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1. Purpose

Let K = Q() be an algebraic number field of degree n, generated by the algebraic integer vy, with
ring of integers Zk and discriminant Dg. It is a classical problem of algebraic number theory, going
back to R. Dedekind [29], K. Hensel [90] and H. Hasse [89] to decide if the ring Zg can be generated by
a single element « € Zg, that is, if it is mono-generated, Zg = Z[«]. In this case we say that the ring
Zk, or the field K is monogenic. In this case {1,a,...a" '} is an integral basis, called power integral basis.

Recently this area is developing very fast. In order to create a suitable forum to present
recent results on monogenity the author started a series of online meetings "Monogenity and power
integral bases" ! in 2021. The purpose was to make contacts, circulate preprints and results, support
collaboration between researchers all over the world working in this area. During the time of pandemy
this was the only way to contact, but later on this proved to be an easy and fast way of contacting.
Therefore until March 2024 we already had nine meetings and we hope to continue.

The main purpose of this paper is to give an overview of the latest developments of monogenity
theory, about the results that were presented at the online meetings and the results that appeared
parallel. The paper is also a kind of extension of the book [64], appeared in 2019. Most of these results
are not yet contained there.

2. Introduction

In this section in favour of the reader we collect some further concepts on monogenity.
For any primitive element & € Zg (that is K = Q(a)) the index of « is defined as the module index

I(a) = (Zx : Z[a)).

We obviously have
D(a) = I(a)? Dg,

where D(«) is the discriminant of «,

D)= [I (2l — a2,

1<i<j<n

L https://sway.cloud.microsoft/ F2kZzeZ3bmD4dFfy?ref=Link
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al) denoting the conjugates of a corresponding to @ (i =1,...,n) (in the following we shall denote
similarly the conjugates of any element of K). Obviously, I(«) = 1, if and only if Zg = Z[a], that is if
{1,a,...a"1} is an integral basis, or in other words a generates a power integral basis in K.

The field index m(K) of K is defined as

m(K) = ged{I(a) |& € Zg, K = Q(a)}.

If K is monogenic, there are elements of index 1, the field index is also equal to 1. The converse is not
true: the field index may happen to be 1 without the field being monogenic.

If a, B are primitive elements in Zg and & + € Z or « — € Z then obviously their indices
are equal. Such elements are called equivalent. It was proved by B.]J. Birch and J. R. Merriman [21]
and then in an effective form by K. Gyéry [83] that up to equivalence there are only finitely many
generators of power integral bases in any number field K.

For any integral basis (1,wo, ..., wy) of K set

LX) = X1+’ X + ...+ w! X,
(i=1,...,n). Then (see [64])

p) = T1 (19X -L9X)) =10, X) D
<i<j<n

where I(Xp, ..., X,)isa homogeneous polynomial of degree n(n— 1) /2 with integer coefficients, with
the property that for any primitive element & = x; + woxp + ... wyx,; € Zg we have

I(a) = |[I(x2,...,x4)|

The polynomial I(Xj,...,X,) is called the index form corresponding to the integral basis
(1,wy,...,wy). Since equivalent algebraic integers have the same index, it is independent of Xj.
Therefore determining elements & € Zg of index m is equivalent to solving the index form equation

I(xp,...,xy) =m in x3,...,%, € Z.

A non-zero irreducible polynomial f(x) € Z|[x] is called monogenic if a root « of f(x) generates a
power integral basis in the field K = Q(«). Obviously, if the polynomial f(x) is monogenic, then K is
also monogenic, but the converse is not true. The field K may happen to be monogenic without f(x)
being monogenic. The index of f(x) is defined as ind(f) = (Zk : Z[«]).

3. Structure of the Paper

As mentioned above, our purpose is to summarize the results obtained after 2019, the appearance
of [64], with a special emphasis to the results presented at the online meetings "Monogenity and power
integral bases". In the following section we collect the most important tools that were used in several
works. These may be useful for further application. Then we collect the most important results and
finally we try to indicate some possible perspectives of further research.

4. Tools

4.1. Dedekind’s Criterion

Let f(x) =TT/ ¢i(x)zi modulo p be the factorization of f(x) modulo p into powers of monic

irreducible coprime polynomials of IF [x].
For completeness we recall here a well-known theorem of Dedekind:
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Theorem 1. (Chapter I, Proposition 8.3 of [145])
If p does not divide the index I(«) = (Zg : Z[a]), then

)

4

pZx =] Tw;',
i=1

where p; = pZy + ¢;(«) Ly and the residue degree of p; is f(p;) = deg(¢;).

As indicated above, it is very important to have a tool to determine prime divisors of the indices
of algebraic integers. Therefore the following well known criterion of Dedekind is very frequently
used:

Theorem 2. (Dedekind’s criterion [29], see also [27] Theorem 6.1.4, [147] p. 295)
Let f(x) € Z|x] be a monic non-zero irreducible polynomial with a root «, let K = Q(w), and let p be a prime
number. Let f(x) = [Ti_; ¢i(x) ' mod p be the factorization of f(x) in F,|[x], with monic ¢; € Z[x] such

that their reductions ¢;(x) are irreducible and pairwise coprime over ¥ . Set

f(x) ~TTiz 94 ()
; :

M(x) =

Then M(x) € Z[x| and the following statements are equivalent:

1. p does not divide the index 1(«) = (Zg : Z[a]).
2. Foreveryi=1,...,r, either {; = 1 or {; > 2 and ¢;(x) does not divide M(x) in Fp[x].

4.2. The Field Index

We also recall a simple but very important statement of Hensel:

Theorem 3. (K. Hensel [90] p. 280)
The prime factors of the field index are smaller than the degree of the field.

Denote by v, (k) the highest power of the prime p dividing the integer k.

Theorem 4. (H. T. Engstrom [30])
For number fields of degree n <7, v,(m(K)) is explicitly determined by the factorization of p into powers of
prime ideals of pZ.

The corresponding tables of [30] are too long to include here, but they present the explicit
exponents.

4.3. Newton Polygon Method

If p divides the index I(a) = (Zg : Z[«]) then Dedekind’s Theorem 1 can not be applied.

Using Newton polygons, an alternative method was given by Ore [146] to calculate I(x) = (Zg :
Z[a]), Dk and the prime ideal factorization of primes in Zg. This was further developed among others
by J. Montes and E. Nart [141], L. El Fadil, . Montes and E. Nart [62], L. El Fadil [32]. This theory was
extended to so called higher order Newton polygons by J. Guardia, J. Montes and E. Nart [82]. The
method is also called Montes algorithm.

Here we only give a short introduction to some basic notions and statement of this very technical
method, based on the explanation used in [56]. During the recent years a huge amount of papers
applied this method.

For any prime p, let v, be the p-adic valuation of Q. Denote by Q, its p-adic completion, by Z,
the ring of p-adic integers. Let v, be the Gauss’s extension of v, to Q,(x), vp(P) = min(vy(a;), (i =
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0,...,n) for any polynomial P(x) = Y ; a;x' € Q,[x] and extended by v,(P/Q) = v, (P) — v,(Q) for
0 # P,Q € Qp[x]. Let ¢ € Zy[x] be a monic polynomial whose reduction is irreducible in Fy[x], let
Fy be the field F,[x] /(¢). For any monic polynomial f(x) € Zp[x], upon the Euclidean division by
successive powers of ¢, we expand f(x) as follows:

This is called the ¢p-expansion of f(x) (deg(a;(x)) < deg(¢),i =1,...¢). The $-Newton polygon of f(x)
with respect to p, is the lower boundary convex envelope of the set of points { (i,v,(a;(x))), a;(x) # 0}
in the Euclidean plane, which we denote by Ny f. The ¢-Newton polygon of f, is the process of joining
the edges S, ..., S, ordered by increasing slopes, which can be expressed as

Npf=S14---+5.

For every side S; of Ny f, the length of S;, denoted £(S;) is the length of its projection to the x-axis. Its
height, denoted by h(S;) is the length of its projection to the y-axis. Let d(S;) = ged(¢(S;), h(S;)) be the
ramification degree of S. The principal ¢p-Newton polygon of f, denoted N;r f, is the part of the polygon
Ny f, which is determined by joining all sides of negative slopes. For every side S of N;; f, with initial
point (s, us) and length ¢, and for every 0 < i < ¢, we attach the following residue coefficient c; € Fy as
follows:
{ 0, if (s 41, us;) lies strictly above S,
¢ =

(m) mod (p,¢(x)), if (s+1,usy;)lieson S,

where (p, ¢(x)) is the maximal ideal of Z [x] generated by p and ¢. Let A = —h/e be the slope of S,
where /i and e are two positive coprime integers. Then d = /e is the degree of S. The points with
integer coordinates lying on S are exactly

(s,us), (s+eus—h), - ,(s+de,us —dh).
Thus, if i is not a multiple of e, then (s + i, ug,;) does not lie in S, and so ¢; = 0. The polynomial

fs(y) = tay? +ta 1y 1+ iy +to € Fylyl,

is called the residual polynomial of f(x) associated to the side S, where for every i = 0,...,d, t; = cj,.
Let N(‘; f =514 ---+ S, be the principal ¢-Newton polygon of f with respect to p. We say that f

is a ¢-regular polynomial with respect to p, if fs,(v) is square free in Fy[y] for every i = 1,...,r. The

polynomial f is said to be p-regular if f(x) = [T/_; ¢i(x) ' for some monic polynomials ¢, ..., ¢ of

Z[x] such that ¢y, . .., ¢; are irreducible coprime polynomials over Fj, and f is a ¢;-regular polynomial
with respect to p foreveryi =1,...,t.

Let ¢ € Zy[x] be a monic polynomial, such that ¢(x) is irreducible in IF, [x]. The ¢-index of f(x)
(cf. [62]), denoted by indy(f), is deg(¢) times the number of points with natural integer coordinates
that lie below or on the polygon N(‘; f, strictly above the horizontal axis, and strictly beyond the vertical
axis (see Figure 1).
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Figure 1. N‘P f
In the example of Figure 1, indy(f) = 9 x deg(¢).
Now assume that f(x) = [T;_; ¢;(x) ' is the factorization of f(x) in F,[x] into monic polynomials

¢i € Z[x] which are irreducible and pairwise coprime in F[x] (i = 1,...,7).
Foreveryi=1,...,r, let Ng{ (f) = Sit + - - - + Sjy, be the principal ¢;-Newton polygon of f with
respect to p. Foreveryj=1,...,r;, let

al
1] y ) H lPl]]](k
be the factorization of fs, (y) in Fy,[y]. Then we have the following index theorem of Ore.

Theorem 5. (Theorem of Ore, see Theorem 1.7 and Theorem 1.9 in [62], Theorem 3.9 in [32], pp. 323-325 in

[141] and [146])

1. We have

p(ind (f Z indg, (f
The equality holds if f(x) is p-regular.
2. If f(x) is p-reqular, then
i Sij e
PZK - HH H pzﬁc’
i=1j=1k=

is the factorization of pZy into powers of prime ideals of Zy lying above p, where e;; = {;;/d;j, L is the
length of S;j, d;j is the ramification degree of Sj;, and fijx = deg(¢;) x deg(ijx) is the residue degree of
the prime ideal p;ji. over p.

4.4. Algorithmic Methods

Several of known efficient methods for the resolutions of Diophantine equations are related to
Thue equations, cf. [64]. These methods are implemented e.g. in Magma [22]. Therefore the most
efficient method for solving index form equations also work by reducing the index form equation to
Thue equations.

In cubic fields the index form equation is a cubic Thue equation, see [64].

The below method of I. Gadl, A. Peth and M. Pohst [74], [75] reduces the index form equations
in quartic fields to a cubic and some corresponding quartic Thue equations. This method is quite often
used even nowadays, therefore we briefly present it.

Let K = Q(&) be a quartic number field and f(x) = x* + ayx3 + apx? + azx + a4 € Z[x] the
minimal polynomial of . We represent any « € Zg in the form

g~ Ta + x¢ —l—dyéz + 233 1)
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with a,, x,y,z € Z, and with a common denominator d € Z. Consider the solutions of the equation
I(a) =m (a € Zg) ()
for 0 < m € Z. We have

Theorem 6. ([74])
Let iy, = d®m/n where n = 1(Z). The element a of (1) is a solution of (2) if and only if there is a solution
(u,v) € Z? of the cubic equation

F(u,0) = u® — apu®v + (a1a3 — 4aq)uv® + (4aray — a3 — a3ay)v® = +iy 3)

such that (x,y, z) satisfies

Qi(x,y,z) = X% — xyaj + yzaz + xz(a% —2ay) + yz(as — aya)
+22(—ayaz + a3 +ag) =u ,
Q(xyz) = yY-xz-—ayz+2m=0 . (4)

Equation (3) is either trivial to solve (when F is reducible), or it is a cubic Thue equation.
For a solution (u,v) of (3) we set Qo (x,y,z) = uQa(x,y,z) — vQ1(x,y,z). If w in (1) is a solution
of (2), then
Qo(x,y,2) = 0. )

If (xo0,Y0,20) € 73 is a non-trivial solution of (5), with, say, zg # 0 (such a solution can be easily found,
see L. ]J. Mordell [142]), then we can parametrize the solutions x, y, z in the form

X=rXo+p, Yy ="1Yo+4q, z="rz0, (6)
with rational parameters 7, p, 4. Substituting these x, y, z into (5) we obtain an equation of the form
r(c1p + c2q) = c3p® + capq + c34%,

with integer coefficients c1, ..., c5. Multiply the equations in (6) by c1p + c2q and replace r(c1p + c2q) by
c3p? + c4pq + csq®. Further multiply the equations in (6) by the square of the common denominator of
p, q to obtain all integer relations (cf. [75]). We divide those by ged(p, q)? and get

kx = c11p? + c1apq + c134%, ky = co1p? + copq + c3q%, kz = ca1p* + caapq + caaq?, )

with integer c;; and integer parameters p, q. Here k is an integer parameter with the property that k
divides the det(C)/ d%, where C is the 3x3 matrix with entries cij and dg is the ged of its entries (cf. [75]).
Finally, substituting the x, y, z in (7) into (4) we obtain

Fi(p,q) = Ku, E(p,q) =K. ®)

According to [75] at least one the equations (8) is a quartic Thue equation over the original number
field K.
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5. Results

5.1. Pure Fields, Trinomials, Quadrinomials, etc.

There is no doubt, Newton polygon method was the most powerful tool during the last couple
of years. It is frequently combined with application of Dedekind’s criterion. While S. Ahmad, T.
Nakahara and M. Syed [1] investigated monogenity of pure sextic fields in 2014 using its subfield
structure and relative monogenity, T. A. Gassert [79] already used Montes algorithm in 2017 to describe
monogenity of pure fields. Note that it is only about the monogenity of the polynomials and not the
monogenity of number fields generated by a root of the polynomial (for some corrections see L. El
Fadil [37]).

Together with Newton polygons (or instead of them), Dedekind’s criterion and Engstrém’s
theorem is also often used. The following results often deal with polynomials of similar shape. It is
important to add, that especially using Newton polygons, the whole calculation must be performed
separately, even for polynomials of similar shape.

The first results investigated monogenity in pure fields (or radical extensions) generated by a root
of an irreducible binomial of type x" — m. Assuming that m is square-free, conditions were given for
the monogenity (or non-monogenity) of such pure fields, for n = 6,8,12, ... etc. A following step was
to consider general exponents like m = 2k,2K. 3¢, .. etc., later on n = pX with a prime p. For some
exponents, the more complicated case of a composite m was also investigated. Here is a list of such
results, for brevity indicating only the exponents considered:

* Z.S. Aygin and K. D. Nguyen [8] n = 3

.El Fadil [39] n = 12

.El Fadil [41]n = 18

. El Fadil [43] n = 20

.El Fadil [33]n =24

. El Fadil [35] n = 36

. El Fadil, H. Ben Yakkou and J. Didi [51] n = 42
. El Fadil, H. Choulli and O. Kchit [52] n = 60

. El Fadil and M. Faris [53] n = 84

e H. Ben Yakkou and O.Kchit [18] n = 3F

.El Fadil [36] n = 2 - 3

.El Fadil [42] n = 6,2k . 3¢

 H.Ben Yakkou, A. Chillali and L. El Fadil [15] n = 2k - 5¢

°
| o e e e e e

-

e L.ElFadil [38] n = 3K 7¢

e L.ElFadil and A. Najim [40] n = 2K . 3¢

e L. El Fadil and O. Kchit [60] n = 2k . 7¢

e L.ElFadil [44] n = 2k . 3¢ .5

e H. Ben Yakkou and L. El Fadil [16] n = pk

. El Fadil [34] n = 6, m composite
. El Fadil and 1. Gaal [56] n = 8, m composite

.
[

The exponents n < 9 with a squarefree m were investigated by I. Gaal and L. Remete [77] which was
extended to arbitrary m by L. El Fadil and I. Gadl [56].
A typical statement from this list is the following;:

Theorem 7. (L. El Fadil and A. Najim [40])

Let w be a root of the irreducible polynomial X2 _m with a square-free m. If m # 1 (mod 4) and m #
+1 (mod 9) then w generates a power integral basis in K = Q(«). If m = 1 (mod 4) or m = 1 (mod 9), or
k =2and m = —1 (mod 9) then K is not monogenic.
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A next step was to consider monogenity properties of number fields generated by a root of an
irreducible trinomial of type x" 4+ ax™ + b. The field index is also often determined by using Engstrém’s
theorem. In the following list again we only indicate the type of trinomials considered:

e L.ElFadil [39] x* 4+ ax+b

L. El Fadil and 1. Gaal [54] x* 4 ax? + b

H. Smith [151] x* + ax + b, x* + cx® 4+ d

L. Jones [128] showed that there exist exactly three distinct monogenic trinomials of the form
x* + bx? + d with Galois Cy

A.Jakhar, S. Kaur and S. Kumar [101] x° +ax + b

L. El Fadil [45] x° + ax* + b

L. El Fadil [47] x° + ax® + b

L. El Fadil [48] x® +ax + b

A.Jakhar and S. Kumar [107] x® +ax + b

L. El Fadil [46] x° +ax® + b

L. El Fadil and O. Kchit [57] x® + ax* 4+ b

A.Jakhar and S. Kaur [102] x° + ax™ + b

R. Ibarra, H. Lembeck, M. Ozaslan, H. Smith and K. E. Stange [91] x" + ax + b, x" + x4 d
forn =5,6

L. El Fadil and O. Kchit [58] x” + ax® + b

H. Ben Yakkou [9] x” +ax® + b

A.Jakhar, S. Kaur and S. Kumar [105] 7 + ax + b

H. Ben Yakkou [10] x8 + ax + b

H. Ben Yakkou and B. Boudine [14] x® +ax + b

A. Jakhar, S. Kaur and S. Kumar [104] x® + ax™ 4 b

L. Jones [129] considered monogenic trinomials of type x8 + ax* + b with prescribed Galois group
O. Kchit [135] x? + ax + b

H. Ben Yakkou and P. Tiebekabe [19] x° + ax + b

L. El Fadil and O. Kchit, [59] x° +ax? 4+ b

L. El Fadil and O. Kchit [61] x12 + ax™ + b

H. Ben Yakkou [11] ¥ + ax™ + b

H. Ben Yakkou and L. El Fadil [17] " 4+ ax + b, n = 5,6,3F,2¢.3¢,2F .30 1

A.Jakhar and S. Kumar [108] gave explicit conditions for the non-monogenity of x7 — ax — b
A. Jakhar [94] x7° —ax™ — b

B. Jhorar and S. K. Khanduja [97] " + ax + b, showed also that f(x) = x" — x — 1 is monogenic
if and only if |[D(f)| = n" — (n — 1)"~! is square-free

H. Ben Yakkou [12] x" +ax™ +b, n = pk,s . pk,Zk .3t

L. El Fadil [49] x* + ax™ +b, n = 2k.3¢

A.Jakhar [93] x" — ax™ — b

A.Jakhar, S. Khanduja and N. Sangwan [99] x" + ax™ + b

A.Jakhar, S. Khanduja and N. Sangwan [100] gave necessary and sufficient conditions in terms
of a,b,m,n for a given prime p to divide I(9) where ¢ is a root of x" + ax™ + b

L. Jones [121] considered monogenic reciprocal trinomials of type x> + Ax™ + 1

L. Jones [114] showed that there are infinitely many primes p such that x® + px3 + 1 is monogenic
with Galois group Dg

L. Jones [115] showed that x” 4- x + 1 is monogenic, if and only if its discriminant is squarefree
L. Jones and T. Phillips [130] showed that x" + ax + b is monogenic infinitely often

L. Jones and D. White [131] found new infinite families of monogenic trinomials of type x" +
Ax™ + B

A typical statement from this list is the following:
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Theorem 8. (L. Jones and D. White [131])
Let n > 2 be an integer, with m > 1 a proper divisor of n. Let t = n/m and let k denote the squarefree kernel of
m. Let A and B be positive integers with gcd(A, B) > 1, and define

D ttBt—l + (1 o t)t—lAt
o gcd(A, B)tH1

If B and D are squarefree, and gcd (A, B) = 0 (modx), then f(x) = x™ + Ax™ + B is monogenic. Moreover,
D(f) is not squarefree if m > 2.

The research was continued into the direction considering monogenity properties of of
quadrinomials, quintinomials, etc., that is polynomials with four, five etc. terms and the number fields
generated by a root of these polynomials:

e T. A. Gassert, H. Smith and K. E. Stange [80] ¥t —6x2 —kx—3

H. Ben Yakkou [13] x* + ax® + bx 4 ¢

J. Harrington and L. Jones [88] constructed new families of quartic polynomials with various
Galois groups, which are monogenic infinitely often

A. Jakhar and R. Kalwaniya [95] x® + ax™ + bx + ¢

L. Jones [129] x8 + ax® 4+ bx* + ax? + 1

L. Jones [111] constructed infinitely many monogenic polynomials of degree p for every odd
prime p

L. Jones [120] x? — 2ptxP~1 + p2£2xP~2 41

A. Jakhar, S. Kaur and S. Kumar [103] x” + ax2 + bx + ¢

A. Jakhar, S. Kaur and S. Kumar [106] x?° — ax™ — bx™ — ¢

A.Jakhar [92] x™* 4+ ax" 1+ bx" "2 + ¢

L. Jones [113] constructed infinite families of reciprocal monogenic polynomials with prescribed
Galois group

L. Jones [116] showed thatif4 <#n > m > 0 and ged(n, m) = ged(n, k) = 1 then x" " (x + k)™ +
p is monogenic for infinitely many primes p

L.Jones [109] x* + A(Bx + 1)™

L.Jones [110] x™ + t - g(x) with n > deg(g), when g(x) is monic and deg(g) € {2,3,4}

L. Jones [118] constructed reciprocal monogenic quintinomials of type x*" + Ax32 T B 4
Ax¥ 41

L. Jones [119] considered infinite families of monogenic quadrinomials, quintinomials and
sextinomials

5.2. The Relative Case

In addition to the absolute case (extension of Q) several authors considered monogenity problems
in the relative case (extensions of an algebraic number field), or even similar problems in Dedekind
rings. Mostly Dedekind’s criterion is used.

* M. E. Charkani and A. Deajim [26] (see also A. Deajim and L. El Fadil [28]) x” — m over number
fields

* M. Sahmoudi and M. E. Charkani [148] considered relative pure cyclic extensions

A. Soullami, M. Sahmoudi and O. Boughaleb [150] ¥ 4+ ax® — b over number fields

O. Boughaleb, A. Soullami and M. Sahmoudi [23] x?" + axP’ — b over number fields

H. Smith [152] relative radical extensions

S. K. Khanduja and B. Jhorar [138] give equivalent versions of Dedekind criterion in general rings

S. Arpin, S. Bozlee, L. Herr and H. Smith [5], [6] study monogenity of number rings from a

modul-theoretic perspective

R. Sekigawa [149] constructs an infinite number of cyclic relative extensions of prime degree that

are relative monogenic
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5.3. Composite Polynomials

Several authors considered monogenity of composites of polynomials, composites of binomials
etc. The authors mainly use Dedekind’ criterion.

e J. Harrington and L. Jones [84] gave conditions for the monogenity of (x™ — b)" — a the
composition of x” —a and x™ — b

* A.Jakhar, R. Kalwaniya and P. Yadav [96] consider monogenity of (x" — b)" — a, the composition
of x —a and x™ — b using a refined version of the Dedekind criterion

* J. Harrington and L. Jones [85] considers monogenity of @, (®y(x)), where ®y(x) is the
cyclotomic polynomial of index N

e L.Jones [112] considers monotonically stable polynomial of type g(f"(x))

e L. Jones [117] constructs infinite collections of monic Eisenstein polynomials f(x) such that
f(x*") are monogenic for all integers n > 0 and d > 1

e L.Jones [125] considers monogenity of Sy (x?) where S (x) = x> — kx? — (k + 3)x — 1 the Shanks
polynomial

* L.Jones [126] considers monogenity of f(x”) where f(x) is the characteristic polynomial of an
Nth order linear recurrence

e J. Harrington and L. Jones [86] give conditions for the monogenity of f(x*") where f(x) =
XM+ ax™ 1+ b

e S. Kaur, S. Kumar and L. Remete [134] consider monogenity of f(x*) where f(x) = x? + A -
h(x),degh < d

Let us recall a typical statement:

Theorem 9. (J. Harrington and L. Jones [85])
Let a and b be positive integers, and let p be a prime. Then the polynomial ®pa (D, (x)) is monogenic, where
Dn(x) is the cyclotomic polynomial of index N.

5.4. Connection with Primes

L. Jones [123], [127], [124] and ]J. Harrington and L. Jones [87] detected relations of monogenity of
power compositional polynomials with properties of primes. We present here one of these statements.
For a recurrence sequence Uy = 0,U; = 1 and U, = kU,_1 + U,_», (U,) is periodic modulo any
integer. Denote by 7y (m) its period length modulo m. The prime p is called a k-Wall-Sun-Sun prime, if

Uy, () =0 (mod p?).

Theorem 10. (L. Jones [123])

Let D =k>+4ifk =1 (mod 2),and D = (k/2)?> +1ifk = 0 (mod 2). Suppose that k # 0 (mod 4) and
that D is squarefree. Let h denote the class number of Q(v/D). Let s > 1 be an integer such that, for every odd
prime divisor p of s, D is not a square modulo p and ged(p, hD) = 1. Then

n

X -1
is monogenic for all integers n > 1 if and only if no prime divisor of s is a k-Wall-Sun-Sun prime.
5.5. Number of Generators of Power Integral Bases
Some further results considered the number of non-equivalent generators of power integral bases:

* M. Kang and D. Kim [132] considered the number of monogenic orders in pure cubic fields

¢ J. H. Evertse [31] considered "rationally monogenic" orders of number fields

¢ S. Akhtari [2] showed that a positive proportion of cubic number fields, when ordered by their
discriminant, are not monogenic
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e L. Alpodge, M. Bhargava, A. Shnidman [4] showed that if isomorphism classes of cubic fields are
ordered by absolute discriminant, then a positive proportion are not monogenic and yet have no
local obstruction to being monogenic (that is, the index form equations represent 41 or —1 mod

p for all primes p)
* M. Bhargava [20] proves that an order O in a quartic number field can have at most 2760

inequivalent generators of power integral bases (and at most 182 if |[D(O)| is suffciently large).
The problem is reduced to counting the number solutions of cubic and quartic Thue equations,
somewhat analogously like described in Section 4.4, using a refined enumeration

¢ S. Akhtari [3] gives another proof of Bhargava’s result [20]: she uses the more direct approach
of Section 4.4 and applies sharp bounds for the numbers of solutions of cubic and quartic Thue
equations

5.6. Miscellaneous

In addition to the above lists, there were several further interesting statements achieved for
monogenity. We try to recall them here.

e H. H. Kim [139] showed that the number of monogenic dihedral quartic extensions with absolute
discriminant < X is of size O(X%/4(log X)?)

¢ N. Khan, S. Katayama, T. Nakahara and T. Uehara [137] proved that the composite of a totally
real field with a cyclotomic field of odd conductor > 3 or even > 8 has no power integral basis

e N. Khan, T. Nakahara and H. Sekiguchi [136] proved that there are exactly three monogenic
cyclic sextic fields of prime-power conductor, namely Q({7), Q({9) and the maximal real subfield
of Q(Z13)

¢ D. Gil-Muioz and M. Tinkova [81] considered the indices of non-monogenic simplest cubic
polynomials

* L. Jones [122] considered infinite families of monogenic Pisot (anti-Pisot) polynomials

¢ A.Jakhar and S. K. Khanduja [98] gave lower bounds for the p-index of a polynomial

e M. Castillo, [25] showed e.g. that Q(ay,), n > 1 is monogenic, where oy = 1 and &y, = /2 + a1
forn>1

¢ T. Kashio and R. Sekigawa [133] showed that a monogenic normal cubic field is a simplest cubic

field for some parameter
¢ E E. Tanoé [153] considered monogenity of biquadratic fields using a special integer basis
¢ K. V. Kouakou and F. E. Tanoé [140], [154] and F. E. Tanoé and V. Kouassi [155] considered

monogenity of triquadratic fields
e Aruna C. and P. Vanchinathan [7] showed that an infinite number of so called exceptional quartic

fields are monogenic

5.7. Explicit Calculations, Algorithms

The powerful methods of Dedekind criterion and Newton polygons often decides about the
monogenity of number fields. However, to explicitly determine all inequivalent generators of power
integral bases one needs to perform calculations. These algorithms usually involve Baker type
estimates, reduction method and enumeration algorithms, cf. [64]. There are efficient algorithms for
low degree fields and some more complicated methods for higher degree fields. Since these procedures
usually require considerable CPU time, if the number field is of high degree, or we need information
about a large number of fields, then we turn to the so called "fast" algorithms for determining "small"
solutions. This yields a fast method to determine solutions of the index form equation with absolute
values, say < 10!%. These algorithms determine all solutions with a high probability but do not
exclude extremely large solutions (which, however, nobody has ever met).

We collect here some recent results involving explicit determination of generators of power
integral bases.

¢ Z.Frantisi¢ and B. Jadrijevi¢ [63] calculated generators of relative power integral bases in a family
of quartic extensions of imaginary quadratic fields
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I. Gadl [65] showed that index form equations in composites of a totally real cubic field and a

complex quadratic field can be reduced to absolute Thue equations

¢ 1. Gaal [68] showed that the index form equations in composites of a totally real field and a
complex quadratic field can be reduced to the absolute index form equations of the totally real
field

¢ 1. Gadl [66] considered generators of power integral bases in fields generated by monogenic
trinomials of type x® + 3x3 + 3a

¢ I. Gadl [67] considered generators of power integral bases in fields generated by monogenic
binomial compositions of type (x* — b)? + 1

¢ . Gadl [70] gave an efficient method to determine all generators of power integral bases of pure
sextic fields

* 1. Gaél and L. Remete [78] considered monogenity in octic fields of type K = Q(+/a + bi)

¢ 1. Gaél [69] determined "small" solutions of the index form equation in K = Q({/m), for —5000 <
m < 0 such that x® — m is monogenic (1521 fields) Experience: /m is the only generator of power
integral bases

e 1. Gaal [71] determined "small" solutions of index form equations in K = Q(¥/m), —5000 < m < 0
such that x® — m is monogenic (2024 fields) Experience: {/m is the only generator of power
integral bases, except for m = —1

e 1. Gadl [72] extended [54] on monogenity properties of trinomials of type x* + ax? + b

¢ . Gaél [73] calculated generators of power integral bases in families of number fields generated

by a root of monogenic quartic polynomials considered in [88]

In [72], [73] the method described in Section 4.4 was used, in [63], [78], [71], its relative analogue,
see [76], [64].
Also here we recall some typical statements:

Theorem 11. (I. Gadl [68])

Let L be a totally real number field, M = Q(v/d), d < 0 squarefree, assume gcd(Dy, Dat) = 1. If « generates
a power integral basis in K = LM, then & = a + B & w, where a € 7, B generates a power integral basis in L
and (1, w) is integral basis in M.

Theorem 12. (L. El Fadil and I. Gadl [54])
Assumea > 1,b > land f(x) = x* + ax? + b is irreducible and monogenic. If a, b are not of type
utl u?—1

pr— /b pr—
¢ v 492

for some u,v € Z,v # 0,u # 1, then up to equivalence the root a of f(x) is the only generator of power integral
bases in K = Q(«a).

6. Further Research

The above lists of results indicate what was already done and what is still missing. It would be
very interesting to somehow describe monogenity properties of quartic fields and maybe quintic fields.
This would require study of quintinomials and sextinomials.

What general exponents of binomials and trinomials can still be considered? Is it possible to
describe in general monogenity properties of arbitrary trinomials of degree < 9?

How can one extend the available algorithms to be able to calculate solutions of index form
equations in higher degree fields?

All these and several other questions are to be answered. As it is seen from the above, in addition
to some new ideas, often the application of old, forgotten methods may also help.
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