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Abstract: This study aims to provide analyses of the levels of airborne particulate matter (PM)
using a two-pronged approach that combines data from in situ Internet of Things (IoT) sensor
networks with remotely sensed aerosol optical depth (AOD). Our approach involved setting up
a network of custom-designed PM sensors that could be powered by the electrical grid or solar
panels. These sensors were strategically placed throughout densely populated areas of North Texas
to collect data on PM levels, weather conditions, and other gases from September 2021 to June 2023.
The collected data was then used to create models that predict PM concentrations in different size
categories, demonstrating high accuracy with correlation coefficients greater than 0.9. This highlights
the importance of collecting hyperlocal data with precise geographic and temporal alignment for PM
analysis. Furthermore, we expanded our analysis to a national scale by developing machine learning
models that estimate hourly PM; 5 levels throughout the continental United States. These models
used high-resolution data from the Geostationary Operational Environmental Satellites (GOES-16)
Aerosol Optical Depth (AOD) dataset, along with meteorological data from the European Center
for Medium-Range Weather Forecasting (ECMWF), AOD reanalysis, and air pollutant information
from the MERRA-2 database, covering the period from January 2020 to June 2023. Our models were
refined using ground truth data from our IoT sensor network, the OpenAQ network, and the National
Environmental Protection Agency (EPA) network, enhancing the accuracy of our remote sensing
PM estimates. The findings demonstrate that the combination of AOD data with meteorological
analyses and additional data sets can effectively model PM; 5 concentrations, achieving a significant
correlation coefficient of 0.849. The reconstructed PMj 5 surfaces created in this study are invaluable
for monitoring pollution events and performing detailed PM; 5 analyzes. These results were further
validated through real-world observations from two in situ MINTS sensors located in Joppa (South
Dallas) and Austin, confirming the effectiveness of our comprehensive approach to PM analysis.
The US Environmental Protection Agency (EPA) recently updated the national standard for PM, 5
to 9 ug/m>, a move aimed at significantly reducing air pollution and protecting public health by
lowering the allowable concentration of harmful fine particles in the air. Using our analysis approach
to reconstruct the fine-time resolution PM; 5 distribution across the entire United States for our study
period, we found that the entire nation encountered PM; 5 levels that exceeded 9 pug/ m?3 for more than
20% of the time of our analysis period, with the eastern United States and California experiencing
concentrations exceeding 9 ug/m? for over 50% of the time, highlighting the importance of regulatory
efforts to maintain annual PM; 5 concentrations below 9 g/ m3.
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1. Introduction

Airborne particulate matter (PM) consists of tiny solid or liquid particles that float in the air [1].
These particles are typically classified by their aerodynamic diameter into several key sizes: PM;
(particles smaller than 1 ym), PM, 5 (particles smaller than 2.5 ym), and PM;q (particles smaller than
10 ym). These particles pose considerable health risks, including lung cancer, stroke, asthma, and
cardiovascular disease. Studies have particularly highlighted that PM; 5, because of its ability to
penetrate deeply into the lungs and enter the bloodstream, poses the most significant health hazard
[2—4].

Beyond health implications, PM also plays a critical role in climate dynamics by modifying the
atmospheric balance of incoming and outgoing electromagnetic radiation. This modification affects
various atmospheric conditions, including temperature, wind patterns, and precipitation. The presence
of particulate matter can lead to the formation of fog and acid rain and contributes to the greenhouse
effect, as discussed in [5-11].

Given the strong link between various health issues and PM, which exhibits significant variations
over time and across different locations, it is crucial to conduct comprehensive studies to better
understand the distribution of PM with high temporal and spatial precision [3,11]. Although
ground-based monitoring stations are vital, their sparse and uneven distribution across regions makes
it difficult to achieve continuous nationwide coverage. To overcome these limitations, numerous
studies have explored the use of remote sensing techniques and the expansion of ground observation
networks. Consequently, contemporary aerosol detection technologies are mainly categorized into
remote sensing and in situ observation systems [12].

A significant hurdle in expanding the reach of precise ground-based monitoring networks is
the associated expense. Consequently, there has been a focus on creating calibration techniques for
affordable airborne particulate sensors. These methods leverage machine learning to improve the
accuracy of sensors in measuring particulate matter [13]. These enhanced sensors offer a way to
complement the data collected by the environmental agency monitoring networks [14]. Part of our
ongoing research involves the development and implementation of an environmental sensing system.
This initiative aims to fill geographical gaps in data collection by setting up observation stations on
the ground. These stations are designed to provide high-temporal-resolution data specifically in the
Dallas area, thereby augmenting existing environmental monitoring efforts.

Research indicates that useful information on surface-level PM; 5 concentrations can be gleaned
using satellite-derived Aerosol Optical Depth (AOD) data in conjunction with multivariate non-linear
machine learning. This allows us to take into account a variety of contextual factors such as weather
conditions and other specific geographical contextual information. As a result, incorporating seasonal
information and additional data can uncover temporal patterns and spatial characteristics. These
insights enable the identification of changes in the relationship between AOD values and PM;5
concentrations [3,15].

[3] developed a machine learning model to provide daily distributions of PM; 5 by utilizing a
combination of remote sensing and meteorological datasets, along with ground-based particulate
matter measurements spanning from 1997 to 2014. Their research outlines the methodology used
and presents global average results for this period, showing that the newly developed PM, 5 data
product can accurately mirror global PM; 5 observations, thus serving as a valuable resource for
epidemiological studies.

In a separate study, [10], Yu et al., 2022 enhanced the modeling of PM; 5 concentrations with
high spatial-temporal resolution. They incorporated data from the Next Generation Weather Radar
(NEXRAD), along with information from the European Centre for Medium-Range Weather Forecasts
(ECMWE), AOD measurements from the Geostationary Operational Environmental Satellite (GOES-16),
and PMj 5 concentrations measured by in situ sensors from the Environmental Protection Agency
(EPA) across the United States. This approach was designed to improve the accuracy and detail of
PM; 5 concentration modeling.
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1.1. Objectives

This study is driven by two main goals. The first goal is to highlight the importance of collecting
high-temporal-resolution data and feature variable observations that are synchronized both spatially
and temporally with particulate matter (PM) measurements for accurate PM modeling. We used a
specially designed system of IoT sensors, both solar and grid-powered, to detect particulate matter
and other environmental parameters, deployed extensively in a densely populated area of North Texas.
Our system, named MINTS-AI (Multiscale Multiuse Multimodal Integrated Interactive Intelligent
Sensing for Actionable Insights), provides access to a wide range of PM sizes, including PMy 1, PMy 3,
PMy s, PM; 9, PMs5,, and PMygo. These sizes have been carefully modeled using available feature
variables such as weather conditions and light intensity, collected directly at the location of PM
data gathering, thus eliminating the need for data interpolation to match specific coordinates. The
ability of the system to record data at exceptionally high frequencies (every second) is crucial for
understanding the dynamic nature of PM concentrations and their interaction with environmental
factors. This approach underscores the potential loss of critical PM distribution characteristics when
the spatial and temporal alignment of the feature variables and the PM data is not precise. Moreover,
incorporating a comprehensive range of light-intensity measurements, which include over ten distinct
levels, significantly enhances the precision of PM modeling alongside other environmental variables.

The second goal broadens the detection capabilities for PM; 5 through a blend of on-site and
remote sensing techniques, making use of a rich dataset augmented with relevant features. On-site
detection involved collecting ground-level PM; 5 data from our own IoT sensor network (MINTS-AI),
as well as data from the OpenAQ network and the National Environmental Protection Agency (EPA)
in the United States. We also compiled Aerosol Optical Depth (AOD) data from the Geostationary
Operational Environmental Satellite-16 (GOES-16), meteorological information from the European
Centre for Medium-Range Weather Forecasts (ECMWE), aerosol assimilation data with air pollutants
from the GrADS Data Server, and additional solar and geographical data from 2020 to the present.

2. Materials

AOD, temperature, pressure, relative humidity, height of the planetary boundary layer, wind
speed, and direction are identified as crucial contextual variables for modeling and estimating PM, 5
concentrations through satellite-based remote sensing and meteorological data [16]. In addition to
these, other specific data types have been recognized as beneficial for accurately modeling PM; 5
levels. This includes key meteorological parameters from the European Centre for Medium-Range
Weather Forecasts (ECMWF), AOD products from the GOES-16 satellite, relevant air pollutants from
the MERRA-2 database, solar variables, and various ancillary variables. The primary data for PMj 5,
used in this context, were sourced from three platforms: the EPA Air Quality System (AQS), the
OpenAQ global air quality data platform, and 30 sensors from the UTD MINTS monitoring network.

Data collection for this study, encompassing PM; 5, meteorological variables, AOD, and solar
angles, varied in temporal and spatial resolutions and spanned from January 2020 to June 2023. To
analyze these data, tree-based machine learning methods [17,18] were used. These methods were
chosen for their effectiveness in handling the highly time-sensitive nature of the data, including the
target variable PM; 5 and other influencing environmental factors.

2.1. PM, 5 Ground Observations

2.1.1. MINTS Sensors

Temporal and spatial resolution plays a critical role in air monitoring and modeling systems
because air quality can change significantly over microenvironments encountered on very small
temporal and spatial scales. Harrison et al. (2015) [19] well demonstrated this point, highlighting the
challenges in accurately capturing these variations. However, one major obstacle is the significant


https://doi.org/10.20944/preprints202405.1685.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2024 d0i:10.20944/preprints202405.1685.v1

40f29

maintenance costs of the sensing devices, coupled with the fact that the existing number of
ground-based monitoring sites is too limited to provide comprehensive spatial coverage. To address
these challenges, numerous studies, including one by Xiaohoe et al. (2021) [11], have been carried out
to improve the precision and coverage of PMj 5 data collection efforts.

This study focuses on the development of environmental sensing systems and models to estimate
particulate matter, using the foundation provided by the MINTS-AI platform. MINTS-AI a project
spearheaded by the Physics Department at the University of Texas at Dallas, is a collaborative initiative
that champions open source and open data principles. The platform has been instrumental in the
design and deployment of in situ environmental sensing systems across the Dallas-Fort Worth (DFW)
metroplex. These systems, which utilize affordable airborne particle sensors combined with machine
learning techniques, have been strategically positioned to monitor environmental conditions effectively.
The data collected by these sensors are readily available for real-time analysis via an online dashboard,
as detailed by [20].

(a) (b) ()
Figure 1. MINTS sensing systems deployment: (a) Central Node at Plano, Texas. (b) UTD Node at
Dallas college, Texas. (c) UTD Node at Joppa city, Texas

The central and UTD nodes are integral components of MINTS’s advanced stationary sensor
systems, playing a key role in environmental data collection via IoT sensors. These systems are
equipped with a variety of sensors designed to measure particulate matter, gases, ambient light
intensity, and climatic conditions. Particulate matter levels are monitored using the IPS 7100 sensors
from Pierra Systems, which are celebrated for their affordability, precision, and high sensitivity.
These laser scattering sensors are adept at providing precise and real-time measurements of airborne
particulate matter, ranging from PM; to ultrafine PMj;, including particle counts and sizes. In
particular, the IPS 7100 boasts low power consumption with the capability to collect and sample
rapidly every second [21].

Additionally, the system incorporates cost-effective gas sensors like the SCD30 for estimating
CO3 levels and the MICS6814 for gauging concentrations of CO, Ny, Hy, NH;3, CHy, C3Hy, C4Hyg, and
CyHgOH. The BME280 sensor is used to measure temperature, humidity, and pressure, thus aiding
in climate analysis. The light intensity is tracked via a sensor capable of detecting peaks across a
wavelength range of 300 to 1100 nm. The central node also features an ozone module that employs
Optical Absorption Spectroscopy to ascertain ozone levels. This expansive sensor network is actively
deployed at various sites in the Dallas-Fort Worth metroplex, dedicated to measuring and reporting
particle matter concentrations [12].

For our first study, the primary data on all particulate matter (PM) size fractions and other
relevant variables, as well as one of the key sources of ground-truth PM; 5 observations for PM; 5
modeling, were obtained from the Central and UTD Nodes of the UTD MINTS-AI platform. This
platform oversees 32 monitoring locations distributed throughout north Texas in Dallas, Collin, and
Tarrant counties. A significant number of these monitoring sites are located in Richardson, near the
University of Texas at Dallas, with additional sites in Fort Worth, Carrollton, and Plano. At each site,
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sensors are configured to collect data on particulate matter, gases, and climatic conditions at high
temporal resolution, capturing readings every 3 seconds. However, the scope for PM, 5 reference data
is somewhat constrained by the relatively limited number of monitoring locations within a somewhat
confined area.

2.1.2. EPA

A primary source of PMj; 5 data in the United States is the EPA’s in situ monitoring network, which
includes more than 500 ground-based stations scattered throughout the country [22]. These networks
are considered among the most reliable sources for aerosol information. The Air Quality System
(AQS) of the EPA is a database that aggregates ambient air pollution data, including PM, 5 and PM,
collected by the EPA along with state, local, and tribal air pollution control agencies through hundreds
of monitors nationwide. However, AQS does not provide real-time air quality data, making the data
available only six months after collection [23]. Additionally, negative data values in the AQS can
occur due to equipment failures and measurement noise, particularly under very clean atmospheric
conditions [11].

In contrast, the EPA’s AirNow program offers real-time air quality information, although these
data may not have undergone full verification or validation. For this study, PM; 5 data, sampled on an
hourly basis, were retrieved using both the AQS API and the AirNow API. These datasets were then
employed as ground-truth observations for the purposes of model training and validation.

Figure 2. Ground Observation sites of EPA (Red), OpenAQ (Blue) and MINTS (Green).

2.1.3. OpenAQ

In addition to the EPA, OpenAQ, a non-profit organization, facilitates global access to air quality
data. It aggregates and standardizes air quality data from all over the world, offering it through a
free, open source data platform. Since its launch in 2015, OpenAQ has been collecting historical and
real-time data from reference-grade government monitoring stations. The platform covers particulate
matter (PM) and various gaseous pollutants, including NO, NO,, and CHj. As the largest open source
air quality data repository worldwide, OpenAQ provides an API for easy programmatic access to its
comprehensive database.

The OpenAQ database incorporates data from approximately 1000 ground-based monitoring
stations across the US, including stations from the EPA’s in situ monitoring networks [24]. For this
study, OpenAQ serves as an additional source of hourly-sampled PM, 5 data, which is utilized for
modeling training and validation.
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2.2. GOES-16 AOD

In this research, the AOD data from the GOES-16 satellite was utilized as one of the key input
features. GOES-16, a geostationary weather satellite operated by the National Oceanic and Atmospheric
Administration (NOAA) of the United States, is located in a stationary orbit above the Western
Hemisphere [25-29]. It offers uninterrupted monitoring of weather conditions throughout the United
States, the Caribbean, and South America. The satellite’s Advanced Baseline Imager (ABI) is a
high-resolution instrument capable of producing images of the Earth’s surface and atmosphere. With a
spatial resolution as fine as 0.5 km and a temporal resolution reaching up to 30 s, the ABI captures the
Earth across 16 spectral bands ranging from visible to infrared wavelengths. This provides vital data
on various weather phenomena, including cloud coverage, atmospheric moisture, and temperature
[30,31]. AOD, a critical parameter measured by GOES-16, plays a significant role in this study’s
analysis.

Aerosol Optical Depth (AOD) is a critical parameter for characterizing the role of aerosols on
Earth’s climate, air quality, and applications in remote sensing. It quantifies the total attenuation
of light due to absorption or scattering by aerosol particles in the atmosphere of the Earth [32-37].
Essentially, AOD measures how much sunlight is prevented from reaching the Earth’s surface by
aerosols in a vertical column of air from the surface to the top of the atmosphere. Measurements of
AOD are typically made at specific wavelengths, usually within the visible or near-infrared spectrum,
and are reported as a dimensionless value. AOD values can range from 0, suggesting that there are no
aerosols present, to values above 1, indicating denser aerosol concentrations in the atmosphere.

The quality and reliability of AOD data are indicated by a Data Quality Flag (DQF), which ranges
from 0 to 3. This flag helps users assess the confidence level in the AOD measurements. However,
it is important to note that AOD retrieval is challenging in cloudy areas, and the accuracy of AOD
data near clouds is less certain. The connection between AOD and PM, 5 concentrations is influenced
by various factors, including meteorological conditions such as relative humidity and the height of
the planetary boundary layer [15,16], which means that this relationship can change over time and at
different locations.

2.3. ECMWEF Meteorological Data

The levels of airborne particulate matter are significantly influenced by weather conditions,
including wind speed, humidity, and temperature. For this study, historical weather data was acquired
through the Climate Data Store (CDS) Application Programming Interface (API). The CDS is an
extensive digital service that provides a unified web interface to access a wide range of climate and
environmental data, including historical, current, and projected future conditions from various sources
[38]. This service is developed and managed by the European Centre for Medium-Range Weather
Forecasts (ECMWEF). Established in 1975, the ECMWF is both a research institute and a round-the-clock
operational service, known for producing global numerical weather predictions and maintaining one
of the world’s largest supercomputing facilities and meteorological data archives [39].

The ECMWEF has created ERA5-Land, a reanalysis data set that offers a detailed collection
of global atmospheric data spanning from 1979 to the present. ERA5-Land applies the reanalysis
technique, which integrates model data with observations from around the world to produce a globally
comprehensive and consistent dataset in accordance with physical laws. This data set is structured
on a fixed data grid with a spatial resolution of 9 km and provides data updates on an hourly basis.
The vertical extent of ERA5-Land ranges from 2 meters above the ground to a soil depth of 289 cm
[40]. However, it is important to note that the data from ERA5-Land for these variables are accessible
only up to 7 days before the current date. The meteorological variables of ERA5-Land that are used for
PMj; 5 modeling are detailed in Table 1.
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2.4. MERRA-2 data

The MERRA-2 dataset, developed by NASA, represents the second iteration of the Modern-Era
Retrospective Analysis for Research and Applications. It is an atmospheric reanalysis dataset that
combines observational data with sophisticated modeling techniques to create a continuous and
high-quality historical account of the Earth’s climate system. MERRA-2 utilizes the Goddard Earth
Observing System Model, Version 5 (GEOS-5) data assimilation system, which organizes data on a grid
with a horizontal resolution of 0.625° by 0.5°. This dataset offers both instantaneous and time-averaged
products, available in three-hour intervals [41].

This study incorporates data on air pollutants such as black carbon, sulfate, and nitrate from the
MERRA-2 database to improve the precision of its models. Anthropogenic atmospheric aerosols, such
as black carbon, are known to adversely affect the global climate [43]. Studies, including Menon et
al. (2002) [42], have shown that efforts to reduce black carbon emissions could decelerate the global
temperature rise. Additionally, atmospheric aerosols influence atmospheric chemistry; sources such as
coal-fired power plants, metal smelting operations, and vehicle emissions release sulfur and nitrogen
oxides into the atmosphere. These oxides can react with photochemical products and airborne particles,
resulting in the formation of acid aerosols [44].

Sulfate aerosols arise from the oxidation of sulfur dioxide (5O;) emissions from human activities,
such as the burning of fossil fuels, and natural events such as volcanic eruptions. They can significantly
affect the climate by reflecting sunlight back into space [45], leading to cooling effects. Nitrate aerosols,
produced by oxidation of nitrogen oxides (NOy) from fossil fuel combustion and biomass burning,
contribute to haze and reduced visibility. These aerosols also pose health risks to humans [46]. The
formation and impact of these pollutants highlight their importance in understanding and modeling
climate and air quality dynamics.

2.5. Solar Illumination

The geometry of solar illumination is crucial in defining the context of Aerosol Optical Depth
(AOD) measurements. In PM;5 estimation models, two significant solar-related variables are
considered: the solar zenith angle and the solar azimuth angle. These angles influence the distance
sunlight travels through the atmosphere of Earth to reach the surface. Specifically, the path length of
sunlight through the atmosphere extends with an increase in the sun’s zenith angle, which occurs as
the sun moves closer to the horizon. This longer journey through the atmosphere allows for more
interaction between sunlight and aerosols, leading to increased scattering and absorption of sunlight
[47].

As a consequence, AOD values tend to be higher at larger zenith angles because a greater number
of aerosols participate in dimming the sunlight. The azimuth angle determines the position of the
Sun relative to a specific reference direction, affecting the geometry of light scattering. Variations
in azimuth angles can alter the angles at which aerosols scatter sunlight, which in turn influences
the observed AOD values, different scattering angles can result in variations in the intensity of light
scattered and detected.

2.6. Ancillary Data

In addition to data that change quickly over time, variables that change more slowly can also
provide valuable information on environmental, geological, and socioeconomic factors that influence
the spatial and temporal distribution of particulate matter concentrations [48]. This study incorporated
slowly varying variables such as population density, elevation, soil type, lithology, land cover, crop
type, building footprint, and livestock distribution as important contextual ancillary data. These
variables help to understand the broader environmental and human factors that can impact the levels
of particulate matter.
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Population density can significantly influence particulate matter levels due to increased human
activities, such as traffic and industrial operations that emit pollutants. The Socioeconomic Data and
Applications Center (SEDAC) [49], a component of NASA, provides data on population density in the
form of raster data sets. These data sets offer estimates of the population per square kilometer, aligned
with figures from national censuses and population registers for the years 2000, 2005, 2010, 2015, and
2020. The available global raster files have a resolution of 30 arc seconds, roughly equivalent to 1 km
at the equator.

Topographic features such as mountains and valleys play an important role in the dispersion and
accumulation of particulate matter, while trees and other forms of vegetation serve as natural filters,
capturing particulate matter and thus mitigating air pollution [50]. Geographic variables such as
elevation, soil type, lithology, cropland, and land cover offer information on geological characteristics
that could affect the levels of particles.
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Table 1. Data source and variables for remote sensing approches.

Source Variables

EPA PM;5
OpenAQ PM; 5
MINTS PM;5

ECMWEF meteorological Temperature
Pressure

Dewpoint Temperature
Precipitation
Skin Reservoir
Evaporation
Specific Humidity
Relative Humidity
Wind Speed
Wind Direction
Boundary Layer Height
Lake Cover
Leaf Area Index, High Vegetation
Leaf Area Index, Low Vegetation
Snowfall
Solar Radiation
Total cloud cover
Specific Rain Water Content

GOES-16 Aerosol Optical Depth
Data Quality Flag
MERRA-2 AOD Analysis

Total Column Ozone
Hydrophobic Black Carbon
Hydrophilic Black Carbon
Hydrophobic Organic Carbon
Hydrophilic Organic Carbon
SO, Sulphate Aerosol
SO, Sulphur Dioxide
NH3; Ammonia
NH4 Ammonium Ion
NOj3 Nitrate
CO Carbon monoxide
CO, Carbon dioxide

Ancillary Data Landcover
Population

Soil Type
Lithology
Elevation
Cropland
Building Footprint
Livestock
Solar Zenith Angle
Solar Azimuth Angle
Month

The Cropland Data Layer (CDL) is a geospatial product generated by the United States
Department of Agriculture (USDA) using moderate-resolution satellite imagery combined with
extensive agricultural ground truth, identifying around 250 different crop types. This dataset, with a
spatial resolution of 30 meters, covers the entire continental United States.
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Soil data are provided by the National Cooperative Soil Survey through the Web Soil Survey
(WSS), an initiative of the USDA Natural Resources Conservation Service (NRCS), which details
approximately 100 soil suborder categories [51].

The National Land Cover Database (NLCD) offers detailed information on land cover and changes
over time within the United States. With a 30-meter resolution, the NLCD categorizes land into 16
classes, including various types such as water bodies, urban areas, barren lands, forests, shrublands,
grasslands, agricultural areas, and wetlands [52,53].

Bathymetric data, crucial for mapping ocean floors and land elevations, are provided by the
General Bathymetric Chart of the Oceans (GEBCO), an international consortium of ocean mapping
experts. This data set presents elevation data on a grid with 15-arc second intervals [54].

Lithology, which encompasses the geochemical, mineralogical, and physical properties of rocks,
influences numerous Earth surface processes, including the transport of materials to ecosystems, soils,
rivers, and oceans. The Global Lithological Map (GLiM) was developed by Hartmann and Moosdorf
(2012) [55] by synthesizing regional geological maps and literature, offering a representation of global
rock types at a spatial resolution of 0.5°. This classification includes 16 lithological classes, providing a
comprehensive view of the Earth’s surface composition.

Building footprint data are crucial for identifying the number of buildings around a specific
location, which can influence wind dynamics and consequently affect PM concentration levels.
Microsoft Maps offers a comprehensive open data set of building footprints for the United States. This
data set is created through the application of computer vision algorithms in satellite imagery, resulting
in 129,591,852 polygonal representations of building footprints in all 50 states of the United States and
the District of Columbia [56].

Gridded Livestock Data (GLD) provides a comprehensive overview of the global distribution of
various species of livestock in 2015, including cattle, sheep, goats, buffaloes, horses, pigs, chickens, and
ducks. This dataset is accessible for free through the Harvard Dataverse repository. It features a spatial
resolution of 5 minutes of arc, which is roughly equivalent to 10 km at the equator. The data detail the
total number of each species per pixel (5 minutes of arc). It is available in two formats: a dasymetric
product and an areal-weighted product, both derived using redistribution methods. For this study,
we chose to use the dasymetric product in the TIFF file format. This decision was influenced by the
significant environmental impact of livestock farming, especially in terms of greenhouse gas emission
from enteric fermentation and manure management, together with the disruption of nitrogen and
phosphorus cycles [57].

3. Methodology

This project uses Europa High-Performance Computing (HPC) resources, overseen by the
Cyberinfrastructure Research Computing (CIRC) team at the University of Texas at Dallas. Europa
is a computing cluster that includes nodes from the decommissioned Stampede supercomputer [58],
originally developed by the Texas Advanced Computing Center (TACC) at the University of Texas
at Austin. Stampede stood out as a significant and robust supercomputer within the United States,
widely utilized for open science research efforts [59].

3.1. All PM size fractions modeling - MINTS Observation

In this phase of the study, data were acquired exclusively through the MINTS sensing system,
encompassing 31 sensors positioned in various locations across Texas. PM measurements were
obtained using the IPS7100 sensor, which was then utilized as target variables for the machine learning
models. The analysis framework integrated a variety of variables from different sensors within the
MINTS sensor unit as feature variables (Table 2). These variables encompassed CO; concentration
measured by the SCD30 sensor and environmental parameters such as temperature, humidity, and
atmospheric pressure, all monitored by the BME280 sensor. The study also included data on visible
light intensities across different color bands of the AS7262 sensor, as well as ambient light intensities
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detected by the TSL2591 sensor. To further enhance the feature set, data related to the infrared (IR) and
ultraviolet (UV) light intensities of the VEML6075 sensor were incorporated.

3.1.1. Data Matching

Since all sensors are integrated within a single unit in the MINTS sensing system, there is no need
to align the data based on spatial coordinates. Data sampling occurs every 10 s, but it is important to
note that the recording times across the different sensors are not synchronized. To effectively align
the various sensor data with the PM measurements, we implemented a one-minute time aggregation
approach. This method addresses the challenge of matching the high temporal resolution of our data
with that of other sensing systems, which generally have lower temporal resolutions. As a result,
our analysis is based solely on the high-temporal-resolution data from MINTS, limiting our feature
variables to those available within the MINTS dataset.

Table 2. MINTS embedded sensors and variables.

Sensor Variables

IPS7100 PMg
PMy3
PMy s
PM
PM; 5
PMs
PMjg0

BME280 Temperature
Pressure
Humidity

SCD30 CO,

AS7262 Violet
Blue
Green
Yellow
Orange
Red

TSL2591 Luminosity
Infrared
Full Spectrum
Visible Light
Lux

VEML6075  Ultraviolet A
Ultraviolet B

3.1.2. Experiment Design

To explore the effectiveness of different variables from various sensors across different PM size
fractions, we organized the variables into three unique group configurations (Table 3). Each group
contains seven specialized models, each addressing different PM size categories. Group 1 models
are built using only meteorological data from BME280 sensor. Group 2 models use a wider range of
variables, including meteorological data from BME280, CO; concentrations from SCD30, and light
intensities from AS7262, TSL2591 and VEML6075. Meanwhile, Group 3 is tailored to assess the impact
of light intensities on different PM size fractions specifically. The data sets for each group include
around 617, 000 entries, split into two parts: 80% of the data is used for training purposes, and the
remaining 20% is reserved for testing.

The model’s training involved selecting a range of potentially optimized hyperparameters with
an understanding that the training performance heavily depends on various factors. One such critical
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factor is the number of trees in tree-based models, which represents a key hyperparameter. Achieving
an optimal balance is crucial because increasing the number of trees not only influences the model’s
performance but also raises the demand on computer memory resources. Therefore, a careful decision
was made regarding the number of trees to fit within the constraints of the available computational
infrastructure. After training, the model underwent a validation process using the test data set.
This step includes assessing performance metrics like the Root Mean Square Error (RMSE) and the
Correlation Coefficient (R) to gauge the model’s accuracy and predictive ability.

Table 3. MINTS Observation PM Groups.

Group Weather CO, Light

1 v
2 v v v
3 v

3.2. PMj 5 modeling - In-situ and Remote Sensing

3.2.1. Data Matching

This study on estimating ground-level PM; 5 concentrations analyzed three and a half years
of historical data, covering the period from January 2020 to June 2023. The variables used in this
study were sourced from various databases, each with its own temporal and spatial resolutions.
Ground-level PM; 5 data from the EPA Air Quality System (AQS) and OpenAQ), along with ECMWE
meteorological data, are available at a temporal resolution of one hour and were used as is, without the
need for aggregation. Conversely, PM; 5 data collected by the MINTS platform have a native temporal
resolution of 3 seconds, necessitating aggregation to align with the one-hour temporal resolution of
other data sources. Aerosol Optical Depth (AOD) data from the GOES-16 satellite, which are recorded
every five minutes, was selected based on the timestamp closest to the PMj; 5 observation timestamps
for consistency. Atmospheric gas data, obtained from the MERRA-2 GEOS-5 model, have a temporal
resolution of three hours. Linear temporal interpolation was used to fill in the gaps between data
points, ensuring that all variables match the PM, 5 observation timestamps accurately.

Following the harmonization of all highly dynamic data to a consistent one-hour temporal
resolution, feature variables such as the AOD data from GOES-16, meteorological data from ECMWE,
and solar angles were aligned with ground-based PM; 5 measurements. These PM; 5 measurements
were sourced from three distinct platforms: the EPA Air Quality System (AQS), OpenAQ, and the
MINTS platform, and were used as the target variable in the analysis.

Data from various sources come with different spatial resolutions and utilize distinct grid
coordinate systems. The AOD data from GOES-16 have a fine spatial resolution of 2 km by 2 km.
However, the original AOD data, stored in NetCDF format on Amazon S3, adhere to the GOES-R
Advanced Baseline Imager (ABI) fixed-grid projection coordinate system. To make this data usable for
geographical analyses, it is necessary to transform the AOD data into a geographic coordinate system.
This transformation relies on metadata that includes details about the perspective point height and the
sweep angle axis. After conversion, the AOD data are ready for further analysis.

The European Centre for Medium-Range Weather Forecasts (ECMWF) Climate Data Store presents
its meteorological variables from the ERA5 land reanalysis in GRIB grid files, featuring a horizontal
resolution of 0.1°. Meanwhile, data from the MERRA-2 GEOS-5 model, available in netCDF-4 format,
provides an approximate spatial resolution of 50 km x 50 km, offering a broader spatial coverage for
analysis.

To effectively train a machine learning model, it is crucial to synchronize all datasets, which contain
various variables, in terms of both time and spatial coordinates. The alignment of the coordinates of
the dataset was achieved by using the locations of ground-based PM observation sites from the EPA,
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OpenAQ, and MINTS as the reference coordinate system. A multilinear interpolation method was
used to ensure that the data sets were accurately aligned.

After the matching process was completed, a data table was assembled. This table includes
synchronized time and coordinates for each entry, alongside PM, 5 observation values, meteorological
factors, AOD, air pollutant gases, and solar illumination geometry. In addition, ancillary data from
various sources were integrated into the table by aligning their spatial coordinates with the reference
coordinate system. This integration included relevant data values but did not consider the temporal
aspect of the data.

It is important to note that GOES-16 AOD data are available only during daylight hours and in
cloud-free locations. The Data Quality Flag (DQF) included with the AOD data provides insight into
the quality of the AOD measurements. To maintain high data integrity, only AOD values classified as
high quality, based on DQF information, were selected for use. As a consequence, many entries in the
data set had missing AOD values, which were then filled with the corresponding AOD data from the
MERRA-2 dataset to complete the data set.

3.2.2. Experiment Design

To explore the effects of incorporating data from MINTS PM; 5, MERRA-2, and other sources on
PM, 5 modeling, six unique model configurations were developed (Table 4). The first model, Model-1, is
the basic model that includes the MINTS data but excludes the Ancillary and MERRA-2 data. Model-2
is designed to examine the impact of ancillary data on PM; 5 modeling. Model-3 aims to assess the
contribution of MERRA-2 data and incorporates all available features, being used for reconstructing
national ground-level PM; 5 concentrations. Model-4, which excludes MINTS data, investigates the
influence of additional in situ observations. Models 5 and 6 focus specifically on the effects of including
MINTS PM; 5 data, reflecting the limited duration of MINTS data availability and the geographical
limitation of MINTS observation sites to Texas. All models use ECMWF meteorological variables,
GOES-16 AOD data as basic features, and target PM, 5 values from EPA and OpenAQ, with variations
in the inclusion of features between different models.

Table 4. PM; 5 model categories. The first four models are designed for PM, 5 modeling across the
entire United States, while the last two models specifically target the Texas region. The distinction
among these models lies in the incorporation of ancillary data, MERRA-2 data, and MINTS PM, 5 data.

Model Spatial Coverage Time Span Ancillary MERRA-2 MINTS
1 Us Jan 2020 - Jun 2023 v
2 us Jan 2020 - Jun 2023 v v
3 us Jan 2020 - Jun 2023 v v v
4 Us Jan 2020 - Jun 2023 v v
5 TX Sep 2021 - Jun 2023 v v v
6 TX Sep 2021 - Jun 2023 v v

The datasets for Models 1, 2, and 3 contain 1,521,790 entries, while Model-4 has 1,512,889 entries.
Models 5 and 6 have significantly fewer entries, with 61,889 and 52,988 entries, respectively, due to
the restricted geographic scope to Texas and the shorter data period. These data sets are divided into
training and testing sets with a ratio of 90% to 10%, a common practice for training and evaluating
machine learning models. The models are trained using a tree-based machine learning approach,
optimized with selected hyperparameters. The performance of these models is then validated in the
testing set, using metrics such as the root mean square error (RMSE) and the Correlation Coefficient
(R) to evaluate accuracy.
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3.3. Machine Learning Approaches

The machine learning approach is particularly well suited for studies like this for several reasons.
First, PM concentrations are affected by a wide array of factors, including those beyond the scope of
this study. Secondly, there is a notable absence of theoretical models capable of accurately depicting
the relationships between various variables and PM concentrations. Lastly, this study relies on a
substantial data set with numerous variables, and machine learning algorithms excel at managing
complex data sets that traditional data analysis methods might find challenging.

Although different machine learning models, including neural networks and XGBoost, can be
applied to PM modeling, tree-based methods like random forests offer distinct advantages. For
example, tree-based models tend to perform more efficiently with large datasets. Furthermore,
ensemble machine learning techniques, which combine multiple weak learners into a robust model,
are particularly effective in minimizing bias and variance, offering a clear understanding of how each
variable contributes to the prediction of the model [11].

In this study, the Extra Tree (ET) regression algorithm, an enhancement of the Random Forest
algorithm, was chosen for modeling PM; 5. The ET model has been shown to be effective for PM; 5
modeling using AOD and meteorological variables in previous research [11,60]. It constructs numerous
decision trees, each trained on a randomly selected subset of features and data samples, introducing
additional randomness into the model. This not only speeds up the training process but also makes
the model less prone to overfitting from noisy data.

4. Results

4.1. MINTS all PM size fraction modeling

In this section, we specifically focus on the use of data only from the MINTS sensing system.
The modeling efforts are categorized into three main groups, each defined by a unique set of feature
variables. Additionally, each main group is further divided into seven subcategories, targeting different
PM size fractions.

Of these main groups, Group-2, which utilizes all the features available from the MINTS system,
shows the highest correlation coefficients (R values) in the test data compared to the other groups
(Table 5). Within Group-2, the variation in R values between subcategories is relatively minor. In
particular, when using just three meteorological variables (temperature, pressure, and humidity) in
Group-1, the models show impressively high performance on the test data, with R values reaching
around 0.92. Group-3, designed to explore the effect of light intensity from various frequency channels
on different PM size fractions, found that models for PMy 1, relying solely on light intensity data,
produced higher R values on the test data than those for other PM size fractions within the same group.

Scatter plots were created to illustrate the correlation between predicted and actual PM levels for
all specified groups and across different PM size categories. This paper selectively features the most
illustrative scatter plots for visual analysis. Figure 3 shows the scatter plots for the smallest (PMq 1)
and largest (PMjg ) PM size fractions within Group-2, which showed superior performance compared
to the other groups. Additionally, Figure 4 shows plots depicting the relative importance of various
features in the models analyzed. These graphs clearly demonstrate that carbon dioxide, pressure,
temperature, and humidity are crucial factors for both PM 1 and PMj g sizes. Furthermore, for the
smallest particles (PMj 1), light intensities in the ultraviolet A and B spectrum play a vital role. In
contrast, for the larger particles (PM; ), light intensities in the violet and full spectrum ranges make
significant contributions to the predictive accuracy of the models.
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Table 5. Three main groups are sub-categorized on PM size fractions. The respective evaluation results
for all the sub-categories are presented.

Group PM Sample size Train R Train RMSE TestR Test RMSE

1 PMy 616,301 0.999 0.016 0.914 0.152
PMp; 616,866 1.0 0.923 0.923 18.953
PMps 617,760 1.0 1.138 0.911 22.277
PM; o 617,765 1.0 1.202 0.937 19.151
PM, 5 617,767 1.0 1.976 0.923 26.273
PMs 617,771 1.0 2.276 0.932 30.352
PMyoo 617,771 1.0 2.304 0.933 31.165

2 PMy 616,301 1.0 0.0 0.978 0.077
PMo;3 616,866 1.0 0.003 0.978 10.545
PMys 617,760 1.0 0.006 0.977 11.576
PM; o 617,765 1.0 0.003 0.978 11.376
PM, 5 617,767 1.0 0.019 0.973 15.747
PMs 617,771 1.0 0.021 0.979 17.528
PMyo 617,771 1.0 0.021 0.978 18.273

3 PMy 4 616,301 0.707 0.274 0.312 0.36
PMo; 616,866 0.571 40.509 0.044 50.633
PMps 617,760 0.597 42,575 0.053 55.74
PM; o 617,765 0.609 44.09 0.063 56.271
PM, 5 617,767 0.648 54.793 0.11 69.386
PMs 617,771 0.617 69.17 0.095 84.653
PMygo 617,771 0.608 72.213 0.091 87.307
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Figure 3. Scatter diagrams depicting the training and testing datasets for Group-2 (incorporate all the
feature variables within MINTS system): (a) PM 1. (b) PMjg¢.
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Figure 4. Importance of features for Group-2 (incorporate all the feature variables within MINTS

system): (a) PMg 1. (b) PMjg.

Figures 5 and 6 illustrate the scatter and feature importance plots for PMg ; and PMjg o, focusing on
Group-3 (incorporate only light sensing variables within MINTS system). These plots are instrumental
in highlighting the light intensity frequency ranges that significantly impact model development,
clearly differentiating between the sizes of particles.

Consistent with the size-dependent light scattering properties of aerosols, our analysis reveals
that for fine particle modeling (PMj 1), light intensities in the ultraviolet A and B frequency ranges
contain valuable information. On the other hand, for the larger particle size (PM;¢), light intensities
in the red and violet frequency ranges play a more critical role in the construction of predictive models.
This clarification of the importance of the features provides insight into the unique characteristics and
variables useful for modeling each PM size fraction.
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Figure 5. Scatter plots depicting the training and testing data for Group-3 (incorporate only light
sensing variables within MINTS system): (a) PMg 1 and (b) PMjq.
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4.2. Complimentary In-Situ and Remote Sensing PMj 5 modeling

This section looks at the creation of four national PM; 5 estimation models, each notable for its
high temporal resolution and distinguished by different target variables and PM; 5 observation sources.
Additionally, two regional PM, 5 models were developed, categorized based on the observation sources
used. The purpose of classifying these regional models is to demonstrate the benefits of improving
PM estimation models with additional ground-based observations and to evaluate the effectiveness of
incorporating MINTS data.

The national data set includes a comprehensive collection of approximately 1,521,790 observations
and 53 predictor variables. The regional dataset contains about 61,889 observations with the same
set of feature variables, all employed in the model training and testing phases. The data was split
into training and testing segments in a 90:10 ratio. Training data were used for model fitting, with
the performance of the models evaluated in both data sets. Table 6 offers a detailed examination of
essential evaluation metrics, such as the correlation coefficients between actual observations and the
predictions made by machine learning, model R scores, and root mean square error (RMSE) figures,
all based on test data. These metrics collectively facilitate an evaluation of the models” accuracy and
predictive capability.

Table 6. Model categories as well as their corresponding evaluation result are listed.

Model Samplesize TrainR Train RMSE TestR Test RMSE

1 1,521,790 0.998 0.388 0.793 3.673
2 1,521,790 0.998 0.388 0.816 3.501
3 1,521,790 0.998 0.388 0.849 3.201
4 1,512,889 0.998 0.392 0.834 3.364
5 61,889 0.998 0.527 0.872 4.474
6 52,988 0.997 0.565 0.816 4.253

The base model, referred to as Model-1, utilizes PM; 5 data collected from a variety of sources,
including the Environmental Protection Agency (EPA), OpenAQ, and the MINTS-AI environmental
sensing system. This initial model relies exclusively on ECMWF meteorological data and Aerosol
Optical Depth (AOD) feature variables from the GOES-16 satellite, achieving a correlation coefficient (R)
of 0.793. The introduction of additional data to the base model leads to an improvement in the R-value,
which climbs from 0.793 to 0.816. Following this, Model-3, which integrates both supplementary
data and MERRA-2 data, reaches an R value of 0.849, indicating a further improvement in model
performance. In contrast, removing the MINTS-AI environmental sensing data from Model-3 results
in a decrease in the R value to 0.834. Importantly, incorporating MINTS data into the regional model,
identified as Model-5, significantly improves the model performance, demonstrating the valuable
impact of the MINTS data on the accuracy of PM; 5 estimations.
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The scatter diagram comparing measured versus estimated values for Model-3 (seen in Figure 7)
visually demonstrates the correlation between actual (measured) and predicted (estimated) values for
a specific target variable. This plot is instrumental in pinpointing the strengths of the model and areas
that need refinement, thus serving as a crucial tool for assessing model performance and identifying
potential enhancements. To aid in the analysis of overlapping data points, marginal histograms are
incorporated into the figure. Furthermore, the importance ranking of the predictors (shown in Figure 8)
is designed to highlight the contribution of each variable to Model-3’s predictive capability. Variables
ranked with higher importance scores exert a more substantial influence on the model predictions.
In particular, the most critical variables, according to the feature importance chart, include Aerosol
Optical Depth (AOD) analysis (utilizing AOD data from MERRA-2), specific humidity, AOD from

GOES-16, dew point temperature, carbon monoxide and carbon dioxide.
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Figure 7. Scatter plots depicting training and testing data in log scale, accompanied by marginal
probability density functions, illustrating the analysis conducted for Model-3.
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Figure 8. Feature importance score for Model-3.

4.3. Nationwide PM, 5 model validation

Model-3, which incorporates all available features and PM; 5 data sources, stands out for its
exceptional performance in mapping ground-level PM; 5 concentrations throughout the United States.
The detail and precision of this PMy 5 mapping are influenced by the resolution of the remote sensing
data employed. To ensure uniformity in all ground-level PM; 5 concentration maps, the ECMWF
meteorological data grid, which measures approximately 10 km x 10 km, is used as the standard
coordinate framework. However, when using data from different sources, which may follow various
coordinate systems, it becomes necessary to align them with the standard grid using linear interpolation
to ensure consistency.

Wildfires significantly contribute to the increase and change in the composition of airborne
particulate matter, including both primary and secondary pollutants, which can affect human health
and the environment. Large wildfire events in the United States have been linked to specific weather
conditions, such as droughts, high temperatures, low humidity, and strong winds, which are conducive
to the ignition and propagation of wildfires. Figure 9 illustrates the PM; 5 concentrations on the ground
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as estimated by Model-3 during one of the most significant wildfire events in the US, the Santa Clara
Unit (SCU) Lightning Complex fire in California in 2020. This fire, sparked by dry lightning on August
16, was eventually contained in early October.

— —-

(c) (d

Figure 9. PM; 5 reconstruction during the Santa Clara Unit (SCU) Lightning Complex fire in 2020.
Panels (a) and (b) are for 9 PM UTC and midnight on October 2, respectively, using a specialized
version of Model-2 that exclusively incorporates AOD data from GOES-16. Panels (c) and (d) are for
the same times but using the original Model-3. Areas with PM; 5 concentrations exceeding the
25 pug/ms3 threshold are highlighted in red.

Figures 9a and 9b offer visual insights into the ground-level PM; 5 concentrations recorded at two
different times: 9 PM and midnight on October 2, 2023. These visualizations were produced using a
modified version of Model-3, specifically trained without incorporating MERRA-2 Aerosol Optical
Depth (AOD) data. On the other hand, Figures 9c and 9d depict the PM; 5 concentrations at the same
times, but were generated using the original version of Model-3, which includes a comprehensive
set of feature parameters. Both variations of the model successfully identified areas of high PM; 5
concentrations in California, with the pollution spreading to the northeast over the three-hour interval.
In particular, the specialized version of Model-3 encounters limitations due to the absence of GOES-16
AOD data in areas covered by clouds, resulting in gaps in the PM; 5 concentration estimates. To
overcome these limitations, the original Model-3 supplements missing GOES-16 AOD observations
with MERRA-2 AOD data, ensuring a more detailed portrayal of PM; 5 concentrations throughout the
region. The chosen color scale adheres to the guidelines of the World Health Organization (WHO),
setting the threshold at 25 yg/m? for the annual mean concentration of PM, 5, beyond which there
is a significant risk to health. This threshold is used as the upper limit to visualize the map data, in
accordance with global health standards.

The coverage of the MINTS sensing system is limited to the north Texas region. To
comprehensively evaluate the performance of the model in PM; 5 reconstruction, our analysis focuses
exclusively on results within the state of Texas. Specifically, we scrutinize data from three distinct
timestamps on January 1, 2023, comparing them with PM, 5 observations collected by two MINTS
in situ sites located in Joppa and Austin, represented by solid black circles on the maps in Figure 10.
This figure visually presents the PM, 5 reconstruction results generated by Model-3 at these three
timestamps, each separated by a minimum interval of 11 hours. Similarly, Figure 11 provides a time
series illustrating PM; 5 observations recorded by the ground sensors of the two MINTS in the cities of
Joppa (blue) and Austin (orange).
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(a) (b) (0
Figure 10. Reconstructed PM; 5 concentrations across the Texas region at three distinct timestamps on
January 1, 2023, in UTC. The black solid circle in the north corresponds to the MINTS ground sensor
located in Joppa (south Dallas), while the black solid circle in the south represents the MINTS ground
sensor located in Austin. The subfigures depict the following timestamps: (a) 2023 January 1 at 01:00
AM UTC, (b) 2023 January 1 at 02:00 PM UTC, and (c) 2023 January 2 at 01:00 AM UTC.
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Figure 11. PM; 5 measurements obtained from two MINTS in-situ sensors located in Joppa (depicted
in blue) and Austin (shown in orange). The timestamps indicated by the gray dashed lines align with
those presented in Figure 10.

In particular, the three gray dashed lines in Figure 11 correspond to the timestamps of the PM; 5
reconstruction maps shown in Figure 10. Specifically, Figure 10a depicts a relatively less polluted
environment at both locations around 7 PM Central Time on December 31, 2022 (equivalent to January
1, 2023, at 01:00 UTC). This finding aligns with similar observations of lower pollution concentrations
made by the Austin MINTS ground sensor at the same time (corresponding to the first gray dashed
line). Approximately 13 hours later, the model captures elevated PM; 5 concentrations near Austin,
while concentrations in the Joppa area remain lower (Figure 10b). This pattern closely mirrors the
observations recorded by the two MINTS ground sensors, with high PM, 5 concentrations observed in
Austin and lower levels in Joppa. In a subsequent timeframe, approximately 24 hours after the initial
observation, the model indicates an expansion of higher PM, 5 concentrations, particularly in the Joppa
area (Figure 10c). This trend is aligned with the simultaneous observation of higher concentrations by
both MINTS ground sensors at both locations.

4.4. Time fraction of PMy 5 concentration exceed thresholds in 2022

Since 2000, there has been a notable 42% decrease in overall PM 5 levels in the United States,
attributed to the implementation of clean air regulations. Despite this progress, there remains
concern about the need for further reductions. In February 2024, responding to these concerns,
the Environmental Protection Agency (EPA) revised the national standards of ambient air quality
for PM. Specifically, the annual primary PM 5 standard was revised downward from 12 yg/m? to 9
pug/m?, aiming to mitigate the adverse health impacts and associated costs. The EPA estimates that
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adhering to this new standard could lead to potential savings of up to $46 billion in avoided healthcare
and hospitalization costs by 2032 [67,68].

In this section, we used our Model-3 machine learning to estimate hourly PM; 5 concentrations
across the entire United States for the year 2022. The resulting data set allows us to calculate the
fraction of time during which PM, 5 concentrations exceeded five distinct threshold levels (8 ug/m?3,
9 ug/m3, 10 pug/m3, 11 ug/m3, and 12 ug/m3) throughout the entirety of 2022. The accompanying
figure illustrates maps showing the percentage of time that PM, 5 concentrations exceeded the specified
threshold levels, with color-coded representations corresponding to the percentage values.

As shown in Figure 12a, certain areas in the eastern United States and California exhibit elevated
percentage values, indicating that these regions experienced PM, 5 concentrations exceeding the
threshold of 12 g/m3 for more than 20% of the time throughout the year 2022. However, Figure 12d
illustrates that the entire United States shows elevated percentage values, suggesting that the entire
nation encountered PM; 5 concentrations exceeding the threshold of 9 ug/ m? for more than 20%
of the time in 2022. In particular, the eastern United States and California regions sustained PM; 5
concentrations that exceeded the threshold of 9 jg/m? for more than 50% of the time during the same
period. These estimates underscore the importance of regulatory measures aimed at maintaining
annual PMj; 5 concentrations below 9 ug/ m3.


https://doi.org/10.20944/preprints202405.1685.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2024 doi:10.20944/preprints202405.1685

23 of 29

Time Fraction of PM, 5 Exceed 12 pg/m? in 2022 100

Time Fraction of PM, s Exceed 12 pg/m? in 2022

100 Time Fraction of PMys Exceed 12 ug/m’ in 2022

100
80 |80
60 60
40 20
20 |20
0 0

(b) (c)

80

60

40

20

0

(a)

100" e fraction of PM, 5 Exceed 11 ug/m? in 2022 ) )
. | 100 Time Fracton of Py, Fxceed 11 pgin? in 2072 100
80
80 80
60
60 60
40 20 0
20 20
0 0
(d) () ®

100 ) .

Time Fraction of PM, 5 Exceed 10 pg/m? 02022 1100 1y racion of iy e 10 2622 oo
80

80 80
60 60 w0
40 20 o
20 20 20
0 0 0
(g) (h) (1]

100

Time Fraction of PM, s Exceed 9 ug/m?* in 2022

80

60

60 60
40 2 o
2 0 20 20

i
:
i
i

0 0 0
k) a
100 e Fraction of PNII; 5 Exceed 8 yg/m? in 022100 rimagracion ot e s 2022 oo
80
80 .
60
60 0
40 40 »
20 20 20
0 0 0
(m) (n) (0)

Figure 12. Percentage of time exceeding PMj; 5 concentration thresholds throughout the entirety of
2022, as estimated by Model-3. The subfigures (a), (d), (g), (j) and (m) illustrate the duration exceeding
thresholds 12 ug/m?, 11 ug/m?3, 10 ug/m3,9 ug/m?3, and 8 ug/m3 over the US, respectively. The
subfigures (b), (e), (h), (k) and (n) illustrate the corresponding PM; 5 exceeding in Texas regions and
the subfigures (c), (f), (i), (1) and (o) illustrate the corresponding PM; 5 exceeding in Dallas regions,
respectively
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5. Conclusions

Environmental agencies often depend on a small set of airborne particulate monitoring stations,
which are often unevenly spread out, leading to low temporal resolution in PM observations. These
inherent constraints limit the precision of PM modeling due to the significant variability in PM
concentrations at fine scales and over time. To address these issues, the UTD MINTS-AI platform has
implemented a specialized environmental monitoring network tailored for use in local communities in
Texas. This network is specifically designed to gather PM data, along with relevant environmental
variables, with high temporal resolution and fine spatial detail.

In this paper, we have concentrated on two distinct studies related to PM modeling. In the first
study, we underscored the significance of raw data collection within a synchronized temporal and
spatial coordinate system for effective PM modeling. In the second study, we enhanced PM, 5 modeling
by employing an asynchronized temporal and spatial coordinate system, leveraging pertinent remote
sensing data.

In the first study, to achieved underscore the significance of a synchronized temporal and spatial
coordinate system, we exclusively utilized data only from the MINTS sensing system recorded
between September 2021 and June 2023. This restricted data collection to the MINTS sensing system
was intentional, as it allows access to both PM data and other pertinent environmental data at
precisely the same location with synchronized time stamps. The decision to utilize the extra tree
regression model, based on its strong performance in prior research and efficient computational
processing, proved successful in tackling these challenges. Modeling activities were categorized based
on environmental factors, incorporating all available feature variables (all available variables from the
embedded sensors within MINTS system) that exhibited superior performance across different PM size
fractions. Specifically, variables such as carbon dioxide, pressure, temperature, and humidity emerged
as the most influential during the modeling phase. Moreover, it was discovered that high-frequency
band light intensities played a secondary role in modeling fine PM sizes, whereas low-frequency band
light intensities had a more significant impact on modeling larger PM sizes. It is noteworthy that
the modeling of the fine PM size fraction (PMj 1) resulted in higher correlation coefficient (R) values
compared to coarser PM size fractions in Group-3, which relied solely on the light intensity variables.
This result indicates that, for smaller particle sizes, Mie scattering can be beneficial in accurately
capturing specific particle characteristics. This can be attributed to the fact that the diameter of PMj ;
particles falls within the ultraviolet wavelength range, which improves the model’s capability to
capture finer details of PM concentrations. Importantly, when a model is built solely on light intensity
data from different frequency bands, it becomes clear that variations in the fine PM size fraction can be
effectively captured by high-frequency band intensities.

It is important to highlight that using only three environmental factors, namely temperature,
pressure, and humidity, has been proven to be effective in modeling various PM size fractions with
high performance, as evidenced by high R values, as long as the data were collected in a synchronized
temporal and spatial coordinate system. This effectiveness can be attributed to the advantage of
having data collected at the exact geographical location where PM observations are made. This
means that all data are gathered at the same coordinates with synchronized timestamps, eliminating
the need for data alignment or interpolation, which are crucial in PM modeling. Additionally, the
data is captured at a high temporal resolution, allowing for a comprehensive representation of PM
variations and related changes in feature variables. Importantly, the timestamps for different variables
are closely synchronized, reducing the introduction of noise that often occurs during data alignment
processes. This synchronization enhances the model’s capability to detect subtle nuances in PM
fluctuations. However, it is crucial to recognize that such ideal circumstances are often unattainable in
real-world situations. When modeling PM that involves integrating environmental data from different
sources, requiring spatial and temporal data alignment, a more extensive set of environmental factors
is typically needed to achieve satisfactory model performance. This was demonstrated in the second
study, where PM2.5 modeling incorporated complementary in-situ and remote sensing approaches.
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The development of nationwide PM; 5 models in the second study, a diverse array of predictor
variables was harnessed. This included high-temporal AOD data derived from the GOES-16
geostationary satellite, meteorological variables sourced from the ECMWE, ancillary data gathered
from various external sources, location-specific solar angles, and reanalysis data related to AOD and
air pollutant gases, obtained from the MERRA-2 database. The model training process was stratified
into categories based on the inclusion of feature variables and the sources of ground observations of
PM. As noted above, these variables originate from disparate sources, each characterized by distinct
coordinate systems and temporal resolutions. To align these datasets, a linear interpolation method
was applied, albeit with noticeable consequences on model performance. Interestingly, the model that
incorporated all available feature parameters and utilized data from all sources of PM observation
exhibited the most favorable performance, particularly in terms of R values, in the context of the
nationwide PM; 5 modeling. In particular, among the most influential variables that contributed to
this performance were AOD, specific humidity, dew point temperature, carbon monoxide, and carbon
dioxide.

Based on the comparative analysis of models, it becomes evident that the inclusion of auxiliary
and MERRA-2 data as supplementary feature variables improves the accuracy of the model, as reflected
in higher R values. This augmentation helps to better discern variations in PM; 5 concentrations with
respect to both temporal and spatial dimensions. Furthermore, the integration of environmental
sensing data from the MINTS-AI platform, although limited to a small number of sites within the Texas
region, has a positive impact on the precision of nationwide PM; 5 models. These findings underscore
the potential advantages of incorporating additional ground-based observations and their associated
data into PM modeling, as they contribute to improved model accuracy.

Although the increase in the R value for the national model resulting from the integration of
MINTS environmental sensing data may not be substantial, due to the limited number of MINTS sites
located primarily in Texas, there is a discernible enhancement in regional models with the inclusion
of MINTS data. This observation suggests that PM, 5 exhibits intricate variations on a very fine
spatial scale. To capture more nuanced features or to achieve highly accurate PM; 5 estimates, it is
imperative to expand the network of ground sensing systems, ensuring an even distribution in a
broader geographical area.

Using our analysis approach to reconstruct the fine-time resolution PM, 5 distribution across the
entire united states for our study period, we found that the entire nation encountered PMj 5 levels that
exceeded 9 ug/m? for more than 20% of the time of our analysis period, with the eastern United States
and California experiencing concentrations exceeding 9 pg/m? for over 50% of the time, highlighting
the importance of regulatory efforts to maintain annual PM, 5 concentrations below 9 pg/m?3.
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