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Abstract: Personalized cancer vaccines have emerged as a promising avenue for cancer treatment 

or prevention strategies. This approach targets the specific genetic alterations in individual patient’s 

tumors, offering a more personalized and effective treatment option. Previous studies have shown 

that  generalized  peptide  vaccines  targeting  a  limited  scope  of  gene mutations  are  ineffective, 

emphasizing  the  need  for  personalized  approaches. While  studies  have  explored  personalized 

mRNA vaccines, personalized peptide vaccines have not yet been studied in this context. Pancreatic 

ductal  adenocarcinoma  (PDAC)  remains  challenging  in  oncology,  necessitating  innovative 

therapeutic  strategies.  In  this  study,  we  developed  a  personalized  peptide  vaccine  design 

methodology,  employing  RNA  sequencing  (RNAseq)  to  identify  prevalent  gene  mutations 

underlying PDAC development  in a  specific patient solid  tumor  tissue. We performed RNAseq 

analysis for trimming adapters, read alignment, and somatic variant calling. We also developed a 

Python program, called GeneFinder, which validates the alignment of the RNAseq analysis. The 

Python  program  is  freely  available  to  download. Using  chromosome  number  and  locus  data, 

GeneFinder  identifies  the  target  gene  along  the  UCSC  hg38  reference  set.  Based  on  the  gene 

mutation data, we developed a personalized PDAC cancer vaccine that targets 100 highly prevalent 

gene  mutations  in  the  individual  patient.  We  predicted  peptide‐MHC  binding  affinity, 

immunogenicity, antigenicity, allergenicity, and toxicity for each epitope. Then, we selected the top 

50 and 100 epitopes based on our previously published vaccine design methodology. Finally, we 

generated  pMHC‐TCR  3D  molecular  model  complex  structures  which  are  freely  available  fo 

download. The designed personalized cancer vaccine contains epitopes commonly found in PDAC 

solid tumor tissue. Our personalized vaccine was composed of neoantigens, allowing for a more 

precise and  targeted  immune  response against cancer cells. Additionally, we  identified mutated 

genes which were also found in the reference study where we obtained the sequencing data, thus 

validating our vaccine design methodology. This is the first study designing a personalized peptide 

vaccine using human patient data to identify gene mutations associated with the specific tumor of 

interest. 

Keywords: personalized cancer vaccines; neoantigens; pancreatic ductal adenocarcinoma; peptide 

based personalized cancer vaccine; MHC; HLA; TCR 

 

1. Introduction 

Personalized cancer vaccines are a  rising  innovation  in  the  field of vaccine design  [1]. These 

vaccines  induce an antigen‐specific CD8+ and CD4+ T‐cell response to enhance anti‐tumor activity 

based on a patient’s  individual  tumor. Technological  innovation has  led  to  the  ability  to  rapidly 

sequence and analyze patient genome data, which leads into selection of gene targets and on‐demand 

production of a personalized  therapy  [2]. A phase I clinical  trial synthesized personalized mRNA 
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vaccines against PDAC from solid tumors, which led to improved disease‐free survival [3]. The trial 

analyzed  a  patient  population  who  underwent  surgical  resection  of  PDAC  tumors.  Future 

development of personalized cancer vaccines direct  to demonstrate significant efficacy  in patients 

without major surgical intervention. 

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and 

projected to be the second‐leading cause of cancer mortality by 2030 [4,5]. Current clinical therapies 

involve neoadjuvant  therapy  followed by possible  surgical  resection  [6]. However, patients with 

PDAC suffer from poor prognosis with a median survival rate of 22.1 months with an actual survival 

rate of 17.0% [7]. PDAC is often diagnosed late, and as a result surgical resection may not be a viable 

option  for many patients  [8]. As  the  cancer progresses  and possible  treatment options decrease, 

survival outcomes also significantly worsen. Five‐year survival rate for patients diagnosed with late‐

stage PDAC is less than 10% [8]. 

PDAC progresses as a complex activation of driver genes and inactivation of tumor suppressor 

genes  [9].  Commonly  mutated  genes  observed  in  PDAC  include  KRAS,  TP53,  CDNK2A, 

DPC4/SMAD4, and BRCA2. Studies of key mutations in these genes are conducted with the goal of 

developing targeted gene therapies. One particular mutation, the KRAS G12D mutation, is present 

in  over  40%  of  PDAC  patients  [10]. However,  this  specific mutation  has  been  found  to  not  be 

significantly associated with overall survival outcomes. The TP53 gene is mutated in about 50% of 

PDAC patients [11]. These mutations include gain‐of‐function point mutations and null‐mutations as 

a result of deletions. Mutations of the CDNK2A gene have been found to be significantly associated 

with poorer survival outcomes for patients with PDAC compared to mutations of KRAS and TP53 

[12,13]. 

Several PDAC vaccines are under development and clinical trials using a variety of immunologic 

targeting methods  [14].  These methods  include  cell‐based,  protein‐based, microorganism‐based, 

DNA‐based, exosome‐based, and peptide‐based vaccines. Peptide‐based vaccines have been growing 

in popularity due  to  their ability  to be quickly and cheaply developed and  for  their  flexibility  in 

patient populations [15]. For PDAC, the first peptide vaccine to undergo clinical trials was a KRAS‐

targeting peptide co‐administered with GM‐CSF  to promote a greater  immune response [16]. The 

vaccine successfully induced specific immune response in 58% of patients, contributing to a longer 

survival  time  for  treated  patients. Other  peptide  vaccines  targeting  survivin,  gastrin, VEGFR‐1, 

VEGFR‐2,  and  WT1  have  been  ineffective  in  inducing  immune  response  or  contributing  to 

significantly  improved  survival  [14,16–20]. However,  the  design  of  personalized  based  peptide 

cancer vaccines is completely absent. This study focuses on the development of design protocol to 

create  personalized  peptide  vaccines with  application  to  PDAC.  The  protocol  identifies  genetic 

variants  using  RNAseq  analysis  and  designs  a  personalized  peptide  vaccine  using  a  vaccine 

development protocol and omics pipeline previously developed by our group [21–29]. 

2. Materials and Methods 

2.1. Patient Genomic Data 

We obtained patient genomic data from the Gene Expression Omnibus (GEO) database [26], a 

publicly accessible repository of comprehensive microarray, next‐generation sequencing, and other 

forms  of high‐throughput  functional genomic data.  For  this  study, we  specifically  collected  raw 

Illumina sequencing data pertaining to human patient solid tumor samples. These samples were part 

of a detailed study focused on analyzing long‐term heterogeneity in patients with pancreatic ductal 

adenocarcinoma  (PDAC)  [27].  This  study  included  genomic  data  from  a  cohort  of  19  patients, 

consisting  of  10  long‐term  survivors  and  9  short‐term  survivors,  providing  a  diverse  basis  for 

examining genetic variations linked to survival outcomes. For the objectives of this study, we selected 

one patient classified as a short‐term survivor to design personalized vaccines, serving as a proof‐of‐

concept  for  our  approach.  This  selection was  strategic,  allowing  us  to  explore  the  potential  of 

personalized medicine  in  cases with  poorer  prognosis  and  to  evaluate  the  efficacy  of  targeted 

therapies based on genomic insights. The design and development of the vaccine were personalized 

to the unique genetic profile of the chosen patient, focusing on the anomalies most likely to influence 
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tumor  behavior  and  treatment  response.  To  confirm  that  our  personalized  vaccine  design was 

rigorous and potentially effective, we compared the targeted genetic components of the vaccine to 

key genes previously identified as significant in the survival of PDAC patients by Bhardwaj et al. 

[27]. This comparison enabled us to validate our personalized vaccine design approach and increase 

the therapeutic relevance of the vaccine design. This proper controlled process of data selection, and 

comparison with  established genetic markers  supports our vaccine design methodology detailed 

further below section. 

2.2. RNAseq Analysis of Patient Data 

We performed an RNAseq analysis using the Partek Flow genomic analysis suite [28], as shown 

in Figure 1, which outlines our comprehensive RNAseq workflow to obtain and confirm variant data. 

Initially, we imported the raw sequence data in fastq format into Partek Flow. This format is widely 

used  for  storing  the  output  from  high‐throughput  sequencing  instruments  and  contains  both 

nucleotide  sequence data and corresponding quality  scores. Following data  importation,  the  first 

computational step involved trimming the Illumina sequencing adapters. These adapters, which are 

artificial sequences added during library preparation, can interfere with the analysis if not removed, 

as they may be misinterpreted as part of the genomic sequence. After trimming, we aligned the reads 

to a reference genome using the Burrows‐Wheeler Aligner (BWA) algorithm. BWA is a software tool 

that efficiently aligns relatively short sequences (such as those from Illumina sequencers) against a 

long reference sequence such as a complete genome. This alignment  is  important  for  locating  the 

genomic  origins  of  each  read  and  is  fundamental  to  identifying  variations  from  the  reference 

sequence.  In  the post‐alignment, we executed somatic variant calling using  the Strelka algorithm, 

which is specifically designed to detect somatic variants with high sensitivity and accuracy in tumor‐

normal  paired  samples.  This  step  was  important  for  identifying  potentially  significant  genetic 

mutations that could be relevant in the context of disease, herein cancer. To ensure the reliability of 

our findings, we manually inspected each significant gene variant using the Integrative Genomics 

Viewer (IGV). IGV is an interactive visualization tool that allows us to visually explore genomic data, 

thus facilitating the validation of computational predictions through a critical human‐oversight step. 

We excluded gene variants of inadequate quality from further analysis. This quality control step is 

key to avoid false positives that could skew the results of downstream applications, such as vaccine 

development. Finally, we focused our efforts on analyzing single nucleotide polymorphisms (SNPs) 

that hold potential for inclusion in our vaccine development process. SNPs, being the most common 

type of genetic variation among cancer patients, provide valuable  insights  into genetic variability 

which can be exploited to design targeted vaccines. 

 

Figure 1. RNAseq analysis workflow using Partek Flow suite. Created using BioRender.com. 

3. Gene Annotation Confirmation Using GeneFinder Python Program 

Development and Application of GeneFinder 
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After obtaining and processing genomic data through Partek Flow, we advanced to the next step 

by  developing  a  Python  program  named  ‘GeneFinder’.  The  code  for  this  innovative  tool  is 

comprehensively detailed in Supplementary File S3, and freely available for download. GeneFinder 

was specifically designed  to enhance our analytical capabilities  in gene annotation by using both 

chromosome number and locus information. Using the hg38 reference set accessible via the UCSC 

Genome Browser [29], GeneFinder systematically identifies corresponding gene names based on their 

chromosomal location. The tool operates by exploiting web‐scraping techniques to extract relevant 

genomic  data  directly  from  the  browser. Once  the  data  is  retrieved, GeneFinder  processes  this 

information to generate a detailed output that includes a table formatted with chromosome numbers, 

locus details, and  the names of associated genes. This  functionality not only streamlines  the gene 

identification  process  but  also  warrants  accuracy  by  referencing  updated  genomic  data.  The 

application of GeneFinder in our study was twofold. Primarily, it served to externally validate the 

alignment accuracy and overall reliability of our RNAseq analysis process. By cross‐verifying  the 

gene annotations provided by Partek Flow with those extracted by GeneFinder, we could confirm 

the  consistency  and  validity  of  our  results. Additionally,  as  shown  in  Figure  2, we  employed  a 

modified version of GeneFinder to specifically extract a list of genes from a given variant file. This 

adaptation was particularly  important  for  our personalized vaccine  as  it  allowed us  to  focus  on 

particular  genomic  variants  of  interest,  facilitating  a more  targeted  approach  in  our  subsequent 

analyses. 

 

Figure 2. GeneFinder python program workflow. Created using BioRender.com. 

4. Personalized Vaccine Design Protocol 

We employed a vaccine design protocol  that has been previously outlined  in our published 

studies  [21,24–30]. This protocol  integrates cutting‐edge bioinformatics  tools  to predict and  select 

epitopes from mutations identified in genomic data. 
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4.1. Epitope Prediction and Selection 

Initially, we used  the  IEDB NetMHC 4.1  tool  to predict epitopes. NetMHC 4.1  is specifically 

designed  to  return  potential  epitopes  along with  their  predicted  binding  affinity  for  the  top  27 

expressed HLA alleles  in  the human population. The binding affinity  indicated by  the  IC50 value 

measured in nanomolar (nM), determines the strength of the interaction between the epitope and the 

HLA molecules, which is a critical factor in the immune response efficacy. 

4.2. Clinical Checkpoint Parameters 

Subsequently,  we  computed  several  epitope‐specific  clinical  checkpoint  parameters.  The 

immunogenicity of each epitope was determined using the IEDB Class I Immunogenicity Tool, which 

assesses the potential of an epitope to trigger an immune response. The antigenicity, which evaluates 

the capability of the epitope to be recognized by antibodies, was determined using VaxiJen v2.0. 

4.3. Data Filtering and Selection Criteria 

With the binding affinity, immunogenicity, and antigenicity data computed for each epitope and 

its associated HLA allele, we employed stringent filters to select the most promising epitopes. These 

filters were applied based on the criteria outlined in Table 1, focusing on identifying epitopes that are 

strong binders, highly immunogenic, and antigenic. 

Table 1. Restriction criteria to quantitatively filter and qualitatively assess each epitope. 

Parameter  Restriction 

Binding affinity (b) 

Strong binder  0 nM ≤ b ≤ 50 nM 

Normal binder  50 nM < b ≤ 500 nM 

Weak binder  500 nM < b ≤ 5000 nM 

Immunogenicity (i)  i ≥ 0 

Antigenicity (a)  a ≥ 0.4 

Toxicity  Nontoxic   

Allergenicity  Non‐allergenic 

4.4. Physicochemical Property Assessment 

In addition to these functional assessments, we analyzed various physicochemical properties of 

the  epitopes  using  ProtParam.  This  analysis  included  determining  parameters  such  as  half‐life, 

instability  index,  isoelectric point, aliphatic  index, and GRAVY score. Although  these parameters 

were informative for understanding the physical and chemical characteristics of the epitopes, they 

were not used in the epitope selection process. Further, we assessed toxicity using ToxinPred and 

screened  for  allergenic  potential  using  AllerTOP  v2.0,  ensuring  that  only  non‐toxic  and  non‐

allergenic epitopes were considered for further analysis. 

4.5. Epitope Selection and Workflow Integration 

After applying the filtration restrictions (Table 1), we selected the top 50 and 100 epitopes that 

met all the specified criteria, warranting a robust selection of candidates for potential vaccine design. 

We employed binary filters on toxicity and allergenicity to make sure the selection of epitopes that 

are both non‐toxic and non‐allergenic. 

4.6. Methodological Workflow 

Figure 3 shows the comprehensive workflow of our methodology, starting from the collection 

of Illumina sequencing data, performing RNAseq analysis, and the selection of top epitopes for the 

development  of  peptide  vaccines.  This  streamlined workflow  integrates multiple  stages  of  data 

processing and epitope evaluation, indicating the robustness of our approach in vaccine design. 
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Figure 3. Overall methodological workflow. 

5. Results 

We obtained Illumina sequencing data from single patient out of the 19 available in the GEO 

accession project [27]. The sequencing data represents the genetic landscape of the patient solid tumor 

sample. We performed RNAseq analysis to determine prevalent mutations. Using these mutations, 

we determined strong and normal binding MHC class I epitopes that are immunogenic, antigenic, 
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nontoxic, and nonallergenic. We selected the top 50 and top 100 epitopes from this data for a peptide 

vaccine. 

5.1. Determination of Genetic Variants with RNAseq Analysis 

We performed RNAseq analysis on Illumina sequencing data to obtain a list of genetic variants 

identified in a solid PDAC tumor. The RNAseq analysis performed using Partek Flow resulted  in 

100,819 mutations. These mutations  included  single nucleotide polymorphisms, multi‐nucleotide 

polymorphisms,  deletions,  and  insertions.  Isolating  the  single  nucleotide  polymorphisms,  we 

identified 189 unique variants which we could use to develop the peptide vaccine. 

5.2. Confirmation of Genetic Variants and Sequencing Alignment Using GeneFinder 

We confirmed the alignment of the sequencing data to the hg38 human reference genome using 

our GeneFinder program. Using GeneFinder, we qualitatively identified the corresponding genes to 

all  100,819 mutation  loci  against  the  hg38  human  reference  genome. We  found  100%  similarity 

between the genes identified through Partek Flow and genes identified using GeneFinder. Therefore, 

we were confident that the variant genes identified using Partek Flow were correctly aligned to the 

reference genome. 

5.3. Collection of 9‐mer and 10‐mer Top Epitopes from Genetic Variants 

From the pool of identified genetic variants, we curated lists of the top 50 and top 100 epitopes, 

prioritized based on their binding affinity and immunogenic properties, detailed in Supplementary 

Files 1‐2. All selected epitopes consisted of either 9 or 10 amino acids, representing an epitope capable 

of binding  to an MHC  class  I molecule. All  the  top 50  epitopes were  classified  as having  strong 

binding affinity to their associated HLA allele. The top 100 epitopes included both strong and normal 

binders. We found no epitopes in the top 100 which were classified as weak binders. Table 2 shows 

the top 50 epitopes, along with their associated genes, mutations, and binding HLA alleles. 

Table 2. Top 50 epitopes along with their strong‐binding associated HLA allele. 

Gene  Mutation  Epitope  HLA Alleles 

GNAS  R201C  AMSNLVPPV  HLA‐A*02:01 

SMAD4  Y353C  QSIKETPCW  HLA‐B*58:01 

TP53  R248Q  CTYSPALNK  HLA‐A*03:01 

KRAS  G12D  KSFEDIHHY  HLA‐B*58:01 

SMAD4  Y353C  MPIADPQPL  HLA‐B*39:01 

SMAD4  Y353C  CLSDHAVFV  HLA‐A*02:01 

SMAD4  Y353C  KIYPSAYIK  HLA‐A*03:01 

TP53  R248Q  LEDSSGNLL  HLA‐B*40:01 

KRAS  G12D  LARSYGIPF  HLA‐B*15:01 

TP53  R248Q  APAAPTPAA  HLA‐B*07:02 

SMAD4  Y353C  LLDEVLHTM  HLA‐A*02:01 

TP53  R248Q  KTYQGSYGF  HLA‐B*58:01 

SMAD4  Y353C  APAISLSAA  HLA‐B*07:02 

SMAD4  Y353C  LQSNAPSSM  HLA‐B*15:01 

TP53  R248Q  LLGRNSFEV  HLA‐A*02:01 

KRAS  G12D  KSALTIQLI  HLA‐B*58:01 

SMAD4  Y353C  KETPCWIEI  HLA‐B*40:01 

GNAS  R201C  NQFRVDYIL  HLA‐B*39:01 

TP53  R248Q  LQIRGRERF  HLA‐B*15:01 

SMAD4  Y353C  LPHHQNGHL  HLA‐B*07:02 

SMAD4  Y353C  LQVAGRKGF  HLA‐B*15:01 
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SMAD4  Y353C  CILRMSFVK  HLA‐A*03:01 

KRAS  G12D  CLLDILDTA  HLA‐A*02:01 

SMAD4  Y353C  LRRLCILRM  HLA‐B*27:05 

GNAS  R201C  LIDCAQYFL  HLA‐A*02:01 

5.4. Population Coverage Analysis of Top 100 Epitopes 

We also performed a population coverage analysis to assess the extent of the global population 

that could potentially benefit from the personalized vaccine. The analysis showed that the vaccine 

could cover 69.64% of the global population. Table 3 provides this coverage along with average hit 

rates  and  PC90  data  for  various world  subregions. While  the  population  coverage may  appear 

relatively  low at  first glance,  it  is essential  to consider  the context of  this study. The vaccine was 

uniquely  designed  based  on  the  gene  expression  profile  of  a  specific  individual,  making  it 

personalized and tailored to the specific mutations and characteristics of their tumor. Consequently, 

the expectation for widespread coverage across diverse populations is not high. As the patient cohort 

from  whom  the  vaccine  was  developed  predominantly  comprised  individuals  with  European 

ancestry, the vaccine’s performance in these regional subgroups aligns with the genetic background 

of the patients involved. 

Table 3. Population coverage of the personalized PDAC vaccine for regional subgroups. 

Population/Area  Coverage  Average Hit  pc90 

Central Africa  39.22  1.84  0.16 

Central America  1.4  0.06  0.41 

East Africa  41.73  2.16  0.17 

East Asia  55.26  2.8  0.22 

Europe  81.05  4.98  0.53 

North Africa  43.55  2.29  0.18 

North America  70.36  4.09  0.34 

Northeast Asia  47.97  2.21  0.19 

Oceania  38.93  1.59  0.16 

South Africa  23.99  0.93  0.13 

South America  36.87  1.86  0.16 

South Asia  37.28  1.66  0.16 

Southeast Asia  55.59  2.34  0.23 

Southwest Asia  43.73  2.33  0.18 

West Africa  42.65  2.14  0.17 

West Indies  63.52  3.47  0.27 

Average  45.19  2.3  0.23 

Standard deviation  17.8  1.13  0.11 

5.5.3. D‐Structure Modeling of Epitope‐MHC and TCR Interaction Complex 

TCR (T‐cell receptor) and pMHC (peptide‐major histocompatibility complex) interactions play 

a fundamental role in immunogenicity, which involves the ability of a peptide to initiate an immune 

response against tumor cells. TCRs on the surface of T cells recognize antigens that are presented by 

MHC molecules on the surface of antigen‐presenting cells. This recognition is specific to the peptide 

being presented by  the MHC. The  correct  configuration and  interaction of a TCR with a pMHC 

complex  is essential  for  the T cell  to become activated and  initiate an  immune response. Thus,  to 

explore the binding of our designed peptide vaccines, we initiated TCR‐pMHC peptide interaction 

modeling. We found the PDB files for the HLA alleles HLA‐B*58:01 on the RCSB protein data bank 

(https://www.rcsb.org/). Using MDockPeP  (https://zougrouptoolkit.missouri.edu/mdockpep/)  and 

CABS‐dock [31,32], we attached a top epitope to the binding grooves of the HLA allele. We created 
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two  models  of  the  peptide‐MHC  binding  complex  (Figure  4).  We  used  TCRModel 

(https://tcrmodel.ibbr.umd.edu/) to create 3D models of a TCR complex binding to our peptide‐MHC 

complexes. Subsequently, we used PyMOL to edit all of the 3D models. In Figure 4, the color yellow 

represents HLA alleles and red represents epitopes. The 3D models we obtained were KSFEDIHHY, 

a mutation  of  the  KRAS  gene,  binding  to  the MHC  Class  I molecule HLA‐B*58:01  as well  as 

KTYQGSYGF, a mutation of the TP53 gene, binding to the MHC Class I molecule HLA‐B*58:01. All 

pMHC‐TCR 3D molecular model structures generated in this study can be found in Supplementary 

Files S4–S7. 

 

Figure 4. A. The peptide KSFEDIHHY, a mutation of the KRAS gene, binding to the MHC Class I 

molecule HLA‐B*58:01, B. The peptide, KTYQGSYGF, a mutation of the TP53 gene, binding to the 

MHC Class I molecule HLA‐B*58:01. 

   

Figure 5. The peptides KSFEDIHHY and KTYQGSYGF bound to HLA‐B*58:01 and their respective 

TCR complex. 
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6. Discussion 

We  developed  a  personalized  peptide‐based  vaccine  for  a  patient  with  pancreatic  ductal 

adenocarcinoma  (PDAC).  This  process  began with  RNA  sequencing  (RNAseq)  analysis, which 

enabled  the  identification of  specific genetic mutations driving  the development of PDAC  in  the 

patient. Based on  this analysis, we developed a personalized cancer vaccine using our previously 

published  peptide  vaccine  development  strategy  [21,30].  Our  approach  involved  targeting  100 

epitopes  that were prevalent  in  the PDAC patient and  identified as viable candidates  for peptide 

vaccine design. By  focusing on  the  specific gene  targets present  in  each patient, we  intended  to 

improve  the  specificity  of  the  vaccine,  ensuring  that  it  effectively  targeted  the  unique  genetic 

alterations present in the patient’s tumor. This method not only enhances the potential efficacy of the 

vaccine by adapting it to the individual’s genetic landscape but also minimizes potential off‐target 

effects, thus optimizing the therapeutic outcome. 

The  final  filtered epitopes are predicted  to be  immunogenic, antigenic, have high or normal 

binding affinity, and are nontoxic and non‐allergenic. The binding affinity restriction used  in  this 

study differs from other previous in‐silico vaccine design methodologies using the same NetMHC 

tool  [21,30].  Our  previous  methods  of  peptide  vaccine  design  used  quantitative  filters  on  the 

percentile rank of the binding affinity value. However, the percentile rank compares the epitopes to 

a test set of data in IEDB, and therefore is not an accurate nor absolute assessment of binding affinity 

as necessary for this study. Using the IC50 value instead is a more absolute measure of the binding 

affinity of the epitopes. We are also able to specify the strength of the binding affinity based on the 

IC50 value, which provides more qualitative measures for comparison when transitioning to murine 

studies. By tailoring the vaccine to each patient’s specific genetic makeup, we expect to enhance its 

effectiveness and improve clinical outcomes. This approach represents a significant step forward in 

the field of immunotherapy for PDAC, offering a more targeted and personalized treatment option 

that has the potential to transform the management of this challenging disease. 

The top epitopes selected using our novel methodology are all widely recognized in literature 

as  common  driver  and  tumor‐suppressor  genes  in  PDAC  [9,33,34].  Additionally,  these  specific 

epitopes have been identified in trials involving the sequencing of human tumor samples [35,36]. The 

consistent presence of our top epitopes in both our reference study and other clinical trials of PDAC 

patients serves as strong validation of our personalized cancer vaccine design methodology. Using 

RNA sequencing analysis by Partek Flow, along with our peptide cancer vaccine design processes, 

we created a peptide vaccine derived from the individual’s tumor tissue genetic data. This integrative 

approach not only emphasizes the relevance of our vaccine targets but also enhances the precision 

medicine  framework  by  adapting  the  therapeutic  strategy  to  the  genetic  individualities  of  each 

patient’s tumor. This could potentially lead to improved clinical outcomes by specifically targeting 

the molecular abnormalities driving the cancer. 

Previous  studies  on  the  development  of  peptide  vaccines  have  primarily  concentrated  on 

creating generalized vaccines that could be used for a large and broad population [15,37–39]. These 

generalized vaccines target a  limited set of gene mutations, to  increase sensitivity but often at the 

expense  of  specificity.  The  development  of  effective  global  peptide  vaccines  poses  additional 

challenges. The vast global diversity of HLA alleles complicates the creation of a peptide vaccine that 

can effectively target a comprehensive population [37]. Each individual’s HLA type influences how 

well  their  immune  system  can  recognize  and  respond  to  the peptides presented  by  the vaccine, 

making it difficult to design a universally effective vaccine. The development of personalized peptide 

vaccines has historically been limited by the cost and time to produce the peptides [38]. However, 

implementing  a novel design method  as described  in  this  study  offers  a unique  and  innovative 

solution  to  quickly  design  neoantigen  personalized  peptide‐based  vaccines.  Recently,  with  the 

advent of advanced sequencing technology, neoantigen peptide vaccines are becoming a more viable 

solution  for patients  [40]. However,  the design process has been complicated with a multitude of 

software required to design a personalized vaccine. Our methodology using Partek Flow provides a 

simple and streamlined RNAseq analysis procedure to obtain the list of neoantigens. Our program, 

GeneFinder, is useful to identify and confirm proper alignment and identification of genes from the 
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RNAseq analysis process. Overall, our methodology employs  just  two tools  throughout the entire 

design  process,  significantly  simplifying  the  development  of  personalized  cancer  vaccines.  This 

streamlined  approach  not  only  reduces  the  complexity  and duration  of  vaccine  design  but  also 

enhances the precision with which these vaccines can be personalized to individual genetic profiles. 

7. Limitations 

While  the  study  presents  a  promising  personalized  cancer  vaccine  strategy  targeting 

neoantigens in pancreatic ductal adenocarcinoma (PDAC) patients, there are several limitations that 

should be acknowledged. Firstly, the pilot trial size of one patient is relatively small, which could 

limit the generalizability of the methodology. A larger sample size would provide more robust data 

and  better  account  for  variations  and  accommodate  the  heterogeneity  inherent  in  the  genetic 

landscape of PDAC more effectively. While the absence of experimental confirmation may appear as 

a limitation, the significance of this innovative methodological framework for personalized cancer 

vaccines, being the first of its kind, corroborates the importance of this work. This framework enables 

the efficient prioritization of most promising personalized vaccine candidates, thus accelerates the 

vaccine  design  process,  and  enhancing  the  probability  of  success  in  subsequent  preclinical  and 

clinical evaluations and also helps to optimize resources by focusing on the candidates for further 

preclinical studies. 

8. Future Directions 

We have developed an automation of the peptide vaccine design process using web scraping 

and API tools [24,25]. Implementation of such a software would further simplify the personalized 

cancer vaccine process. Furthermore, moving the RNAseq analysis process for a cloud‐based solution 

using Partek Flow to a hardware process using Python or R would allow for complete automation of 

the  personalized  vaccine  design  process. Given  such  a  scaled  program  and  processes,  the  only 

limitation to the vaccine design process would be the time to sequence a patient’s tumor tissue. 

9. Conclusions 

We developed a personalized cancer vaccine targeting specific gene mutations prevalent among 

PDAC  patients  by  implementing  our  novel  personalized  vaccine  design  workflow.  This  study 

addresses  the  limitations  of  generalized  vaccines  and  specifically  for  pancreatic  ductal 

adenocarcinoma  (PDAC). By analyzing  the genetic alterations driving PDAC  in a patient’s  tumor 

tissue, we identified 100 gene mutations as targets for our personalized vaccine strategy. The gene 

targets were identified and validated using our GeneFinder program, which used the chromosome 

number and nucleotide position data. By  integrating GeneFinder  into our workflow, we not only 

enhanced the precision of our gene annotations but also significantly improved the efficiency of our 

data analysis process. This development represents a significant step forward in the application of 

computational  tools  in personalized vaccine design, providing a robust method  for accurate gene 

identification and the validity of complex genomic analyses. 

The  top 50 epitopes consisted of only high affinity binding epitopes,  indicating  the potential 

efficacy of the vaccine. The use of IC50 values as an absolute measure of binding affinity provided 

more  accurate  and quantitative  comparisons. To visualize  the  interactions between  epitopes  and 

HLA  alleles,  3D models of TCR‐peptide‐MHC  complexes were  created. The personalized  cancer 

vaccine developed in this study may hold great promise for PDAC patients. By targeting the unique 

genetic alterations  in each patient’s  tumor,  this approach offers a more specific and personalized 

treatment option. Further  research  is warranted  to simplify  the variant  identification and epitope 

ranking process. 

Supplementary Materials: The  following  supporting  information  can be downloaded at  the website of  this 

paper posted on Preprints.org. 
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