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Abstract: In this work, an improved collocation method based on the Bernoulli polynomials is presented to
solve the Volterra integral equation (VIE) of the second kind. The main idea of the proposed method is to
improve the results of the classic Bernoulli collocation method (BCM) by dividing the interval into some sub-
intervals and considering the collocation points on each of them. Here, the zeros of the shifted Chebyshev
polynomials (SCPs) are considered as collocation points. Then, BCM is applied step by step from the first sub-
interval to the last one. By this process, a system of algebraic equations is attained for each sub-interval that
could be easily solved. Convergence of the scheme is analyzed. For the purpose of demonstrating the validity,
applicability, and efficiency of the suggested scheme several numerical examples are provided. Numerical
results illustrate that the accuracy of the improved Bernoulli collocation method (IBCM) is more than BCM.

Keywords: Bernoulli polynomials; shifted Chebyshev polynomials; Bernoulli collocation method
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1. Introduction

Most of the problems of science and technology can be treated with the aid of theories of
ordinary and partial differential equations (PDEs). However, there are better methods called the
theory of integral equations to solve these problems. Years ago, these types of equations were a hot
topic in the minds of mathematicians. If the unknown function is given inside the integration symbol
in an equation, it is named an integral equation, which is regarded as a common type of functional
equation. The theory of integral equations is one of the most operative mathematical tools for solving
problems in pure and applied mathematics, mathematical physics, mechanical vibrations, and fields
related to science and technology. However, the real development of the theory of integral equations
started with the attempts of the Italian mathematician Vito Volterra and the Swedish mathematician
Fredholm. Volterra was the first person who realized the significance of the theory of integral
equations and systematically paid attention to it. In 1896, he presented the first general scheme for
solving a category of linear integral equations characterized by a variable that appears at the upper
bound of the integral. Interest in VIEs has been growing in recent years. These equations arise in
many physical applications, for example see [1-12]. Here, a numerical scheme based on Bernoulli
polynomials is developed to solve VIEs of the second kind.

Bernoulli polynomials have a significant role in many areas of mathematical analysis, like the
theory of modular forms [14], the theory of distributions in p-adic analysis [13], the polynomial
expansions of analytic functions [15], and so on. Some applications of these polynomials in
mathematical physics are related with the theory of the KdV equation [16], solving Lamé equation
[17], and in the field of vertex algebra [18].

The collocation method as a numerical method for solving all kinds of functional equations and
real world problems has always been the interest and attention of mathematicians. Many authors
have presented different kinds of collocation method during past decades. For example, Doha et al.
[19] proposed a Jacobi-Gauss—-Lobatto collocation scheme, used in relationship with the fourth order
implicit Runge-Kutta method as a numerical algorithm for approximating solutions of nonlinear
Schrédinger equations (NLSE). Nemati [20] solved Volterra—Fredholm integral equations applying
Legendre collocation method. His method is based upon shifted Legendre polynomials
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approximation. Then, utilizing the shifted Gauss-Legendre as collocation nodes reduces the
Volterra—Fredholm integral equations to the solution of a matrix equation. Mirzaee and Hoseini [21]
proposed a new matrix method on the basis of Fibonacci polynomials and collocation points for
numerically solving the Volterra—Fredholm integral equations. Ren and Tian [22] proposed a scheme
to solve a boundary value problem for Kirchhoff type of nonlinear integro-differential equation
numerically. Gouyandeh et al. [23] by using the Tau-Collocation method approximated solution of
the nonlinear Volterra-Fredholm-Hammerstein integral equations. Aziz et al. [24], based on Haar
wavelet, provided a new collocation method for numerical solution of 3D elliptic PDEs with Dirichlet
boundary conditions. Celik [25], by utilizing Chebyshev wavelet collocation method, studied free
vibration problems of non-uniform Euler-Bernoulli beam under different supporting conditions.
Samadyar and Mirzaee [26] presented orthonormal BCM to approximate the linear singular
stochastic It6-VIEs. Bicer and Yalginbas [27] an approximate solution of the telegraph equation
applying BCM. Aljjani et al. [28] investigated systems of fuzzy fractional differential equations
numerically with a lateral type of the Hukuhara derivative and its generalization. Wang et al. [29]
presented a new collocation method for evaluating the 2D elliptic PDEs. Singh [30] used Jacobi
collocation method to solve the fractional advection-dispersion equation arising in porous media.
Kumbinarasaiah et al. [31] presented an integration operational matrix applying the Bernoulli
wavelet and suggested a new scheme named the Bernoulli wavelet collocation method (BWCM). In
[32], the authors investigated a space-time Sinc-collocation method for treating the fourth-order
nonlocal heat model appearing in viscoelasticity. Laib et al. [33], based on the using Taylor
polynomials, suggested an algorithm to construct a collocation solution for approximating the
solution of 2D-VIEs. Wang et al. [34], by utilizing the zeros of Chebyshev polynomial as collocation
points, proposed a new collocation method to solve the second kind VIE.

In this work, based on Bernoulli polynomials, a new collocation method is suggested to
approximate numerically VIEs of the second kind. The main goal of the suggested scheme is to
improve the results of the classic BCM by dividing the interval into some sub-intervals and
considering the collocation points on each of them. Here, the zeros of the SCPs are considered as
collocation points. Then, BCM is applied step by step from the first sub-interval to the last one. By
this process, a system of algebraic equations is attained for each sub-interval that could be easily
solved using computing software. At last, the approximate solution is obtained as a piece-wise
function. This idea is very effective. Although, we have tested this idea on BCM in this work but we
guess that all collocation methods mentioned above can be improved by this idea.

The rest of the paper is organized as follows. In section 2, Bernoulli polynomials are introduced
and their features are stated. In section 3, the proposed scheme is explained. The convergence analysis
is discussed in in section 4. In section 5, numerical results are presented. At last, conclusions are given
in section 5.

2. Bernoulli Polynomials

The traditional Bernoulli polynomials B, (t) is often characterized by the following exponential
generating functions [35]:

sesX sk
ooy = 2z=0 Bz(0) 7. o)
The Bernoulli polynomials of nth degree are determined in the interval [0,1] as follows [36]
N
By = > (M)Bav, 2
z=0

where B, = B,(0) is the Bernoulli number for each k = 0,1, ... N. We write some polynomials like
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Bernoulli polynomials have following important properties [37].

© —By(x) =NBy_,(x),N 2 1.
e By(x+1)—By(x)=NxN"1,
. folBN(x)dx =0,N > 1.

MIN!
(M+N)! N+M-

y folBN(x)BM(x)dx = (=M1

o J2By(Dde = 2alrona

e By(l—-x)= (_1)NBN(x)-

2.1. Function Approximation
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A square integrable function u(t) can be expressed according to of Bernoulli polynomials as

u(t) = Z U;B;(t),
i=0

and the truncated series is
ii(x) = XLy UiBi(x) = UTB(x),

where

®3)
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U=[Uy Uy Uy .. Uyl @

is the vector of unknown coefficients and

B(x) = [Bo(x) Bi(x) B(x) .. By, ®)
is the vector of Bernoulli polynomials.

3. Description of the Proposed Scheme

In this section, the proposed scheme is described to deal with the VIEs of the second kind. The
main purpose of the suggested method is to improve the results of the classic collocation method by
dividing the interval into some sub-intervals and applying the collocation method in each of them.

3.1. Solving VIEs of the Second Kind by BCM
Regard the following VIE of the second kind.

ulx) =f(x) + fx k(x, t)N(u(t))dt, x € [0,1], (6)
0

where u is the unknown function, while f and the kernel k are known functions, and N is a given
continuous function which is nonlinear with respect to u.
Substituting Eq. (3) in Eq. (6) leads to

M x M
UiBi = k ) N UiBi dt. 7
; ) = F(x) + fo (x, ) (Z (t)) ¢ )

Now, we use the collocation method to determine unknowns U;, i = 1,...,M.Let ¢, k=1,..,.M
be the collocation points. Here, we apply the zeros of SCPs of degree M in the interval [0,1] as
collocation points. For example for M =3, the collocation points are c¢; = 0.0670, c, =0.5,
c3 =0.9330. Then, we will a system of nonlinear algebraic equation that could be easily solved
computer software.

In the case of N(u(t)) = u(¢), that is the equation is linear, by rearranging this equation in terms
of U;, we have

M X
Z (Bi(x) - f k(x, t)Bi(t)dt> U, = f(). ®
i=1 0

By substituting collocation points ¢, k = 1,...,M in Eq. (8) we get
M Ck
z (Bi(ck) —f k(cr, t)Bi(t)dt> Ui=f(c), k=1,...,M. ©)
i=1 0

The last equation is a system of M algebraic equations with unknown coefficients U;, i =
1,...,M that could be stated in the following matrix form.

AU =F,
In which
B (cy) —j 1k(C1: t)B,(t)dt -+ Bylcy) —j 1k(C1: t)By (t)dt
0 0
A= : X : A
By (en) — f k(e OBy (D)t Bulca) — f k(cur ) By (D)dt
0 0

vector U is defined as Eq. (4) and

d0i:10.20944/preprints202405.1602.v1
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Fl = [f(C1)'f(Cz)' ""f(CM)]T-

3.2. Solving VIEs of the Second Kind by IOBCM

In order to apply the idea of the suggested scheme, first we divide the interval [0,1] into N sub-
intervals as I; = [(j — 1)h, jh] where h = % Then, we consider the approximation of u by Bernoulli
polynomials of degree M in each sub-interval as follows.

M
u(x) = Z U jBi(x) =B(x)U;, x€l;, j=1,..,N, (10)
i=1
where U;j, i =1,..,M,j = 1,...,N, are unknown coefficients to be determined and B(x) is define as
Eq. (4) and
T .
Uy =[U;,Usj, ., U], j=1,..,N. an

According to Eq. (10), the approximate solution is considered as a piece-wise function in the
proposed method.

In general, there are MN unknowns, U;1,Uz 1, ..., Uy 1, o, Uy, Uz 1,y o, Uy iy, to be determined.
To find these unknowns, we do as follows.

For finding the unknowns U; 3, U, , ..., Uy 1, suppose that x € I;. Then, according to Eq. (10) the
approximate solution in the interval I, = [0,h] is

M
u(x) = Z Ui1Bi(x). (1)
i=1

Substituting Eq. (12) in Eq. (6) leads to

M x M
Ui 1Bi = k ) N Ui 1Bi dt.
; 1Bi(x) = f(x) + fo (x,t) (Z , (t)> ¢ 13

We use the collocation method to determine unknowns U;;, i =1,..,M. Let ¢4,k =1,..,.M
be the zeros of SCPs of degree M in the interval [0, k] as collocation points. For example for M = 3,
and N =4 the collocation points are ¢;; = 0167, ¢, = 0.1250, c¢3; = 0.2333, c¢;, = 0.2667,
Cy2 = 03750, 3, =0.4833, ¢;53= 05167, cp3 = 0.6250, c35 =0.7333, 1, = 0.7667, Cp4 =
0.8750, ¢34 = 0.9833. Then, a system of nonlinear algebraic equation is produced that could be easily

solved.
In the case of N (u(t)) = u(t), that is the equation is linear, equation (13) could be stated as
follows.
M X
> (Bl(x) - f kG, t)Bi(t)dt> Ups = f(0). 04
; 0
i=1

By substituting collocation points ¢, ,,k = 1,...,M in Eq. (13) we will have
M

z (Bi(ck'l) ~ J;) k'lk(ck,l,t)Bi(t)dt> Ui, = f(Ck,1)- (15)

i=1
This equation is a system of M algebraic equations with unknown coefficients U;,, i = 1,..,M
which can be written in the following matrix form.
AUy = F,
In which
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€11 C1,1
By(c1y) - j k(cir £)By(Ddt Bu(cir) - f k(co ©)By(D)dt
0 0

)

A1=

CM,1' CM,1'
Bi(cma) — f k(cmq,t)By(t)dt Bu(cma) — f k(ca1, t) By (t)dt
0 0

vector U; is defined as Eq. (11) for j =1 and

F = [f(C1,1)»f(C2,1)' ---'f(CM,l)]T'

By using the coefficients U;;, i =1,..., M which have been determined in the previous stage,
we can find the unknowns U;,, i =1,...,M as follows.
Suppose that x € I,. Then, Substituting Eq. (10) for j = 2 in Eq. (6) gives

M h M
Bi(X)Ui’ = f(X) + k(x, t) ( Bi(t)Ui’ >dt
2, B =10+ | 400 [ 5400
x N
+ jh k(x, £) (Z Bi(t)Ul-,2> dt.

This equation can be written as follows.

M X
Z <Bi(X) — f k(x, t)Bi(t)dt> Ui
i=1 h
h M
= k(x, U;1B; dt.
f(x)+f0 (x t)(; , (t)) t

Let ¢y, k=1,..,M be the zeros of SCPs of degree M in the interval [h,2h] as collocation
points. Substituting the collocation points in Eq. (17) leads to the following relation.

M

Z <Bi(ck’2) - fh k'zk(cklz, t)Bi(t)dt> Uss

i=1
h M
= k ) UilBi dt.
flee)+ [ Koz (Z | (t>)t

This equation is a system of M algebraic equations with unknown coefficients U;,, i = 1,...,M.

(16)

an

(18

This system could be stated in the following matrix form.
AUy = F5,

where

C1,2

By(c1,) - j k(cia )By (Dt
h

Az = CM'Z:

By(cw) — f k(cu 20 £) By (D)dt
h

vector U, is defined as Eq. (11) for j = 2 and

C1,2
Bu(cis) - j k(ciz £)Bu(D)dt
h

CM,Z-
Bu(cua) — f k(cuzr £) Bu(D)dt
h


https://doi.org/10.20944/preprints202405.1602.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 May 2024 d0i:10.20944/preprints202405.1602.v1

h M
fler) + fo k(cy2t) (Z Ui,ZBi(t)> dt

h - M
flemz) + fo k(cmz t) (Z Ui,zBi(t)> dt

Now, we can present a general formula to find the unknowns in in the interval I; =

[( = Dh, jh].
Suppose that x € I;. Then, according to Eq. (12) the approximate solution in the interval I; is

F2=

M
u(x) = Z Uy ;Bi(x). (19)
i=1

By substituting Eq. (19) in Eq. (6) we will have

M h M
Z B.(x)U;; = f(x) + f k(x, ) (Z UillBi(t)> db + -
i=1 0 i—1

(G-Dh M x M
n f( k(x,0) (Z Ui,,-_lBi(t)> dt + f k(x,0) (Z Ui,]-Bi(t)> dt,

j—2)h (j-1h

This equation would be stated as follows.

M X
Z <Bi(x) - f k(x, t)Bi(t)dt> Ui

= G-Dh

h M
=f()+ j k(x,t) (Z Ul-,lBi(t)) dt + - 20)
0 i=1

(-Dh M
+ f k(x, ) Zui,j_lgi(t) dt.
(-2)h —~

Let ¢ j,k =1,..,M be the zeros of SCPs of degree M in the interval I; as collocation points.
Substituting the collocation points in Eq. (20) yields

M Chi
Z (Bi(ck,j) — k(ck,jr t)Bi(t)dt> Ui,j
—~ G-Dh

n M
= f(ck,j) + L k(Ck'j, t) (z Ui,lBi(t)> dt + -

G-Dh u
+ -]- k(Ck‘j, t) Z Ui,]'—lBi(t) dt.
( i=1

j—2)h

This equation is a system of M algebraic equations with unknown coefficients U; j, i =1, .., M.
It has the following matrix form.

A;U; = F,

where


https://doi.org/10.20944/preprints202405.1602.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 May 2024 d0i:10.20944/preprints202405.1602.v1

8
- C1,j C1,j h
Bl(CLj) - . k(Cl'j, t)Bl(t)dt ot BM(CI,]) - ' k(CLj, t)BM(t)dt
(=D . G-Dh
4; = - : . - : )
Bl(CM,j) - . k(CM,j' t)Bl(t)dt BM(CM,]) - ' k(CM,j' t)BM(t)dt
. (-Dh -Dh .

vector U; is defined as Eq. (11) and

j-1 rh M

flens) + ; j;r—l)h k(cyjht) (; Ui,rBi(t)> dt
71 Th | M

fem;) + ; j;r—l)h k(cm,jt) (; Ui,rBi(t)> dt

Therefore, if we continue this process step by step and find the unknowns in the next
subintervals using the coefficients which have been determined so far, then all unknowns will be

F}.:

obtained finally.
For finding the unknowns in the last interval, suppose that x € Iy. Then according to Eq. (10)
the approximate solution in this interval is

M
u(x) = Z Uy wBi(x). e
i=1

Substituting Eq. (21) in Eq. (6) gives

M N v
Bi(X)U;y = f(x)+ | k(x,t) ( U;, Bi(t)> dt + -
2, B0 =+ | ks (3 U

(N-1)h M
+ f k(x, 0) (Z Ui,N_lgi(t)> dt
( i=1

N-2)h

x M
4 f( - k(x, t) (Z Ui,NBl-(t)) dt.

This equation can be written in terms of U;y as follows.

M X
Z (Bi(x) - f k(x, t)Bi(t)dt> Uin
: (N-1)h
h M
=f)+ | k(x t)( U; Bi(t)> dt + - @2)
J, o2

=1
(N-1)h M
+ j k(x, £) (Z Ui,N_lBi(t)> dt.
( i=1

N-2)h

Let ¢y, k =1,..,M be the zeros of SCPs of degree M in the interval Iy as collocation points.
By substituting these points in Eq. (22) we will have
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u Ck,N
D <Bi(ck,,v) ™ ke t)Bi(t)dt> o

pr (N-1)h

h M
= f(cin) + fo k(cin t) (Z Ui,lgi(t)) dt + -

(N-1)h M
+ f k(crn,t) (Z Ui,N—lBi(t)) dt.
(N-2)h pr

This equation is a system of M algebraic equations with unknown coefficients U;y, i =1,..,M
which can be stated in a matrix form as follows.

AyUy = Fy,
In which
Ay
- C1,N C1,N T
Bl(cl,N) - k(cl,N' t)Bl(t)dt BM(CM,N) - k(cl,N' t)BM(t)dt
(N-1)h (N-1)h
B CM,N : ' CM,N ' ,
Bl(CM,N) - k(CM,N' t)Bl(t)dt BM(CM,N) - k(CM,N' t)BM(t)dt
| (N-1)h (N-1)h |

vector Uy is defined as Eq. (11) for j = N and

N-1 rh M
Flew)+ Y f( ) (Z ui,Bi(t)> dt

Fy = :
N-1 rh M
)+ D[ kleunt) (Z Ui,Bi(t)> dt
r=1 " (=1 i=1
Eventually, we can calculate the solution by the following piece wise function.
( M
z Ui1Bi(x), x€1,
i=1
M
a=1) VB, xeb, .
i=1

y :
Z UnBi(x), x €Iy,

\im1

where # is the approximation of the exact solution u.

4. Convergence Analysis

Here, the convergence of the suggested scheme is discussed. For this purpose, we first recall one
of the important theorems related to the residual interpolation error by Chebyshev nodes.
Theorem 1. Let u be a sufficiently smooth function on I =[0,1] and II);, be the space of
polynomials of order M. Also, let Py €I, be the interpolating polynomials of u at points
€y, ., Cy+1 Which are the zeros of the SCP of degree M + 1 on I. Then, the following relation is
established.

d0i:10.20944/preprints202405.1602.v1
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aM+1 M
w() = Py() = s (;(j? o 1_[ (t—c), o
i=0

where & € 1.
Proof. [38].
According to the last theorem, we can write

(®) — P (6] < ma |2 O T It =i .
u — S max 25
® = POl = max |55 | "+ 1
Now, Assume that
aM+1u(t) - o6
max [———| = 7. 26
X€l dxM+1 1

Applying this upper bound to Eq. (25) and considering the approximations for Chebyshev
interpolation nodes [39] leads to

Ui
u(t) — Py(t)| < :
Theorem 2. Suppose that i defined in Eq. (3), be the best approximation of real sufficiently smooth
function u by Bernoulli polynomials. Then a real constant 1 exists such that

. o U

lu(t) —a(@l, < O + D)1 2297 28)
Proof. According to the definition, @ is the best approximation of u provided that

vo(t) € ly; lu() —a@l, <l u(t) —v(@) l.. (29)

Particularly, if v(t) = Py(t) then according to Eq. (27), we get

@7

1
@ - GO <l - P12 = | u@ - Pyl de

(30)

= jol [(M + 17)7! 22M+1]2 dt = [(M + 17)7! 22M+1]2'

Hence, Eq. (28) is proved.
According to Eq. (28), it can be written

1
() = 5O, = 0 Gy o

- 0 when M - oo which implies that % — u. Therefore, the collocation method

1
So, (M+1)122M+1
based on the Bernoulli polynomials is convergent.
Theorem 3. Assume that u,,; be the approximate solution of Eq. (6) in the interval I; = [(j — 1)h, jh],
and

(1= LiA) (1 — LpAy) ... (1 — Lja;) > 0.,

where j =1, ....,N. Also, the nonlinear term satisfies the Lipschitz condition as follows:
”N(u(x)) - N (uM'j(x))” < Lj||u(x) — uM'j”. (32)
Then, there is an upper error bound as follows.

A
(1-2)A-2y)...(1-2)

lut) —up; (@) < (33)

where


https://doi.org/10.20944/preprints202405.1602.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 May 2024 d0i:10.20944/preprints202405.1602.v1

11

max|k(x,t)| = 4, x €] (34)
Proof. The approximate solution of Eq. (6) in the interval I; could be stated as
X
1 () = F() + j kG, ON (up 1 () . 39
0
From Egs. (6) and (35), we get

() — Uupg 1 (%) = fo ko) <N(u(t)) _N (uM,l(t))) dy.
Then, we have

) = wp 2 GOl < Lallke G, ONu®) — wup,1 (O]
By using Eq. (34), for i = 1, we have

flux) — uM,1(x)|| < LiAgfJu(x) - UM,1(x) [

So,
llueCx) (ol < — 36)
ux)—u MNs—-— 36
M1 1 - L1/11
Now, regard the approximate solution of Eq. (6) in the interval I,as follows.
h x
wy 2 (%) = F(x) + f k(x, t)N (uM,l(t)) dt + f k(x, )N (uM,2 (t)) dt. 7
0 h

From Egs. (6) and (36), we get
u(x) — upy,2(x)

= fohk(x, t) (N(u(t)) —N (uM,l(t))) dt
2h
+kaQJWN@@D—NOWAQDdL

Then, we have

() = um,2 (Ol < Mk e, )N Cx) = up,2 CON + ke Ce, Oulx) = g2 (O]
Using Eq. (34), for i = 2 and also Eq. (36) leads to

1) = 4y (O < s (7 ) + LoAallu®) = w2 O

Therefore, we have

1
1—LA,

o) = a2 (Ol < et =
ux)—u X)) = .
"2 (1—-L1A)(1 - L1 A3)
For the approximate solution of Eq. (6) in the interval I; we can write
h 2h
(@) = £+ [ KRG ON (wa @) de+ [ kG ON (uaga0)) de

X
+ | kG ON () at.
2h
From Egs. (6) and (36), we can write

u(x) — up3(x)
h
- j k(x,t) <N(u(t)) —N (uM,l(t))) dt
Oon
+Lkmo@@@yw@mwnﬁ
+ Lx k(x,t) <N(u(t)) —N (uM,g(t))) dt.

h
Then, we have
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llu(x) — uM,3(x)ii
< LyllkCe, Ow() — up, 1 (O + L llk Ce, O Nlu(e) — wupy 2 (O]

+ Lallk (x, )lllu(t) — upz (@)l
Using Eq. (34), for i = 3 and also Eq. (38) leads to

L4y L1232
— < —
lu(x) —ums ()l < 1L, + A-1)(1-1) + A3l[u(®) —uy s @l

S -z FIE T sl

Finally, we have
L1

L (Y W ey W S Ry W) “

By comparing the upper error bounds obtained in previous steps, it can be concluded that an

upper error bound for uy ; is as follows:
L1244
(1= L) (A — LyAy) .. (1 — Ljay)

() = up,; () <

Therefore, Eq. (33) is established.

5. Numerical Results

In this section, several examples are presented to demonstrate the validity, applicability, and
efficiency of the suggested scheme. Whole the numerical calculations were carried out utilizing
Matlab software (R2018b).

Example 1. Consider the following linear the second kind VIE [40].

X
u(x) = cosx —e*sinx + f e*u(t)dt, @n
0
with exact solution u(x) = cos x.

The numerical results for example one are presented in Tables 1-3. In Table 1, the absolute errors
of the IBCM with M =5 are compared with those of the BCM for two different values of N (N = 3
and = 5) at five points in the interval [0,1]. Tables 2 and 3 present comparisons similar to what has
been presented in Table 1. Although, in these tables, the number of subintervals in the IBCM is
increased. In Table 2, M is 10 while in Table 3, it is doubled. Investigating Tables 1-3 reveals that in
both methods, the higher the polynomial degree (N), the higher the accuracy. On the other hand, the
IBCM is more accurate than the BCM. For example, for N = 5, the order of error in the IBCM with
M = 20 (Table 3) is e-12 while the order of error in the BCM is e-3 (Table 1). In Table 3, for N =7,
the order of error in the IBCM is e-16 while the order of error in the BCM is e-8.

The precision of the IBCM can be ameliorated by adding the number of subintervals, M while
N is fixed. For example, for N = 5, the order of error in the IBCM with M = 5 (Table 1) is e-9 while
it is e-10 and e-12 for M = 10 (Table 2) and M = 20 (Table 3), respectively. Thee error of IBCM is
plotted in Figure 1 for M =20 and N =7.

This equation was solved in [12] by Bernstein’s approximation. The authors computed errors for
n=2,..,9 where n is the polynomial degree. The order of error was e-10 for n = 9 while in our
propose method, the order of error is e-16 for n = 7.

Table 1. The absolute error of the IBCM with M =5 and BCM for example 1.

N=3 N=5

IBCM BCM IBCM BCM

0.15 4.5550 e-6 1.7512 e-3 2.1507 e-10 6.0265 e-6
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0.35 1.2274 e-5 2.7788 e-3 8.2472 e-10 7.7318 e-6
0.55 1.9155 e-5 7.9400 e-4 1.3400 e-9 3.1127 e-6
0.75 2.4561 e-5 7.4072 e-4 1.8279 e-9 6.0874 e-6
0.95 2.7405 e-5 2.9919 e-3 2.2953 e-9 3.2830 e-6
Table 2. The absolute error of the IBCM with M = 10 and BCM for example 1.
N=3 N=5
* IBCM BCM IBCM BCM
0.1 3.2037 e-7 7.5868 e-4 9.4060 e-11 8.0179 e-6
0.2 8.2926 e-7 2.4247 e-3 2.5412 e-10 1.6861 e-6
0.3 1.3229 e-6 2.9075 e-4 4.1141 e-11 6.2700 e-6
0.4 1.8168 e-6 2.4544 e-3 5.6437 e-11 7.0803 e-6
0.5 2.2875 e-6 1.4077 e-4 7.1154 e-11 9.1337 e-7
0.6 2.7390 e-6 2.0181 e-4 8.5158 e-11 6.5449 e-6
0.7 3.1703 e-6 6.4116 e-4 9.8331 e-11 8.4324 e-6
0.8 3.5826 e-6 5.1679 e-4 1.1058 e-10 1.9262 e-6
0.9 3.9812 e-6 1.2557 e-3 1.2185 e-10 9.6383 e-6

Table 3. The absolute error of the IBCM with M = 20 and BCM for example 1.

IBCM BCM

* N=5 N=7 N=7
0.1 4.0059 e-13 2.2043 e-16 3.0790 e-9
0.2 9.0170 e-13 1.0987 e-16 1.1425 e-8
0.3 1.3914 e-12 2.4797 e-16 2.2238 e9
0.4 1.8717 e-12 1.8339 e-16 1.2202 e-8
0.5 2.3303 e-12 1.9098 e-16 1.8206 e-9
0.6 2.7679 e-12 2.8180 e-16 1.0911 e-8
0.7 3.1737 e-12 1.2333 e-15 3.8603 e-9
0.8 3.5513 e-12 2.2374 e-15 1.1863 e-9
0.9 3.8946 e-12 3.2271 e-15 6.6650 e-11
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Figure 1. The absolute error of the IBCM with M = 20 and N = 7 for example 1.

Example 2. Regard the following nonlinear the second kind VIE [23].

X

1

u(@) = e* 3 (¥ +1) + f u(®)3dt, @)
0

with exact solution u(x) = e*.

The results for the above example are presented in Tables 4 and 5. In Table 4, the absolute errors
of the IBCM with M = 10 are compared with those of the BCM for two different values of N (N = 4
and = 6 ). Investigating this table reveals that in both methods, the higher the polynomial degree
(N), the higher the accuracy. On the other hand, the IBCM is more precise than the BCM. In Table 5,
numerical results for both IBCM and BCM are presented for N = 8 and they are compared with the
results reported in [23]. According to this table the accuracy of the suggested method is more than
the method of [23]. Thee error of IBCM is plotted in Figure 2 for M =5 and N = 8.

Table 4. The absolute error of the IBCM with M = 10 and BCM for example 2.

N=4 N=6
* IBCM BCM IBCM BCM
0.1 3.1892 e-8 2.8966 e-4 6.6974 e-13 5.4474 e-7
0.2 3.1164 e-8 3.2696 e-4 6.5893 e-13 4.4242 e-7
0.3 2.999 e-8 1.0663 e-4 6.4054 e-13 5.2662 e-7
0.4 2.8363 e-8 1.3136 e-4 6.1384 e-13 1.7092 e-7
0.5 2.6204 e-8 24239 e-4 5.7933 e-13 6.3315 e-7
0.6 2.3438 e-8 1.7382 e-4 5.3553 e-13 3.2899 e-7
0.7 1.9935 e-8 3.9408 e-5 4.8214 e-13 3.2364 e-7
0.8 1.5477 e-8 2.7993 e-4 4.1705 e-13 3.7016 e-7
0.9 9.7004 e-9 3.5403 e-4 3.3804 e-13 3.4501 e-7

Table 5. Numerical results for example 2.

N =38 Tau-collocation method [23]

IBCM (M = 5) BCM for N =15
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0 1.9404 e-15 7.3181 e-10 2.2046 e-11
0.2 1.8559 e-15 3.3474 e-10 1.8409 e-11
0.4 1.7551 e-15 1.0685 e-10 8.5021 e-12
0.6 1.6675 e-15 2.2912 e-11 1.8216 e-13
0.8 1.3226 e-15 1.5064 e-10 2.8661 e-13

1 1.3194 e-15 4.6726 e-10 4.8397 e-12

x107"°

0.2 03

0.4

0.5 0.6 0.7

0.8 09 1

Figure 2. The absolute error of the IBCM with M =5 and N = 8 for example 2.

Example 3. Regard the following nonlinear the second kind VIE [23].
*1
j —u(t)?dt,
0 2X

The numerical results for above example are presented in Table 6. In this table, numerical results
for both IBCM and BCM are presented for N = 11 and they are compared with the results reported
in [23]. According to this table the accuracy of the suggested method is more than the method of [23].
Thee error of IBCM is plotted in Figure 3 for M =5 and N = 11.

u(x) =

with exact solution u(x) = x? + §

1 5 3
——x*+-x?+-+

10

6 8

(43)

Table 6. Numerical results for example 3.

N =11 Tau-collocation method [23]
* IBCM (M = 5) BCM for N =11
0 2.8147 e-15 1.3193 e-14 2.2046 e-11
0.2 1.0679 e-16 9.5633 e-15 1.8409 e-11
0.4 1.7370 e-16 1.0877 e-14 8.5021 e-12
0.6 1.7400 e-16 1.0815 e-14 1.8216 e-13
0.8 9.5338 e-17 9.7200 e-15 2.8661 e-13
1 1.1892 e-16 1.3953 e-14 4.8397 e-12
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Figure 3. The absolute error of the IBCM with M =5 and N =11 for example 3.

Example 4. Regard the following nonlinear the second kind VIE [41].

u(x) = sin(mx) + f

X

0

with exact solution u(x) = sin(mx) +

20—v391

sin(mt) cos(mx)u(t)? dt,

2 cos(mx).

(43)

The numerical results for this example are presented in Tables 7 and 8. In Table 7, exact and
approximate solutions of Eq. (43) by IBCM and Modification of hat functions [41] are presented.
Comparison the results shows that IBCM is more accurate. In Table 8, the absolute errors of the IBCM
with M = 10 are compared with those of the BCM for N = 5. Investigating this table reveals that in
both methods, the higher the polynomial degree (N), the higher the accuracy. On the other hand, the
IBCM is more accurate than the BCM. Thee error of IBCM is plotted in Figure 1 for M = 10 and N =

10.

Table 7. Comparison of exact solution and approximate solution of example 4.

. Exact solution IBCM(M = 10 and Modification of hat
N =5) functions [41]
0.1 0.3807520 0.3807520 0.3807489
0.2 0.6488067 0.6488067 0.6488007
0.3 0.8533517 0.8533517 0.8533529
0.4 0.9743646 0.9743646 0.9743612
0.5 1.0000000 1.0000000 1.0000000
0.6 0.9277484 0.9277484 0.9277518
0.7 0.7646823 0.7646823 0.7646811
0.8 0.5267638 0.5267638 0.5267698
0.9 0.2372820 0.2372820 0.2372851
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Table 8. The absolute error of the IBCM and BCM with N =5 for example 4.

x IBCM (M = 10) BCM
0.1 3.1892 -8 1.1337 e-5
0.2 3.1164 -8 1.2295 e-6
0.3 2.9999 e-8 9.4557 e-6
0.4 2.8363 e-8 9.5335 e-6
0.5 2.6204 e-8 1.0443 e-6
0.6 2.3438 e-8 7.8075 e-6
0.7 1.9935 e-8 9.0435 e-6
0.8 1.5477 e-8 6.9274 -7
0.9 9.7004 e-9 7.9773 e-6
. 107°

Figure 3. The absolute error of the IBCM with M = 10 and N = 10 for example 3.

6. Conclusions

In this work, an improved collocation method based on the Bernoulli polynomials was presented
to solve the VIE of the second kind. In classic collocation methods, regardless of the type of
polynomial used, collocation points are scattered throughout the whole interval and numerical
computations are performed at once on the given interval. The main goal of the suggested method is
to improve the results of the classic BCM by dividing the interval into some sub-intervals and
considering the collocation points on each of them. Here, the zeros of the SCPs are considered as
collocation points. Then, BCM is applied step by step from the first sub-interval to the last one. By
this process, a system of algebraic equations is attained for each sub-interval which can be lightly
solved using computing software. At last, the approximate solution is obtained as a piece-wise
function. Convergence of the scheme was also analyzed. Several numerical examples are presented
in order to illustrate the validity, applicability, and efficiency of the suggested method. Numerical
results show that in both methods, the higher the accuracy. On the other hand, IBCM is more accurate
than the BCM. The precision of the IBCM can be ameliorated by adding the number of subintervals
while the degree of the polynomial is fixed. We suggest that to test idea on other kinds of collocation
methods.


https://doi.org/10.20944/preprints202405.1602.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 May 2024 d0i:10.20944/preprints202405.1602.v1

18

References

1.  Bartoshevich MA. On a heat conduction problem. Inz- Fiz Z 1975;28:340-6.

2. Yousefi SA. Numerical solution of Abel’s integral equation by using Legendre wavelets. Appl Math
Comput 2006;175:574-80.

3.  Galdi GP, Pileckas 2 K, Silvestre AL. On the unsteady Poiseuille flow in a pipe. Z Angew Math Phys
2007;58:994-1007.

4.  Baratella P. A Nystrom interpolant for some weakly singular linear Volterra integral equations. Comput
Appl Math 2009;231:725-34.

5. Ding HJ, Wang HM, Chen WQ. Analytical solution for the electroelastic dynamics of a nonhomogeneous
spherically isotropic piezoelectric hollow sphere. Arch Appl Mech 2003;73:49-62.

6. Kit GS, Maksymuk AV. The method of Volterra integral equations in contact problems for thin-walled
structural elements. ] Math Sci1998;90(1):1863-7

7. Maleknejad K, Aghazadeh N. Numerical solution of Volterra integral equations of the second kind with
convolution kernel by using Taylor-series expansion method. Appl Math Comput 2005;161(3):915-22.

8.  Maleknejad K, Tavassoli Kajani M, Mahmoudi Y. Numerical solution of linear Fredholm and Volterra
integral equations of the second kind by using Legendre wavelet. Kybern Int ] Syst Math
2003;32(9/10):1530-9.

9. Babolian E, Davari A. Numerical implementation of Adomian decomposition method for linear Volterra
integral equations of the second kind. Appl Math Comput 2005;165:223-7.

10. Rashidinia J, Zarebnia M. Solution of Voltera integral equation by the Sinc-collection method. ] Comput
Appl Math 2007;206(2):801-13.

11. Saberi-Nadjafi J, Heidari M. A quadrature method with variable step for solving linear Volterra integral
equations of the second kind. Appl Math Comput 2007;188(1):549-54.

12. Tahmasbi A. A new approach to the numerical solution of linear Volterra integral equations of the second
kind. Int ] Contemp Math Sci 2008;3(32):1607-10.

13. Monsky P. p-adic Analysis and Zeta Functions. Kinokuniya; 1970.

14. Zagier D. Introduction to modular forms. InFrom number theory to physics 1992 (pp. 238-291). Berlin,
Heidelberg: Springer Berlin Heidelberg.

15. Boas RP, Buck RC. Polynomial expansions of analytic functions. Springer Science & Business Media; 2013
Jun 29.

16. Fairlie DB, Veselov AP. Faulhaber and Bernoulli polynomials and solitons. Physica D: Nonlinear
Phenomena. 2001 May 15;152:47-50.

17. Grosset MP, Veselov AP. Elliptic Faulhaber polynomials and Lamé densities of states. International
Mathematics Research Notices. 2006 Jan 1;2006:62120.

18. Doyon B, Lepowsky ], Milas A. Twisted vertex operators and Bernoulli polynomials. Communications in
Contemporary Mathematics. 2006 Apr;8(02):247-307.

19. Doha EH, Bhrawy AH, Abdelkawy MA, Van Gorder RA. Jacobi-Gauss-Lobatto collocation method for the
numerical solution of 1+ 1 nonlinear Schrédinger equations. Journal of Computational Physics. 2014 Mar
15;261:244-55.

20. NematiS. Numerical solution of Volterra-Fredholm integral equations using Legendre collocation method.
Journal of Computational and Applied Mathematics. 2015 Apr 15;278:29-36.

21. Mirzaee F, Hoseini SF. Application of Fibonacci collocation method for solving Volterra—Fredholm integral
equations. Applied Mathematics and Computation. 2016 Jan 15;273:637-44.

22.  Ren Q, Tian H. Numerical solution of the static beam problem by Bernoulli collocation method. Applied
Mathematical Modelling. 2016 Nov 1;40(21-22):8886-97.

23. Gouyandeh Z, Allahviranloo T, Armand A. Numerical solution of nonlinear Volterra—Fredholm-
Hammerstein integral equations via Tau-collocation method with convergence analysis. Journal of
Computational and Applied Mathematics. 2016 Dec 15;308:435-46.

24. Aziz 1, Asif M. Haar wavelet collocation method for three-dimensional elliptic partial differential
equations. Computers & Mathematics with Applications. 2017 May 1;73(9):2023-34.

25. Celik I. Free vibration of non-uniform Euler-Bernoulli beam under various supporting conditions using
Chebyshev wavelet collocation method. Applied Mathematical Modelling. 2018 Feb 1;54:268-80.

26. Samadyar N, Orthonormal MF. Bernoulli polynomials collocation approach for solving stochastic It6—
Volterra integral equations of Abel type. Int. J. Numer. Model. 2019;2019:e2688.

27. Erdem Biger K, Yalginbas S. Numerical solution of telegraph equation using Bernoulli collocation method.
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences. 2019 Dec;89:769-75.

28. Alijjani Z, Baleanu D, Shiri B, Wu GC. Spline collocation methods for systems of fuzzy fractional differential
equations. Chaos, Solitons & Fractals. 2020 Feb 1;131:109510.

29. Wang F, Zhao Q, Chen Z, Fan CM. Localized Chebyshev collocation method for solving elliptic partial
differential equations in arbitrary 2D domains. Applied Mathematics and Computation. 2021 May
15;397:125903.


https://doi.org/10.20944/preprints202405.1602.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 May 2024 d0i:10.20944/preprints202405.1602.v1

19

30. Singh H. Jacobi collocation method for the fractional advection-dispersion equation arising in porous
media. Numerical methods for partial differential equations. 2022 May;38(3):636-53.

31. Kumbinarasaiah S, Preetham MP. Applications of the Bernoulli wavelet collocation method in the analysis
of MHD boundary layer flow of a viscous fluid. Journal of Umm Al-Qura University for Applied Sciences.
2023 Mar;9(1):1-4.

32. Yang X, Wu L, Zhang H. A space-time spectral order sinc-collocation method for the fourth-order nonlocal
heat model arising in viscoelasticity. Applied Mathematics and Computation. 2023 Nov 15;457:128192.

33. Laib H, Boulmerka A, Bellour A, Birem F. Numerical solution of two-dimensional linear and nonlinear
Volterra integral equations using Taylor collocation method. Journal of Computational and Applied
Mathematics. 2023 Jan 1;417:114537.

34. Wang Z, Hu X, Hu B. A collocation method based on roots of Chebyshev polynomial for solving Volterra
integral equations of the second kind. Applied Mathematics Letters. 2023 Dec 1;146:108804.

35. Bazm S, Azimi MR. Numerical solution of a class of nonlinear Volterra integral equations using Bernoulli
operational matrix of integration. Acta Univ M Belii Ser Math. 2015;23:35-56.

36. Razzaghi M, Ordokhani Y, Haddadi N. Direct method for variational problems by using hybrid of block-
pulse and Bernoulli polynomials. Romanian Journal of Mathematics and Computer Science. 2012;2:]1-7.

37. Sahu PK, Mallick B. Approximate solution of fractional order Lane-Emden type differential equation by
orthonormal Bernoulli’s polynomials. International Journal of Applied and Computational Mathematics.
2019 Jun;5(3):89.

38. Gasca M, Sauer T. On the history of multivariate polynomial interpolation. InNumerical Analysis:
Historical Developments in the 20th Century 2001 Jan 1 (pp. 135-147). Elsevier.

39. Mason JC, Handscomb DC. Chebyshev polynomials. CRC press; 2002 Sep 17.

40. Maleknejad K, Hashemizadeh E, Ezzati R. A new approach to the numerical solution of Volterra integral
equations by using Bernstein’s approximation. Communications in Nonlinear Science and Numerical
Simulation. 2011 Feb 1;16(2):647-55.

41. Mirzaee F, Hadadiyan E. Numerical solution of Volterra—Fredholm integral equations via modification of
hat functions. Applied Mathematics and Computation. 2016 Apr 20;280:110-23.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202405.1602.v1

	1. Introduction
	2. Bernoulli Polynomials
	2.1. Function Approximation

	3. Description of the Proposed Scheme
	3.1. Solving VIEs of the Second Kind by BCM
	3.2. Solving VIEs of the Second Kind by IOBCM

	4. Convergence Analysis
	5. Numerical Results
	6. Conclusions
	References

