Hz] 

100 kHz 2 kHz 1 kHz 

 

Figure 5. Schematic diagram of modal test. 

 

Figure 6. Position of PRT sensor and high speed camera. 

 

Figure 7. Composite blade modal test. 
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4. Results and Discussion 

4.1. Blade Model Synchronization 

Natural frequency data were acquired by conducting the test described in Section 3.3 and 

constructing a model without damage. Figure 8 shows the vibration response data and natural 

frequency data while Table 4 lists the modal test results. 

 

(a)      (b) 

Figure 8. Vibration response data using (a) PRT sensor and (b) high speed camera. 

Table 4. Modal test result. 

Mode Frequency(PRT) Frequency(camera) 

1 4.81 4.82 

2 11.76 11.76 

3 16.41 16.40 

4 32.91 32.9 

5 50.53 50.5 

6 56.3 56.28 

4.2. Natural Frequency Analysis 

The blade model was synchronized so that the error from the results in Table 4 could be less than 

5%. The modal analysis of 7,132 blade damage models was then conducted using the method 

described in Section 2.2. Figure 9 shows the first to sixth natural frequency results of the blade without 

damage and the corresponding behavior.  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 May 2024                   doi:10.20944/preprints202405.1779.v1

https://doi.org/10.20944/preprints202405.1779.v1


 8 

 

 

Figure 9. Blade modal analysis results and motion. 

4.3. Damage Prediction Model Results 

The debonding damage prediction accuracy was examined using the ANN technique based on 

the natural frequency data acquired through modal analysis. The input data were the first to sixth 

natural frequency data, and the target data were set to predict joints subjected to the debonding 

damage, damage start position, and damage size. Tables 5 and 6 list the information on the input and 

target data. The number of hidden layers was set to two considering the forms and numbers of the 

input and target data as well as the learning time. Each hidden layer contained 100 neurons. Figure 

10 shows the damage prediction results by type. The x-axis represents the target damage information 

to be predicted while the y-axis indicates the damage information predicted through machine 

learning. As shown in Figure 10a, the damage prediction accuracy of type 1 was found to be 97%, 

whereas the damage size from 200 to 1,800 mm was not completely distinguished. Figure 10b shows 

that the damage prediction accuracy of type 2 was 86%. Unlike type 1, 1,800 mm damage was 

predicted even though the maximum damage size was set to 500 mm. Finally, as shown in Figure 

10c, the damage prediction accuracy of type 3 was 86%, and it was found that the damage size was 

not completely predicted owing to the large difference from the diagonal values obtained using a 

regression equation caused by complex changes in the natural frequency depending on the damage. 

Table 5. Input data. 

Input 

data 

Natural frequency (Hz) 

No. 1st 2nd 3rd 4th 5th 6th 

1 4.63 12.34 16.03 33.84 52.18 54.64 

2 4.57 12 15.84 33.58 52.06 54.33 

3 4.54 11.95 15.78 33.45 52 54.16 

4 4.53 11.93 15.77 33.33 51.94 54.09 

︙ ︙ ︙ ︙ ︙ ︙ ︙ 

7,129 4.63 12.31 15.98 33.74 51.65 54.43 

7,130 4.62 12.30 15.96 33.73 51.54 54.42 

7,131 4.62 12.28 15.93 33.67 51.39 54.42 

7,132 4.62 12.27 15.90 33.53 51.09 54.33 
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Table 6. Target data. 

Target 

data 

No. 
joint 

1 

location 

1 

(mm) 

length 

1 

(mm) 

joint 

2 

location 

2 

(mm) 

length 

2 

(mm) 

1 0 0 0 0 0 0 

2 1 500 200 0 0 0 

3 1 500 600 0 0 0 

4 1 500 1,000 0 0 0 

︙ ︙ ︙ ︙ ︙ ︙ ︙ 

7,129 5 2,100 800 6 2,100 200 

7,130 5 2,100 800 6 2,100 400 

7,131 5 2,100 800 6 2,100 600 

7,132 5 2,100 800 6 2,100 800 

 
(a) Type 1 (97%)    (b) Type 2 (86%)   (c) Type 3 (86%) 

Figure 10. Damage prediction accuracy by type 

4.4. Learning Model Improvement for Higher Accuracy 

To supplement the results that failed to accurately predict the damage information from the 

complex changes in the natural frequency caused by changes in the damage factors, a secondary 

learning model was established by raising the weight of the first to third natural frequencies, which 

exhibited larger changes in the event of debonding damage, and increasing the number of hidden 

layers to five for more complex forms of data prediction despite the increased learning time. The 

prediction accuracy of the model was examined. As shown in Figure 11a, the damage prediction 

accuracy of type 1 was found to be 91%, and the damage size from 200 to 1,800 mm was predicted 

unlike the prediction results before the improvement. As shown in Figure 11b, the type 2 damage 

prediction accuracy was improved to 99%, and the damage start position and damage size were 

predicted within the selected range. Finally, Figure 11c shows that the damage prediction accuracy 

of type 3 was improved to 99%, and predictions were performed within the selected range. For all the 

types, the damage prediction results were distributed according to the damage selection criteria 

compared to the results before the improvement. These results confirmed the accuracy improvement 

of the debonding damage prediction model based on the natural frequency of composite blades. 
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(a) Type 1 (91%)  (b) Type 2 (99%)  (c) Type 3 (99%) 

Figure 11. Damage prediction accuracy by type through learning model improvement. 

4.5. Composite Blade Damage Detection Performance Verification 

To verify the performance of the improved algorithm, the natural frequency data of the blades 

with debonding damage were measured and the ability of machine learning to obtain the debonding 

damage information was examined. Figure 12 shows the damage detection accuracy of the 

manufactured blades. The damage prediction accuracy was found to be 67%, but no damage 

prediction tendency was observed. This appears to be because there was a difference between the 

damage prediction algorithm based on the modal analysis results and the damage characteristics of 

the manufactured blades. To address this problem, the algorithm was improved by examining the 

detailed damage information of the manufactured blades and performing further training with 1,000 

sets of similar damage characteristics. Figure 13 shows the accuracy of the improved algorithm based 

on the manufactured blade data. The damage prediction accuracy was found to be 86%, and a damage 

prediction tendency was observed unlike in the initial model. This indicates that the damage 

prediction algorithm for composite blades requires the development of a learning model using the 

dataset based on the FEA of the target blade and the improvement of learning using the dataset based 

on the actual environment. 

 

Figure 12. Damage prediction accuracy of manufactured blades. 
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Figure 13. Damage prediction accuracy improvement model. 

4. Conclusions 

In this study, the accuracy of a damage prediction algorithm was analyzed by acquiring the data 

on the change in the natural frequency caused by debonding damage to the inside of composite 

blades, and the following results were obtained. 

(1) The prediction accuracy was identified by the debonding damage type, and it was found that 

the prediction results were different from the damage selection criteria. 

(2) The learning model was improved to reflect complex data characteristics, and this improved 

the prediction accuracy in accordance with the damage selection criteria. 

(3) For the application of the damage prediction algorithm in the operation phase, it is deemed 

necessary to improve the accuracy of the algorithm through field data and periodic measurement 

data. 
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