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Abstract: Artisanal and Small-scale Gold Mining (ASGM) has caused several environmental
impacts, resulting in significant siltation of water bodies due to the deposition of sediments on river
banks. Based on this perspective, this study aims to investigate the water bodies and regions most
impacted by mining activities, especially in relation to the increase in the Total Suspended Solids
(TSS) caused by ASGM, focusing on the territories of Suriname and French Guiana, over the period
from 2017 to 2023, through the creation of an algorithm in Google Earth Engine. The research also
aims to map and describe active mining in this region using the Classification and Regression Tree
(CART) method, which achieved an overall accuracy of 82% and a kappa index of 0.77. The results
reveal that from 2017 to 2024 there was an increase of 148.09 km? of mining, with an average increase
in TSS of up to 167 mg/l in water bodies most affected by mining activities. Finally, the continued
importance of using remote sensing technologies, such as GEE, together with innovative
methodological approaches, to monitor and manage natural resources in a sustainable manner is
highlighted.

Keywords: mining; total suspended solids; environmental monitoring; remote sensing; google
engine; image classification

1. Introduction

The global gold mining industry generally focuses on large companies, but in many parts of the
world, especially in developing countries, mineral extraction is predominantly driven by artisanal
and small-scale mining (ASGM), forming a diverse and complex sector. [1,2].

ASGM is a widespread practice in developing countries in the Americas, Asia and Africa [3-5].
In the Amazon, this activity began in the 1950s in areas known as mining and currently involves
hundreds of thousands of people due to the increase in gold prices in recent years [6].

Despite its economic importance, ASGM (Figure 1) has caused several environmental impacts,
including mercury contamination, sedimentation of waterways and environmental degradation [4,7].
This practice results in significant siltation of water bodies due to the deposition of sediments on river
banks, where the exploitation of alluvial deposits is common [2]. This affects water quality, increasing
the Total Suspended Solids (TSS) and reducing the penetration of sunlight necessary for the
production of organic matter by aquatic organisms [8], in addition to impacting fish [9] and benthic
communities [10].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Illustration of artisanal or semi-industrial gold mining activities in French Guiana [11]. From
top left to bottom right: (a) mechanical removal of surface soil horizons, (b) stripping off of gold-
bearing material with water jets to recover gold particles and nuggets, (c) digging of a derivation
canal, (d) settling basin, and water turbidity in Combat Creek (e) before and (f) during artisanal small-
scale gold mining activities.

River sedimentation is a globally recognized problem in gold mining regions such as Indonesia,
Ghana, French Guiana and Peru, where most operations take place on riverbanks or directly in river
beds [9]. This process significantly contributes to the increase in suspended solids in the water,
damaging the quality and health of aquatic ecosystems. In the Brazilian Amazon, sediment resulting
from mining can reach one or two tons per gram of gold produced [4], further intensifying this
problem.

Furthermore, the accumulation of sediment in riverbeds can alter river channel morphology,
affecting the availability of suitable habitats for various aquatic species, such as obstructing fish
spawning areas and destroying important habitats such as sandbars. and rocky bottoms, essential for
the life cycle of many species.

Another negative point of artisanal and small-scale mining (ASGM) in the Amazon is associated
with socio-environmental conflicts, such as human rights violations and the misappropriation of
lands from indigenous communities that trigger conflicts and tensions.

In this context, this research aims to fill a significant gap in the analysis of the environmental
impacts of gold mining in often neglected areas of the Amazon, specifically in the territories of
Suriname and French Guiana. While gold mining in the Brazilian Amazon has been widely studied
and documented, mining activities in these adjacent regions, although equally relevant in terms of
environmental and socioeconomic impact, often do not receive the same attention from the scientific
community and policymakers.

Given that many of these settlements operate informally within remote protected areas and
indigenous lands in the Amazon, the use of satellite imagery to delineate historic and active mining
areas as well as spectral assessments of water quality via remote sensing becomes the only viable tool
for a more accurate understanding of changes in river water quality related to gold mining practices
in the region. This set of information, which includes changes in land use and water quality associated
with artisanal and small-scale mining (ASGM), is of great interest to land managers as it helps to
assess the social and environmental implications of the activities of gold mining. At the same time,
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these data are essential to inform the development of public policies aimed at recovering degraded
areas and promoting the sustainable use of water and mineral resources in the region [6,7,9].

Based on this perspective, this study's main objective is to investigate the water bodies and
regions most impacted by mining activities, especially in relation to the increase in the Total
Suspended Solids (TSS) caused by artisanal and small-scale mining (ASGM) in the Amazon, focusing
on the territories of Suriname and French Guiana, over the period from 2017 to 2023, through the
creation of an algorithm in Google Earth Engine. The research also aims to map and describe active
mining in this region, drawing a parallel to their proximity to the most affected water bodies. In doing
so, we seek to provide insights into patterns of mining activity and associated environmental effects,
contributing to a more comprehensive understanding of the impacts of gold mining in these
neglected areas of the Amazon.

2. Materials and Methods

2.1. Research Area

The study area (Figure 2) refers to northeast Suriname and northwest French Guiana, covering
the northern portion of the Amazon. The extension coordinates are: top left -55.7909, 6.0316
(longitude, latitude) and bottom right -52.6653, 3.0696 (longitude, latitude).
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Figure 2. Study area.

In this polygon; the mapping of mines will occur throughout its entire extension; while the
analysis of the TSS will be focused on the main water bodies in the region; including Lake
Brokopondo; Lake Sinnamary; the Maroni River and the Suriname River. These bodies of water play
fundamental roles in local ecosystems and are essential for the lives of the communities that inhabit
this area of the Amazon

2.2. Overall Methodological Workflow

Below, we present the methodological flowchart (Figure 3) of this study, in which we detail the
steps divided between pre-processing, processing and final results. In pre-processing, we processed
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the Sentinel image collection from 2017 to 2023 and filtered to remove clouds. In processing, we apply
the TSS to the water bodies of interest and map the mining areas. The final result includes the
products obtained for spatio-temporal analysis, visualization and download.
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Figure 3. Overall methodology.

The first stage of the study involved creating the algorithm in Google Earth Engine (GEE). GEE
is a cloud-based geospatial image processing and analysis platform that offers a broad set of data and
tools for spatial and temporal analysis. Its ability to process large volumes of data quickly and
efficiently makes it a powerful tool for environmental monitoring studies and spatio-temporal
analysis.

2.2.1. Imagery Time-Series for Monitoring Water Quality and Mining Areas

To monitor water quality and mining areas over time, an approach based on a time series of
satellite images was used. Specifically, images from the Sentinel-2A satellite (Table 1), belonging to
the Copernicus program, were used due to its high spatial resolution and revisit frequency suitable
for environmental studies.

Table 1. Sentinel-2A bands table.

Spatial Resolution
(m)

Band 1 Coastal aerosol 443 60

Band 2 Blue 490 10

Band Name Spectral Range (nm)
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5
Band 3 Green 560 10
Band 4 Red 665 10
Band 5 Red Edge 1 705 20
Band 6 Red Edge 2 740 20
Band 7 Red Edge 3 783 20
Band 8 NIR (Near Infrared) 842 10
Band 8A Narrow NIR 865 20
Band 9 Water vapor 945 60
Band 10 SWIR - CIRRUS 1375 60
Band 11 SWIR 1 1610 20
Band 12 SWIR 2 2190 20

This collection contains previously atmospherically corrected and harmonized images, ensuring
the consistency and quality of the data throughout the analyzed period.

To select suitable images, the following code was used:

var collection = ee.ImageCollection(”COPERNICUS/S2_SR_HARMONIZED")

filterDate("2017-01-01", '2023-12-31")
filterBounds(geometry3)
filter(ee.Filter.It('"CLOUDY_PIXEL_PERCENTAGE’, 10));

This code allows you to filter the Sentinel-2 image collection for the period of interest (from
January 2017 to December 2023) and restrict the study area through the spatial delimitation defined
by the variable "geometry3". Furthermore, the "CLOUDY_PIXEL_PERCENTAGE" filter was used to
select only images with less than 10% cloud cover, ensuring the quality of the data used in the
analysis.

Despite limiting the analysis to images with cloud coverage of 10% or less, the challenge of
correctly classifying the TSS values was still identified, as some of them actually corresponded to
covered areas by clouds. Considering this issue, a more sophisticated cloud filter was implemented,
which now removes pixels affected by clouds during the final classification step.

Below is the implemented code:

var s2Clouds =
ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY’) filterBounds(region1) leterDate(fromD
ateSentinel, toDateSentinel); var s2_orig

ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED’).filter Bounds(regionl).filter Date(fromDateSe
ntinel, toDateSentinel);
var MAX_CLOUD_PROBABILITY = 10;
function maskClouds(img) {
var clouds = ee.Image(img.get(’cloud_mask’)).select("probability’);
var isNotCloud = clouds.lt(tMAX_CLOUD_PROBABILITY);
return img.updateMask(isNotCloud); }
function maskEdges(s2_img) {
return s2_img.updateMask(
s2_img.select(’BSA’).mask().updateMask(s2_img.select('B9’).mask()));}
s2_orig =s2_orig.map(maskEdges);
s2Clouds = s2Clouds;
var s2SrWithCloudMask = ee.Join.saveFirst(’cloud_mask’).apply({
primary: s2_orig, secondary: s2Clouds, condition:
ee.Filter.equals({leftField: 'system:index’, rightField: 'system:index'})});
var s2CloudMasked =
ee.ImageCollection(s2SrWithCloudMask).map(maskClouds);
The "maskClouds" and "maskEdges" functions are used to mask clouds in images (Figure 4). The
first function masks the pixels affected by clouds, while the second function masks the edges of the
images.
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Figure 4. Practical demonstration of the filter. From top left to bottom right: (a) Sentinel-2A image
from June 8, 2023 over Lake Brokopondo, with the presence of clouds, (b) TSS classification over the
original image, (c) classification after removing the clouds.

After applying the cloud and edge masks, the two collections are combined using the
"ee.Join.saveFirst" function. Finally, a new collection of images where the clouds have been masked

is created, using the "map" function to apply the "maskClouds" function to all images in the combined
collection, from 2017 to 2023.

2.2.1.1. Mapping of Mining Areas

In possession of the collection of images processed from 2017 to 2023, in order to map the mining
areas, the first step was to define the land cover classes for training, with prior knowledge of the
study area and the mining context present in the region , 6 classes were defined (Table 2): water,
vegetation, deforestation, cloud, cloud shadow and mining. Due to the spectral difference of these 6
targets of interest being distinct, the classification process is subsequently facilitated.

Table 2. Class training table.

Training class Number of samples
Mining 100
Water 40
Vegetation 30
Cloud 30
Shadow 30
Deforestation 30
Total 260

Figure 5 below illustrates the process of training classes on satellite images to identify mining
areas.
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Figure 5. Demonstration of some points used in training. From top left to bottom right: (a) Training
of an extensive mining area, (b) training of a small mining area next to a water body, (c) classification
of another mining area south of Lake Brokopondo.

After training, the Classification and Regression Tree (CART) method was applied, which is a
non-parametric classifier that does not require any a priori statistical assumptions regarding the
distribution of the data.

CART is a classification method that operates at the pixel level and uses the pixel intensities of
training samples (polygons) to build a decision tree that assigns a class to each pixel in the image (20
meters). Bands 3 (560 nm), 4 (665 nm), 8 (842 nm) and 11 (1610 nm) were used, selected based on their
spectral properties and ability to provide relevant information for classifying areas of interest.

In Google Earth Engine, the CART algorithm (ee.Classifier.smileCart) is configured with two
parameters: MaxNodes, which determines the maximum number of leaf nodes in each decision tree,
and MinLeafPopulation, which establishes the minimum number of points required in a set training
tool to create a node. These parameters have been set to default values: no limit on the maximum
number of nodes and one on the minimum number of points for creating nodes.

The CART classification (Figure 6) proved to be effective in differentiating the six classes of
interest, including the precise detection of mining areas, which subsequently underwent a validation
process, which will be further discussed in the results.
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Figure 6. CART classification. From top to bottom: (a) Sentinel-2A image (2023-01-09) of a mining area
northeast of Lake Brokopondo, (b) result of CART classification with the 6 classes.

The resulting layer was exported to the Tiff file type in Google Drive for further analysis and
discussion.

2.2.1.2. Monitoring Water Quality

The use of satellite sensors combined with remote sensing techniques have been used to estimate
TSS in coastal and inland waters [12,13].

This approach to estimating suspended solids in water generally follows two distinct
approaches: empirical, which is based on direct correlation between measured TSS and satellite data
[14]; and analytical methods, which depend on the measured optical properties of water [15,16]. This
research demonstrates that the green and red bands have a significant relationship with TSS up to
approximately 100 mg/l. The use of the red band to estimate TSS in waters through empirical
regressions is well documented in the literature. Previous studies, such as those by Harrington et al.
[13] and Mertes et al. [17] for MSS data demonstrated this approach comprehensively.

For this study, a robust empirical model was implemented between in situ TSS and the red band
of the TM sensor on the Landsat 5 satellite, established from two field campaigns in the Amazon to
measure radiometric quantities and concentrations of TSS, described in detail in Lobo et al. al. [14].
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In order to recover the TSS concentration from the surface reflectance, a non-linear regression
was established between TSS and ysurf(red) derived from reference images, in which it was observed
that the best empirical correlation between TSS and ysurf (§) was given by a power function (R2 =
0.94, RMSE = 1.33%) using the red band [14].

Even though the curve was constructed based on data from the jsurf(red) satellite up to 22%, it
is believed that this function can be extrapolated to values up to 35%. This equates to approximately
300 mg/1 TSS [14]. It is important to note the strong correlation between TSS and in situ jsurf(red), as
shown by the dashed curve in the figure.

The non-linear regression obtained for the Landsat 5 TM sensor, described previously, was
adapted for Sentinel-2A. So your script in Google Earth Engine looked like this:

var TSS = function(image) {
var TSSn = image.expression(
"((RED/2.64)*%(1/0.45)) + 2.27", {
'RED’: image.select('B4’).multiply(0.01)})
var TSSname = TSSn.rename(['TSSn’]);
return TSSname;}

This function calculates the TSS from the spectral bands of the Sentinel-2A image. First, the red
band of the image is selected, represented by the variable “RED”. Then, the pixel values from that
band are converted to reflectance by multiplying them by 0.01, as the original values are in digital
counting units (DN). The formula for calculating TSS is then applied to the converted red band. After
calculation, the result is renamed as “TSSn” to represent the Total Suspended Solids (TSS). Finally,
the function returns the resulting TSS image (Figure 7), where each pixel represents the TSS estimate
based on the red band of the Sentinel-2A image.
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Figure 7. Illustrative image of the TSS classification in the algorithm in Google Earth Engine. From
left to right: (a) Sentinel-2 image from 2023-09-06 and (b) Sentinel-2 image from the same day with the
TSS classification band (mg/L) added.

From this new band, the following processes were carried out with the analysis of the TSS in all
water bodies in the extension of the study area based on the collection of previously treated images
from Sentinel 2, from 2017 to 2023.

3. Results
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3.1. Validation of Gold Mining Areas

In the process of validating mining areas, the accuracy of the CART classification used here was
evaluated. The objective was to evaluate the reliability of the classification results obtained from the
analysis of satellite images. This assessment was crucial to ensure the credibility of the identified
mining sites for subsequent analysis and decision-making processes.

To conduct validation, a total of 50 mining points (Figure 8) were established across the study
area. Each validation point was visually inspected using high-resolution imagery from Google Earth
Pro, which utilizes high-resolution image mosaics. Specifically, images from Maxar Technologies,
2024 Airbus and CNES/Airbus were used.

E Sentinel-2 images Mining classification E Sentinel-2 images Mining classification

Subtitles N
Il Mining (J

Figure 8. Demonstration of the validation process. From top to bottom: (a) first mining point, (b)
second mining point and (c) third mining point.

Of the 50 validation points established, 41 were correctly classified as mining areas by the CART
algorithm, with an overall accuracy of 82% and a kappa index of 0.77, indicating substantial
agreement between the classification results and the reference data obtained from high-speed images.
Google Earth Pro resolution.

Mapping has proven to be effective in identifying the main components of mining areas (Figure
9) and their associated infrastructure elements, including waste piles, both dams and tailings ponds,
airstrips, which are often used for mining. transport of materials and workers, industrial equipment
and mining facilities, as well as the mineral extraction areas themselves. Furthermore, the
classification allowed us to differentiate between active mining areas and the surrounding areas,
offering a clear view of the regions of interest and their distinctive characteristics.
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Figure 9. Mapping of mining and associated structures. From left to right: (a) first mining point and
(b) second mining point.

After validation, an additional review was carried out of the mining areas identified by the
validation samples that were not initially identified by the CART algorithm, as well as the sample
areas that were not classified as mining. As a result of this process, 7.25 km? of new mining areas
were added to the classification, while 1.61 km? of previously classified areas were removed. This
refined review has significantly contributed to a more accurate representation of areas of mining
activity in the region.

3.2. Total Mining Area

To quantify the extent of areas mapped as mining, each land cover class was analyzed in relation
to its total area. Using an area calculation function, it was possible to determine the total mining area
over the last 7 years, from 2017 to 2023.

The mapping of these areas was conducted within a polygon covering a total area of 15882 km?.
This extensive territory was subject to detailed analysis using satellite images acquired over a period
of seven years, from 2017 to 2023. Figure 10 below presents the map of mining areas mapped in each
year, from 2017 to 2023, highlighting the spatial distribution of mining activities throughout the study
period.
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Figure 10. Map of mining mapped in each year, from 2017 to 2023.

Below, Table 3 describes the total mining area in square kilometers for each year, providing a
panoramic view of the expansion or contraction trends in mining activity over the analyzed period.

Table 3. Total area of mining.

Year 2017 2018 2019 2020 2021 2022 2023
Ml‘;un 148.34472 19493317 275.09851 231.62797 280.58632  285.74622  296.43185
(km2) 4 7 0 5 9 5 2
Minin 14834472 19493317 27509851 23162797 28058632 28574622 29643185

Detailed analysis of the data reveals a variation in the total mining area over the years, with
increases and decreases in different periods. In 2017, the registered mining area was 148.34 km?2. The
following year, there was an increase to 194.93 km?, indicating an increase of approximately 46.59
km?2. However, in 2019, a more significant increase was observed, reaching 275.10 km?, which
represents a significant increase of 80.17 km? compared to the previous year.

In contrast, the year 2020 saw a decrease in the mining area, recording 231.63 km?, a reduction
of approximately 43.47 km? compared to 2019. However, this decline was followed by a further
increase in 2021, when the mining area reached 280.59 km?, representing an increase of 48.96 km?.

In 2022, the total mining area continued to grow, reaching 285.75 km?2 Finally, in 2023, the
mining area reached its highest value during the analyzed period, totaling 296.43 km?.
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The following bar graph (Figure 11) presents an overview of the annual variation in the area
occupied by mining during the period studied, allowing an understanding of fluctuations in the
extent of mining operations over time.
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Figure 11. Mining graph by year, from 2017 to 2023.

When comparing the area mined in 2017 with that recorded in 2023, we observed a significant
absolute difference of 148.09 km?, in relation to the average percentage increase in the mined area, it
was found that the average growth rate during this period was approximately 99.23%.

The data reveals that in 2017 mining activity was mainly concentrated in large-scale, industrial
mining areas. However, from 2018 onwards, an expansion of alluvial mining areas was observed
along the Maroni and Lawa rivers, as well as in the vicinity of the north-east and south-east arms of
Lake Brokopondo, culminating in a significant increase by the year 2019. In 2020, this expansion
slowed down, but from 2021 until 2023, there was a resumption of growth, both in areas located more
than 500 meters from water bodies and in their surroundings.

3.3. Analysis of TSS in Water Bodies in Relation to Mining

The first development of this study consists of the creation of a comprehensive map (Figure 12),
highlighting all the water bodies present in the region in question. Additionally, each of these bodies
of water was added with an additional layer representing the average TSS during the period from
2017 to 2023. This data was complemented by generating graphs that present points specific to these
water bodies, providing a detailed analysis of trends observed over time.
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Figure 12. Map with TSS graphs by year (2017 to 2023), water bodies have a band in which each pixel
represents its average value over the years studied.

A correlation was observed between the presence of mines in the vicinity of water bodies and
the mean TSS and standard deviation values. In regions (Figure 13) where mining activity was more
detected, there was a significant increase in average TSS levels, as well as greater variability
represented by the standard deviation. These results suggest a direct relationship between mining
activity and water quality in these areas.
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Figure 13. Illustrative figure elucidating mining in two different cases increasing the TSS of the water.
From left to right: (a) first mining point and (b) second mining point.
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Standard deviation, in this context, emerges as a crucial metric for understanding the variability
of TSS values and their possible origins. It allows us to distinguish whether the observed variations
are the result of natural hydrological processes or whether they are associated with siltation caused
by mining activity. Notably, water bodies with higher standard deviations were readily related to the
presence of mining in their vicinity, highlighting the significant influence of this activity on water

quality.
Table 4 presents the average TSS metrics between the years 2017 to 2023 for the water bodies
studied.
Table 4. Table of metrics for water bodies.
Water body Average TSS (mg/l) Standard Deviation (mg/l)
Maroni River 45.69 17.75
Suriname River 12.72 8.52
Brokopondo Lake 34.91 21.71
Sinnamary Lake 14.52 5.68

Based on the data presented in the table, we observed significant variations in TSS levels in
different bodies of water in the region. The Maroni River stands out with the highest average TSS
value, recording 45.69 mg/l, along with the highest standard deviation, indicating considerable
variability in TSS levels over time, justified by the CART classification, which displayed several
mining polygons along its course, contributing to the load of suspended solids in this body of water.

In the case of Lake Brokopondo, although its average TSS value is slightly lower (34.91 mg/l)
than that of the Maroni River, the standard deviation is even higher, indicating an even more
significant variability in TSS levels, which is justified by the extensive mining activity in its southeast
and northeast branches described previously.

On the other hand, both the Suriname River and Lake Sinnamary exhibit lower average TSS
values, recording 12.72 mg/l and 14.52 mg/], respectively. These two bodies of water in question stand
out due to the low number of mining polygons found in their surroundings. In the case of Sinnamary,
only 1.81 km2 of mining was identified in its surroundings, and because this polygon is
approximately 3 km from the lake, it there was no direct interference with the concentration of solids
in this system.

The most critical point of mining activity was identified at Lake Brokopondo (Figure 14). From
2017 to 2023, a gradual increase in the average TSS was observed throughout the period studied. In
2017, the average TSS was recorded at 35 mg/l, and this value increased to 40 mg/l in 2018. The
following year, in 2019, there was a further increase, bringing the average TSS to 45 mg/l. In 2020, the
increase continued, with the average TSS reaching 50 mg/l. In 2021, the increase appears to have
stabilized, recording an average TSS of 52 mg/l. However, between 2022 and 2023, a significant
increase was observed, with the average TSS reaching 60 mgy/l in 2023.
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Figure 14. Subtractive map between the years 2023 and 2017. From left to right from top to bottom:
(a) TSS average for 2017, (b) TSS average for 2023 and (c) subtractive image between the two years.

Both small-scale artisanal mining activities and larger activities, with industrial instruments,
were detected, in which some points where previously there were TSS values of 12 mg/1 in 2017, now
in 2023 have values of 179 mg/l, a percentage increase of 1391.67%.

4. Discussion

Using the CART (Classification and Regression Trees) algorithm to map mining areas presents
a series of advantages and disadvantages worthy of discussion.

In terms of advantages, the CART algorithm is known for its ability to handle non-linear data
and complex interactions between variables, which is often observed in remote sensing images. Its
decision tree-based nature allows an intuitive interpretation of the results, facilitating the
understanding of the relationships between the predictor variables and the target class. Furthermore,
CART is robust against outliers and can efficiently handle large-scale datasets such as high-resolution
satellite images.

On the other hand, the CART classification also has some limitations. One is the tendency to
generate complex tree models, which can be difficult to interpret and prone to overfitting, especially
when applied to datasets with many explanatory variables. Furthermore, CART's performance can
be affected by inappropriate choice of parameters, such as maximum number of leaf nodes and
maximum tree depth, which can lead to under- or over-fitting models.

In summary, although the CART algorithm is a valuable tool for mining mapping in remote
sensing images, it is important to carefully consider its advantages and limitations when interpreting
the results and performing subsequent analyses.

Combining the CART algorithm with Sentinel-2A images proved to be an effective strategy,
especially considering the low spatial resolution of these images. This low resolution is particularly
advantageous for identifying small-scale mining settlements throughout the study area. Sentinel-2A's
ability to capture spectral information across multiple bands, coupled with the robust and
interpretable nature of the CART algorithm, allows for more accurate and detailed classification of
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mining areas, even in locations where activities are smaller in scale. Thus, this union between these
two provides a solid approach to mapping and monitoring mining in areas of interest, contributing
to a better understanding and management of these environments.

Among the six CART classes used - water, vegetation, deforestation, cloud, cloud shadow and
mining - a notable correlation was observed between the deforestation class and the mining activity
in which their differentiation was difficult, this challenge in differentiating between deforestation
and mining can be attributed to several reasons, including the spectral similarity between these
classes, the overlapping of terrain features and the complexity of land use changes in the study area,
as many deforested areas are converted to mining activities, and vice versa. This difficulty highlights
the need for more refined and sensitive approaches for classifying remote sensing images, especially
in contexts where the classes of interest have similar spectral characteristics.

When comparing the mining areas along the border between French Guiana and Suriname, a
significant distinction is observed. Water bodies located in French Guiana appear to be relatively free
from mining activity compared to adjacent areas of Suriname. This difference in the presence of
mining is reflected in the water quality of water bodies, especially in relation to the TSS. Areas less
affected by mining have lower TSS levels, indicating potentially better water quality compared to
areas most impacted by mining activity.

The most critical point of mining activity was identified at Lake Brokopondo. The presence of
mining operations in its proximity raises concerns about possible water pollution, habitat destruction
and changes in water quality, which could have far-reaching consequences for both aquatic life and
neighboring communities. Therefore, effective environmental management strategies are essential to
mitigate the adverse effects of mining activities on Lake Brokopondo and preserve its ecological
integrity.

The abundant availability of Google Earth Engine (GEE) imagery provides a significant
advantage for detailed spatiotemporal analyzes across diverse study areas. The ability to access a
wide range of satellite images quickly and efficiently allows analysis to be carried out over time with
unprecedented spatial and temporal resolution. This wealth of data was critical to our research,
enabling a comprehensive investigation of mining patterns and their impacts on water bodies over a
seven-year period.

Finally, the continued relevance of using remote sensing technologies, such as GEE, and
innovative methodological approaches to monitor and manage natural resources in a sustainable way
is highlighted. These tools and techniques are essential to guide environmental management policies
and practices that aim to conserve and protect vulnerable aquatic ecosystems from human activities,
such as mining,.
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