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Abstract:  Artisanal  and  Small‐scale  Gold  Mining  (ASGM)  has  caused  several  environmental 

impacts, resulting in significant siltation of water bodies due to the deposition of sediments on river 

banks. Based on this perspective, this study aims to investigate the water bodies and regions most 

impacted by mining activities, especially in relation to the increase in the Total Suspended Solids 

(TSS) caused by ASGM, focusing on the territories of Suriname and French Guiana, over the period 

from 2017 to 2023, through the creation of an algorithm in Google Earth Engine. The research also 

aims to map and describe active mining in this region using the Classification and Regression Tree 

(CART) method, which achieved an overall accuracy of 82% and a kappa index of 0.77. The results 

reveal that from 2017 to 2024 there was an increase of 148.09 km² of mining, with an average increase 

in TSS of up to 167 mg/l in water bodies most affected by mining activities. Finally, the continued 

importance  of  using  remote  sensing  technologies,  such  as  GEE,  together  with  innovative 

methodological approaches, to monitor and manage natural resources in a sustainable manner is 

highlighted. 

Keywords: mining;  total  suspended  solids;  environmental monitoring;  remote  sensing;  google 

engine; image classification 

 

1. Introduction 

The global gold mining industry generally focuses on large companies, but in many parts of the 

world, especially in developing countries, mineral extraction is predominantly driven by artisanal 

and small‐scale mining (ASGM), forming a diverse and complex sector. [1,2]. 

ASGM is a widespread practice in developing countries in the Americas, Asia and Africa [3–5]. 

In  the Amazon,  this activity began  in  the 1950s  in areas known as mining and currently  involves 

hundreds of thousands of people due to the increase in gold prices in recent years [6]. 

Despite its economic importance, ASGM (Figure 1) has caused several environmental impacts, 

including mercury contamination, sedimentation of waterways and environmental degradation [4,7]. 

This practice results in significant siltation of water bodies due to the deposition of sediments on river 

banks, where the exploitation of alluvial deposits is common [2]. This affects water quality, increasing 

the  Total  Suspended  Solids  (TSS)  and  reducing  the  penetration  of  sunlight  necessary  for  the 

production of organic matter by aquatic organisms [8], in addition to impacting fish [9] and benthic 

communities [10]. 
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Figure 1. Illustration of artisanal or semi‐industrial gold mining activities in French Guiana [11]. From 

top  left  to bottom right:  (a) mechanical removal of surface soil horizons,  (b) stripping off of gold‐

bearing material with water  jets  to recover gold particles and nuggets,  (c) digging of a derivation 

canal, (d) settling basin, and water turbidity in Combat Creek (e) before and (f) during artisanal small‐

scale gold mining activities. 

River sedimentation is a globally recognized problem in gold mining regions such as Indonesia, 

Ghana, French Guiana and Peru, where most operations take place on riverbanks or directly in river 

beds  [9]. This process  significantly  contributes  to  the  increase  in  suspended  solids  in  the water, 

damaging the quality and health of aquatic ecosystems. In the Brazilian Amazon, sediment resulting 

from mining  can  reach one or  two  tons per gram of gold produced  [4],  further  intensifying  this 

problem. 

Furthermore,  the accumulation of sediment  in riverbeds can alter river channel morphology, 

affecting  the  availability of  suitable habitats  for various  aquatic  species,  such  as  obstructing  fish 

spawning areas and destroying important habitats such as sandbars. and rocky bottoms, essential for 

the life cycle of many species. 

Another negative point of artisanal and small‐scale mining (ASGM) in the Amazon is associated 

with  socio‐environmental  conflicts,  such  as human  rights violations and  the misappropriation of 

lands from indigenous communities that trigger conflicts and tensions. 

In this context, this research aims to fill a significant gap in the analysis of the environmental 

impacts  of gold mining  in  often neglected  areas  of  the Amazon,  specifically  in  the  territories  of 

Suriname and French Guiana. While gold mining in the Brazilian Amazon has been widely studied 

and documented, mining activities in these adjacent regions, although equally relevant in terms of 

environmental and socioeconomic impact, often do not receive the same attention from the scientific 

community and policymakers. 

Given  that many of  these  settlements operate  informally within  remote protected areas and 

indigenous lands in the Amazon, the use of satellite imagery to delineate historic and active mining 

areas as well as spectral assessments of water quality via remote sensing becomes the only viable tool 

for a more accurate understanding of changes in river water quality related to gold mining practices 

in the region. This set of information, which includes changes in land use and water quality associated 

with artisanal and small‐scale mining  (ASGM),  is of great  interest to  land managers as  it helps  to 

assess the social and environmental implications of the activities of gold mining. At the same time, 
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these data are essential to inform the development of public policies aimed at recovering degraded 

areas and promoting the sustainable use of water and mineral resources in the region [6,7,9]. 

Based on  this perspective,  this  studyʹs main objective  is  to  investigate  the water bodies and 

regions most  impacted  by mining  activities,  especially  in  relation  to  the  increase  in  the  Total 

Suspended Solids (TSS) caused by artisanal and small‐scale mining (ASGM) in the Amazon , focusing 

on the territories of Suriname and French Guiana, over the period from 2017 to 2023, through the 

creation of an algorithm in Google Earth Engine. The research also aims to map and describe active 

mining in this region, drawing a parallel to their proximity to the most affected water bodies. In doing 

so, we seek to provide insights into patterns of mining activity and associated environmental effects, 

contributing  to  a  more  comprehensive  understanding  of  the  impacts  of  gold  mining  in  these 

neglected areas of the Amazon. 

2. Materials and Methods 

2.1. Research Area 

The study area (Figure 2) refers to northeast Suriname and northwest French Guiana, covering 

the  northern  portion  of  the  Amazon.  The  extension  coordinates  are:  top  left  ‐55.7909,  6.0316 

(longitude, latitude) and bottom right ‐52.6653, 3.0696 (longitude, latitude). 

 

Figure 2. Study area. 

In  this polygon;  the mapping of mines will occur  throughout  its  entire  extension; while  the 

analysis  of  the  TSS  will  be  focused  on  the  main  water  bodies  in  the  region;  including  Lake 

Brokopondo; Lake Sinnamary; the Maroni River and the Suriname River. These bodies of water play 

fundamental roles in local ecosystems and are essential for the lives of the communities that inhabit 

this area of the Amazon 

2.2. Overall Methodological Workflow 

Below, we present the methodological flowchart (Figure 3) of this study, in which we detail the 

steps divided between pre‐processing, processing and final results. In pre‐processing, we processed 
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the Sentinel image collection from 2017 to 2023 and filtered to remove clouds. In processing, we apply 

the TSS  to  the water  bodies  of  interest  and map  the mining  areas. The  final  result  includes  the 

products obtained for spatio‐temporal analysis, visualization and download. 

 

Figure 3. Overall methodology. 

The first stage of the study involved creating the algorithm in Google Earth Engine (GEE). GEE 

is a cloud‐based geospatial image processing and analysis platform that offers a broad set of data and 

tools  for  spatial  and  temporal  analysis.  Its  ability  to  process  large  volumes  of data  quickly  and 

efficiently makes  it  a  powerful  tool  for  environmental monitoring  studies  and  spatio‐temporal 

analysis. 

2.2.1. Imagery Time‐Series for Monitoring Water Quality and Mining Areas 

To monitor water quality and mining areas over time, an approach based on a time series of 

satellite images was used. Specifically, images from the Sentinel‐2A satellite (Table 1), belonging to 

the Copernicus program, were used due to its high spatial resolution and revisit frequency suitable 

for environmental studies. 

Table 1. Sentinel‐2A bands table. 

Band  Name  Spectral Range (nm) 
Spatial Resolution 

(m) 

Band 1  Coastal aerosol  443  60 

Band 2  Blue  490  10 
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Band 3  Green  560  10 

Band 4  Red  665  10 

Band 5  Red Edge 1  705  20 

Band 6  Red Edge 2  740  20 

Band 7  Red Edge 3  783  20 

Band 8  NIR (Near Infrared)  842  10 

Band 8A  Narrow NIR  865  20 

Band 9  Water vapor  945  60 

Band 10  SWIR ‐ CIRRUS  1375  60 

Band 11  SWIR 1  1610  20 

Band 12  SWIR 2  2190  20 

This collection contains previously atmospherically corrected and harmonized images, ensuring 

the consistency and quality of the data throughout the analyzed period. 

To select suitable images, the following code was used: 

var collection = ee.ImageCollection(ʺCOPERNICUS/S2_SR_HARMONIZEDʺ) 

        .filterDate(ʹ2017‐01‐01ʹ, ʹ2023‐12‐31ʹ) 

        .filterBounds(geometry3) 

        .filter(ee.Filter.lt(ʹCLOUDY_PIXEL_PERCENTAGEʹ, 10)); 

This code allows you  to  filter  the Sentinel‐2  image collection  for  the period of  interest  (from 

January 2017 to December 2023) and restrict the study area through the spatial delimitation defined 

by the variable ʺgeometry3ʺ. Furthermore, the ʺCLOUDY_PIXEL_PERCENTAGEʺ filter was used to 

select only  images with  less  than  10%  cloud  cover,  ensuring  the quality of  the data used  in  the 

analysis. 

Despite  limiting  the analysis  to  images with  cloud coverage of 10% or  less,  the challenge of 

correctly classifying the TSS values was still  identified, as some of  them actually corresponded to 

covered areas by clouds. Considering this issue, a more sophisticated cloud filter was implemented, 

which now removes pixels affected by clouds during the final classification step. 

Below is the implemented code: 

var  s2Clouds  = 

ee.ImageCollection(ʹCOPERNICUS/S2_CLOUD_PROBABILITYʹ).filterBounds(region1).filterDate(fromD

ateSentinel,  toDateSentinel);  var  s2_orig  = 

ee.ImageCollection(ʹCOPERNICUS/S2_SR_HARMONIZEDʹ).filterBounds(region1).filterDate(fromDateSe

ntinel, toDateSentinel); 

           var MAX_CLOUD_PROBABILITY = 10; 

            function maskClouds(img) { 

                var clouds = ee.Image(img.get(ʹcloud_maskʹ)).select(ʹprobabilityʹ); 

                var isNotCloud = clouds.lt(MAX_CLOUD_PROBABILITY); 

                return img.updateMask(isNotCloud); } 

            function maskEdges(s2_img) { 

                return s2_img.updateMask( 

                        s2_img.select(ʹB8Aʹ).mask().updateMask(s2_img.select(ʹB9ʹ).mask()));} 

            s2_orig = s2_orig.map(maskEdges); 

            s2Clouds = s2Clouds; 

           var s2SrWithCloudMask = ee.Join.saveFirst(ʹcloud_maskʹ).apply({ 

                primary: s2_orig,    secondary: s2Clouds, condition: 

                        ee.Filter.equals({leftField: ʹsystem:indexʹ, rightField: ʹsystem:indexʹ})}); 

           var s2CloudMasked = 

                    ee.ImageCollection(s2SrWithCloudMask).map(maskClouds); 

The ̋ maskCloudsʺ and ̋ maskEdgesʺ functions are used to mask clouds in images (Figure 4). The 

first function masks the pixels affected by clouds, while the second function masks the edges of the 

images. 
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Figure 4. Practical demonstration of the filter. From top  left to bottom right: (a) Sentinel‐2A image 

from June 8, 2023 over Lake Brokopondo, with the presence of clouds, (b) TSS classification over the 

original image, (c) classification after removing the clouds. 

After  applying  the  cloud  and  edge  masks,  the  two  collections  are  combined  using  the 

ʺee.Join.saveFirstʺ function. Finally, a new collection of images where the clouds have been masked 

is created, using the ̋ mapʺ function to apply the ̋ maskCloudsʺ function to all images in the combined 

collection, from 2017 to 2023. 

2.2.1.1. Mapping of Mining Areas 

In possession of the collection of images processed from 2017 to 2023, in order to map the mining 

areas,  the  first step was  to define  the  land cover classes for training, with prior knowledge of  the 

study area and  the mining context present  in the region  , 6 classes were defined  (Table 2): water, 

vegetation, deforestation, cloud, cloud shadow and mining. Due to the spectral difference of these 6 

targets of interest being distinct, the classification process is subsequently facilitated. 

Table 2. Class training table. 

Training class  Number of samples 

Mining  100 

Water  40 

Vegetation  30 

Cloud  30 

Shadow  30 

Deforestation  30 

Total  260 

Figure 5 below illustrates the process of training classes on satellite images to identify mining 

areas. 
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Figure 5. Demonstration of some points used in training. From top left to bottom right: (a) Training 

of an extensive mining area, (b) training of a small mining area next to a water body, (c) classification 

of another mining area south of Lake Brokopondo. 

After training, the Classification and Regression Tree (CART) method was applied, which is a 

non‐parametric  classifier  that does not  require  any  a priori  statistical  assumptions  regarding  the 

distribution of the data. 

CART is a classification method that operates at the pixel level and uses the pixel intensities of 

training samples (polygons) to build a decision tree that assigns a class to each pixel in the image (20 

meters). Bands 3 (560 nm), 4 (665 nm), 8 (842 nm) and 11 (1610 nm) were used, selected based on their 

spectral properties and ability to provide relevant information for classifying areas of interest. 

In Google Earth Engine,  the CART algorithm  (ee.Classifier.smileCart)  is configured with  two 

parameters: MaxNodes, which determines the maximum number of leaf nodes in each decision tree, 

and MinLeafPopulation, which establishes the minimum number of points required in a set training 

tool to create a node. These parameters have been set to default values: no limit on the maximum 

number of nodes and one on the minimum number of points for creating nodes. 

The CART  classification  (Figure 6) proved  to be effective  in differentiating  the  six classes of 

interest, including the precise detection of mining areas, which subsequently underwent a validation 

process, which will be further discussed in the results. 
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Figure 6. CART classification. From top to bottom: (a) Sentinel‐2A image (2023‐01‐09) of a mining area 

northeast of Lake Brokopondo, (b) result of CART classification with the 6 classes. 

The resulting layer was exported to the Tiff file type in Google Drive for further analysis and 

discussion. 

2.2.1.2. Monitoring Water Quality 

The use of satellite sensors combined with remote sensing techniques have been used to estimate 

TSS in coastal and inland waters [12,13]. 

This  approach  to  estimating  suspended  solids  in  water  generally  follows  two  distinct 

approaches: empirical, which is based on direct correlation between measured TSS and satellite data 

[14]; and analytical methods, which depend on the measured optical properties of water [15,16]. This 

research demonstrates that the green and red bands have a significant relationship with TSS up to 

approximately  100 mg/l.  The  use  of  the  red  band  to  estimate  TSS  in waters  through  empirical 

regressions is well documented in the literature. Previous studies, such as those by Harrington et al. 

[13] and Mertes et al. [17] for MSS data demonstrated this approach comprehensively. 

For this study, a robust empirical model was implemented between in situ TSS and the red band 

of the TM sensor on the Landsat 5 satellite, established from two field campaigns in the Amazon to 

measure radiometric quantities and concentrations of TSS, described in detail in Lobo et al. al. [14]. 
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In order to recover the TSS concentration from the surface reflectance, a non‐linear regression 

was established between TSS and ÿsurf(red) derived from reference images, in which it was observed 

that the best empirical correlation between TSS and ÿsurf (ÿ) was given by a power function (R2 = 

0.94, RMSE = 1.33%) using the red band [14]. 

Even though the curve was constructed based on data from the ÿsurf(red) satellite up to 22%, it 

is believed that this function can be extrapolated to values up to 35%. This equates to approximately 

300 mg/l TSS [14]. It is important to note the strong correlation between TSS and in situ ÿsurf(red), as 

shown by the dashed curve in the figure. 

The non‐linear  regression  obtained  for  the Landsat  5 TM  sensor, described previously, was 

adapted for Sentinel‐2A. So your script in Google Earth Engine looked like this: 

  var TSS = function(image) { 

                       var TSSn = image.expression( 

                        ʹ((RED/2.64)**(1/0.45)) + 2.27ʹ, { 

                            ʹREDʹ: image.select(ʹB4ʹ).multiply(0.01)}) 

                       var TSSname = TSSn.rename([ʹTSSnʹ]); 

                    return TSSname;} 

This function calculates the TSS from the spectral bands of the Sentinel‐2A image. First, the red 

band of the image is selected, represented by the variable “RED”. Then, the pixel values from that 

band are converted to reflectance by multiplying them by 0.01, as the original values are in digital 

counting units (DN). The formula for calculating TSS is then applied to the converted red band. After 

calculation, the result is renamed as “TSSn” to represent the Total Suspended Solids (TSS). Finally, 

the function returns the resulting TSS image (Figure 7), where each pixel represents the TSS estimate 

based on the red band of the Sentinel‐2A image. 

 

Figure 7. Illustrative image of the TSS classification in the algorithm in Google Earth Engine. From 

left to right: (a) Sentinel‐2 image from 2023‐09‐06 and (b) Sentinel‐2 image from the same day with the 

TSS classification band (mg/L) added. 

From this new band, the following processes were carried out with the analysis of the TSS in all 

water bodies in the extension of the study area based on the collection of previously treated images 

from Sentinel 2, from 2017 to 2023. 

3. Results 
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3.1. Validation of Gold Mining Areas 

In the process of validating mining areas, the accuracy of the CART classification used here was 

evaluated. The objective was to evaluate the reliability of the classification results obtained from the 

analysis of satellite  images. This assessment was crucial  to ensure  the credibility of  the  identified 

mining sites for subsequent analysis and decision‐making processes. 

To conduct validation, a total of 50 mining points (Figure 8) were established across the study 

area. Each validation point was visually inspected using high‐resolution imagery from Google Earth 

Pro, which utilizes high‐resolution  image mosaics. Specifically,  images  from Maxar Technologies, 

2024 Airbus and CNES/Airbus were used. 

 

Figure 8. Demonstration of  the validation process. From  top  to bottom:  (a)  first mining point,  (b) 

second mining point and (c) third mining point. 

Of the 50 validation points established, 41 were correctly classified as mining areas by the CART 

algorithm,  with  an  overall  accuracy  of  82%  and  a  kappa  index  of  0.77,  indicating  substantial 

agreement between the classification results and the reference data obtained from high‐speed images. 

Google Earth Pro resolution. 

Mapping has proven to be effective in identifying the main components of mining areas (Figure 

9) and their associated infrastructure elements, including waste piles, both dams and tailings ponds, 

airstrips, which are often used for mining. transport of materials and workers, industrial equipment 

and  mining  facilities,  as  well  as  the  mineral  extraction  areas  themselves.  Furthermore,  the 

classification allowed us  to differentiate between active mining areas and  the  surrounding areas, 

offering a clear view of the regions of interest and their distinctive characteristics. 
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Figure 9. Mapping of mining and associated structures. From left to right: (a) first mining point and 

(b) second mining point. 

After validation, an additional  review was  carried out of  the mining areas  identified by  the 

validation samples that were not initially identified by the CART algorithm, as well as the sample 

areas that were not classified as mining. As a result of this process, 7.25 km2 of new mining areas 

were added to the classification, while 1.61 km2 of previously classified areas were removed. This 

refined  review has significantly contributed  to a more accurate  representation of areas of mining 

activity in the region. 

3.2. Total Mining Area 

To quantify the extent of areas mapped as mining, each land cover class was analyzed in relation 

to its total area. Using an area calculation function, it was possible to determine the total mining area 

over the last 7 years, from 2017 to 2023. 

The mapping of these areas was conducted within a polygon covering a total area of 15882 km². 

This extensive territory was subject to detailed analysis using satellite images acquired over a period 

of seven years, from 2017 to 2023. Figure 10 below presents the map of mining areas mapped in each 

year, from 2017 to 2023, highlighting the spatial distribution of mining activities throughout the study 

period. 
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Figure 10. Map of mining mapped in each year, from 2017 to 2023. 

Below, Table 3 describes the total mining area in square kilometers for each year, providing a 

panoramic view of the expansion or contraction trends in mining activity over the analyzed period. 

Table 3. Total area of mining. 

Year  2017  2018  2019  2020  2021  2022  2023 

Minin

g 

(km2) 

148.34472

4 

194.93317

7 

275.09851

0 

231.62797

5 

280.58632

9 

285.74622

5 

296.43185

2 

Minin

g (m2) 
14834472

4 
19493317

7 
27509851

0 
23162797

5 
28058632

9 
28574622

5 
29643185

2 

Detailed analysis of  the data reveals a variation  in the  total mining area over  the years, with 

increases and decreases in different periods. In 2017, the registered mining area was 148.34 km². The 

following year, there was an  increase to 194.93 km², indicating an  increase of approximately 46.59 

km². However,  in  2019,  a more  significant  increase was  observed,  reaching  275.10  km², which 

represents a significant increase of 80.17 km² compared to the previous year. 

In contrast, the year 2020 saw a decrease in the mining area, recording 231.63 km², a reduction 

of  approximately  43.47 km²  compared  to  2019. However,  this decline was  followed by  a  further 

increase in 2021, when the mining area reached 280.59 km², representing an increase of 48.96 km². 

In  2022,  the  total mining  area  continued  to grow,  reaching  285.75 km². Finally,  in  2023,  the 

mining area reached its highest value during the analyzed period, totaling 296.43 km². 
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The following bar graph (Figure 11) presents an overview of the annual variation  in the area 

occupied by mining during  the period  studied, allowing an understanding of  fluctuations  in  the 

extent of mining operations over time. 

 

Figure 11. Mining graph by year, from 2017 to 2023. 

When comparing the area mined in 2017 with that recorded in 2023, we observed a significant 

absolute difference of 148.09 km², in relation to the average percentage increase in the mined area, it 

was found that the average growth rate during this period was approximately 99.23%. 

The data reveals that in 2017 mining activity was mainly concentrated in large‐scale, industrial 

mining areas. However,  from 2018 onwards, an expansion of alluvial mining areas was observed 

along the Maroni and Lawa rivers, as well as in the vicinity of the north‐east and south‐east arms of 

Lake Brokopondo, culminating  in a  significant  increase by  the year 2019.  In 2020,  this expansion 

slowed down, but from 2021 until 2023, there was a resumption of growth, both in areas located more 

than 500 meters from water bodies and in their surroundings. 

3.3. Analysis of TSS in Water Bodies in Relation to Mining 

The first development of this study consists of the creation of a comprehensive map (Figure 12), 

highlighting all the water bodies present in the region in question. Additionally, each of these bodies 

of water was added with an additional layer representing the average TSS during the period from 

2017 to 2023. This data was complemented by generating graphs that present points specific to these 

water bodies, providing a detailed analysis of trends observed over time. 
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Figure 12. Map with TSS graphs by year (2017 to 2023), water bodies have a band in which each pixel 

represents its average value over the years studied. 

A correlation was observed between the presence of mines in the vicinity of water bodies and 

the mean TSS and standard deviation values. In regions (Figure 13) where mining activity was more 

detected,  there  was  a  significant  increase  in  average  TSS  levels,  as  well  as  greater  variability 

represented by the standard deviation. These results suggest a direct relationship between mining 

activity and water quality in these areas. 

 

Figure 13. Illustrative figure elucidating mining in two different cases increasing the TSS of the water. 

From left to right: (a) first mining point and (b) second mining point. 
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Standard deviation, in this context, emerges as a crucial metric for understanding the variability 

of TSS values and their possible origins. It allows us to distinguish whether the observed variations 

are the result of natural hydrological processes or whether they are associated with siltation caused 

by mining activity. Notably, water bodies with higher standard deviations were readily related to the 

presence of mining in their vicinity, highlighting the significant influence of this activity on water 

quality. 

Table 4 presents the average TSS metrics between the years 2017 to 2023 for the water bodies 

studied. 

Table 4. Table of metrics for water bodies. 

Water body  Average TSS (mg/l)  Standard Deviation (mg/l) 

Maroni River  45.69  17.75 

Suriname River  12.72  8.52 

Brokopondo Lake  34.91  21.71 

Sinnamary Lake  14.52  5.68 

Based on  the data presented  in  the  table, we observed  significant variations  in TSS  levels  in 

different bodies of water in the region. The Maroni River stands out with the highest average TSS 

value,  recording  45.69 mg/l,  along with  the  highest  standard  deviation,  indicating  considerable 

variability  in TSS  levels over  time,  justified by  the CART  classification, which displayed  several 

mining polygons along its course, contributing to the load of suspended solids in this body of water. 

In the case of Lake Brokopondo, although its average TSS value is slightly lower (34.91 mg/l) 

than  that  of  the Maroni  River,  the  standard  deviation  is  even  higher,  indicating  an  even more 

significant variability in TSS levels, which is justified by the extensive mining activity in its southeast 

and northeast branches described previously. 

On  the other hand, both  the Suriname River and Lake Sinnamary exhibit  lower average TSS 

values, recording 12.72 mg/l and 14.52 mg/l, respectively. These two bodies of water in question stand 

out due to the low number of mining polygons found in their surroundings. In the case of Sinnamary, 

only  1.81  km2  of  mining  was  identified  in  its  surroundings,  and  because  this  polygon  is 

approximately 3 km from the lake, it there was no direct interference with the concentration of solids 

in this system. 

The most critical point of mining activity was identified at Lake Brokopondo (Figure 14). From 

2017 to 2023, a gradual increase in the average TSS was observed throughout the period studied. In 

2017,  the average TSS was  recorded at 35 mg/l, and  this value  increased  to 40 mg/l  in 2018. The 

following year, in 2019, there was a further increase, bringing the average TSS to 45 mg/l. In 2020, the 

increase continued, with  the average TSS  reaching 50 mg/l.  In 2021,  the  increase appears  to have 

stabilized,  recording  an  average TSS  of  52 mg/l. However,  between  2022  and  2023,  a  significant 

increase was observed, with the average TSS reaching 60 mg/l in 2023. 
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Figure 14. Subtractive map between the years 2023 and 2017. From left to right from top to bottom: 

(a) TSS average for 2017, (b) TSS average for 2023 and (c) subtractive image between the two years. 

Both  small‐scale artisanal mining activities and  larger activities, with  industrial  instruments, 

were detected, in which some points where previously there were TSS values of 12 mg/l in 2017, now 

in 2023 have values of 179 mg/l, a percentage increase of 1391.67%. 

4. Discussion 

Using the CART (Classification and Regression Trees) algorithm to map mining areas presents 

a series of advantages and disadvantages worthy of discussion. 

In terms of advantages, the CART algorithm is known for its ability to handle non‐linear data 

and complex interactions between variables, which is often observed in remote sensing images. Its 

decision  tree‐based  nature  allows  an  intuitive  interpretation  of  the  results,  facilitating  the 

understanding of the relationships between the predictor variables and the target class. Furthermore, 

CART is robust against outliers and can efficiently handle large‐scale datasets such as high‐resolution 

satellite images. 

On the other hand, the CART classification also has some  limitations. One  is  the  tendency to 

generate complex tree models, which can be difficult to interpret and prone to overfitting, especially 

when applied to datasets with many explanatory variables. Furthermore, CARTʹs performance can 

be  affected by  inappropriate  choice of parameters,  such  as maximum number of  leaf nodes  and 

maximum tree depth, which can lead to under‐ or over‐fitting models. 

In summary, although  the CART algorithm  is a valuable  tool  for mining mapping  in remote 

sensing images, it is important to carefully consider its advantages and limitations when interpreting 

the results and performing subsequent analyses. 

Combining  the CART algorithm with Sentinel‐2A  images proved  to be an effective strategy, 

especially considering the low spatial resolution of these images. This low resolution is particularly 

advantageous for identifying small‐scale mining settlements throughout the study area. Sentinel‐2Aʹs 

ability  to  capture  spectral  information  across  multiple  bands,  coupled  with  the  robust  and 

interpretable nature of the CART algorithm, allows for more accurate and detailed classification of 
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mining areas, even in locations where activities are smaller in scale. Thus, this union between these 

two provides a solid approach to mapping and monitoring mining in areas of interest, contributing 

to a better understanding and management of these environments. 

Among the six CART classes used ‐ water, vegetation, deforestation, cloud, cloud shadow and 

mining ‐ a notable correlation was observed between the deforestation class and the mining activity 

in which  their differentiation was difficult,  this challenge  in differentiating between deforestation 

and mining  can  be  attributed  to  several  reasons,  including  the  spectral  similarity  between  these 

classes, the overlapping of terrain features and the complexity of land use changes in the study area, 

as many deforested areas are converted to mining activities, and vice versa. This difficulty highlights 

the need for more refined and sensitive approaches for classifying remote sensing images, especially 

in contexts where the classes of interest have similar spectral characteristics. 

When comparing the mining areas along the border between French Guiana and Suriname, a 

significant distinction is observed. Water bodies located in French Guiana appear to be relatively free 

from mining activity  compared  to adjacent areas of Suriname. This difference  in  the presence of 

mining is reflected in the water quality of water bodies, especially in relation to the TSS. Areas less 

affected by mining have  lower TSS  levels,  indicating potentially better water quality compared to 

areas most impacted by mining activity. 

The most critical point of mining activity was identified at Lake Brokopondo. The presence of 

mining operations in its proximity raises concerns about possible water pollution, habitat destruction 

and changes in water quality, which could have far‐reaching consequences for both aquatic life and 

neighboring communities. Therefore, effective environmental management strategies are essential to 

mitigate  the adverse  effects of mining activities on Lake Brokopondo and preserve  its  ecological 

integrity. 

The  abundant  availability  of  Google  Earth  Engine  (GEE)  imagery  provides  a  significant 

advantage for detailed spatiotemporal analyzes across diverse study areas. The ability  to access a 

wide range of satellite images quickly and efficiently allows analysis to be carried out over time with 

unprecedented  spatial  and  temporal  resolution. This wealth of data was  critical  to our  research, 

enabling a comprehensive investigation of mining patterns and their impacts on water bodies over a 

seven‐year period. 

Finally,  the  continued  relevance  of  using  remote  sensing  technologies,  such  as  GEE,  and 

innovative methodological approaches to monitor and manage natural resources in a sustainable way 

is highlighted. These tools and techniques are essential to guide environmental management policies 

and practices that aim to conserve and protect vulnerable aquatic ecosystems from human activities, 

such as mining. 

Author Contributions: Conceptualization, P.B.; methodology, P.B. and L.F.; validation, P.B.;  formal analysis, 

P.B;  investigation,  P.B  and  L.F.;  resources,  P.B  and  L.F.; writing—original  draft  preparation,  P.B  and  L.F.; 

writing—review  and  editing,  P.B  and  L.F;  visualization,  P.B  and  L.F;  supervision,  P.B  and  L.F;  funding 

acquisition, P.B and L.F. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: Data Availability Statement: The original contributions presented in the study are 

included in the article, further inquiries can be directed to the corresponding author. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Rozo, S.V. Unintended effects of illegal economic activities: Illegal gold mining and malaria. World Dev. 

2020, 136, 105119. 

2. Veiga, M.M.; Maxson, P.A.; Hylander, L.D. Origin and consumption of mercury in small‐scale gold mining. 

J. Clean. Prod. 2006, 14, 436–447 

3. Veiga, M.M. Mercury in Artisanal Gold Mining in Latin America: Facts, Fantasies and Solutions; UNIDO: 

Vienna, Austria, 1997. 

4. Sousa, R.N.; Veiga, M.M. Using performance indicators to evaluate an environmental education program 

in artisanal gold mining communities in the Brazilian amazon. Ambio, 2009, 38, 40–46. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 May 2024                   doi:10.20944/preprints202405.1744.v1

https://doi.org/10.20944/preprints202405.1744.v1


  18 

 

5. Telmer, K.; Stapper, D. Evaluating and Monitoring Small Scale Gold Mining and Mercury Use: Building a 

Knowledge‐Base  with  Satellite  Imagery  and  Field  Work;  United  Nations  Industrial  Development 

Organization: Victoria, BC, Canada, 2007. 

6. Fernandes, F.R.C.; Alamino, R.D.C.J.; Araújo, E.R. Recursos Minerais E Comunidade: Impactos Humanos, 

Socioambientais E Econômicos; CETEM/MCTI: Rio de Janeiro, Brazil, 2014. 

7. Rodrigues, R.M.; Mascarenhas, A.F.S.;  Ichihara, A.H.;  Souza, T.M.C. Estudo Dos  Impactos Ambientais 

Decorrentes do Extrativismo Mineral E Poluição Mercurial no TAPAJÓS—Pré‐Diagnóstico; CETEM/CNPq: 

Rio de Janeiro, Brazil, 1994. 

8. Roland, F.; Esteves, F.D. Effects of bauxite tailing on PAR attenuation in an amazonian crystalline water 

lake. Hydrobiologia 1998, 377, 1–7. 

9. Mol,  J.H.; Ouboter, P.E. Downstream  effects  of  erosion  from  small‐scale  gold mining  on  the  instream 

habitat and fish community of a small neotropical rainforest stream. Conserv. Biol. 2004, 18, 201–214. 

10. Tudesque, L.; Grenouillet, G.; Gevrey, M.; Khazraie, K.; Brosse, S. Influence of small‐scale gold mining on 

french guiana streams: Are diatom assemblages valid disturbance sensors? Ecol. Indic. 2012, 14, 100–106. 

11. Grimaldi,M.and Guédron,S.and Grimaldi,C.  Impact of gold mining on mercury contamination and soil 

degradation in Amazonian ecosystems of French Guiana, 2015. 

12. Binding, C.E.; Bowers, D.G.; Mitchelson‐Jacob, E.G. Estimating suspended sediment concentrations from 

ocean  colour  measurements  in  moderately  turbid  waters;  the  impact  of  variable  particle  scattering 

properties. Remote Sens. Environ. 2005, 94, 373–383. 

13. John A Harrington, Frank R Schiebe,  Joe F Nix, Remote sensing of Lake Chicot, Arkansas: Monitoring 

suspended  sediments,  turbidity,  and  Secchi  depth  with  Landsat  MSS  data,  Remote  Sensing  of 

Environment, Volume 39, Issue 1, 1992, Pages 15‐27. 

14. Felipe L. Lobo, Maycira P.F. Costa, Evlyn M.L.M. Novo, Time‐series analysis of Landsat‐MSS/TM/OLI 

images  over Amazonian waters  impacted  by  gold mining  activities, Remote  Sensing  of Environment, 

Volume 157, 2015, Pages 170‐184. 

15. Albert, A., & Mobley, C. D. An analytical model for subsurface irradiance and remote sensing reflectance 

in deep and shallow case‐2 waters. Optics Express, 11,    2003, 2873–2890. 

16. Doxaran, D., Ehn,  J., Bélanger, S., Matsuoka, A., Hooker, S., and Babin, M.: Optical  characterisation of 

suspended particles  in  the Mackenzie River plume  (Canadian Arctic Ocean) and  implications for ocean 

colour remote sensing, Biogeosciences, 9, 3213–3229, https://doi.org/10.5194/bg‐9‐3213‐2012, 2012. 

17. Mertes, L. A. K., Smith, M.O., & Adams, J. B. Estimating suspended sediment concentrations  in surface 

waters of the Amazon River wetlands from landsat images. Remote Sensing of Environment, 1993, 43, 281–

301. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 May 2024                   doi:10.20944/preprints202405.1744.v1

https://doi.org/10.20944/preprints202405.1744.v1

