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Anahita Khansari, Saeid Khezerloo *, Mustafa Nouri and Muhammad Arghand 

Department of Mathematics, South Tehran Branch, Islamic Azad University, Tehran, Iran 
* Correspondence: s_khezerloo@azad.ac.ir 

Abstract: In this work, an improved collocation method based on the Bernoulli polynomials is presented to 
solve the Volterra integral equation (VIE) of the second kind. The main idea of the proposed method is to 
improve the results of the classic Bernoulli collocation method (BCM) by dividing the interval into some sub-
intervals and considering the collocation points on each of them. Here, the zeros of the shifted Chebyshev 
polynomials (SCPs) are considered as collocation points. Then, BCM is applied step by step from the first sub-
interval to the last one. By this process, a system of algebraic equations is attained for each sub-interval that 
could be easily solved. Convergence of the scheme is analyzed. For the purpose of demonstrating the validity, 
applicability, and efficiency of the suggested scheme several numerical examples are provided. Numerical 
results illustrate that the accuracy of the improved Bernoulli collocation method (IBCM) is more than BCM. 

Keywords: Bernoulli polynomials; shifted Chebyshev polynomials; Bernoulli collocation method 
(BCM); Improved Bernoulli collocation method (IBCM); Volterra integral equation s (VIEs) 

 

1. Introduction 

Most of the problems of science and technology can be treated with the aid of theories of 
ordinary and partial differential equations (PDEs). However, there are better methods called the 
theory of integral equations to solve these problems. Years ago, these types of equations were a hot 
topic in the minds of mathematicians. If the unknown function is given inside the integration symbol 
in an equation, it is named an integral equation, which is regarded as a common type of functional 
equation. The theory of integral equations is one of the most operative mathematical tools for solving 
problems in pure and applied mathematics, mathematical physics, mechanical vibrations, and fields 
related to science and technology. However, the real development of the theory of integral equations 
started with the attempts of the Italian mathematician Vito Volterra and the Swedish mathematician 
Fredholm. Volterra was the first person who realized the significance of the theory of integral 
equations and systematically paid attention to it. In 1896, he presented the first general scheme for 
solving a category of linear integral equations characterized by a variable that appears at the upper 
bound of the integral. Interest in VIEs has been growing in recent years. These equations arise in 
many physical applications, for example see [1–12]. Here, a numerical scheme based on Bernoulli 
polynomials is developed to solve VIEs of the second kind. 

Bernoulli polynomials have a significant role in many areas of mathematical analysis, like the 
theory of modular forms [14], the theory of distributions in p-adic analysis [13], the polynomial 
expansions of analytic functions [15], and so on. Some applications of these polynomials in 
mathematical physics are related with the theory of the KdV equation [16], solving Lamé equation 
[17], and in the field of vertex algebra [18]. 

The collocation method as a numerical method for solving all kinds of functional equations and 
real world problems has always been the interest and attention of mathematicians. Many authors 
have presented different kinds of collocation method during past decades. For example, Doha et al. 
[19] proposed a Jacobi–Gauss–Lobatto collocation scheme, used in relationship with the fourth order 
implicit Runge–Kutta method as a numerical algorithm for approximating solutions of nonlinear 
Schrödinger equations (NLSE). Nemati [20] solved Volterra–Fredholm integral equations applying 
Legendre collocation method. His method is based upon shifted Legendre polynomials 
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approximation. Then, utilizing the shifted Gauss–Legendre as collocation nodes reduces the 
Volterra–Fredholm integral equations to the solution of a matrix equation. Mirzaee and Hoseini [21] 
proposed a new matrix method on the basis of Fibonacci polynomials and collocation points for 
numerically solving the Volterra–Fredholm integral equations. Ren and Tian [22] proposed a scheme 
to solve a boundary value problem for Kirchhoff type of nonlinear integro-differential equation 
numerically. Gouyandeh et al. [23] by using the Tau-Collocation method approximated solution of 
the nonlinear Volterra-Fredholm-Hammerstein integral equations. Aziz et al. [24], based on Haar 
wavelet, provided a new collocation method for numerical solution of 3D elliptic PDEs with Dirichlet 
boundary conditions. Çelik [25], by utilizing Chebyshev wavelet collocation method, studied free 
vibration problems of non-uniform Euler–Bernoulli beam under different supporting conditions. 
Samadyar and Mirzaee [26] presented orthonormal BCM to approximate the linear singular 
stochastic Itô-VIEs. Biçer and Yalçinbaş [27] an approximate solution of the telegraph equation 
applying BCM. Alijani et al. [28] investigated systems of fuzzy fractional differential equations 
numerically with a lateral type of the Hukuhara derivative and its generalization. Wang et al. [29] 
presented a new collocation method for evaluating the 2D elliptic PDEs. Singh [30] used Jacobi 
collocation method to solve the fractional advection-dispersion equation arising in porous media. 
Kumbinarasaiah et al. [31] presented an integration operational matrix applying the Bernoulli 
wavelet and suggested a new scheme named the Bernoulli wavelet collocation method (BWCM). In 
[32], the authors investigated a space-time Sinc-collocation method for treating the fourth-order 
nonlocal heat model appearing in viscoelasticity. Laib et al. [33], based on the using Taylor 
polynomials, suggested an algorithm to construct a collocation solution for approximating the 
solution of 2D-VIEs. Wang et al. [34], by utilizing the zeros of Chebyshev polynomial as collocation 
points, proposed a new collocation method to solve the second kind VIE.  

In this work, based on Bernoulli polynomials, a new collocation method is suggested to 
approximate numerically VIEs of the second kind. The main goal of the suggested scheme is to 
improve the results of the classic BCM by dividing the interval into some sub-intervals and 
considering the collocation points on each of them. Here, the zeros of the SCPs are considered as 
collocation points. Then, BCM is applied step by step from the first sub-interval to the last one. By 
this process, a system of algebraic equations is attained for each sub-interval that could be easily 
solved using computing software. At last, the approximate solution is obtained as a piece-wise 
function. This idea is very effective. Although, we have tested this idea on BCM in this work but we 
guess that all collocation methods mentioned above can be improved by this idea. 

The rest of the paper is organized as follows. In section 2, Bernoulli polynomials are introduced 
and their features are stated. In section 3, the proposed scheme is explained. The convergence analysis 
is discussed in in section 4. In section 5, numerical results are presented. At last, conclusions are given 
in section 5. 

2. Bernoulli Polynomials 

The traditional Bernoulli polynomials 𝐵𝐵𝑛𝑛(𝑡𝑡) is often characterized by the following exponential 
generating functions [35]: 

(1) 𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠

𝑒𝑒𝑠𝑠−1
= ∑  ∞

𝑧𝑧=0 𝐵𝐵𝑧𝑧(𝑥𝑥) 𝑠𝑠
𝑘𝑘

𝑧𝑧!
.  

The Bernoulli polynomials of 𝑛𝑛th degree are determined in the interval [0,1] as follows [36] 

(2) 𝐵𝐵𝑁𝑁(𝑥𝑥) = � 
𝑁𝑁

𝑧𝑧=0

�𝑁𝑁𝑧𝑧 �𝐵𝐵𝑧𝑧𝑥𝑥
𝑁𝑁−z, 

where 𝐵𝐵𝑧𝑧 = 𝐵𝐵𝑧𝑧(0) is the Bernoulli number for each 𝑘𝑘 = 0,1, …𝑁𝑁. We write some polynomials like 
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𝐵𝐵0(𝑥𝑥) = 1,

𝐵𝐵1(𝑥𝑥) = 𝑥𝑥 −
1
2

,

𝐵𝐵2(𝑥𝑥) = 𝑥𝑥2 − 𝑥𝑥 +
1
6

,

𝐵𝐵3(𝑥𝑥) = 𝑥𝑥3 −
3
2
𝑥𝑥2 +

1
2
𝑥𝑥,

𝐵𝐵4(𝑥𝑥) = 𝑥𝑥4 − 2𝑥𝑥3 + 𝑥𝑥2 −
1

30
,

𝐵𝐵5(𝑥𝑥) = 𝑥𝑥5 −
5
2
𝑥𝑥4 +

5
3
𝑥𝑥3 −

1
6
𝑥𝑥,

𝐵𝐵6(𝑥𝑥) = 𝑥𝑥6 − 3𝑥𝑥5 +
5
2
𝑥𝑥4 −

1
2
𝑥𝑥2 +

1
42

,

𝐵𝐵7(𝑥𝑥) = 𝑥𝑥7 −
7
2
𝑥𝑥6 +

7
2
𝑥𝑥5 −

7
6
𝑥𝑥3 +

1
6
𝑥𝑥.

 

Bernoulli polynomials have following important properties [37]. 

• 𝑑𝑑
𝑑𝑑𝑑𝑑
𝐵𝐵𝑁𝑁(𝑥𝑥) = 𝑁𝑁𝐵𝐵𝑁𝑁−1(𝑥𝑥),𝑁𝑁 ≥ 1. 

• 𝐵𝐵𝑁𝑁(𝑥𝑥 + 1) − 𝐵𝐵𝑁𝑁(𝑥𝑥) = 𝑁𝑁𝑥𝑥𝑁𝑁−1. 

• ∫0
1 𝐵𝐵𝑁𝑁(𝑥𝑥)𝑑𝑑𝑑𝑑 = 0,𝑁𝑁 ≥ 1. 

• ∫0
1 𝐵𝐵𝑁𝑁(𝑥𝑥)𝐵𝐵𝑀𝑀(𝑥𝑥)𝑑𝑑𝑑𝑑 = (−1)𝑁𝑁−1 𝑀𝑀!𝑁𝑁!

(𝑀𝑀+𝑁𝑁)!
𝐵𝐵𝑁𝑁+𝑀𝑀. 

• ∫𝑎𝑎
𝑥𝑥 𝐵𝐵𝑁𝑁(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝐵𝐵𝑁𝑁+1(𝑥𝑥)−𝐵𝐵𝑁𝑁+1(𝑎𝑎)

(𝑁𝑁+1)
. 

• 𝐵𝐵𝑁𝑁(1 − 𝑥𝑥) = (−1)𝑁𝑁𝐵𝐵𝑁𝑁(𝑥𝑥). 

2.1. Function Approximation 

A square integrable function 𝑢𝑢(𝑡𝑡) can be expressed according to of Bernoulli polynomials as 

𝑢𝑢(𝑡𝑡) = � 
∞

𝑖𝑖=0

𝑈𝑈𝑖𝑖𝐵𝐵𝑖𝑖(𝑡𝑡), 

and the truncated series is 

(3) 𝑢𝑢�(𝑥𝑥) ≃ ∑  𝑀𝑀
𝑖𝑖=0 𝑈𝑈𝑖𝑖𝐵𝐵𝑖𝑖(𝑥𝑥) = 𝑈𝑈𝑇𝑇𝐵𝐵(𝑥𝑥), 

where 
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(4) 𝑈𝑈 = [𝑈𝑈0 𝑈𝑈1 𝑈𝑈2 … 𝑈𝑈𝑀𝑀]𝑇𝑇 ,  

is the vector of unknown coefficients and 

(5) 𝐵𝐵(𝑥𝑥) = [𝐵𝐵0(𝑥𝑥) 𝐵𝐵1(𝑥𝑥) 𝐵𝐵2(𝑥𝑥) … 𝐵𝐵𝑀𝑀(𝑥𝑥)]𝑇𝑇 ,  

is the vector of Bernoulli polynomials. 

3. Description of the Proposed Scheme 

In this section, the proposed scheme is described to deal with the VIEs of the second kind. The 
main purpose of the suggested method is to improve the results of the classic collocation method by 
dividing the interval into some sub-intervals and applying the collocation method in each of them. 

3.1. Solving VIEs of the Second Kind by BCM 

Regard the following VIE of the second kind. 

𝑢𝑢(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + �  
𝑥𝑥

0
𝑘𝑘(𝑥𝑥, 𝑡𝑡)𝑁𝑁�𝑢𝑢(𝑡𝑡)�𝑑𝑑𝑑𝑑,       𝑥𝑥 ∈ [0,1], (6) 

where 𝑢𝑢 is the unknown function, while 𝑓𝑓 and the kernel 𝑘𝑘 are known functions, and 𝑁𝑁 is a given 
continuous function which is nonlinear with respect to 𝑢𝑢. 

Substituting Eq. (3) in Eq. (6) leads to 

�𝑈𝑈𝑖𝑖𝐵𝐵𝑖𝑖(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + � 𝑘𝑘(𝑥𝑥, 𝑡𝑡)𝑁𝑁��𝑈𝑈𝑖𝑖𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑.
𝑥𝑥

0

𝑀𝑀

𝑖𝑖=1

 (7) 

Now, we use the collocation method to determine unknowns 𝑈𝑈𝑖𝑖, 𝑖𝑖 = 1, … ,𝑀𝑀. Let 𝑐𝑐𝑘𝑘 , 𝑘𝑘 = 1, … ,𝑀𝑀 
be the collocation points. Here, we apply the zeros of SCPs of degree 𝑀𝑀 in the interval [0,1] as 
collocation points. For example for 𝑀𝑀 = 3 , the collocation points are 𝑐𝑐1 = 0.0670 , 𝑐𝑐2 = 0.5 , 
𝑐𝑐3 =0.9330. Then, we will a system of nonlinear algebraic equation that could be easily solved 
computer software. 

In the case of 𝑁𝑁�𝑢𝑢(𝑡𝑡)� = 𝑢𝑢(𝑡𝑡), that is the equation is linear, by rearranging this equation in terms 
of 𝑈𝑈𝑖𝑖, we have 

��𝐵𝐵𝑖𝑖(𝑥𝑥) −� 𝑘𝑘(𝑥𝑥, 𝑡𝑡)𝐵𝐵𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑥𝑥

0
�

𝑀𝑀

𝑖𝑖=1

𝑈𝑈𝑖𝑖 = 𝑓𝑓(𝑥𝑥). (8) 

By substituting collocation points 𝑐𝑐𝑘𝑘 , 𝑘𝑘 = 1, … ,𝑀𝑀 in Eq. (8) we get 

��𝐵𝐵𝑖𝑖(𝑐𝑐𝑘𝑘) −� 𝑘𝑘(𝑐𝑐𝑘𝑘, 𝑡𝑡)𝐵𝐵𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑐𝑐𝑘𝑘

0
�

𝑀𝑀

𝑖𝑖=1

𝑈𝑈𝑖𝑖 = 𝑓𝑓(𝑐𝑐𝑘𝑘),    𝑘𝑘 = 1, … ,𝑀𝑀 . (9) 

The last equation is a system of 𝑀𝑀  algebraic equations with unknown coefficients 𝑈𝑈𝑖𝑖 , 𝑖𝑖 =
1, … ,𝑀𝑀 that could be stated in the following matrix form. 

𝐴𝐴𝑈𝑈 = 𝐹𝐹, 
In which 

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝐵𝐵1(𝑐𝑐1) −� 𝑘𝑘(𝑐𝑐1, 𝑡𝑡)𝐵𝐵1(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑐𝑐1

0
⋯ 𝐵𝐵𝑀𝑀(𝑐𝑐1) −� 𝑘𝑘(𝑐𝑐1, 𝑡𝑡)𝐵𝐵𝑀𝑀(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑐𝑐1

0
⋮ ⋱ ⋮

𝐵𝐵1(𝑐𝑐𝑀𝑀) −� 𝑘𝑘(𝑐𝑐𝑀𝑀, 𝑡𝑡)𝐵𝐵1(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑐𝑐𝑀𝑀

0
⋯ 𝐵𝐵𝑀𝑀(𝑐𝑐𝑀𝑀) −� 𝑘𝑘(𝑐𝑐𝑀𝑀, 𝑡𝑡)𝐵𝐵𝑀𝑀(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑐𝑐𝑀𝑀

0 ⎦
⎥
⎥
⎥
⎥
⎤

, 

vector 𝑈𝑈 is defined as Eq. (4) and 
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𝐹𝐹1 = [𝑓𝑓(𝑐𝑐1),𝑓𝑓(𝑐𝑐2), … , 𝑓𝑓(𝑐𝑐𝑀𝑀)]𝑇𝑇 . 

3.2. Solving VIEs of the Second Kind by IOBCM 

In order to apply the idea of the suggested scheme, first we divide the interval [0,1] into 𝑁𝑁 sub-
intervals as 𝐼𝐼𝑗𝑗 = [(𝑗𝑗 − 1)ℎ, 𝑗𝑗ℎ] where ℎ = 1

𝑁𝑁
. Then, we consider the approximation of 𝑢𝑢 by Bernoulli 

polynomials of degree 𝑀𝑀 in each sub-interval as follows. 

𝑢𝑢(𝑥𝑥) ≃�𝑈𝑈𝑖𝑖,𝑗𝑗𝐵𝐵𝑖𝑖(𝑥𝑥) = 𝐵𝐵(𝑥𝑥)𝑈𝑈𝑗𝑗,     𝑥𝑥 ∈ 𝐼𝐼𝑗𝑗

𝑀𝑀

𝑖𝑖=1

,    𝑗𝑗 = 1, … ,𝑁𝑁, (10) 

where 𝑈𝑈𝑖𝑖,𝑗𝑗, 𝑖𝑖 = 1, … ,𝑀𝑀, 𝑗𝑗 = 1, … ,𝑁𝑁, are unknown coefficients to be determined and 𝐵𝐵(𝑥𝑥) is define as 
Eq. (4) and 

𝑈𝑈𝑗𝑗 = �𝑈𝑈1,𝑗𝑗,𝑈𝑈2,𝑗𝑗, … ,𝑈𝑈𝑀𝑀,𝑗𝑗�
𝑇𝑇

,       𝑗𝑗 = 1, … ,𝑁𝑁. (11) 

According to Eq. (10), the approximate solution is considered as a piece-wise function in the 
proposed method. 

In general, there are 𝑀𝑀𝑀𝑀 unknowns, 𝑈𝑈1,1,𝑈𝑈2,1, … ,𝑈𝑈𝑀𝑀,1, … ,𝑈𝑈1,𝑁𝑁 ,𝑈𝑈2,1, … ,𝑈𝑈𝑀𝑀,𝑁𝑁, to be determined. 
To find these unknowns, we do as follows. 

For finding the unknowns 𝑈𝑈1,1,𝑈𝑈2,1, … ,𝑈𝑈𝑀𝑀,1, suppose that 𝑥𝑥 ∈ 𝐼𝐼1. Then, according to Eq. (10) the 
approximate solution in the interval 𝐼𝐼1 = [0, ℎ] is 

𝑢𝑢(𝑥𝑥) ≃�𝑈𝑈𝑖𝑖,1𝐵𝐵𝑖𝑖(𝑥𝑥).
𝑀𝑀

𝑖𝑖=1

 (12) 

Substituting Eq. (12) in Eq. (6) leads to 

�𝑈𝑈𝑖𝑖,1𝐵𝐵𝑖𝑖(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + � 𝑘𝑘(𝑥𝑥, 𝑡𝑡)𝑁𝑁��𝑈𝑈𝑖𝑖,1𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑.
𝑥𝑥

0

𝑀𝑀

𝑖𝑖=1

 (13) 

We use the collocation method to determine unknowns 𝑈𝑈𝑖𝑖,1, 𝑖𝑖 = 1, … ,𝑀𝑀. Let 𝑐𝑐𝑘𝑘,1, 𝑘𝑘 = 1, … ,𝑀𝑀 
be the zeros of SCPs of degree 𝑀𝑀 in the interval [0, ℎ] as collocation points. For example for 𝑀𝑀 = 3, 
and 𝑁𝑁 = 4  the collocation points are 𝑐𝑐1,1 =  0167 , 𝑐𝑐2,1 = 0.1250 , 𝑐𝑐3,1 = 0.2333 , 𝑐𝑐1,2 =  0.2667 , 
𝑐𝑐2,2 = 0.3750 , 𝑐𝑐3,2 = 0.4833 , 𝑐𝑐1,3 =  0.5167 , 𝑐𝑐2,3 = 0.6250 , 𝑐𝑐3,3 = 0.7333 , 𝑐𝑐1,4 =  0.7667 , 𝑐𝑐2,4 =
0.8750, 𝑐𝑐3,4 = 0.9833. Then, a system of nonlinear algebraic equation is produced that could be easily 
solved. 

In the case of 𝑁𝑁�𝑢𝑢(𝑡𝑡)� = 𝑢𝑢(𝑡𝑡), that is the equation is linear, equation (13) could be stated as 
follows. 

��𝐵𝐵𝑖𝑖(𝑥𝑥) −� 𝑘𝑘(𝑥𝑥, 𝑡𝑡)𝐵𝐵𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑥𝑥

0
�

𝑀𝑀

𝑖𝑖=1

𝑈𝑈𝑖𝑖,1 = 𝑓𝑓(𝑥𝑥). (14) 

By substituting collocation points 𝑐𝑐𝑘𝑘,1, 𝑘𝑘 = 1, … ,𝑀𝑀 in Eq. (13) we will have 

��𝐵𝐵𝑖𝑖�𝑐𝑐𝑘𝑘,1� − � 𝑘𝑘�𝑐𝑐𝑘𝑘,1, 𝑡𝑡�𝐵𝐵𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑐𝑐𝑘𝑘,1

0
�

𝑀𝑀

𝑖𝑖=1

𝑈𝑈𝑖𝑖,1 = 𝑓𝑓�𝑐𝑐𝑘𝑘,1�. (15) 

This equation is a system of 𝑀𝑀 algebraic equations with unknown coefficients 𝑈𝑈𝑖𝑖,1, 𝑖𝑖 = 1, … ,𝑀𝑀 
which can be written in the following matrix form. 

𝐴𝐴1𝑈𝑈1 = 𝐹𝐹1, 
In which 
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𝐴𝐴1 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝐵𝐵1�𝑐𝑐1,1� − � 𝑘𝑘�𝑐𝑐1,1, 𝑡𝑡�𝐵𝐵1(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑐𝑐1,1

0
⋯ 𝐵𝐵𝑀𝑀�𝑐𝑐1,1� − � 𝑘𝑘�𝑐𝑐1,1, 𝑡𝑡�𝐵𝐵𝑀𝑀(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑐𝑐1,1

0
⋮ ⋱ ⋮

𝐵𝐵1�𝑐𝑐𝑀𝑀,1� − � 𝑘𝑘�𝑐𝑐𝑀𝑀,1, 𝑡𝑡�𝐵𝐵1(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑐𝑐𝑀𝑀,1

0
⋯ 𝐵𝐵𝑀𝑀�𝑐𝑐𝑀𝑀,1� − � 𝑘𝑘�𝑐𝑐𝑀𝑀,1, 𝑡𝑡�𝐵𝐵𝑀𝑀(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑐𝑐𝑀𝑀,1

0 ⎦
⎥
⎥
⎥
⎥
⎤

, 

vector 𝑈𝑈1 is defined as Eq. (11) for 𝑗𝑗 = 1 and 

𝐹𝐹1 = �𝑓𝑓�𝑐𝑐1,1�,𝑓𝑓�𝑐𝑐2,1�, … ,𝑓𝑓�𝑐𝑐𝑀𝑀,1��
𝑇𝑇

. 

By using the coefficients 𝑈𝑈𝑖𝑖,1, 𝑖𝑖 = 1, … ,𝑀𝑀 which have been determined in the previous stage, 
we can find the unknowns 𝑈𝑈𝑖𝑖,2, 𝑖𝑖 = 1, … ,𝑀𝑀 as follows. 

Suppose that 𝑥𝑥 ∈ 𝐼𝐼2. Then, Substituting Eq. (10) for 𝑗𝑗 = 2 in Eq. (6) gives 

�𝐵𝐵𝑖𝑖(𝑥𝑥)𝑈𝑈𝑖𝑖,2 = 𝑓𝑓(𝑥𝑥) + � 𝑘𝑘(𝑥𝑥, 𝑡𝑡)��𝐵𝐵𝑖𝑖(𝑡𝑡)𝑈𝑈𝑖𝑖,1

𝑀𝑀

𝑖𝑖=1

� 𝑑𝑑𝑑𝑑
ℎ

0

𝑀𝑀

𝑖𝑖=1

+ � 𝑘𝑘(𝑥𝑥, 𝑡𝑡)��𝐵𝐵𝑖𝑖(𝑡𝑡)𝑈𝑈𝑖𝑖,2

𝑁𝑁

𝑖𝑖=1

�𝑑𝑑𝑑𝑑.
𝑥𝑥

ℎ
 

(16) 

This equation can be written as follows. 

��𝐵𝐵𝑖𝑖(𝑥𝑥) −� 𝑘𝑘(𝑥𝑥, 𝑡𝑡)𝐵𝐵𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑥𝑥

ℎ
�

𝑀𝑀

𝑖𝑖=1

𝑈𝑈𝑖𝑖,2

= 𝑓𝑓(𝑥𝑥) + � 𝑘𝑘(𝑥𝑥, 𝑡𝑡)��𝑈𝑈𝑖𝑖,1𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑.
ℎ

0
 

(17) 

Let 𝑐𝑐𝑘𝑘,2, 𝑘𝑘 = 1, … ,𝑀𝑀  be the zeros of SCPs of degree 𝑀𝑀  in the interval [ℎ, 2ℎ] as collocation 
points. Substituting the collocation points in Eq. (17) leads to the following relation. 

��𝐵𝐵𝑖𝑖�𝑐𝑐𝑘𝑘,2� − � 𝑘𝑘�𝑐𝑐𝑘𝑘,2, 𝑡𝑡�𝐵𝐵𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑐𝑐𝑘𝑘,2

ℎ
�

𝑀𝑀

𝑖𝑖=1

𝑈𝑈𝑖𝑖,2

= 𝑓𝑓�𝑐𝑐𝑘𝑘,2� + � 𝑘𝑘�𝑐𝑐𝑘𝑘,2, 𝑡𝑡� ��𝑈𝑈𝑖𝑖,1𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

� 𝑑𝑑𝑑𝑑.
ℎ

0
 

(18) 

This equation is a system of 𝑀𝑀 algebraic equations with unknown coefficients 𝑈𝑈𝑖𝑖,2, 𝑖𝑖 = 1, … ,𝑀𝑀. 
This system could be stated in the following matrix form. 

𝐴𝐴2𝑈𝑈2 = 𝐹𝐹2, 
where 

𝐴𝐴2 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝐵𝐵1�𝑐𝑐1,2� − � 𝑘𝑘�𝑐𝑐1,2, 𝑡𝑡�𝐵𝐵1(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑐𝑐1,2

ℎ
⋯ 𝐵𝐵𝑀𝑀�𝑐𝑐1,2� − � 𝑘𝑘�𝑐𝑐1,2, 𝑡𝑡�𝐵𝐵𝑀𝑀(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑐𝑐1,2

ℎ
⋮ ⋱ ⋮

𝐵𝐵1�𝑐𝑐𝑀𝑀,2� − � 𝑘𝑘�𝑐𝑐𝑀𝑀,2, 𝑡𝑡�𝐵𝐵1(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑐𝑐𝑀𝑀,2

ℎ
⋯ 𝐵𝐵𝑀𝑀�𝑐𝑐𝑀𝑀,2� − � 𝑘𝑘�𝑐𝑐𝑀𝑀,2, 𝑡𝑡�𝐵𝐵𝑀𝑀(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑐𝑐𝑀𝑀,2

ℎ ⎦
⎥
⎥
⎥
⎥
⎤

, 

vector 𝑈𝑈2 is defined as Eq. (11) for 𝑗𝑗 = 2 and 
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𝐹𝐹2 =

⎝

⎜
⎜
⎜
⎛ 𝑓𝑓�𝑐𝑐1,2� + � 𝑘𝑘�𝑐𝑐1,2, 𝑡𝑡� ��𝑈𝑈𝑖𝑖,2𝐵𝐵𝑖𝑖(𝑡𝑡)

𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑
ℎ

0

⋮

𝑓𝑓�𝑐𝑐𝑀𝑀,2� + � 𝑘𝑘�𝑐𝑐𝑀𝑀,2, 𝑡𝑡� ��𝑈𝑈𝑖𝑖,2𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑
ℎ

0 ⎠

⎟
⎟
⎟
⎞

. 

Now, we can present a general formula to find the unknowns in in the interval 𝐼𝐼𝑗𝑗 =
[(𝑗𝑗 − 1)ℎ, 𝑗𝑗ℎ]. 

Suppose that 𝑥𝑥 ∈ 𝐼𝐼𝑗𝑗. Then, according to Eq. (12) the approximate solution in the interval 𝐼𝐼𝑗𝑗 is 

𝑢𝑢(𝑥𝑥) ≃�𝑈𝑈𝑖𝑖,𝑗𝑗𝐵𝐵𝑖𝑖(𝑥𝑥).
𝑀𝑀

𝑖𝑖=1

 (19) 

By substituting Eq. (19) in Eq. (6) we will have 

�𝐵𝐵𝑖𝑖(𝑥𝑥)𝑈𝑈𝑖𝑖,𝑗𝑗 = 𝑓𝑓(𝑥𝑥) + � 𝑘𝑘(𝑥𝑥, 𝑡𝑡)��𝑈𝑈𝑖𝑖,1𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑
ℎ

0
+ ⋯

𝑀𝑀

𝑖𝑖=1

+ � 𝑘𝑘(𝑥𝑥, 𝑡𝑡)��𝑈𝑈𝑖𝑖,𝑗𝑗−1𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑
(𝑗𝑗−1)ℎ

(𝑗𝑗−2)ℎ
+ � 𝑘𝑘(𝑥𝑥, 𝑡𝑡)��𝑈𝑈𝑖𝑖,𝑗𝑗𝐵𝐵𝑖𝑖(𝑡𝑡)

𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑,
𝑥𝑥

(𝑗𝑗−1)ℎ
 

This equation would be stated as follows. 

��𝐵𝐵𝑖𝑖(𝑥𝑥) −� 𝑘𝑘(𝑥𝑥, 𝑡𝑡)𝐵𝐵𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑥𝑥

(𝑗𝑗−1)ℎ
�

𝑀𝑀

𝑖𝑖=1

𝑈𝑈𝑖𝑖,𝑗𝑗

= 𝑓𝑓(𝑥𝑥) + � 𝑘𝑘(𝑥𝑥, 𝑡𝑡)��𝑈𝑈𝑖𝑖,1𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑
ℎ

0
+ ⋯

+ � 𝑘𝑘(𝑥𝑥, 𝑡𝑡)��𝑈𝑈𝑖𝑖,𝑗𝑗−1𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑.
(𝑗𝑗−1)ℎ

(𝑗𝑗−2)ℎ
 

(20) 

Let 𝑐𝑐𝑘𝑘,𝑗𝑗 , 𝑘𝑘 = 1, … ,𝑀𝑀 be the zeros of SCPs of degree 𝑀𝑀 in the interval 𝐼𝐼𝑗𝑗 as collocation points. 
Substituting the collocation points in Eq. (20) yields 

��𝐵𝐵𝑖𝑖�𝑐𝑐𝑘𝑘,𝑗𝑗� − � 𝑘𝑘�𝑐𝑐𝑘𝑘,𝑗𝑗, 𝑡𝑡�𝐵𝐵𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑐𝑐𝑘𝑘,𝑗𝑗

(𝑗𝑗−1)ℎ
�

𝑀𝑀

𝑖𝑖=1

𝑈𝑈𝑖𝑖,𝑗𝑗

= 𝑓𝑓�𝑐𝑐𝑘𝑘,𝑗𝑗� + � 𝑘𝑘�𝑐𝑐𝑘𝑘,𝑗𝑗, 𝑡𝑡� ��𝑈𝑈𝑖𝑖,1𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑
ℎ

0
+ ⋯

+ � 𝑘𝑘�𝑐𝑐𝑘𝑘,𝑗𝑗, 𝑡𝑡� ��𝑈𝑈𝑖𝑖,𝑗𝑗−1𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑.
(𝑗𝑗−1)ℎ

(𝑗𝑗−2)ℎ
 

This equation is a system of 𝑀𝑀 algebraic equations with unknown coefficients 𝑈𝑈𝑖𝑖,𝑗𝑗, 𝑖𝑖 = 1, … ,𝑀𝑀. 
It has the following matrix form. 
𝐴𝐴𝑗𝑗𝑈𝑈𝑗𝑗 = 𝐹𝐹𝑗𝑗 , 
where 
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𝐴𝐴𝑗𝑗 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝐵𝐵1�𝑐𝑐1,𝑗𝑗� − � 𝑘𝑘�𝑐𝑐1,𝑗𝑗, 𝑡𝑡�𝐵𝐵1(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑐𝑐1,𝑗𝑗

(𝑗𝑗−1)ℎ
⋯ 𝐵𝐵𝑀𝑀�𝑐𝑐1,𝑗𝑗� − � 𝑘𝑘�𝑐𝑐1,𝑗𝑗, 𝑡𝑡�𝐵𝐵𝑀𝑀(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑐𝑐1,𝑗𝑗

(𝑗𝑗−1)ℎ
⋮ ⋱ ⋮

𝐵𝐵1�𝑐𝑐𝑀𝑀,𝑗𝑗� − � 𝑘𝑘�𝑐𝑐𝑀𝑀,𝑗𝑗, 𝑡𝑡�𝐵𝐵1(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑐𝑐𝑀𝑀,𝑗𝑗

(𝑗𝑗−1)ℎ
⋯ 𝐵𝐵𝑀𝑀�𝑐𝑐𝑀𝑀,𝑗𝑗� − � 𝑘𝑘�𝑐𝑐𝑀𝑀,𝑗𝑗, 𝑡𝑡�𝐵𝐵𝑀𝑀(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑐𝑐𝑀𝑀,𝑗𝑗

(𝑗𝑗−1)ℎ ⎦
⎥
⎥
⎥
⎥
⎤

, 

vector 𝑈𝑈𝑗𝑗 is defined as Eq. (11) and 

𝐹𝐹𝑗𝑗 =

⎝

⎜
⎜
⎜
⎛ 𝑓𝑓�𝑐𝑐1,𝑗𝑗� + �� 𝑘𝑘�𝑐𝑐1,𝑗𝑗, 𝑡𝑡� ��𝑈𝑈𝑖𝑖,𝑟𝑟𝐵𝐵𝑖𝑖(𝑡𝑡)

𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑
𝑟𝑟ℎ

(𝑟𝑟−1)ℎ

𝑗𝑗−1

𝑟𝑟=1
⋮

𝑓𝑓�𝑐𝑐𝑀𝑀,𝑗𝑗� + �� 𝑘𝑘�𝑐𝑐𝑀𝑀,𝑗𝑗 , 𝑡𝑡� ��𝑈𝑈𝑖𝑖,𝑟𝑟𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑
𝑟𝑟ℎ

(𝑟𝑟−1)ℎ

𝑗𝑗−1

𝑟𝑟=1 ⎠

⎟
⎟
⎟
⎞

. 

Therefore, if we continue this process step by step and find the unknowns in the next 
subintervals using the coefficients which have been determined so far, then all unknowns will be 
obtained finally. 

For finding the unknowns in the last interval, suppose that 𝑥𝑥 ∈ 𝐼𝐼𝑁𝑁. Then according to Eq. (10) 
the approximate solution in this interval is 

𝑢𝑢(𝑥𝑥) ≃�𝑈𝑈𝑖𝑖,𝑁𝑁𝐵𝐵𝑖𝑖(𝑥𝑥).
𝑀𝑀

𝑖𝑖=1

 (21) 

Substituting Eq. (21) in Eq. (6) gives 

�𝐵𝐵𝑖𝑖(𝑥𝑥)𝑈𝑈𝑖𝑖,𝑁𝑁 = 𝑓𝑓(𝑥𝑥) + � 𝑘𝑘(𝑥𝑥, 𝑡𝑡)��𝑈𝑈𝑖𝑖,1𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑
ℎ

0
+ ⋯

𝑀𝑀

𝑖𝑖=1

+ � 𝑘𝑘(𝑥𝑥, 𝑡𝑡)��𝑈𝑈𝑖𝑖,𝑁𝑁−1𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑
(𝑁𝑁−1)ℎ

(𝑁𝑁−2)ℎ

+ � 𝑘𝑘(𝑥𝑥, 𝑡𝑡)��𝑈𝑈𝑖𝑖,𝑁𝑁𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑.
𝑥𝑥

(𝑁𝑁−1)ℎ
 

This equation can be written in terms of 𝑈𝑈𝑖𝑖,𝑁𝑁 as follows. 

��𝐵𝐵𝑖𝑖(𝑥𝑥) −� 𝑘𝑘(𝑥𝑥, 𝑡𝑡)𝐵𝐵𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑥𝑥

(𝑁𝑁−1)ℎ
�

𝑀𝑀

𝑖𝑖=1

𝑈𝑈𝑖𝑖,𝑁𝑁

= 𝑓𝑓(𝑥𝑥) + � 𝑘𝑘(𝑥𝑥, 𝑡𝑡)��𝑈𝑈𝑖𝑖,1𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑
ℎ

0
+ ⋯

+ � 𝑘𝑘(𝑥𝑥, 𝑡𝑡)��𝑈𝑈𝑖𝑖,𝑁𝑁−1𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑.
(𝑁𝑁−1)ℎ

(𝑁𝑁−2)ℎ
 

(22) 

Let 𝑐𝑐𝑘𝑘,𝑁𝑁 , 𝑘𝑘 = 1, … ,𝑀𝑀 be the zeros of SCPs of degree 𝑀𝑀 in the interval 𝐼𝐼𝑁𝑁 as collocation points. 
By substituting these points in Eq. (22) we will have 
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��𝐵𝐵𝑖𝑖�𝑐𝑐𝑘𝑘,𝑁𝑁� − � 𝑘𝑘�𝑐𝑐𝑘𝑘,𝑁𝑁 , 𝑡𝑡�𝐵𝐵𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑐𝑐𝑘𝑘,𝑁𝑁

(𝑁𝑁−1)ℎ
�

𝑀𝑀

𝑖𝑖=1

𝑈𝑈𝑖𝑖,𝑁𝑁

= 𝑓𝑓�𝑐𝑐𝑘𝑘,𝑁𝑁� + � 𝑘𝑘�𝑐𝑐𝑘𝑘,𝑁𝑁 , 𝑡𝑡� ��𝑈𝑈𝑖𝑖,1𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑
ℎ

0
+ ⋯

+ � 𝑘𝑘�𝑐𝑐𝑘𝑘,𝑁𝑁 , 𝑡𝑡� ��𝑈𝑈𝑖𝑖,𝑁𝑁−1𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑.
(𝑁𝑁−1)ℎ

(𝑁𝑁−2)ℎ
 

This equation is a system of 𝑀𝑀 algebraic equations with unknown coefficients 𝑈𝑈𝑖𝑖,𝑁𝑁, 𝑖𝑖 = 1, … ,𝑀𝑀 
which can be stated in a matrix form as follows. 

𝐴𝐴𝑁𝑁𝑈𝑈𝑁𝑁 = 𝐹𝐹𝑁𝑁 , 
In which 

𝐴𝐴𝑁𝑁

=

⎣
⎢
⎢
⎢
⎢
⎡ 𝐵𝐵1�𝑐𝑐1,𝑁𝑁� − � 𝑘𝑘�𝑐𝑐1,𝑁𝑁, 𝑡𝑡�𝐵𝐵1(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑐𝑐1,𝑁𝑁

(𝑁𝑁−1)ℎ
⋯ 𝐵𝐵𝑀𝑀�𝑐𝑐𝑀𝑀,𝑁𝑁� − � 𝑘𝑘�𝑐𝑐1,𝑁𝑁, 𝑡𝑡�𝐵𝐵𝑀𝑀(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑐𝑐1,𝑁𝑁

(𝑁𝑁−1)ℎ
⋮ ⋱ ⋮

𝐵𝐵1�𝑐𝑐𝑀𝑀,𝑁𝑁� − � 𝑘𝑘�𝑐𝑐𝑀𝑀,𝑁𝑁 , 𝑡𝑡�𝐵𝐵1(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑐𝑐𝑀𝑀,𝑁𝑁

(𝑁𝑁−1)ℎ
⋯ 𝐵𝐵𝑀𝑀�𝑐𝑐𝑀𝑀,𝑁𝑁� − � 𝑘𝑘�𝑐𝑐𝑀𝑀,𝑁𝑁 , 𝑡𝑡�𝐵𝐵𝑀𝑀(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑐𝑐𝑀𝑀,𝑁𝑁

(𝑁𝑁−1)ℎ ⎦
⎥
⎥
⎥
⎥
⎤

, 

vector 𝑈𝑈𝑁𝑁 is defined as Eq. (11) for 𝑗𝑗 = 𝑁𝑁 and 

𝐹𝐹𝑁𝑁 =

⎝

⎜
⎜
⎜
⎛ 𝑓𝑓�𝑐𝑐1,𝑁𝑁� + �� 𝑘𝑘�𝑐𝑐1,𝑁𝑁, 𝑡𝑡� ��𝑈𝑈𝑖𝑖,𝑟𝑟𝐵𝐵𝑖𝑖(𝑡𝑡)

𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑
𝑟𝑟ℎ

(𝑟𝑟−1)ℎ

𝑁𝑁−1

𝑟𝑟=1
⋮

𝑓𝑓�𝑐𝑐𝑀𝑀,𝑁𝑁� + �� 𝑘𝑘�𝑐𝑐𝑀𝑀,𝑁𝑁 , 𝑡𝑡� ��𝑈𝑈𝑖𝑖,𝑟𝑟𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑀𝑀

𝑖𝑖=1

�𝑑𝑑𝑑𝑑
𝑟𝑟ℎ

(𝑟𝑟−1)ℎ

𝑁𝑁−1

𝑟𝑟=1 ⎠

⎟
⎟
⎟
⎞

. 

Eventually, we can calculate the solution by the following piece wise function. 

𝑢𝑢� =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧�𝑈𝑈𝑖𝑖,1𝐵𝐵𝑖𝑖(𝑥𝑥),     𝑥𝑥 ∈ 𝐼𝐼1,

𝑀𝑀

𝑖𝑖=1

�𝑈𝑈𝑖𝑖,2𝐵𝐵𝑖𝑖(𝑥𝑥),     𝑥𝑥 ∈ 𝐼𝐼2,
𝑀𝑀

𝑖𝑖=1
⋮

�𝑈𝑈𝑖𝑖,𝑁𝑁𝐵𝐵𝑖𝑖(𝑥𝑥),     𝑥𝑥 ∈ 𝐼𝐼𝑁𝑁 ,
𝑀𝑀

𝑖𝑖=1

 (23) 

where 𝑢𝑢�  is the approximation of the exact solution 𝑢𝑢. 

4. Convergence Analysis 

Here, the convergence of the suggested scheme is discussed. For this purpose, we first recall one 
of the important theorems related to the residual interpolation error by Chebyshev nodes. 
Theorem 1. Let 𝑢𝑢  be a sufficiently smooth function on 𝐼𝐼 = [0, 1]  and Π𝑀𝑀  be the space of 
polynomials of order 𝑀𝑀.  Also, let 𝑃𝑃𝑀𝑀 ∈ Π𝑀𝑀  be the interpolating polynomials of 𝑢𝑢  at points 
𝑐𝑐1, … , 𝑐𝑐𝑀𝑀+1  which are the zeros of the SCP of degree 𝑀𝑀 + 1 on 𝐼𝐼. Then, the following relation is 
established. 
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𝑢𝑢(𝑡𝑡) − 𝑃𝑃𝑀𝑀(𝑡𝑡) =
∂𝑀𝑀+1𝑢𝑢(𝜉𝜉)

∂𝑥𝑥𝑀𝑀+1(𝑀𝑀 + 1)!
� 
𝑀𝑀

𝑖𝑖=0

(𝑡𝑡 − 𝑐𝑐𝑖𝑖), (24) 

where 𝜉𝜉 ∈ 𝐼𝐼. 
Proof. [38]. 

According to the last theorem, we can write 

|𝑢𝑢(𝑡𝑡) − 𝑃𝑃𝑀𝑀(𝑡𝑡)| ≤ max
𝑥𝑥∈𝐼𝐼

  �
∂𝑀𝑀+1𝑢𝑢(𝑡𝑡)
∂𝑥𝑥𝑀𝑀+1

�
∏  𝑀𝑀
𝑖𝑖=0  |𝑡𝑡 − 𝑐𝑐𝑖𝑖|
(𝑀𝑀 + 1)!

. (25) 

Now, Assume that 

max
𝑥𝑥∈𝐼𝐼

  �
∂𝑀𝑀+1𝑢𝑢(𝑡𝑡)
∂𝑥𝑥𝑀𝑀+1

� ≤ 𝜂𝜂. (26) 

Applying this upper bound to Eq. (25) and considering the approximations for Chebyshev 
interpolation nodes [39] leads to 

|𝑢𝑢(𝑡𝑡) − 𝑃𝑃𝑀𝑀(𝑡𝑡)| ≤
𝜂𝜂

(𝑀𝑀 + 1)! 22𝑀𝑀+1
. (27) 

Theorem 2. Suppose that 𝑢𝑢�  defined in Eq. (3), be the best approximation of real sufficiently smooth 
function 𝑢𝑢 by Bernoulli polynomials. Then a real constant 𝜂𝜂 exists such that 

∥∥𝑢𝑢(𝑡𝑡) − 𝑢𝑢�(𝑡𝑡)∥∥2 ≤
𝜂𝜂

(𝑀𝑀 + 1)! 22𝑀𝑀+1
. (28) 

Proof. According to the definition, 𝑢𝑢�  is the best approximation of 𝑢𝑢 provided that 
∀𝑣𝑣(𝑡𝑡) ∈ Π𝑁𝑁;  ∥∥𝑢𝑢(𝑡𝑡) − 𝑢𝑢�(𝑡𝑡)∥∥2 ≤∥ 𝑢𝑢(𝑡𝑡) − 𝑣𝑣(𝑡𝑡) ∥2. (29) 

Particularly, if 𝑣𝑣(𝑡𝑡) = 𝑃𝑃𝑀𝑀(𝑡𝑡) then according to Eq. (27), we get 

∥∥𝑢𝑢(𝑡𝑡) − 𝑢𝑢�(𝑡𝑡)∥∥2
2  ≤ ∥∥𝑢𝑢(𝑡𝑡) − 𝑃𝑃𝑀𝑀(𝑡𝑡)∥∥2

2 = �  
1

0
 |𝑢𝑢(𝑡𝑡) − 𝑃𝑃𝑀𝑀(𝑡𝑡)|2𝑑𝑑𝑑𝑑

 ≤ �  
1

0
 �

𝜂𝜂
(𝑀𝑀 + 1)! 22𝑀𝑀+1

�
2
𝑑𝑑𝑑𝑑 = �

𝜂𝜂
(𝑀𝑀 + 1)! 22𝑀𝑀+1

�
2

.
 (30) 

Hence, Eq. (28) is proved. 
According to Eq. (28), it can be written 

∥∥𝑢𝑢(𝑡𝑡) − 𝑢𝑢�(𝑡𝑡)∥∥2 = 𝒪𝒪 �
1

(𝑀𝑀 + 1)! 22𝑀𝑀+1
�. (31) 

So, 1
(𝑀𝑀+1)!22𝑀𝑀+1 → 0 when 𝑀𝑀 → ∞ which implies that 𝑢𝑢� → 𝑢𝑢. Therefore, the collocation method 

based on the Bernoulli polynomials is convergent. 
Theorem 3. Assume that 𝑢𝑢𝑀𝑀,𝑗𝑗 be the approximate solution of Eq. (6) in the interval 𝐼𝐼𝑗𝑗 = [(𝑗𝑗 − 1)ℎ, 𝑗𝑗ℎ], 
and 

(1 − 𝐿𝐿1𝜆𝜆1)(1− 𝐿𝐿2𝜆𝜆2) … �1 − 𝐿𝐿𝑗𝑗𝜆𝜆j� > 0,  

where 𝑗𝑗 = 1, … . ,𝑁𝑁. Also, the nonlinear term satisfies the Lipschitz condition as follows: 

�𝑁𝑁�𝑢𝑢(𝑥𝑥)� − 𝑁𝑁 �𝑢𝑢𝑀𝑀,𝑗𝑗(𝑥𝑥)�� ≤ 𝐿𝐿𝑗𝑗�𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,𝑗𝑗�. (32) 

Then, there is an upper error bound as follows. 

∥∥𝑢𝑢(𝑡𝑡) − 𝑢𝑢𝑀𝑀,𝑗𝑗(𝑡𝑡)∥∥ ≤
𝜆𝜆1

(1 − 𝜆𝜆1)(1− 𝜆𝜆2) … �1 − 𝜆𝜆j�
 (33) 

where 
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max|𝑘𝑘(𝑥𝑥, 𝑡𝑡)| = 𝜆𝜆j,     𝑥𝑥 ∈ 𝐼𝐼𝑗𝑗   (34) 

Proof. The approximate solution of Eq. (6) in the interval 𝐼𝐼1 could be stated as 

𝑢𝑢𝑀𝑀,1(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + �  
𝑥𝑥

0
𝑘𝑘(𝑥𝑥, 𝑡𝑡)𝑁𝑁 �𝑢𝑢𝑀𝑀,1(𝑡𝑡)�𝑑𝑑𝑑𝑑. (35) 

From Eqs. (6) and (35), we get 

𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,1(𝑥𝑥) = �  
𝑥𝑥

0
 𝑘𝑘(𝑥𝑥, 𝑡𝑡) �𝑁𝑁�𝑢𝑢(𝑡𝑡)� − 𝑁𝑁 �𝑢𝑢𝑀𝑀,1(𝑡𝑡)�� 𝑑𝑑𝑑𝑑. 

Then, we have 

∥∥𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,1(𝑥𝑥)∥∥ ≤ 𝐿𝐿1∥𝑘𝑘(𝑥𝑥, 𝑡𝑡)∥∥∥𝑢𝑢(𝑡𝑡) − 𝑢𝑢𝑀𝑀,1(𝑡𝑡)∥∥ 

By using Eq. (34), for 𝑖𝑖 = 1, we have 

∥∥𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,1(𝑥𝑥)∥∥ ≤ 𝐿𝐿1𝜆𝜆1∥∥𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,1(𝑥𝑥)∥∥. 
So, 

∥∥𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,1(𝑥𝑥)∥∥ ≤
1

1 − 𝐿𝐿1𝜆𝜆1
. (36) 

Now, regard the approximate solution of Eq. (6) in the interval 𝐼𝐼2as follows. 

𝑢𝑢𝑀𝑀,2(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + �  
ℎ

0
𝑘𝑘(𝑥𝑥, 𝑡𝑡)𝑁𝑁 �𝑢𝑢𝑀𝑀,1(𝑡𝑡)�𝑑𝑑𝑑𝑑 + �  

𝑥𝑥

ℎ
𝑘𝑘(𝑥𝑥, 𝑡𝑡)𝑁𝑁 �𝑢𝑢𝑀𝑀,2(𝑡𝑡)�𝑑𝑑𝑑𝑑. (37) 

From Eqs. (6) and (36), we get 
𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,2(𝑥𝑥)

= �  𝑘𝑘(𝑥𝑥, 𝑡𝑡)
ℎ

0
 �𝑁𝑁�𝑢𝑢(𝑡𝑡)� − 𝑁𝑁 �𝑢𝑢𝑀𝑀,1(𝑡𝑡)�� 𝑑𝑑𝑑𝑑

+ �  
2ℎ

ℎ
𝑘𝑘(𝑥𝑥, 𝑡𝑡)   �𝑁𝑁�𝑢𝑢(𝑡𝑡)� − 𝑁𝑁 �𝑢𝑢𝑀𝑀,2(𝑡𝑡)�� 𝑑𝑑𝑑𝑑. 

Then, we have 

∥∥𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,2(𝑥𝑥)∥∥ ≤ ∥𝑘𝑘(𝑥𝑥, 𝑡𝑡)∥∥∥𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,1(𝑥𝑥)∥∥ + ∥𝑘𝑘(𝑥𝑥, 𝑡𝑡)∥∥∥𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,2(𝑥𝑥)∥∥ 

Using Eq. (34), for 𝑖𝑖 = 2 and also Eq. (36) leads to 

∥∥𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,2(𝑥𝑥)∥∥ ≤ 𝐿𝐿1𝜆𝜆1 �
1

1 − 𝐿𝐿1𝜆𝜆1
� + 𝐿𝐿2𝜆𝜆2∥∥𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,2(𝑥𝑥)∥∥. 

Therefore, we have 

∥∥𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,2(𝑥𝑥)∥∥ ≤
𝐿𝐿1𝜆𝜆1

(1 − 𝐿𝐿1𝜆𝜆1)(1− 𝐿𝐿1𝜆𝜆2). (38) 

For the approximate solution of Eq. (6) in the interval 𝐼𝐼3 we can write 

𝑢𝑢𝑀𝑀,3(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + �  
ℎ

0
𝑘𝑘(𝑥𝑥, 𝑡𝑡)𝑁𝑁 �𝑢𝑢𝑀𝑀,1(𝑡𝑡)�𝑑𝑑𝑑𝑑 + �  

2ℎ

ℎ
𝑘𝑘(𝑥𝑥, 𝑡𝑡)𝑁𝑁 �𝑢𝑢𝑀𝑀,2(𝑡𝑡)�𝑑𝑑𝑑𝑑

+ �  
𝑥𝑥

2ℎ
𝑘𝑘(𝑥𝑥, 𝑡𝑡)𝑁𝑁 �𝑢𝑢𝑀𝑀,3(𝑡𝑡)�𝑑𝑑𝑑𝑑. 

(39) 

From Eqs. (6) and (36), we can write 
𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,3(𝑥𝑥)

= �  
ℎ

0
 𝑘𝑘(𝑥𝑥, 𝑡𝑡) �𝑁𝑁�𝑢𝑢(𝑡𝑡)� − 𝑁𝑁 �𝑢𝑢𝑀𝑀,1(𝑡𝑡)��𝑑𝑑𝑑𝑑

+ �  
2ℎ

ℎ
 𝑘𝑘(𝑥𝑥, 𝑡𝑡) �𝑁𝑁�𝑢𝑢(𝑡𝑡)� − 𝑁𝑁 �𝑢𝑢𝑀𝑀,2(𝑡𝑡)�� 𝑑𝑑𝑑𝑑

+ �  
𝑥𝑥

2ℎ
 𝑘𝑘(𝑥𝑥, 𝑡𝑡) �𝑁𝑁�𝑢𝑢(𝑡𝑡)� − 𝑁𝑁 �𝑢𝑢𝑀𝑀,3(𝑡𝑡)�� 𝑑𝑑𝑑𝑑. 

Then, we have 
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∥∥𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,3(𝑥𝑥)∥∥
≤ 𝐿𝐿1∥𝑘𝑘(𝑥𝑥, 𝑡𝑡)∥∥∥𝑢𝑢(𝑡𝑡) − 𝑢𝑢𝑀𝑀,1(𝑡𝑡)∥∥ + 𝐿𝐿2∥𝑘𝑘(𝑥𝑥, 𝑡𝑡)∥∥∥𝑢𝑢(𝑡𝑡) − 𝑢𝑢𝑀𝑀,2(𝑡𝑡)∥∥
+ 𝐿𝐿3∥𝑘𝑘(𝑥𝑥, 𝑡𝑡)∥∥∥𝑢𝑢(𝑡𝑡) − 𝑢𝑢𝑀𝑀,3(𝑡𝑡)∥∥ 

Using Eq. (34), for 𝑖𝑖 = 3 and also Eq. (38) leads to 

∥∥𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,3(𝑥𝑥)∥∥ ≤
𝐿𝐿1𝜆𝜆1

1 − 𝐿𝐿1𝜆𝜆1
+

𝐿𝐿1𝜆𝜆2𝜆𝜆1
(1 − 𝜆𝜆1)(1 − 𝜆𝜆2) + 𝜆𝜆3∥∥𝑢𝑢(𝑡𝑡) − 𝑢𝑢𝑀𝑀,3(𝑡𝑡)∥∥

=
𝐿𝐿1𝜆𝜆1

(1 − 𝜆𝜆1)(1 − 𝜆𝜆2) + 𝜆𝜆3∥∥𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,3(𝑥𝑥)∥∥. 

Finally, we have 

∥∥𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,3(𝑥𝑥)∥∥ ≤
𝐿𝐿1𝜆𝜆1

(1 − 𝐿𝐿1𝜆𝜆1)(1− 𝐿𝐿2𝜆𝜆2)(1 − 𝐿𝐿3𝜆𝜆3). (40) 

By comparing the upper error bounds obtained in previous steps, it can be concluded that an 
upper error bound for 𝑢𝑢𝑀𝑀,𝑗𝑗 is as follows: 

∥∥𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑀𝑀,𝑗𝑗(𝑥𝑥)∥∥ ≤
𝐿𝐿1𝜆𝜆1

(1 − 𝐿𝐿1𝜆𝜆1)(1 − 𝐿𝐿2𝜆𝜆2) … �1 − 𝐿𝐿𝑗𝑗𝜆𝜆j�
. 

Therefore, Eq. (33) is established. 

5. Numerical Results 

In this section, several examples are presented to demonstrate the validity, applicability, and 
efficiency of the suggested scheme. Whole the numerical calculations were carried out utilizing 
Matlab software (R2018b). 
Example 1. Consider the following linear the second kind VIE [40]. 

𝑢𝑢(𝑥𝑥) = cos 𝑥𝑥 − 𝑒𝑒𝑥𝑥 sin 𝑥𝑥 + � 𝑒𝑒𝑥𝑥𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑥𝑥

0
, (41) 

with exact solution 𝑢𝑢(𝑥𝑥) = cos 𝑥𝑥. 
The numerical results for example one are presented in Tables 1–3. In Table 1, the absolute errors 

of the IBCM with 𝑀𝑀 = 5 are compared with those of the BCM for two different values of 𝑁𝑁 (𝑁𝑁 = 3 
and = 5) at five points in the interval [0,1]. Tables 2 and 3 present comparisons similar to what has 
been presented in Table 1. Although, in these tables, the number of subintervals in the IBCM is 
increased. In Table 2, 𝑀𝑀 is 10 while in Table 3, it is doubled. Investigating Tables 1–3 reveals that in 
both methods, the higher the polynomial degree (𝑁𝑁), the higher the accuracy. On the other hand, the 
IBCM is more accurate than the BCM. For example, for 𝑁𝑁 = 5, the order of error in the IBCM with 
𝑀𝑀 = 20 (Table 3) is e-12 while the order of error in the BCM is e-3 (Table 1). In Table 3, for 𝑁𝑁 = 7, 
the order of error in the IBCM is e-16 while the order of error in the BCM is e-8. 

The precision of the IBCM can be ameliorated by adding the number of subintervals, 𝑀𝑀 while 
𝑁𝑁 is fixed. For example, for 𝑁𝑁 = 5, the order of error in the IBCM with 𝑀𝑀 = 5 (Table 1) is e-9 while 
it is e-10 and e-12 for 𝑀𝑀 = 10 (Table 2) and 𝑀𝑀 = 20 (Table 3), respectively. Thee error of IBCM is 
plotted in Figure 1 for 𝑀𝑀 = 20 and 𝑁𝑁 = 7. 

This equation was solved in [12] by Bernstein’s approximation. The authors computed errors for 
𝑛𝑛 = 2, … ,9 where 𝑛𝑛 is the polynomial degree. The order of error was e-10 for 𝑛𝑛 = 9 while in our 
propose method, the order of error is e-16 for 𝑛𝑛 = 7. 

Table 1. The absolute error of the IBCM with 𝑀𝑀 = 5 and BCM for example 1. 

𝑥𝑥 
𝑁𝑁 = 3 𝑁𝑁 = 5 

IBCM BCM IBCM BCM 

0.15 4.5550 e-6 1.7512 e-3 2.1507 e-10 6.0265 e-6 
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0.35 1.2274 e-5 2.7788 e-3 8.2472 e-10 7.7318 e-6 

0.55 1.9155 e-5 7.9400 e-4 1.3400 e-9 3.1127 e-6 

0.75 2.4561 e-5 7.4072 e-4 1.8279 e-9 6.0874 e-6 

0.95 2.7405 e-5 2.9919 e-3 2.2953 e-9 3.2830 e-6 

Table 2. The absolute error of the IBCM with 𝑀𝑀 = 10 and BCM for example 1. 

𝑥𝑥 
𝑁𝑁 = 3 𝑁𝑁 = 5 

IBCM BCM IBCM BCM 

0.1 3.2037 e-7 7.5868 e-4 9.4060 e-11 8.0179 e-6 

0.2 8.2926 e-7 2.4247 e-3 2.5412 e-10 1.6861 e-6 

0.3 1.3229 e-6 2.9075 e-4 4.1141 e-11 6.2700 e-6 

0.4 1.8168 e-6 2.4544 e-3 5.6437 e-11 7.0803 e-6 

0.5 2.2875 e-6 1.4077 e-4 7.1154 e-11 9.1337 e-7 

0.6 2.7390 e-6 2.0181 e-4 8.5158 e-11 6.5449 e-6 

0.7 3.1703 e-6 6.4116 e-4 9.8331 e-11 8.4324 e-6 

0.8 3.5826 e-6 5.1679 e-4 1.1058 e-10 1.9262 e-6 

0.9 3.9812 e-6 1.2557 e-3 1.2185 e-10 9.6383 e-6 

Table 3. The absolute error of the IBCM with 𝑀𝑀 = 20 and BCM for example 1. 

𝑥𝑥 
IBCM BCM 

𝑁𝑁 = 5 𝑁𝑁 = 7 𝑁𝑁 = 7 

0.1 4.0059 e-13 2.2043 e-16 3.0790 e-9 

0.2 9.0170 e-13 1.0987 e-16 1.1425 e-8 

0.3 1.3914 e-12 2.4797 e-16 2.2238 e-9 

0.4 1.8717 e-12 1.8339 e-16 1.2202 e-8 

0.5 2.3303 e-12 1.9098 e-16 1.8206 e-9 

0.6 2.7679 e-12 2.8180 e-16 1.0911 e-8 

0.7 3.1737 e-12 1.2333 e-15 3.8603 e-9 

0.8 3.5513 e-12 2.2374 e-15 1.1863 e-9 

0.9 3.8946 e-12 3.2271 e-15 6.6650 e-11 
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Figure 1. The absolute error of the IBCM with 𝑀𝑀 = 20 and 𝑁𝑁 = 7 for example 1. 

Example 2. Regard the following nonlinear the second kind VIE [23]. 

𝑢𝑢(𝑥𝑥) = 𝑒𝑒𝑥𝑥 −
1
3

(𝑒𝑒3𝑥𝑥 + 1) + � 𝑢𝑢(𝑡𝑡)3𝑑𝑑𝑑𝑑
𝑥𝑥

0
, (42) 

with exact solution 𝑢𝑢(𝑥𝑥) = 𝑒𝑒𝑥𝑥. 
The results for the above example are presented in Tables 4 and 5. In Table 4, the absolute errors 

of the IBCM with 𝑀𝑀 = 10 are compared with those of the BCM for two different values of 𝑁𝑁 (𝑁𝑁 = 4 
and = 6 ). Investigating this table reveals that in both methods, the higher the polynomial degree 
(𝑁𝑁), the higher the accuracy. On the other hand, the IBCM is more precise than the BCM. In Table 5, 
numerical results for both IBCM and BCM are presented for 𝑁𝑁 = 8 and they are compared with the 
results reported in [23]. According to this table the accuracy of the suggested method is more than 
the method of [23]. Thee error of IBCM is plotted in Figure 2 for 𝑀𝑀 = 5 and 𝑁𝑁 = 8. 

Table 4. The absolute error of the IBCM with 𝑀𝑀 = 10 and BCM for example 2. 

𝑥𝑥 
𝑁𝑁 = 4 𝑁𝑁 = 6 

IBCM BCM IBCM BCM 

0.1 3.1892 e-8 2.8966 e-4 6.6974 e-13 5.4474 e-7 

0.2 3.1164 e-8 3.2696 e-4 6.5893 e-13 4.4242 e-7 

0.3 2.999 e-8 1.0663 e-4 6.4054 e-13 5.2662 e-7 

0.4 2.8363 e-8 1.3136 e-4 6.1384 e-13 1.7092 e-7 

0.5 2.6204 e-8 2.4239 e-4 5.7933 e-13 6.3315 e-7 

0.6 2.3438 e-8 1.7382 e-4 5.3553 e-13 3.2899 e-7 

0.7 1.9935 e-8 3.9408 e-5 4.8214 e-13 3.2364 e-7 

0.8 1.5477 e-8 2.7993 e-4 4.1705 e-13 3.7016 e-7 

0.9 9.7004 e-9 3.5403 e-4 3.3804 e-13 3.4501 e-7 

Table 5. Numerical results for example 2. 

𝑥𝑥 
𝑁𝑁 = 8 Tau-collocation method [23] 

for 𝑁𝑁 = 15  IBCM (𝑀𝑀 = 5) BCM 
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0 1.9404 e-15 7.3181 e-10 2.2046 e-11 

0.2 1.8559 e-15 3.3474 e-10 1.8409 e-11 

0.4 1.7551 e-15 1.0685 e-10 8.5021 e-12 

0.6 1.6675 e-15 2.2912 e-11 1.8216 e-13 

0.8 1.3226 e-15 1.5064 e-10 2.8661 e-13 

1 1.3194 e-15 4.6726 e-10 4.8397 e-12 

 
Figure 2. The absolute error of the IBCM with 𝑀𝑀 = 5 and 𝑁𝑁 = 8 for example 2. 

Example 3. Regard the following nonlinear the second kind VIE [23]. 

𝑢𝑢(𝑥𝑥) = −
1

10
𝑥𝑥4 +

5
6
𝑥𝑥2 +

3
8

+ �
1

2𝑥𝑥
𝑢𝑢(𝑡𝑡)2𝑑𝑑𝑑𝑑

𝑥𝑥

0
, (43) 

with exact solution 𝑢𝑢(𝑥𝑥) = 𝑥𝑥2 + 1
2
. 

The numerical results for above example are presented in Table 6. In this table, numerical results 
for both IBCM and BCM are presented for 𝑁𝑁 = 11 and they are compared with the results reported 
in [23]. According to this table the accuracy of the suggested method is more than the method of [23]. 
Thee error of IBCM is plotted in Figure 3 for 𝑀𝑀 = 5 and 𝑁𝑁 = 11. 

Table 6. Numerical results for example 3. 

𝑥𝑥 
𝑁𝑁 = 11 Tau-collocation method [23] 

for 𝑁𝑁 = 11  IBCM (𝑀𝑀 = 5) BCM 

0 2.8147 e-15 1.3193 e-14 2.2046 e-11 

0.2 1.0679 e-16 9.5633 e-15 1.8409 e-11 

0.4 1.7370 e-16 1.0877 e-14 8.5021 e-12 

0.6 1.7400 e-16 1.0815 e-14 1.8216 e-13 

0.8 9.5338 e-17 9.7200 e-15 2.8661 e-13 

1 1.1892 e-16 1.3953 e-14 4.8397 e-12 
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Figure 3. The absolute error of the IBCM with 𝑀𝑀 = 5 and 𝑁𝑁 = 11 for example 3. 

Example 4. Regard the following nonlinear the second kind VIE [41]. 

𝑢𝑢(𝑥𝑥) = sin(𝜋𝜋𝜋𝜋) + � sin(𝜋𝜋𝜋𝜋) cos(𝜋𝜋𝜋𝜋)𝑢𝑢(𝑡𝑡)3 𝑑𝑑𝑑𝑑
𝑥𝑥

0
, (43) 

with exact solution 𝑢𝑢(𝑥𝑥) = sin(𝜋𝜋𝜋𝜋) + 20−√391
3

cos(𝜋𝜋𝜋𝜋). 
The numerical results for this example are presented in Tables 7 and 8. In Table 7, exact and 

approximate solutions of Eq. (43) by IBCM and Modification of hat functions [41] are presented. 
Comparison the results shows that IBCM is more accurate. In Table 8, the absolute errors of the IBCM 
with 𝑀𝑀 = 10 are compared with those of the BCM for 𝑁𝑁 = 5. Investigating this table reveals that in 
both methods, the higher the polynomial degree (𝑁𝑁), the higher the accuracy. On the other hand, the 
IBCM is more accurate than the BCM. Thee error of IBCM is plotted in Figure 1 for 𝑀𝑀 = 10 and 𝑁𝑁 =
10. 

Table 7. Comparison of exact solution and approximate solution of example 4. 

𝑥𝑥 Exact solution 
IBCM(𝑀𝑀 = 10 and 

𝑁𝑁 = 5) 

Modification of hat 

functions [41] 

0.1 0.3807520 0.3807520 0.3807489 

0.2 0.6488067 0.6488067 0.6488007 

0.3 0.8533517 0.8533517 0.8533529 

0.4 0.9743646 0.9743646 0.9743612 

0.5 1.0000000 1.0000000 1.0000000 

0.6 0.9277484 0.9277484 0.9277518 

0.7 0.7646823 0.7646823 0.7646811 

0.8 0.5267638 0.5267638 0.5267698 

0.9 0.2372820 0.2372820 0.2372851 
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Table 8. The absolute error of the IBCM and BCM with 𝑁𝑁 = 5 for example 4. 

𝑥𝑥 IBCM (𝑀𝑀 = 10) BCM 

0.1 3.1892 e-8 1.1337 e-5 

0.2 3.1164 e-8 1.2295 e-6 

0.3 2.9999 e-8 9.4557 e-6 

0.4 2.8363 e-8 9.5335 e-6 

0.5 2.6204 e-8 1.0443 e-6 

0.6 2.3438 e-8 7.8075 e-6 

0.7 1.9935 e-8 9.0435 e-6 

0.8 1.5477 e-8 6.9274 e-7 

0.9 9.7004 e-9 7.9773 e-6 

 

Figure 3. The absolute error of the IBCM with 𝑀𝑀 = 10 and 𝑁𝑁 = 10 for example 3. 

6. Conclusions 

In this work, an improved collocation method based on the Bernoulli polynomials was presented 
to solve the VIE of the second kind. In classic collocation methods, regardless of the type of 
polynomial used, collocation points are scattered throughout the whole interval and numerical 
computations are performed at once on the given interval. The main goal of the suggested method is 
to improve the results of the classic BCM by dividing the interval into some sub-intervals and 
considering the collocation points on each of them. Here, the zeros of the SCPs are considered as 
collocation points. Then, BCM is applied step by step from the first sub-interval to the last one. By 
this process, a system of algebraic equations is attained for each sub-interval which can be lightly 
solved using computing software. At last, the approximate solution is obtained as a piece-wise 
function. Convergence of the scheme was also analyzed. Several numerical examples are presented 
in order to illustrate the validity, applicability, and efficiency of the suggested method. Numerical 
results show that in both methods, the higher the accuracy. On the other hand, IBCM is more accurate 
than the BCM. The precision of the IBCM can be ameliorated by adding the number of subintervals 
while the degree of the polynomial is fixed. We suggest that to test idea on other kinds of collocation 
methods. 
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