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Abstract: Drowsiness is a main factor for various costly defects, even fatal accidents in areas such as 

construction, transportation, industry and medicine, due to the lack of monitoring vigilance in the mentioned 

areas. The implementation of a drowsiness detection system can greatly help to reduce the defects and accident 

rates by alerting individuals when they enter a drowsy state. This research proposes an 

Electroencephalography (EEG) based approach for detecting drowsiness. EEG signals are passed through a 

preprocessing chain composed of artifact removal and segmentation to ensure accurate detection followed by 

different feature extraction methods to extract the different features related to drowsiness. This work explores 

the use of various machine learning algorithms such as Support Vector Machine (SVM) the K Nearest Neighbor 

(KNN) the Naive Bayes (NB) the Decision Tree (DT) and the Multilayer Perceptron (MLP) to analyze EEG 

signals sourced from the DROZY database, carefully labeled into two distinct states of alertness (awake, and 

drowsy). Segmentation into 10-second intervals ensures precise detection, while a relevant feature selection 

layer enhances accuracy and generalizability. The proposed approach achieves high accuracy rates of 99.84% 

and 96.4% for intra (subject by subject) and inter (cross-subject) modes, respectively. SVM emerges as the most 

effective model for drowsiness detection in the intra mode, while MLP demonstrates superior accuracy in the 

inter mode. This research offers a promising avenue for implementing proactive drowsiness detection systems 

to enhance occupational safety across various industries. 

Keywords: drowsiness detection; EEG signals; feature selection; machine learning  

 

1. Introduction 

Vigilance is frequently defined as the ability to be aware of unpredictable changes in an 

environment over time [1]. More precisely, it reflects the state of activation of the central nervous 

system, thereby influencing information processing efficiency. Diminished alertness characterized by 

waning attention reduced responsiveness and compromised concentration maintenance can arise 

from factors such as drowsiness, stress or monotony, detrimentally affecting cognitive performance 

and decision-making processes.  

The existing literature categorizes states of vigilance into four stages or classes [2]: (i) deep sleep, 

also known as paradoxical sleep, characterized by slow brain waves and significant amplitudes 

crucial for quality rest and memory consolidation; (ii) light sleep, marked by decreased brain activity; 

(iii) active awakening, denoting awareness of the environment, distinguished by open, mobile eyes, 

rapid gestures, heightened reflexes, and fast brain electrical activity measured by 

Electroencephalography (EEG); and (iv) drowsiness or passive wakefulness [3], a state of fatigue or 

near-sleep characterized by diminished alertness and a desire to relax, accompanied by regular but 

slower cortical electrical waves compared to active awakening. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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Decreased vigilance is a complex and recurring issue in many professional fields, ranging from 

transportation [4] to industrial surveillance [5] and medical operations [6], where its repercussions 

span from simple mistakes to accidents with costly and potentially tragic outcomes. Various factors 

including sleep disorders, medication, inadequate sleep quality and prolonged work hours can 

precipitate decreased alertness [1,7]. Nevertheless, warning signs of drowsiness, such as difficulty in 

maintaining wakefulness, frequent yawning, concentration lapses, delayed reactions and erratic 

driving behaviors, often herald this decline. 

Various approaches leverage signs indicative of diminished vigilance to identify declines in 

alertness, categorizing detection methods into three main types based on the signals utilized [8]: 

behavioral, contextual, and physiological. 

Behavioral-based methods [9] entail analyzing facial expressions to discern signs of diminished 

alertness, which can be captured through cameras and motion sensors. These devices can be used to 

monitor blinking, yawning, changes in facial expression, and head movements. These data can then 

be analyzed using algorithms and prediction methods to detect warning signs of decreased alertness, 

thus alerting the individual or triggering preventive measures to avoid accidents. However, these 

methods are susceptible to lighting variations, even when using infrared cameras and may not 

promptly detect early signs of decreased alertness. 

Conversely, vehicle-based approaches [10] leverage driving behaviors, such as steering wheel 

rotation angles and vehicle trajectory, to differentiate between alert and drowsy states. Driving 

models can be tailored to discern easily between the behaviors of a fatigued driver and those of a 

driver in a state of hypervigilance. Nonetheless, their accuracy may vary across drivers, vehicles and 

driving conditions, limiting their efficacy in accident anticipation. 

Physiological measurements, the third category, encompass indicators like 

Electroencephalogram (EEG), Electrooculogram (EOG), Electromyogram (EMG), and 

Electrocardiogram (ECG), offering high accuracy and reliability in detecting diminished alertness 

[11]. This accuracy is explained by their ability to early detect, before the appearance of any physical 

sign, physiological changes that can occur in drowsiness. 

EEG, specifically, records brain electrical activity and is widely utilized in neurophysiological 

diagnostics for identifying various conditions affecting the central nervous system, including 

epilepsy, brain tumors, encephalopathies, or sleep disorders [12]. The brain electrical activity is 

recorded using electrodes placed on the scalp. EEG measures the fluctuations in electrical potentials 

generated by brain neurons when they communicate with each other. Therefore, EEG signals may 

encompass distinctive patterns of brain waves corresponding to a progressive decline in vigilance, 

presenting an opportunity to forecast and mitigate the onset of decreased alertness before it reaches 

critical levels. Moreover, EEG facilitates the delineation of various stages of vigilance by discerning 

distinct frequencies and amplitudes of brain waves associated with each state. However, EEG signals 

are susceptible to physiological and non-physiological artifacts, necessitating meticulous artifact 

removal methods. Moreover, deploying EEG-based drowsiness detection systems in real-life settings 

is challenging due to the requirement for numerous electrodes. 

Many drowsiness detection approaches [13] center on the frequency data of EEG signals, 

disregarding temporal details. Due to substantial variations in EEG information indicative of 

alertness among individuals, it is vital to consider all features, making it more efficient and adaptable. 

The effective selection of relevant features is then crucial for classification improvement. Despite the 

fact that techniques like independent component analysis [14], Principal Component Analysis (PCA) 

[15], and core PCA [16] primarily focus on dimensionality reduction, they may not prioritize the 

selection of characteristics based on their importance in decision-making processes. Recursive feature 

elimination [17] addresses this issue by effectively discerning EEG characteristics, as demonstrated 

by numerous studies [18]. 

This study focuses on EEG-based drowsiness detection, leveraging different EEG features (time, 

frequency, and time-frequency) to enhance classification performance and employing Recursive 

Feature Elimination (RFE) for feature selection. The primary objective is to develop an innovative 
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architecture for generalized real-time drowsiness detection, adaptable to embedded devices and 

diverse environments such as transportation, industry, and healthcare facilities.  

The contributions of this study encompass: 

 Overcoming inter-subject variability by using different EEG characteristics (time, frequency, 

time-frequency). 

 Identifying the most effective ML classification models in each classification mode (intra, inter). 

 Evaluating the impact of feature selection methods on performance and accuracy. 

 Reducing the number of electrodes for enhanced practicality. 

The subsequent sections of this paper delineate related work (section 2), drowsiness detection 

using EEG signals (section 3), preprocessing methods and detection algorithms (section 4), data and 

performance evaluation metrics (section 5), and results and discussion (section 6), while culminating 

in a comprehensive conclusion (section 7). 

2. Related Work 

EEG plays a crucial role in detecting drowsiness within vigilance detection applications. These 

applications pursue a shared objective of identifying and understanding diminished alertness, 

employing diverse methodologies that range from advanced machine learning models to innovative 

signal processing techniques. Key features encompass the utilization of multiple EEG channels, 

integration of feature selection layers, and exploration of combined signals like EEG and ECG. These 

approaches not only contribute to safety standards in critical domains, such as driving, industrial 

surveillance, medical procedures or air traffic control, but also highlight the progressive evolution of 

neurotechnology research towards practical applications. 

2.1. Literature 

The landscape of research in EEG-based sleepiness detection encompasses a diverse array of 

methodologies and practical applications.  

Sengul Dogan et al. [19] introduced a fatigue detection system for drivers, taking advantage of 

EEG signals and using 16 mother wavelet functions to extract the frequency bands. Their 

classification, using the K Nearest Neighbor (KNN), reached 82.08% accuracy. Similarly, Yao Wang 

et al. [20] focus on decreased alertness among construction workers, employing 10 EEG channels 

(Fp1, Fp2, F3, F4 T7, T8, Cp1, Cp2, TP9 and TP10) and a Google Net-based Convolutional Neural 

Network (CNN). Their method achieved binary (normal or fatigue states) classification accuracy of 

88.85%. Sagila Gangadharan K et al. [21] offered a portable wireless EEG system for vigilance 

monitoring across diverse sectors, such as driving and air traffic control. Their approach involved 

extracting EEG features in both time and frequency domains, following preprocessing operations to 

detect vigilance states. Using Support Vector Machine (SVM) and four EEG frontal electrodes, they 

achieved a classification accuracy of 78.3%, accompanied by detailed performance metrics including 

sensitivity (78.95%), specificity (77.64%), precision (80.92%), a lack rate (21.05%), and an F1 score 

(76.51%).  

Islam A. Fouad et al. [22] presented a software-based driver fatigue detection system using 32 

EEG channels. Employing a preprocessing pipeline consisting of a band-pass filter [0.15-45] Hz and 

segmentation at 5-minute intervals, they evaluated various classifiers including KNN and SVM, 

giving 100% accuracy in the intra mode (per subject). Nevertheless, the ability of the system to adapt 

to real-world conditions might be limited by the intensive use of electrodes, which would pose a 

challenge in maintaining accuracy across different modes. Blanka Bencsik et al. [23] developed a 

sleepiness detector model based on EEG signals, utilizing 32 channels to extract Power Spectral 

Density (PSD) characteristics across different EEG bands. Incorporating an entity Feature Selection 

(FS) layer, they achieved a notable classification accuracy of 92.6%. Their preprocessing pipeline 

involved applying a 1Hz high-pass filter and a 50Hz low-pass filter to the raw EEG signals, followed 

by a 3-second segmentation.  

Plinio M.S. Ramos et al. [24] focused on automatic sleepiness detection using a set of ML models 

(KNN, SVM, Random Forest (RF) and Multilayer Perceptron (MLP)) with five EEG channels. 
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Utilizing Hjorth parameters (complexity and mobility) extracted from 14 subjects sourced from the 

DROZY database, their MLP classifier attained 90% accuracy in the intra mode using a single C4 

electrode. Pranesh Krishnan et al. [25] proposed a system for EEG-based sleepiness detection 

employing relative band power and the Fourier transform. The system followed four key steps: firstly 

applying a Butterworth low-pass filter to refine the raw EEG signals, secondly segmenting the filtered 

EEG signals into 2-second intervals, thirdly utilizing Fast Fourier Transform (FFT) to compute PSDs 

across various EEG bands, and lastly employing KNN for classification. This integrated approach 

achieved an impressive maximum accuracy of 95.1% in the intra mode. 

Sazali Yaacob et al. [26] presented a novel approach to sleepiness detection by combining EEG 

and ECG signals. They extracted Alpha and Delta bands from EEG and ECG peaks and computed 

PSDs and heart rate variability for each band. Employing KNN and SVM as binary classifiers, their 

system achieved impressive accuracy rates of 97.2% and 96.4% for the KNN and the SVM, 

respectively, in the intra mode. Abidi et al. [27] introduced a novel approach for drowsiness detection 

using 10-second segments. Their methodology involved applying the TQWT to extract two EEG sub-

bands, Alpha and Theta, along with nine temporal features. Subsequently, they utilized kernel PCA 

(k-PCA) to reduce the characteristics extracted from EEG signals without compromising the system 

performance. For detecting reduced vigilance, they employed two different Machine Learning (ML) 

techniques: the KNN and the SVM. These classifiers were evaluated on laboratory subjects, achieving 

approximately 94% accuracy in the intra-subject mode and 83% in the inter-subject mode. 

Notably, the majority of studies have concentrated on detecting drowsiness in the intra mode 

(subject by subject), neglecting the system generalizability and inter-subject variability. Hence, there 

is a critical need to develop a generalized drowsiness detection approach capable of consistently 

detecting decreased alertness across different individuals. Furthermore, in the feature selection 

phase, there is a tendency to prioritize dimensionality reduction without adequately considering the 

features' importance in influencing the ML model decision-making process. Therefore, it is advisable 

to explore methods that can assess feature importance effectively. Lastly, it is imperative to evaluate 

the performance of each ML model in both intra-subject and inter-subject modes during the 

classification phase to ensure robustness and adaptability across diverse contexts. 

The filtering method has emerged as the most suitable approach for artifact elimination, 

preserving relevant EEG information pertinent to frequent drowsiness within the [0.1; 30] Hz range. 

Using low-pass filters shows promise in developing EEG-based drowsiness detection systems while 

retaining crucial EEG data associated with drowsiness. Additionally, the prevalent focus on 

frequency characteristics (PSD) across the reviewed work underscores the potential benefit of 

incorporating EEG characteristics from various domains (time and frequency) to enhance detection 

accuracy. It is also noteworthy that the majority of the discussed studies have emphasized drowsiness 

detection in the intra mode (subject by subject), often overlooking the system generalizability and 

inter-subject variability. Therefore, there is a critical need to develop a generalized drowsiness 

detection approach capable of consistently identifying decreased alertness across diverse individuals 

with equal accuracy. Furthermore, in the feature selection phase, there is a prevalent focus on 

dimensionality reduction without adequately considering the functional importance of features in 

guiding the decision-making process of the ML model. Hence, exploring methods that can effectively 

assess feature importance becomes imperative. Finally, it is essential to assess the performance of 

each ML model in both intra-subject and inter-subject modes during the classification phase to ensure 

robustness and adaptability across varying contexts. 

3. Materials and Methods 

3.1. EEG-Based Drowsiness Detection 

As previously discussed, EEG signals have emerged as a valuable and precise tool for early 

drowsiness detection [12]. Characterized by their non-stationary and non-linear nature, EEG signals 

depict brain activity. Their non-invasive nature and low amplitude stand out as primary advantages. 
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This section examines the various treatment techniques utilized for EEG-based drowsiness detection, 

shedding light on methods that enhance our understanding of this process.  

Prior to leveraging EEG in studying diminished alertness, a series of treatments must be 

undertaken to extract relevant EEG characteristics, thereby facilitating drowsiness detection [28]. 

Figure 1 illustrates the typical EEG signal processing chain employed for drowsiness detection. 

 

Figure 1. Drowsiness detection with EEG signals general processing chain. 

3.1.1. Artifact Removal 

The continuous operation of the human brain is a complex phenomenon, characterized by 

biochemical exchanges among nerve cells that generate electrical activities. Capturing a single 

electrical signal between two neurons is a difficult task. However, when millions of neurons 

synchronize, their electrical activities can be measured from the scalp using EEG. Indeed, EEG signals 

undergo various disturbances as they traverse the tissue, bone and hair layers, directly impacting 

their amplitude and generating artifacts. The term "artifact" [29] encompasses all EEG components 

not directly originated from electrical brain activity. These artifacts may be due to physiological 

factors such as the eye, muscle or heart movements, as well as non-physiological elements including 

wire movements, incorrect reference placement, body motion, and electromagnetic interference 

generated by the acquisition system. Consequently, two categories of artifacts are distinguished [30]: 

physiological and non-physiological. 

The need to preserve the integrity of EEG signals leads to the implementation of artifact 

elimination methods. Various approaches, such as the blind separation of sources [31] and sources 

decomposition [32], have been developed for this purpose. However, these methods inherently risk 

removing not only unwanted artifacts but also valuable EEG data. In this respect, the filtering method 

[33] is distinguished by its effectiveness, eliminating high frequencies irrelevant to the study of 

drowsiness. Thus, finding a delicate balance between removing unwanted artifacts and preserving 

pertinent EEG data remains a major challenge in brain signal analysis research. 

3.1.2. Segmentation 

EEG recordings are typically conducted over extended periods to capture various states of 

vigilance. However, for effective drowsiness analysis, EEG signals need to be segmented into shorter 

time intervals known as EEG epochs or periods [34]. The duration of these epochs is selected based 

on performance metrics. 

3.1.3. Feature Extraction 

In the process of EEG-based drowsiness detection, the features extraction is a crucial part of the 

classification of vigilance states. The quality of these extracted features directly impacts the accuracy 

of classification. Traditional research on decreased vigilance detection has often relied on artificial 

EEG features associated with drowsiness, such as power spectrum extraction from specific frequency 

bands and energy ratio calculation between different frequency bands. While this approach is 

straightforward, it has significant limitations. EEG analysts need in-depth experience and 

knowledge, where the diversity of features extracted is limited, generalizability is low, and 

classification accuracy cannot be significantly improved. 

In recent years, several studies have introduced innovative methods for EEG signal feature 

extraction in drowsiness detection. These approaches frequently include Fourier rapid 

transformation (FFT), power spectral density (PSD), statistical methods, Wavelet Transformation 

(WT), Differential Entropy (DE), Sampling Entropy (SE), Wavelet Entropy (WE) and Empirical 

Decomposition (EMD). FFT [35] is often used to analyze the frequency composition of EEG signals, 
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while PSD [36] is used to explore frequency energy distribution. Statistical methods offer analytical 

insights, whereas WT [37] provides enhanced temporal resolution. The use of DE [38], SE [39] and 

WE [40] offers innovative perspectives for quantifying EEG signal complexity, while EMD [41] is 

valuable for decomposing complex signals into intrinsic components. These advanced methods offer 

a broader range of potential features, allowing better discrimination of changes related to drowsiness. 

However, the challenge persists in the delicate balance between the sophistication of the approach 

and the need to maintain generalizability and robust applicability in various contexts of decreased 

vigilance detection. 

In general, the extraction of EEG characteristics is mainly performed in the time domain, the 

frequency domain, and the Time-Frequency (TF) domain. This part will present the methods of 

analyzing EEG signals to detect drowsiness from three perspectives: time domain analysis, frequency 

domain analysis, and TF. 

 Time analysis 

Time domain analysis [42] has been used in the study of brain function for a long time. 

Commonly utilized time domain analysis methods encompass statistical characteristics, histogram 

analysis, Hjorth parameters, fractal dimension, event-related potentials, and more. These methods 

typically begin by examining the geometric properties of EEG signals, allowing EEG analysts to 

conduct precise and intuitive statistical analysis. Notably, time domain analysis preserves EEG signal 

information effectively. However, due to the complex waveform of EEG signals, there is no unified 

standard for analyzing the characteristics of the EEG time domain, so EEG analysts need to have rich 

experience and knowledge. 

 Frequency analysis 

Frequency domain analysis techniques [43] transform time-domain EEG signals to the frequency 

domains for analysis and feature extraction. Typically, the acquired spectrum is divided into several 

sub-bands and features like the PSD are derived. 

 TF analysis 

The Time-Frequency domain analysis method [44] combines information from both time and 

frequency domains, offering simultaneous localized analysis capabilities. EEG signal analysis in the 

TF domain ensures that information from the original signal's time domain is preserved, hence 

guaranteeing high-resolution analysis. Discrete Wavelet Transform (DWT) and short-time fourier 

transform are commonly utilized tools for extracting useful TF features. Several studies indicate that 

the DWT function is particularly well suited for investigating sleepiness within the TF domain. 

3.1.4. Feature Selection 

Feature selection methods [45] are techniques used in ML to select the most relevant subset of 

features from a data set. These methods aim to improve model performance by reducing 

dimensionality, improving interpretability, and mitigating overfitting. Common approaches include 

filtering methods [46], which evaluate characteristics independently of the learning algorithm; 

encapsulation methods [47], which use the performance of the learning algorithm as a feature 

selection criterion; and embedded methods [48], where feature selection is integrated into the model 

building process itself. Each method offers distinct advantages and trade-offs, depending on factors 

such as the size of the dataset, dimensionality, and computing resources. Several studies have shown 

that the encapsulation methods, particularly RFE [18], are the most efficient at the feature selection 

level, because these methods iteratively remove the least important features based on the 

performance of the ML model trained on the remaining features. 

3.1.5. Classification 

The classification process is a fundamental technique in supervised ML [49], aiming at accurately 

predicting the appropriate class of input data. This procedure includes several crucial steps, starting 

with model training using available training data. During this phase, the model learns the 

relationships between data characteristics and the classes to which they belong. 
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After the training phase, the model is evaluated using distinct data known as test data, which 

are not used during training. This evaluation step measures the performance of the model, evaluating 

its ability to generalize the knowledge acquired during training to novel data instances. Evaluation 

measures, such as accuracy, recall, and F1 score [11], among others, provide quantitative indicators 

of model quality. 

Once the model demonstrates satisfactory performance on the test data, it is ready to be 

deployed to make predictions on new data. The whole process aims to create a model capable of 

generalizing to unknown situations, thus strengthening its ability to make precise decisions on 

previously unseen data. Classification plays a central role in many areas such as drowsiness 

detection, where the ability to effectively identify changes in a mental state from EEG signals can 

have important implications for safety and performance. 

3.2. EEG Data (DROZY) 

The database serves as a crucial component in the creation of drowsiness detection systems, yet 

many publicly available databases focus on falling asleep. In our case, our focus lies in identifying 

drowsiness. Therefore, we opt for utilizing the ULg Multimodality Drowsiness Database (DROZY) 

[50].  

DROZY provides recordings for five EEG leads (Fz, Cz, C3, C4, and Pz) in the EDF format, with 

a sample rate equal to 512 Hz. The principle of this database is to study the states of alertness of 14 

healthy subjects devoid of drug problems, alcohol consumption, or sleep disorders during a 

Psychomotor Vigilance Test (PVT). The data collection protocol requires subjects to repeat the PVT 

three times over two days without sleeping (totaling 28.30 hours without sleep) in order to identify 

the level of vigilance of each subject in the various periods of the day (morning, noon, night). 

After each PVT, subjects are asked to specify their level of alertness using the Karolinska 

Sleepiness Scale (KSS). KSS is a scale composed of nine states of vigilance (1 = extremely alert, 2 = 

very alert, 3 = alert, 4 = sufficiently alert, 5 = neither alert nor drowsiness, 6 = some signs of drowsiness, 

7 = drowsiness but no effort to remain vigilant, 8 = drowsiness with little effort to remain vigilant, 9 

= very sleepy). In this work, we are interested in detecting drowsiness, without specifying the level 

of vigilance. For this reason, levels 1, 2, 3, 4, and 5 are considered stage 0 (alert), and levels 6, 7, 8, and 

9 are considered stage 1 (drowsy). 

(a) (b) 

Figure 2. DROZY EEG signals [50]: (a) Location of EEG electrodes according to international system 

10-20 (Fz, Cz, C3, C4, Pz); (b) EEG raw. 

4. Materials and Methods 

The proposed approach is a binary method designed to distinguish between two states of 

vigilance: wakefulness and drowsiness. 
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The first step is to filter the raw EEG via a FIR bandpass filter ([0.1; 30] Hz) to eliminate high 

frequencies irrelevant to the study of drowsiness, such as artifacts from electrical and electromagnetic 

interference. Subsequently, the filtered EEG signals are segmented into segments of two sizes, 30 and 

10 seconds respectively, to determine the most effective duration for drowsiness detection. These 

EEG segments are then normalized using the z-score method before feature extraction.  

Feature extraction involves capturing both statistical time characteristics and frequency features, 

using the Welch method to compute the RPSD of each frequency wave. Time-Frequency (TF) analysis 

is conducted using the DWT, providing coefficients that depict the frequency evolution of the EEG 

signal over time. Thereafter, we will apply a standardization operation on all the characteristics. 

Subsequently, the Recursive Feature Elimination Cross-Validation (RFECV) is used to select the most 

significant features.  

The selected features are fed into various classification algorithms to determine their class and 

accuracy of the different ML classification models tested in both intra and inter modes Figure 3 shows 

the general scheme of the proposed method. As detailed in the results section, all evaluations are 

performed using Python version 3 on an Intel(R) Core ™i5-8th Gen processor of 1.70 GHz with 8 GB 

of RAM. 

 

Figure 3. The general scheme of the proposed method. 

4.1. EEG Features 

 Statistical characteristics over time 

The extraction of statistical features of EEG signals [11] does not focus on dynamic analysis, 

unlike signal processing-based methods. Nevertheless, it offers valuable features for drowsiness 

detection without necessitating extensive knowledge of EEG patterns associated to the states of 

vigilance of individuals. In this work, the temporal statistical features used are respectively Standard 

deviation (STD), asymmetry (Skew), and Kurtosis (Kurt). Equations (1), (2), and (3) represent each 

feature, denoted as follows: 

 ��� = �
�

�
 ∑ (�� − ����)��

���                       (1) 

���� =
∑ (�������)�/��

���

(���)�             (2) 

 ���� =
∑ (�������)�/��

���

(���)�                      (3) 

Xi represents the data, which in our case is EEG data, i = 1…N, where N is the number of samples, 

and mean is the mean. 

 Relative power spectral density 

The PSD [26,27] algorithm quantifies the power distribution of EEG signals across predefined 

frequency bands, typically ranging from 0.1 to 30 Hz for hypovigilance studies.  

Common methods for PSD calculation include Welch, FFT, and Brug. Among these, the Welch 

method has been identified as the most efficient for analyzing reduced vigilance. Consequently, we 
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will utilize the Welch method in our study. If we denote P as the average power of a signal x(t), then 

the total power over a duration T is calculated as shown in equation (4): 

� =  lim
�→�

�

�
 ∫ |�(�)|��

�
��                            (4) 

If the output of the Welch transformation is denoted as ��(w), representing the frequency content 

of the x(t) signal, the PSD can be calculated as follows (5): 

 ���(�) =  lim
�→�

��[|��(�)|�]                                (5) 

�� denotes the average or expected value operator. Here, it signifies the average of the squared 

magnitude of the inner product between vectors � and w. In essence, ��[|��(�)|�] represents the 

averaged squared magnitude of the projection of one vector onto another. This notation is common 

in signal processing and statistics, particularly when dealing with stochastic processes or random 

variables. 

The drowsiness detection via PSD can encounter significant variability among individuals and 

even with the same individual over time. This issue heightens inter-subject variability and hinders 

the development of a generalized drowsiness detection system. To avoid this problem and create a 

general system capable of consistent efficiency and accuracy across different individuals, we will use 

The Relative Power Spectrum Density (RPSD) [26]. The RPSD represents the ratio of the PSD within 

the frequency Band Of Interest (BOI) to the PSD across the entire frequency spectrum. The RPSD can 

be calculated as follows (6): 

���� =
������

��������
                        (6) 

 Discrete Wavelet Transformation 

The correlation between EEG signals and the wavelet function across different time intervals can 

be represented by the DWT coefficient. Moreover, DWT coefficients provide valuable information on 

the transient behavior of EEG signals. 

For all these reasons, we will use the DWT coefficients as features for vigilance decline detection. 

Our approach employs the Daubechies wavelet function (“db4”) for coefficient extraction, as this 

wavelet function captures relevant information related to drowsiness [40]. The DWT coefficients are 

calculated as shown in (7) (8): 

��(�)(�, �) = ∫ �(�) y
�,�

(�)��
��

��
                                                (7) 

y
�,�

(�) = 2�(���)y(2�(���)(� − 2���))                                            (8) 

The two variables l and n represent the wavelet scale and the translation variables. The choice 

of two variables, l and n, is made on a dyadic scale, as explained in equation (8), to ensure 

orthogonality so that the original signal reconstruction can be performed. Variable l offers signal 

analysis in the frequency domain: The high-frequency components of the original signal are 

represented by the compressed version of the wavelet function, and the components of the low 

frequency are represented by the stretched version of the wavelet function. Variable n provides 

temporal analysis of the signal. 

The output of DWT will consist of two types of coefficients as shown in Figure 4: Detail 

coefficients (cD) and Approximation coefficients (cA). These coefficients represent details (capturing 

high-frequency components) and approximation (capturing low-frequency components), 

respectively. For each coefficient type, energy (9), entropy (10), standard deviation (11), and mean 

(12) will be calculated. 

������ = ∑ |��
�|�

���                                                          (9) 

������� = ∑[�(�) ∗ ���2(�(�))]                                             (10) 

�������� ��������� = �
�

�
∑ (�� − ��)��

���                                        (11) 

���� =
�

�
∑ ��

�
���                                                           (12) 
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Figure 4. EEG signal decomposition by the wavelet function [37]. 

4.2. Feature Selection 

RFECV represents a sophisticated approach to feature selection that merges the advantages of 

RFE [17] with cross-validation. This technique is especially useful when the goal is to choose the most 

relevant features for a ML model, while simultaneously estimating the optimal number of features to 

consider. RFECV is distinguished by its focus on automating this complex process and determining 

the ideal number of features to maximize model performance. 

The RFECV [51] starts with an initial ML model and a complete set of features. After evaluating 

the contribution of each feature to model performance. It iteratively removes the least important ones. 

Following each elimination, cross-validation is used to assess the performance of the model. This 

process repeats until a predefined criterion, such as model accuracy, reaches an optimum or an 

optimal number of features is identified. 

Cross-validation is crucial in the RFECV process as it ensures that feature selection is robust and 

generalizable. By partitioning the data into subsets, cross-validation evaluates the performance of the 

model across various datasets, thus reducing the risk of over-fitting. Figure 5 explains how RFECV 

works. 

 

Figure 5. Principle of operation of the RFECV. 

5. Final Data, Classification and Validation 

5.1. Final Data 
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In this work, we will assess the efficacy of our approach in two modes of drowsiness 

investigation: intra and inter modes. The objective is to mitigate EEG signal variability and validate 

the generalizability of our system. 

For each DROZY subject [50], three EEG recordings are accessible, where each recording scored 

uses the KSS scale. This stage aims to extract the features of vigilance records and label them as stage 

'0' after the normalization operation. To ensure binary classification, we use the same process for the 

drowsiness state and label the features as stage '1'. DROZY EEG signals are recorded with five 

electrodes, and 16 features are extracted for each electrode, resulting in a total of 80 features. 

The initial phase involves evaluating the performance of the approach in the intra mode, 

conducted separately for each subject. The input data were partitioned into 70% for training and 30% 

for testing purposes. The overall accuracy of the classification is determined by averaging the results 

across all subjects as shown in Figure 6. 

 

Figure 6. Data distribution for the train and test sets in the intra mode. 

The second phase aims to improve the ability to address inter-individual disparities. We test 

four data distribution protocols to identify the most effective one for training the ML model to 

accurately detect drowsiness across different subjects. Table 1 displays the distribution of subjects for 

each protocol: 

 Cross-subject: In this data distribution mode, we employ a single subject as the test case in each 

iteration to evaluate the performance of the ML model trained on the remaining data. 

 Combined-subject: In this mode, the characteristics of all subjects are combined and divided 

into 70% for training and 30% for validation games. 

Table 1. Data distribution protocols in the inter mode. 

Protocol names Train data Test data 

P1 (combined-subject) 70% of all features 30% of all features 

P2 (cross-subject) Six subjects One subject 

P3 (cross-subject) Five subjects Two subjects 

P4 (cross-subject) 
  

Four subjects Three subjects 

5.2. Classification Algorithms  

After extracting the feature vectors and implementing the feature importance selection, we will 

move on to classify the vigilance states into two states (Awake, and Drowsy). There are several 
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classifiers for automatic identification of drowsiness. ML models that can detect drowsiness and 

support the nonlinearity of EEG signals are listed below. 

 SVM 

SVMs [52] are ML algorithms used in machine learning to solve problems of classification, 

regression, or anomaly detection.  

The main goal of the SVM is to separate data into classes using as simple a border as possible. 

The distance between the data sets and the boundary between them must be maximum. This distance 

is called margin, so SVMs are called wide margin separators. The data closest to the border is called 

carrier vectors. The SVM function is calculated as follows (13): 

�(�) = ∑ ∝�
�
� ���(��, �) + �                                                  (13) 

Where (xi,yi) represents the training dataset, which is 1<i<N. x represents the characteristic 

vector extracted from the EEG signals, y indicates the corresponding vigilance status labels, and N is 

the number of data. Moreover, K is the kernel function of the SVM, Si is the vector support, ∝� are 

the weights, and b is the bias. 

 KNN 

KNN [53] is an ML algorithm that is simply and easily used to implement supervised learning 

algorithms that can be utilized for solving classification and regression problems. 

The purpose of the KNN algorithm is to use a database in which the data points are separated into 

several distinct classes to predict the classification of a new sample point.  

KNN is one of the simplest supervised ML algorithms that applies the following steps on the 

database to predict the new point class: 

Step 1 : Select the number K of neighbors. 

Step 2 : Calculate the distance between the unclassified point and the other points. 

Step 3 : Take the nearest K according to the calculated distance. 

Step 4 : Count the number of points belonging to each category among these K neighbors. 

Step 5 : Assign the new point to the most present category allowed by these K neighbors. 

Most KNN classifiers use the Euclidean metric to measure differences between examples 

represented as vector inputs. Euclidean distance is defined as (14): 

�(��, ��) = �∑ ��(��(��) − ��(��))��
���                                         (14) 

 Naive Bayes 

The Naive Bayes (NB) classification represents a kind of simple probabilistic classification based 

on the Bayes theorem [54]. Simply put, the Bayesian model is a classifier that assumes that the 

existence of a characteristic for a class is independent of the existence of other characteristics. NB 

classifiers work in the context of supervised learning. Classifiers have several advantages such as 

their ability to support little training data to make the estimation of parameters necessary for 

classification. 

 Decision tree 

A Decision Tree (DT) is one of the most widely used decision tools. This tool provides a diagram 

of a tree that represents a set of choices [55]. The ends of the branches of the trees, also known as the 

leaves of the tree, show the different possible decisions that are made according to the decisions made 

at each stage. Several areas, such as safety and medicine use DT for their advantages in terms of 

readability and speed of execution. It is also a representation that can be calculated automatically by 

supervised ML algorithms. 

 MLP 

An MLP [56] represents a kind of direct-acting Artificial Neural Network (ANN). MLPs are 

typically composed of three layers of nodes which are an input layer, a hidden layer, and an output 

layer, respectively. Each input node represents a neuron that uses a non-linear activation function. 

The MLP uses a supervised learning technique based on a string rule called the reverse propagation 

mode or the automatic reverse differentiation to establish training. Its multiple layers and nonlinear 

activation distinguish the MLP from a linear perceptron; it can distinguish data that are not linearly 

separable. 

5.3. Evaluation Metrics 
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For the evaluation of the performance of the different classifiers, we will use the binary confusion 

matrix presented in Figure 7. 

 

Figure 7. Confusion matrix. 

True Positive (TP): prediction of drowsiness when the actual state is drowsiness. 

False Positive (FP): prediction of drowsiness when the real state is alertness. 

True Negative (TN): prediction of alertness when the real state is alertness. 

False Negative (FN): prediction of alertness when the real state is drowsiness. 

The performance measures used in this work are Accuracy (A), Precision (P), Sensitivity (S), and 

F1-score (F1). Equations (15), (16), (17) and (18) respectively represent the equation for each 

performance indicator: 

�������� =
�����

�����������
                                                    (15) 

��������� =
��

�����
                                                          (16) 

����������� =
��

�����
                                                         (17) 

�� − ����� =
��

���(
�����

�
)
                                                      (18) 

6. Results and Discussion 

In this part, we will present the results in both intra and inter-modes. 

6.1. Intra Mode 

This section showcases the outcomes of detection in the intra mode to emphasize the accuracy 

of this method in detecting drowsiness for every individual separately from others. Our initial step 

is to examine how accurate this approach is with two different segment sizes, 30 and 10 seconds, to 

determine which one is most effective for detecting drowsiness. The accuracy of the different 

classifiers for both sizes is shown in Figure 8. 
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Figure 8. Classification accuracy with 30 and 10 second segments. 

By visualizing the graph, we can say that the 10-second segments offer more precision in 

detecting drowsiness. The following table represents the classification results of different classifiers 

with 10-second segments. 

Table 2. Different classifiers accuracy with 10-second segments in the intra mode. 

Subjects 
NB  

(accuracy %) 

KNN  

(accuracy %) 

DT 

(accuracy %) 

MLP  

(accuracy %) 

SVM  

(accuracy %) 

Subject 1 78 81.9 82 94 95.8 

Subject 2 81 86 81 94.4 98 

Subject 3 87.5 94.4 88.8 99 98.6 

Subject 4 99.6 98.95 95.8 99.9 99 

Subject 5 84.72 87.5 95.6 97.2 97.5 

Subject 6 94 94.4 94 98.6 98.8 

Subject 7 93 86 84.7 94 94 

Overall 88.26 89.87 88.84 96.72 97.38 

      

On the other hand, the use of five electrodes does not represent an adaptable method for certain 

real conditions. Several approaches use a single electrode to detect decreased alertness. However, it 

is not accurate because the system no longer works if the electrode turns off or comes into bad contact 

with the scalp. 

To avoid this problem and create an adaptable system with the conditions of the embedded 

systems (energy consumption, size, etc.), we move on to determine the two most efficient deviations 

to minimize the number of electrodes and maintain accuracy. Table 3 represents the performance for 

each classifier with each deviation. 

Table 3. Different classifiers accuracy with different EEG deviation in the intra mode. 

Derivation 
NB  

(accuracy %) 

DT  

(accuracy %) 

KNN 

(accuracy %) 

MLP  

(accuracy %) 

SVM  

(accuracy %) 

Fz 82.8 67.52 79.92 71.2 75.5 

Cz 83 79.2 79.1 75 83.5 

C3 87.8 88.1 85.6 90.2 91.8 

C4 88.5 88.8 83.2 92.1 94.8 

Pz 62.2 65 75.8 80.2 83 

      

From these results, it can be inferred that C3 and C4 are the two most accurate leads for detecting 

drowsiness. To adapt to the embedded system's requirements and make the system more adaptable 

to real-life conditions, we reduce the number of electrodes in our approach to two (C3 and C4) for 

the remainder of the work. 

On the other hand, the importance of features varies from one subject to another. To avoid this 

problem and to improve the accuracy of the approach we use a method of feature importance 

selection to reduce the number of features and keep only the most useful ones at the level of 

drowsiness detection for each individual (Figure 9). RFECV is the selection method employed in this 

work. 
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Figure 9. Different classifiers accuracy after RFECV. 

RFECV provides us with the most important features for each subject and eliminates the least 

important. Table 4 represents the number of most important characteristics for each subject. 

Table 4. The number of the important EEG features selected by RFECV for each subject. 

Subjects 
Number  

of features 
Name of features 

S1 7 

Skewness (C3) / Standard deviation of details coefficients (c4) 

/Delta RPSD (c3) / Beta RPSD (c3) / Beta RPSD (c4) / Gamma 

RPSD (c3) / Gamma RPSD (c4) 

S2 9 

Standard deviation (c4) / Kurtosis (c4) / Energy of details 

coefficients (c4)  /Theta RPSD (c4) /Alpha RPSD (c4) / Beta 

RPSD (c3) /Beta RPSD (c4) / Gamma RPSD (c3) / Gamma RPSD 

(c4) 

S3 7 

Standard deviation (c4) / Kurtosis (c4) / Standard deviation of 

details coefficients (c4) / Alpha RPSD (c4) / Beta RPSD (c4) / Beta 

RPSD (c3) / Gamma RPSD(c4) 

S4 4 
Delta RPSD (c4) / Theta RPSD (c4) / Beta RPSD (c3) / Gamma 

RPSD (c4) 

S5 8 

Standard deviation (c3) / Standard deviation (c4) / Skewness 

(C3) / Skewness (C4) / Kurtosis(c4) / Energy of details 

coefficients (c3)  / Energy of details coefficients (c4)  / Energy 

of approximation coefficients (c4) 

S6 9 

Energy of details coefficients (c3) / Energy of details coefficients 

(c4) / Energy of approximation coefficients (c4) / Energy of 

approximation coefficients (c3) / Entropy of details coefficients 

(c4) / standard deviation (c4) / Skewness (C3) /Mean of details 

coefficients (c4) / standard deviation of approximation 

coefficients (c4) 

S7 19 

Entropy of details coefficients (c4) / Entropy of details 

coefficients (c3) / Energy of details coefficients (c3) / Energy of 

details coefficients (c4) / Energy of approximation coefficients 

(c4) / Energy of approximation coefficients (c3) / Skewness (C3) 

/ Skewness (C4) / Theta RPSD (c3) / Alpha RPSD (c4) / Alpha 

RPSD (c3) / Beta RPSD (c3) / Beta RPSD (c4) / Gamma RPSD (c3) 

/ Gamma RPSD (c4) / Standard deviation (c4) / Kurtosis(c4) / 

Standard deviation (c3) / Kurtosis(c3) 
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Figure 10. The number of features selected by RFECV with SVM. 

The research shows that the SVM with the Radial Basis Function (RBF) kernel is the most exact 

classifier for detecting drowsiness in the intra mode, with just two C3-C4 derivations and seven 

features picked by RFECV, with an overall accuracy of 99.85%. 

6.2. Inter Mode 

In this section, we will work with three temporal characteristics, five frequencies, and eight TFs, 

which gives us 16 characteristics per electrode. For two electrodes, we have 2*16 = 32 characteristics. 

Our work consists in evaluating the performance of our approach with two EEG derivations in four 

different data distribution protocols. Moreover, comparing the results with the intra-mode to specify 

the most effective data distribution protocol to train a more generalist model that can eliminate and 

overcome the problem of EEG variability between subjects.  

Subsequently, we move on to the use of the RFECV to select the most important features and 

eliminate the less decisive features in connection with the detection of drowsiness. This feature 

selection method will help us decrease the features on the one hand and increase the system accuracy 

on the other hand. 

As in the intra mode, we start by identifying the two electrodes that have the highest accuracy 

in the inter mode for later use (Figure 11). 

 

Figure 11. Different classifiers accuracy with different EEG deviation in the inter mode. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 May 2024                   doi:10.20944/preprints202405.1615.v1

https://doi.org/10.20944/preprints202405.1615.v1


 17 

 

Tables 5–9 represent the classification results for the original data with only two EEG leads (C3 

and C4) without the use of the feature significance selection method for four data distribution 

protocols. 

Table 5. NB accuracy with only C3 and C4. 

Protocols NB 

 P (%) S (%) F1 (%) A (%) 

P1 66.1 65.2 65 65.7 

P2       71.5                                71.1 72.1 71.2 

P3 63.1 61.5 62.8 62.65 

P4 79 77.8 78.5 78.2 

Table 6. KNN accuracy with only C3 and C4. 

Protocols KNN 

 P (%) S (%) F1 (%) A (%) 

P1 86.5 84.8 85.6 85.2 

P2       84.5                                84.5 85.2 84.63 

P3 84.8 84.3 87.1 85.5 

P4 88.1 87.5 89.1 88.3 

Table 7. DT accuracy with only C3 and C4. 

Protocols DT 

 P (%) S (%) F1 (%) A (%) 

P1 78.1 78.7 79.9 79.5 

P2       79.5                                78.2 80.9 79.7 

P3 82.3 82.1 83 81.89 

P4 86.3 85 86.1 85.2 

Table 8. MLP accuracy with only C3 and C4. 

Protocols MLP 

 P (%) S (%) F1 (%) A (%) 

P1 92.5 94 93.2 93.8 

P2       88.7                                88.5 90 88.99 

P3 94 94 94 94 

P4 92.9 94.8 95.2 94.8 

Table 9. SVM accuracy with only C3 and C4. 

Protocols SVM 

 P (%) S (%) F1 (%) A (%) 

P1 88 88 88.1 88 

P2       81.3                                80.5 79.89 80.2 

P3 85.5 84.2 86.2 85.3 

P4 89.5 89.1 89.7 88.97 
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Based on the results, we can see that the C3-C4 represents the most accurate leads in the inter 

mode, but we can also see that the accuracy of the approach considerably decreases. For this reason, 

the next phase is to use a significant feature selection method known as RFECV to select the most 

important features concerning drowsiness to increase the accuracy of the approach. Figure 12 shows 

the evolution of the precision of the approach according to the number of characteristics selected by 

RFECV. 

 

Figure 12. The number of features selected by RFECV with MLP. 

The maximum accuracy obtained after the use of the RFECV in the inter mode is that of MLP 

with a value of 96.4% with protocol P4 as shown in Table 10 with a number of characteristics selected 

by RFECV equal to nine features. As a result, we can see that the accuracy of the approach 

considerably decreases with the reduction in the number of tracks as well as in the features compared 

to the results of the intra-subject mode. On the other hand, we can see that the approach can overcome 

EEG variability with a high accuracy rate. 

Table 10. Different classifiers accuracy after RFECV in the inter mode. 

Protocols 
NB  

(accuracy %) 

DT  

(accuracy %) 

KNN 

(accuracy %) 

MLP  

(accuracy %) 

SVM  

(accuracy %) 

P1 70.6 90.5 81.2 95.18 93.85 

P2 73.2 86.63 80.7 90.5 89.51 

P3 65.65 86.5 83.5 95.3 91.8 

P4 81 92.4 87.2 96.4 95.2 

      

6.3. Comparison of RFECV with Other Feature Selection Methods 

In this part, we compare the performance of the approach using other feature selection methods, 

k-PCA and PCA, to clarify the effect of the selection method on the performance of the approach. 

Figure 13 represents the results of the classification of the selection method proposed in this work 

with k-PCA and PCA with the data distribution of protocol P4. 
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Figure 13. The effect of the feature selection method on the accuracy of the approach. 

Based on the results, we can clearly see that the RFECV is more effective as a feature selection 

method for drowsiness detection in comparison with k-PCA and PCA. 

6.4. Discussion  

The variability observed in EEG signals, both in individuals and in different subjects, poses 

significant obstacles to the advancement and practical application of drowsiness detection systems. 

The critical step in selecting appropriate characteristics to identify declines in vigilance is complicated 

by the considerations of the variability of EEG between subjects and adaptability to real conditions. 

In this work, alternative techniques such as statistical analysis, the Welch method, and DWT are used 

to extract the temporal, frequency and TF characteristics of the EEG signals. Subsequently, feature 

selection is applied to mitigate interpersonal variability while maintaining detection accuracy, 

resulting in an impressive accuracy rate of 96.4%. The integration of two EEG channels enriches the 

versatility of the system in various environments, making it better suited for real-time deployment. 

In addition, the simplification of the system through the removal of redundant features increases the 

efficiency and adaptability of the classification, resulting in an improvement in accuracy up to 94.8% 

when using all features (80 features), and an additional improvement to 96.4 when using only 9 

features. Using the RFECV algorithm, classification accuracy is further improved to 96.4% while 

reducing system complexity by decreasing the number of features from 80 to 9. This study represents 

an important step towards the development of a drowsiness monitoring device based on EEG signals. 

Importantly, existing studies have explored EEG-based drowsiness detection. Moreover, we provide 

in Table 11 a comparative analysis of our approach versus common methodologies. 

Table 11. Comparative analysis of the proposed method versus other systems. 

Ref 
Feature extraction 

method 

Classifier 

  
Database  

Electrodes 

number 
A(%) 

P(%) 

 
S(%)  F1(%) 

[19] WT KNN Private 32 82.08 78.84 87.71  83.27 

[21] FFT SVM Private 4 78.3 80.92 78.95  76.51 

[23] PSD Neural network 

EEG driver 

drowsiness 

dataset [57] 

32 92.6 

92.7 

 

 

-  92.7 

[24] 
Hjorth 

Parameters 
MLP DROZY 1 90 

- 

 

- 

 
 

- 

 

[26] PSD SVM DROZY 5 96.4     
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[28] TQWT SVM 

Sahloul 

University 

Hopital 

1 94 

- 

 

 

94.08  - 

Proposed 

methods 

Statics / RPSD / 

DWT 

SVM 

 

DROZY 

 
2 99.85 

99.87 

 
99.8  99.5 

          

7. Conclusion  

Decreased alertness, especially passive wakefulness (drowsiness), is a very dangerous condition 

in areas such as transportation, industry, and medicine. In this work, we have proposed an approach 

to drowsiness detection based on EEG features coming from two EEG leads (C3, C4). The suggested 

system uses the Welch method, the EEG statistical characteristics and the DWT to extract the different 

EEG characteristics in time, frequency and TF domains, respectively. The RFE technique has been 

used as a selection method to keep the most important features to ensure more accurate and generic 

drowsiness detection. The different ML models have been utilized to differentiate two states of 

vigilance (awake, drowsy). The proposed system is capable of detecting drowsiness with accuracy of 

99.85% and 96.4%, respectively in intra and inter modes. The strengths of the suggested approach are 

represented by their ability to overcome the inter-subject problem and they offer a more generalized 

system with a high accuracy rate. In addition, the proposed drowsiness detection system uses a 

limited number of EEG electrodes, which makes it more adaptable to real-life conditions. As a 

perspective, we aim to incorporate facial expressions as well as other physiological signals, such as 

EOG and ECG, with the EEG signal to strengthen the reliability of the approach. In addition, the 

implementation of this approach on a programmable platform for the creation of an embedded 

drowsiness detection system represents a future topic. 
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