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Abstract: Personalized cancer vaccines have emerged as a promising avenue for cancer treatment
or prevention strategies. This approach targets the specific genetic alterations in individual patient’s
tumors, offering a more personalized and effective treatment option. Previous studies have shown
that generalized peptide vaccines targeting a limited scope of gene mutations are ineffective,
emphasizing the need for personalized approaches. While studies have explored personalized
mRNA vaccines, personalized peptide vaccines have not yet been studied in this context. Pancreatic
ductal adenocarcinoma (PDAC) remains challenging in oncology, necessitating innovative
therapeutic strategies. In this study, we developed a personalized peptide vaccine design
methodology, employing RNA sequencing (RNAseq) to identify prevalent gene mutations
underlying PDAC development in a specific patient solid tumor tissue. We performed RNAseq
analysis for trimming adapters, read alignment, and somatic variant calling. We also developed a
Python program, called GeneFinder, which validates the alignment of the RNAseq analysis. The
Python program is freely available to download. Using chromosome number and locus data,
GeneFinder identifies the target gene along the UCSC hg38 reference set. Based on the gene
mutation data, we developed a personalized PDAC cancer vaccine that targets 100 highly prevalent
gene mutations in the individual patient. We predicted peptide-MHC binding affinity,
immunogenicity, antigenicity, allergenicity, and toxicity for each epitope. Then, we selected the top
50 and 100 epitopes based on our previously published vaccine design methodology. Finally, we
generated pMHC-TCR 3D molecular model complex structures which are freely available fo
download. The designed personalized cancer vaccine contains epitopes commonly found in PDAC
solid tumor tissue. Our personalized vaccine was composed of neoantigens, allowing for a more
precise and targeted immune response against cancer cells. Additionally, we identified mutated
genes which were also found in the reference study where we obtained the sequencing data, thus
validating our vaccine design methodology. This is the first study designing a personalized peptide
vaccine using human patient data to identify gene mutations associated with the specific tumor of
interest.

Keywords: personalized cancer vaccines; neoantigens; pancreatic ductal adenocarcinoma; peptide
based personalized cancer vaccine; MHC; HLA; TCR

1. Introduction

Personalized cancer vaccines are a rising innovation in the field of vaccine design [1]. These
vaccines induce an antigen-specific CD8* and CD4* T-cell response to enhance anti-tumor activity
based on a patient’s individual tumor. Technological innovation has led to the ability to rapidly
sequence and analyze patient genome data, which leads into selection of gene targets and on-demand
production of a personalized therapy [2]. A phase I clinical trial synthesized personalized mRNA
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vaccines against PDAC from solid tumors, which led to improved disease-free survival [3]. The trial
analyzed a patient population who underwent surgical resection of PDAC tumors. Future
development of personalized cancer vaccines direct to demonstrate significant efficacy in patients
without major surgical intervention.

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and
projected to be the second-leading cause of cancer mortality by 2030 [4,5]. Current clinical therapies
involve neoadjuvant therapy followed by possible surgical resection [6]. However, patients with
PDAC suffer from poor prognosis with a median survival rate of 22.1 months with an actual survival
rate of 17.0% [7]. PDAC is often diagnosed late, and as a result surgical resection may not be a viable
option for many patients [8]. As the cancer progresses and possible treatment options decrease,
survival outcomes also significantly worsen. Five-year survival rate for patients diagnosed with late-
stage PDAC is less than 10% [8].

PDAC progresses as a complex activation of driver genes and inactivation of tumor suppressor
genes [9]. Commonly mutated genes observed in PDAC include KRAS, TP53, CDNK2A,
DPC4/SMAD4, and BRCA2. Studies of key mutations in these genes are conducted with the goal of
developing targeted gene therapies. One particular mutation, the KRAS G12D mutation, is present
in over 40% of PDAC patients [10]. However, this specific mutation has been found to not be
significantly associated with overall survival outcomes. The TP53 gene is mutated in about 50% of
PDAC patients [11]. These mutations include gain-of-function point mutations and null-mutations as
a result of deletions. Mutations of the CDNK2A gene have been found to be significantly associated
with poorer survival outcomes for patients with PDAC compared to mutations of KRAS and TP53
[12,13].

Several PDAC vaccines are under development and clinical trials using a variety of immunologic
targeting methods [14]. These methods include cell-based, protein-based, microorganism-based,
DNA-based, exosome-based, and peptide-based vaccines. Peptide-based vaccines have been growing
in popularity due to their ability to be quickly and cheaply developed and for their flexibility in
patient populations [15]. For PDAC, the first peptide vaccine to undergo clinical trials was a KRAS-
targeting peptide co-administered with GM-CSF to promote a greater immune response [16]. The
vaccine successfully induced specific immune response in 58% of patients, contributing to a longer
survival time for treated patients. Other peptide vaccines targeting survivin, gastrin, VEGFR-1,
VEGFR-2, and WT1 have been ineffective in inducing immune response or contributing to
significantly improved survival [14,16-20]. However, the design of personalized based peptide
cancer vaccines is completely absent. This study focuses on the development of design protocol to
create personalized peptide vaccines with application to PDAC. The protocol identifies genetic
variants using RNAseq analysis and designs a personalized peptide vaccine using a vaccine
development protocol and omics pipeline previously developed by our group [21-29].

2. Materials and Methods
2.1. Patient Genomic Data

We obtained patient genomic data from the Gene Expression Omnibus (GEO) database [26], a
publicly accessible repository of comprehensive microarray, next-generation sequencing, and other
forms of high-throughput functional genomic data. For this study, we specifically collected raw
[llumina sequencing data pertaining to human patient solid tumor samples. These samples were part
of a detailed study focused on analyzing long-term heterogeneity in patients with pancreatic ductal
adenocarcinoma (PDAC) [27]. This study included genomic data from a cohort of 19 patients,
consisting of 10 long-term survivors and 9 short-term survivors, providing a diverse basis for
examining genetic variations linked to survival outcomes. For the objectives of this study, we selected
one patient classified as a short-term survivor to design personalized vaccines, serving as a proof-of-
concept for our approach. This selection was strategic, allowing us to explore the potential of
personalized medicine in cases with poorer prognosis and to evaluate the efficacy of targeted
therapies based on genomic insights. The design and development of the vaccine were personalized
to the unique genetic profile of the chosen patient, focusing on the anomalies most likely to influence


https://doi.org/10.20944/preprints202405.1612.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 May 2024 d0i:10.20944/preprints202405.1612.v1

tumor behavior and treatment response. To confirm that our personalized vaccine design was
rigorous and potentially effective, we compared the targeted genetic components of the vaccine to
key genes previously identified as significant in the survival of PDAC patients by Bhardwaj et al.
[27]. This comparison enabled us to validate our personalized vaccine design approach and increase
the therapeutic relevance of the vaccine design. This proper controlled process of data selection, and
comparison with established genetic markers supports our vaccine design methodology detailed
further below section.

2.2. RNAseq Analysis of Patient Data

We performed an RNAseq analysis using the Partek Flow genomic analysis suite [28], as shown
in Figure 1, which outlines our comprehensive RNAseq workflow to obtain and confirm variant data.
Initially, we imported the raw sequence data in fastq format into Partek Flow. This format is widely
used for storing the output from high-throughput sequencing instruments and contains both
nucleotide sequence data and corresponding quality scores. Following data importation, the first
computational step involved trimming the Illumina sequencing adapters. These adapters, which are
artificial sequences added during library preparation, can interfere with the analysis if not removed,
as they may be misinterpreted as part of the genomic sequence. After trimming, we aligned the reads
to a reference genome using the Burrows-Wheeler Aligner (BWA) algorithm. BWA is a software tool
that efficiently aligns relatively short sequences (such as those from Illumina sequencers) against a
long reference sequence such as a complete genome. This alignment is important for locating the
genomic origins of each read and is fundamental to identifying variations from the reference
sequence. In the post-alignment, we executed somatic variant calling using the Strelka algorithm,
which is specifically designed to detect somatic variants with high sensitivity and accuracy in tumor-
normal paired samples. This step was important for identifying potentially significant genetic
mutations that could be relevant in the context of disease, herein cancer. To ensure the reliability of
our findings, we manually inspected each significant gene variant using the Integrative Genomics
Viewer (IGV). IGV is an interactive visualization tool that allows us to visually explore genomic data,
thus facilitating the validation of computational predictions through a critical human-oversight step.
We excluded gene variants of inadequate quality from further analysis. This quality control step is
key to avoid false positives that could skew the results of downstream applications, such as vaccine
development. Finally, we focused our efforts on analyzing single nucleotide polymorphisms (SNPs)
that hold potential for inclusion in our vaccine development process. SNPs, being the most common
type of genetic variation among cancer patients, provide valuable insights into genetic variability
which can be exploited to design targeted vaccines.
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Figure 1. RNAseq analysis workflow using Partek Flow suite. Created using BioRender.com.

3. Gene Annotation Confirmation Using GeneFinder Python Program

Development and Application of GeneFinder
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After obtaining and processing genomic data through Partek Flow, we advanced to the next step
by developing a Python program named ‘GeneFinder’. The code for this innovative tool is
comprehensively detailed in Supplementary File S3, and freely available for download. GeneFinder
was specifically designed to enhance our analytical capabilities in gene annotation by using both
chromosome number and locus information. Using the hg38 reference set accessible via the UCSC
Genome Browser [29], GeneFinder systematically identifies corresponding gene names based on their
chromosomal location. The tool operates by exploiting web-scraping techniques to extract relevant
genomic data directly from the browser. Once the data is retrieved, GeneFinder processes this
information to generate a detailed output that includes a table formatted with chromosome numbers,
locus details, and the names of associated genes. This functionality not only streamlines the gene
identification process but also warrants accuracy by referencing updated genomic data. The
application of GeneFinder in our study was twofold. Primarily, it served to externally validate the
alignment accuracy and overall reliability of our RNAseq analysis process. By cross-verifying the
gene annotations provided by Partek Flow with those extracted by GeneFinder, we could confirm
the consistency and validity of our results. Additionally, as shown in Figure 2, we employed a
modified version of GeneFinder to specifically extract a list of genes from a given variant file. This
adaptation was particularly important for our personalized vaccine as it allowed us to focus on
particular genomic variants of interest, facilitating a more targeted approach in our subsequent
analyses.
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Figure 2. GeneFinder python program workflow. Created using BioRender.com.

4. Personalized Vaccine Design Protocol

We employed a vaccine design protocol that has been previously outlined in our published
studies [21,24-30]. This protocol integrates cutting-edge bioinformatics tools to predict and select
epitopes from mutations identified in genomic data.
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4.1. Epitope Prediction and Selection

Initially, we used the IEDB NetMHC 4.1 tool to predict epitopes. NetMHC 4.1 is specifically
designed to return potential epitopes along with their predicted binding affinity for the top 27
expressed HLA alleles in the human population. The binding affinity indicated by the ICs value
measured in nanomolar (nM), determines the strength of the interaction between the epitope and the
HLA molecules, which is a critical factor in the immune response efficacy.

4.2. Clinical Checkpoint Parameters

Subsequently, we computed several epitope-specific clinical checkpoint parameters. The
immunogenicity of each epitope was determined using the IEDB Class I Immunogenicity Tool, which
assesses the potential of an epitope to trigger an immune response. The antigenicity, which evaluates
the capability of the epitope to be recognized by antibodies, was determined using VaxiJen v2.0.

4.3. Data Filtering and Selection Criteria

With the binding affinity, immunogenicity, and antigenicity data computed for each epitope and
its associated HLA allele, we employed stringent filters to select the most promising epitopes. These
filters were applied based on the criteria outlined in Table 1, focusing on identifying epitopes that are
strong binders, highly immunogenic, and antigenic.

Table 1. Restriction criteria to quantitatively filter and qualitatively assess each epitope.

Parameter Restriction

Strong binder 0nM<b <50 nM

Binding affinity (b) Normal binder 50 nM < b <500 nM
Weak binder 500 nM < b <5000 nM

Immunogenicity (i) i20

Antigenicity (a) 1204
Toxicity Nontoxic
Allergenicity Non-allergenic

4.4. Physicochemical Property Assessment

In addition to these functional assessments, we analyzed various physicochemical properties of
the epitopes using ProtParam. This analysis included determining parameters such as half-life,
instability index, isoelectric point, aliphatic index, and GRAVY score. Although these parameters
were informative for understanding the physical and chemical characteristics of the epitopes, they
were not used in the epitope selection process. Further, we assessed toxicity using ToxinPred and
screened for allergenic potential using AllerTOP v2.0, ensuring that only non-toxic and non-
allergenic epitopes were considered for further analysis.

4.5. Epitope Selection and Workflow Integration

After applying the filtration restrictions (Table 1), we selected the top 50 and 100 epitopes that
met all the specified criteria, warranting a robust selection of candidates for potential vaccine design.
We employed binary filters on toxicity and allergenicity to make sure the selection of epitopes that
are both non-toxic and non-allergenic.

4.6. Methodological Workflow

Figure 3 shows the comprehensive workflow of our methodology, starting from the collection
of Illumina sequencing data, performing RNAseq analysis, and the selection of top epitopes for the
development of peptide vaccines. This streamlined workflow integrates multiple stages of data
processing and epitope evaluation, indicating the robustness of our approach in vaccine design.
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Figure 3. Overall methodological workflow.

5. Results

We obtained Illumina sequencing data from single patient out of the 19 available in the GEO
accession project [27]. The sequencing data represents the genetic landscape of the patient solid tumor
sample. We performed RNAseq analysis to determine prevalent mutations. Using these mutations,
we determined strong and normal binding MHC class I epitopes that are immunogenic, antigenic,
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nontoxic, and nonallergenic. We selected the top 50 and top 100 epitopes from this data for a peptide
vaccine.

5.1. Determination of Genetic Variants with RNAseq Analysis

We performed RNAseq analysis on Illumina sequencing data to obtain a list of genetic variants
identified in a solid PDAC tumor. The RNAseq analysis performed using Partek Flow resulted in
100,819 mutations. These mutations included single nucleotide polymorphisms, multi-nucleotide
polymorphisms, deletions, and insertions. Isolating the single nucleotide polymorphisms, we
identified 189 unique variants which we could use to develop the peptide vaccine.

5.2. Confirmation of Genetic Variants and Sequencing Alignment Using GeneFinder

We confirmed the alignment of the sequencing data to the hg38 human reference genome using
our GeneFinder program. Using GeneFinder, we qualitatively identified the corresponding genes to
all 100,819 mutation loci against the hg38 human reference genome. We found 100% similarity
between the genes identified through Partek Flow and genes identified using GeneFinder. Therefore,
we were confident that the variant genes identified using Partek Flow were correctly aligned to the
reference genome.

5.3. Collection of 9-mer and 10-mer Top Epitopes from Genetic Variants

From the pool of identified genetic variants, we curated lists of the top 50 and top 100 epitopes,
prioritized based on their binding affinity and immunogenic properties, detailed in Supplementary
Files 1-2. All selected epitopes consisted of either 9 or 10 amino acids, representing an epitope capable
of binding to an MHC class I molecule. All the top 50 epitopes were classified as having strong
binding affinity to their associated HLA allele. The top 100 epitopes included both strong and normal
binders. We found no epitopes in the top 100 which were classified as weak binders. Table 2 shows
the top 50 epitopes, along with their associated genes, mutations, and binding HLA alleles.

Table 2. Top 50 epitopes along with their strong-binding associated HLA allele.

Gene Mutation Epitope HLA Alleles
GNAS R201C AMSNLVPPV HLA-A*02:01
SMAD4 Y353C QSIKETPCW HLA-B*58:01
TP53 R248Q CTYSPALNK HLA-A*03:01
KRAS G12D KSFEDIHHY HLA-B*58:01
SMAD4 Y353C MPIADPQPL HLA-B*39:01
SMAD4 Y353C CLSDHAVEFV HLA-A*02:01
SMAD4 Y353C KIYPSAYIK HLA-A*03:01
TP53 R248Q LEDSSGNLL HLA-B*40:01
KRAS G12D LARSYGIPF HLA-B*15:01
TP53 R248Q APAAPTPAA HLA-B*07:02
SMAD4 Y353C LLDEVLHTM HLA-A*02:01
TP53 R248Q KTYQGSYGF HLA-B*58:01
SMAD4 Y353C APAISLSAA HLA-B*07:02
SMAD4 Y353C LQSNAPSSM HLA-B*15:01
TP53 R248Q LLGRNSFEV HLA-A*02:01
KRAS G12D KSALTIQLI HLA-B*58:01
SMAD4 Y353C KETPCWIEI HLA-B*40:01
GNAS R201C NQFRVDYIL HLA-B*39:01
TP53 R248Q LQIRGRERF HLA-B*15:01
SMAD4 Y353C LPHHQNGHL HLA-B*07:02
SMAD4 Y353C LQVAGRKGF HLA-B*15:01
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SMAD4 Y353C CILRMSFVK HLA-A*03:01
KRAS G12D CLLDILDTA HLA-A*02:01
SMAD4 Y353C LRRLCILRM HLA-B*27:05
GNAS R201C LIDCAQYFL HLA-A*02:01

5.4. Population Coverage Analysis of Top 100 Epitopes

We also performed a population coverage analysis to assess the extent of the global population
that could potentially benefit from the personalized vaccine. The analysis showed that the vaccine
could cover 69.64% of the global population. Table 3 provides this coverage along with average hit
rates and PCo data for various world subregions. While the population coverage may appear
relatively low at first glance, it is essential to consider the context of this study. The vaccine was
uniquely designed based on the gene expression profile of a specific individual, making it
personalized and tailored to the specific mutations and characteristics of their tumor. Consequently,
the expectation for widespread coverage across diverse populations is not high. As the patient cohort
from whom the vaccine was developed predominantly comprised individuals with European
ancestry, the vaccine’s performance in these regional subgroups aligns with the genetic background
of the patients involved.

Table 3. Population coverage of the personalized PDAC vaccine for regional subgroups.

Population/Area Coverage Average Hit pc90
Central Africa 39.22 1.84 0.16
Central America 14 0.06 0.41
East Africa 41.73 2.16 0.17
East Asia 55.26 2.8 0.22
Europe 81.05 4.98 0.53
North Africa 43.55 2.29 0.18
North America 70.36 4.09 0.34
Northeast Asia 47.97 2.21 0.19
Oceania 38.93 1.59 0.16
South Africa 23.99 0.93 0.13
South America 36.87 1.86 0.16
South Asia 37.28 1.66 0.16
Southeast Asia 55.59 2.34 0.23
Southwest Asia 43.73 2.33 0.18
West Africa 42.65 2.14 0.17
West Indies 63.52 3.47 0.27
Average 45.19 2.3 0.23
Standard deviation 17.8 1.13 0.11

5.5.3. D-Structure Modeling of Epitope-MHC and TCR Interaction Complex

TCR (T-cell receptor) and pMHC (peptide-major histocompatibility complex) interactions play
a fundamental role in immunogenicity, which involves the ability of a peptide to initiate an immune
response against tumor cells. TCRs on the surface of T cells recognize antigens that are presented by
MHC molecules on the surface of antigen-presenting cells. This recognition is specific to the peptide
being presented by the MHC. The correct configuration and interaction of a TCR with a pMHC
complex is essential for the T cell to become activated and initiate an immune response. Thus, to
explore the binding of our designed peptide vaccines, we initiated TCR-pMHC peptide interaction
modeling. We found the PDB files for the HLA alleles HLA-B*58:01 on the RCSB protein data bank
(https://www.rcsb.org/). Using MDockPeP (https://zougrouptoolkit.missouri.edu/mdockpep/) and
CABS-dock [31,32], we attached a top epitope to the binding grooves of the HLA allele. We created
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two models of the peptide-MHC binding complex (Figure 4). We wused TCRModel
(https://tcrmodel.ibbr.umd.edu/) to create 3D models of a TCR complex binding to our peptide-MHC
complexes. Subsequently, we used PyMOL to edit all of the 3D models. In Figure 4, the color yellow
represents HLA alleles and red represents epitopes. The 3D models we obtained were KSFEDIHHY,
a mutation of the KRAS gene, binding to the MHC Class I molecule HLA-B*58:01 as well as
KTYQGSYGF, a mutation of the TP53 gene, binding to the MHC Class I molecule HLA-B*58:01. All
PMHC-TCR 3D molecular model structures generated in this study can be found in Supplementary
Files 54-57.

Figure 4. A. The peptide KSFEDIHHY, a mutation of the KRAS gene, binding to the MHC Class I
molecule HLA-B*58:01, B. The peptide, KTYQGSYGF, a mutation of the TP53 gene, binding to the
MHC Class I molecule HLA-B*58:01.

Figure 5. The peptides KSFEDIHHY and KTYQGSYGF bound to HLA-B*58:01 and their respective
TCR complex.
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6. Discussion

We developed a personalized peptide-based vaccine for a patient with pancreatic ductal
adenocarcinoma (PDAC). This process began with RNA sequencing (RNAseq) analysis, which
enabled the identification of specific genetic mutations driving the development of PDAC in the
patient. Based on this analysis, we developed a personalized cancer vaccine using our previously
published peptide vaccine development strategy [21,30]. Our approach involved targeting 100
epitopes that were prevalent in the PDAC patient and identified as viable candidates for peptide
vaccine design. By focusing on the specific gene targets present in each patient, we intended to
improve the specificity of the vaccine, ensuring that it effectively targeted the unique genetic
alterations present in the patient’s tumor. This method not only enhances the potential efficacy of the
vaccine by adapting it to the individual’s genetic landscape but also minimizes potential off-target
effects, thus optimizing the therapeutic outcome.

The final filtered epitopes are predicted to be immunogenic, antigenic, have high or normal
binding affinity, and are nontoxic and non-allergenic. The binding affinity restriction used in this
study differs from other previous in-silico vaccine design methodologies using the same NetMHC
tool [21,30]. Our previous methods of peptide vaccine design used quantitative filters on the
percentile rank of the binding affinity value. However, the percentile rank compares the epitopes to
a test set of data in IEDB, and therefore is not an accurate nor absolute assessment of binding affinity
as necessary for this study. Using the ICso value instead is a more absolute measure of the binding
affinity of the epitopes. We are also able to specify the strength of the binding affinity based on the
ICso value, which provides more qualitative measures for comparison when transitioning to murine
studies. By tailoring the vaccine to each patient’s specific genetic makeup, we expect to enhance its
effectiveness and improve clinical outcomes. This approach represents a significant step forward in
the field of immunotherapy for PDAC, offering a more targeted and personalized treatment option
that has the potential to transform the management of this challenging disease.

The top epitopes selected using our novel methodology are all widely recognized in literature
as common driver and tumor-suppressor genes in PDAC [9,33,34]. Additionally, these specific
epitopes have been identified in trials involving the sequencing of human tumor samples [35,36]. The
consistent presence of our top epitopes in both our reference study and other clinical trials of PDAC
patients serves as strong validation of our personalized cancer vaccine design methodology. Using
RNA sequencing analysis by Partek Flow, along with our peptide cancer vaccine design processes,
we created a peptide vaccine derived from the individual’s tumor tissue genetic data. This integrative
approach not only emphasizes the relevance of our vaccine targets but also enhances the precision
medicine framework by adapting the therapeutic strategy to the genetic individualities of each
patient’s tumor. This could potentially lead to improved clinical outcomes by specifically targeting
the molecular abnormalities driving the cancer.

Previous studies on the development of peptide vaccines have primarily concentrated on
creating generalized vaccines that could be used for a large and broad population [15,37-39]. These
generalized vaccines target a limited set of gene mutations, to increase sensitivity but often at the
expense of specificity. The development of effective global peptide vaccines poses additional
challenges. The vast global diversity of HLA alleles complicates the creation of a peptide vaccine that
can effectively target a comprehensive population [37]. Each individual’s HLA type influences how
well their immune system can recognize and respond to the peptides presented by the vaccine,
making it difficult to design a universally effective vaccine. The development of personalized peptide
vaccines has historically been limited by the cost and time to produce the peptides [38]. However,
implementing a novel design method as described in this study offers a unique and innovative
solution to quickly design neoantigen personalized peptide-based vaccines. Recently, with the
advent of advanced sequencing technology, neoantigen peptide vaccines are becoming a more viable
solution for patients [40]. However, the design process has been complicated with a multitude of
software required to design a personalized vaccine. Our methodology using Partek Flow provides a
simple and streamlined RN Aseq analysis procedure to obtain the list of neoantigens. Our program,
GeneFinder, is useful to identify and confirm proper alignment and identification of genes from the
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RNAseq analysis process. Overall, our methodology employs just two tools throughout the entire
design process, significantly simplifying the development of personalized cancer vaccines. This
streamlined approach not only reduces the complexity and duration of vaccine design but also
enhances the precision with which these vaccines can be personalized to individual genetic profiles.

7. Limitations

While the study presents a promising personalized cancer vaccine strategy targeting
neoantigens in pancreatic ductal adenocarcinoma (PDAC) patients, there are several limitations that
should be acknowledged. Firstly, the pilot trial size of one patient is relatively small, which could
limit the generalizability of the methodology. A larger sample size would provide more robust data
and better account for variations and accommodate the heterogeneity inherent in the genetic
landscape of PDAC more effectively. While the absence of experimental confirmation may appear as
a limitation, the significance of this innovative methodological framework for personalized cancer
vaccines, being the first of its kind, corroborates the importance of this work. This framework enables
the efficient prioritization of most promising personalized vaccine candidates, thus accelerates the
vaccine design process, and enhancing the probability of success in subsequent preclinical and
clinical evaluations and also helps to optimize resources by focusing on the candidates for further
preclinical studies.

8. Future Directions

We have developed an automation of the peptide vaccine design process using web scraping
and API tools [24,25]. Implementation of such a software would further simplify the personalized
cancer vaccine process. Furthermore, moving the RN Aseq analysis process for a cloud-based solution
using Partek Flow to a hardware process using Python or R would allow for complete automation of
the personalized vaccine design process. Given such a scaled program and processes, the only
limitation to the vaccine design process would be the time to sequence a patient’s tumor tissue.

9. Conclusions

We developed a personalized cancer vaccine targeting specific gene mutations prevalent among
PDAC patients by implementing our novel personalized vaccine design workflow. This study
addresses the limitations of generalized vaccines and specifically for pancreatic ductal
adenocarcinoma (PDAC). By analyzing the genetic alterations driving PDAC in a patient’s tumor
tissue, we identified 100 gene mutations as targets for our personalized vaccine strategy. The gene
targets were identified and validated using our GeneFinder program, which used the chromosome
number and nucleotide position data. By integrating GeneFinder into our workflow, we not only
enhanced the precision of our gene annotations but also significantly improved the efficiency of our
data analysis process. This development represents a significant step forward in the application of
computational tools in personalized vaccine design, providing a robust method for accurate gene
identification and the validity of complex genomic analyses.

The top 50 epitopes consisted of only high affinity binding epitopes, indicating the potential
efficacy of the vaccine. The use of ICs values as an absolute measure of binding affinity provided
more accurate and quantitative comparisons. To visualize the interactions between epitopes and
HLA alleles, 3D models of TCR-peptide-MHC complexes were created. The personalized cancer
vaccine developed in this study may hold great promise for PDAC patients. By targeting the unique
genetic alterations in each patient’s tumor, this approach offers a more specific and personalized
treatment option. Further research is warranted to simplify the variant identification and epitope
ranking process.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org.
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