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Abstract: Background: Neisseria gonorrhoese can acquire antimicrobial resistance (AMR) through horizontal
gene transfer (HGT) from other Neisseria spp. such as commensals like Neisseria subflava. The prevalence of
Neisseria subflava in the oropharynx is close to 100%. Low doses of antimicrobials in food could select for AMR
in N. subflava, which could then be transferred to N. gonorrhoeae. In this study, we aimed to determine the lowest
concentration of ciprofloxacin that can induce ciprofloxacin resistance (minimum selection concentration —
MSC) in N. subflava. Methods: Neisseria subflava Co000790/2 was serially passaged on GC agar plates containing
ciprofloxacin concentrations ranging from 1:100- to 1:10,000-below its ciprofloxacin MIC (0.006 pg/ml) for six
days. Results: After 6 days of serial passaging at ciprofloxacin concentrations 1/100% of the MIC, 24 colonies
emerged on the 0.06 ug/ml ciprofloxacin plate. Their ciprofloxacin MICs were between 0.19 to 0.25 ug/ml, and
whole genome sequencing revealed a missense mutation T91I in the gyrA gene, which has previously been
found to cause reduced susceptibility to fluoroquinolones. Conclusion: The N. subflava MSCie novo ~ Was
determined to be 0.06 ng/mL or 1:100 below the MIC. The implications of this finding are that the low
concentrations of antibiotics found in certain environmental samples and even the food we eat may be able to
select for ciprofloxacin resistance in N. subflava.

Keywords: minimum selection concentration; MSC; MSCe nowo; ciprofloxacin; Neisseria subflava; commensals;

antimicrobial resistance

1. Introduction

The threat of antimicrobial resistance (AMR) is compromising the treatment of common
infections, including sexually transmitted infections (STIs) such as gonorrhoea [1]. The minimum
inhibitory concentration (MIC) is routinely used to measure the lowest concentration of an antibiotic
that inhibits the growth of a microorganism. However, the selection of resistant bacteria is not limited
to concentrations between the MIC of the susceptible wild-type population and that of the resistant
bacteria [2]. The lowest concentration of an antimicrobial that can select for antimicrobial resistance
in a particular bacterium is referred to as the minimal selection concentration (MSC) [2, 3].

The MSC encompasses two components. The MSCsie:  denotes the lowest concentration that
provides a selection pressure for resistant mutants over susceptible strains, and the MSCie novo ~ is
defined as the lowest concentration that can induce de novo AMR [2, 3]. Gullberg et al. established the
ciprofloxacin MSCseect and MSCie novo for Escherichia coli as 0.1 ng/ml and 2.3 ng/ml (1/230* and 1/10t
the MIC), respectively. However, they did not assess if ciprofloxacin concentrations below 2.3ng/ml
could induce de novo resistance [2]. Recent experiments with Neisseria gonorrhoeae revealed that
ciprofloxacin concentrations of 0.004 ng/ml, or 1/1000th of the MIC could induce de novo resistance
[4]. Once again lower concentrations were not tested in this study [4]. These MSCs are considerably
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lower than the maximum residue limits of fluoroquinolones allowed in various meat products by the
European Medicines Authority and the Food and Agriculture Organization [4, 5].

These MSCs are also orders of magnitude lower than the concentrations of ciprofloxacin
detected in samples of milk, eggs, and edible fish in certain East Asian countries (mean concentration:
8.5 ug/L, 16.8 ug/kg and 331.7 ug/kg, respectively) [6-8]. Of further concern is that these MSCs are
higher than the ciprofloxacin concentration detected in the faeces of random individuals in three
regions of China (median concentration 20 pg/kg) [9]. The ingestion of veterinary antimicrobials in
food was thought to be responsible [10-12]. Low concentrations of antimicrobials in the soil and water
may also select for AMR which may then be transmitted to humans or other animals. A global survey
of pharmaceuticals in the world’s rivers found that the concentration of ciprofloxacin exceeded ‘safe
levels” of 60 ng/L at 64 out of 135 sites [13]. These country-level ciprofloxacin concentrations in rivers
were found to be positively associated with the prevalence of fluoroquinolone resistance in E. coli
[14].

These considerations mean it is important to establish the MSCs of a wider range of bacteria. In
the current study, we extend this investigation to Neisseria subflava to assess if ciprofloxacin
concentrations as low as 1/10,000th the MIC can select for de novo resistance to ciprofloxacin. We
chose N. subflava, as it is an important part of our normal oropharyngeal microbiota and can transfer
DNA encoding antimicrobial resistance to the pathogenic Neisseria species, N. gonorrhoeae and N.
meningitidis [15-20]. A number of studies have confirmed that this horizontal gene transfer from
commensal Neisseria spp. has played a crucial role in the emergence of resistance to fluoroquinolones,
cephalosporins, dihydrofolate reductase inhibitors and macrolides in N. gonorrhoeae/N. meningitidis
[15-20].

A systematic review of AMR in Neisseria spp. found that resistance was typically higher in
commensal than pathogenic Neisseria spp. [21] This is likely related to the fact that the prevalence
of the commensal Neisseria spp. is close to 100%, whereas that of the pathogenic Neisseria spp. is one
or two orders of magnitude lower [22, 23]. This higher prevalence means that the commensal Neisseria
are exposed to antimicrobial selection pressure every time someone ingests an antimicrobial [23].
Their higher prevalence may also mean that the commensal Neisseria are more susceptible to the
effects of chronic low-dose exposure to fluoroquinolones such as those in food [22]. This hypothesis
is, however, dependent on the concentration of fluoroquinolones in foodstuffs being higher than the
MSCs.

In the present study, we determined the N. subflava ciprofloxacin MSCu nowo by passaging N.
subflava in ciprofloxacin concentrations ranging from 1:100 to 1:10,000 below the MIC for 6 days.

2. Materials & Methods

2.1. Bacterial Strain

We used N. subflava Co000790/2, a clinical isolate collected in a previous community
study performed at ITM [24]. This strain has a ciprofloxacin MIC of 0.006 pg/ml as
ascertained by E-testing in triplicate.

2.2. MSCenoo Determination

The MSCu novo of N. subflava Co000790/2 was ascertained via exposure to a constant
concentration of ciprofloxacin at 1:100, 1:1,000 and 1:10,000 of its ciprofloxacin MIC on GC
agar plates (Difco GC medium, Becton Dickinson) with 1% isovitalex enrichment (Becton
Dickinson) in 5% CO: incubator at 36°C. Control experiments were conducted
simultaneously using identical conditions, except the GC agar plates did not contain
ciprofloxacin. The experiments were conducted in quadruplicate. Every 24 to 48 hours, each
lineage was passaged to a new plate with the same conditions by transferring a 1/4™ loopful
(Copan, 10 ul loop) to the next plate. This process was continued for 6 days.
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On day 7, the number of colonies of each lineage with reduced susceptibility to
ciprofloxacin was established as follows: 100 uL of Phosphate Buffered Saline (PBS) solution
containing the lawn of colonies (1.0 McFarland) was plated onto 2 GC agar plates with either
no ciprofloxacin or 0.06 ug/mL ciprofloxacin (which we used to define resistance to
ciprofloxacin according to EUCAST MIC breakpoints for N. gonorrhoeae [25]). The number
of colonies was counted after 24 hours of incubation at 36°C. The lowest ciprofloxacin
concentration with growth in the 0.06 pug/mL plates was defined as the MSCae novo.

2.3. Characterization of Colonies that Grew on Ciprofloxacin-Containing Plates

The MIC:s of colonies that grew on the ciprofloxacin plates were ascertained via gradient
diffusion strips (Etest™, bioMérieux, France), following EUCAST guidelines. The species
identity of these colonies was confirmed via MALDI-TOF (Bruker, USA).

2.4. Mutation Stability Assessment

Two strains (1/100-4.1 and 1/100-4.7) were randomly selected from the plates containing
0.06 ug/mL ciprofloxacin for further experimentation to determine the stability of acquired
mutations. Each strain was retrieved from frozen skim milk stored at -80°C, replated on GC
agar + 1% IV, and subcultured every 24 hours for 6 days. Finally, the cultures were subjected
to E-testing following EUCAST guidelines.

2.5. Whole Genome Sequencing

Five isolates (1/100-4.1, 1/100-4.7, 1/100-4.14, 1/100-4.21 and 1/100-4.24) and one isolate
from day 5 of the control experiment exposed to no ciprofloxacin were outsourced for DNA
isolation, library preparation and whole genome sequencing (WGS) to Eurofins, Germany.
Post DNA extraction, libraries were prepared using the TruSeq DNA library kit (Illumina
Inc., San Diego, CA, USA), and multiplexing was performed using the Nextera DNA library
kit (Illumina Inc., San Diego, CA, USA). Sequencing was carried out on NextSeq6000 v2
platform, generating 2x150 bp reads. Quality assessment of the raw reads was done using
FASTQC [26]. The raw reads were then trimmed for quality (Phred > 30) and length (=32
bases) using Trimmomatic (v0.39) [27]. The processed reads were assembled with Shovill
(v1.0.4) [28], which uses SPAdes for the de novo assembly (v3.14.0) [29] using the following
parameters: —trim —depth 150 —opts —isolate. The quality of the assembled de novo
contigs was evaluated using Quast (v5.0.2) [30]. Genome annotation of the draft genome
was carried out using Prokka (v1.14.6) [31]. The quality-controlled reads were mapped to
the reference draft genome (Ns_Ctrl) using Snippy (https://github.com/tseemann/snippy).
Single nucleotide polymorphisms (SNPs) were determined using default parameters. The
raw reads are deposited at PRJNA1107029
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Figure 1. Overview of the study methodology.
3. Results
3.1. Minimal Selective Concentration

3.1.1. N. subflava

After 6 days of serial passaging at ciprofloxacin concentrations 1/100% of the MIC, equivalent to
0,06 ng/ml, 24 colonies emerged after 22 hours of incubation on a single 0.06 pig/ml ciprofloxacin plate
(Plate 1/100-4; Table 1). MALDI-TOF MS analysis verified that these colonies were N. subflava.

E-testing of these colonies revealed a MIC of 0.19 to 0.25 pg/ml for all the colonies, which
represents a minimal 31-fold increase in ciprofloxacin MIC. No colonies with resistance (0.06 pg/ml)
were observed on the control or other plates passaged at 1/100, 1/1,000, and 1/10,000 of the
ciprofloxacin MIC.

Table 1. Minimum inhibitory concentrations of all resistant colonies and subsequent MALDI-TOF

results.
Colony ~CiPTofloxacin /)1 TOR-MSID  MALDLTOF score " 10l€ genome
MIC (pg/mL) sequencing

1/100-4.1 0.19 N. flavescens subflava group 2.16

1/100-4.2 0.19 N. flavescens subflava group 2.17 X
1/100-4.3 0.19 N. flavescens subflava group 2.26 X
1/100-4.4 0.19 N. flavescens subflava group 217 X
1/100-4.5 0.25 N. flavescens subflava group 221 X
1/100-4.6 0.19 N. flavescens subflava group 2.06 X
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1/100-4.7 0.25 N. flavescens subflava group 2.01 v
1/100-4.8 0.19 N. flavescens subflava group 2.12 X
1/100-4.9 0.19 N. flavescens subflava group 2.27 X
1/100-4.10 0.19 N. flavescens subflava group 2.3 X
1/100-4.11 0.19 N. flavescens subflava group 2.28 X
1/100-4.12 0.19 N. flavescens subflava group 2.19 X
1/100-4.13 0.19 N. flavescens subflava group 2.27 X
1/100-4.14 0.19 N. flavescens subflava group 2.25 v
1/100-4.15 0.25 N. flavescens subflava group 2.07 X
1/100-4.16 0.25 N. flavescens subflava group 2.05 X
1/100-4.17 0.25 N. flavescens subflava group 211 X
1/100-4.18 0.25 N. flavescens subflava group 2.28 X
1/100-4.19 0.19 N. flavescens subflava group 2.28 X
1/100-4.20 0.25 N. flavescens subflava group 2.32 X
1/100-4.21 0.19 N. flavescens subflava group 231 v
1/100-4.22 0.19 N. flavescens subflava group 2.25 X
1/100-4.23 0.19 N. flavescens subflava group 2.13 X
1/100-4.24 0.25 N. flavescens subflava group 2.27 v

3.1.2. Mutations in Fluoroquinolone Target Gene (gyrA)

WGS analysis of 5 randomly selected isolates that grew on the ciprofloxacin plate, with a MIC
ranging from 0.19 to 0.25 ug/ml, revealed a missense mutation T91I in the gyrA gene, the known
resistant associated mutation. Additionally, all four isolates had the missense mutation A385V in the
spoT gene, which encodes the bifunctional (p)ppGpp synthase/hydrolase), and a synonymous
mutation T828C (A276) in the nnr gene, which encodes a bifunctional NAD(P)H-hydrate repair
enzyme).

3.2. Mutation Stability

Cross-plating of two strains (1/100-4.1 and 1/100-4.7) on GC agar + 1% IV was performed
every 24 hours for 6 days. E-testing at day 6 revealed an unchanged ciprofloxacin MIC for
1/100-4.7 and a slightly higher MIC for 1/100-4.1 — from 0.19 ug/mL to 0.25ug/mL.

4. Discussion

Exposure to low ciprofloxacin concentrations (0.06 ng/ml) that were 100-fold lower than
the MIC for six days resulted in the emergence of fluoroquinolone resistance in N. subflava.
This resistance was associated with the T91I substitution in GyrA. This mutation has been
shown to be associated with an intermediate fluoroquinolone resistance phenotype in N.
meningitidis [32]. Using similar methodologies, Gonzalez et al. found that exposure to lower
ciprofloxacin concentrations (0.004ng/ml) or 1000-fold lower than the MIC could induce de
novo ciprofloxacin resistance in N. gonorrhoeae [4]. In contrast, Gullberg et al. found that the
ciprofloxacin MSCeenowo in E. coli was higher (2.3ng/ml), although lower concentrations were
not tested[2]. These findings suggest that concentrations of ciprofloxacin as low as
0.004ng/ml can select for ciprofloxacin resistance.

This finding suggests the need to reconsider the definition of ‘safe” concentrations of
fluoroquinolones in environmental and food samples. For example, in their global survey
of the world’s rivers, Wilkinson et al. found alarming levels of pharmaceutical pollution
[13]. One of their concerning findings was that the concentration of ciprofloxacin exceeded
‘safe’ levels of 0.06 ng/ml at 64 sites. This threshold of 0.06 ng/ml was determined by
Bengtsson-Palme et al. by ascertaining what the lowest 1% minimum inhibitory


https://doi.org/10.20944/preprints202405.1540.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1540.v1

concentration (MIC) was for a range of bacteria with available susceptibility data in the
EUCAST dataset [33]. To adjust for the fact that the MSC may be an order of magnitude
lower than the MIC, Bengtsson-Palme et al. set the safe concentration of ciprofloxacin at 10-
fold lower than the lowest 1% MIC. The MSCs of Neisseria spp. are, however, 100- to 1000-
fold lower than their MICs. Applying a 10-fold safety factor to these MSCs, would mean
that the safe concentrations of ciprofloxacin could not 10-fold, but up to 10,000-fold lower
than the lowest 1% MIC. While this hypothesis will require experimental validation, it does
suggest that measured concentrations of ciprofloxacin in a much larger proportion of the
world’s rivers may be selecting for AMR.

We have only considered the ciprofloxacin MSCaenovo of a single strain of N. subflava in
a very simple in vitro model. All the resistant isolates emerged on a single agar plate. The in
vitro MSCsekect is typically lower than the MSCaenovo [2]. MSCs will likely be different in
complex environmental and microbial matrices. For example, MSCs may be lower in
polymicrobial communities [34]. On the other hand, the presence of other compounds, such
as heavy metals and selective serotonin receptor inhibitors, can reduce the MSC [35]. Our
experiment only ran for 6-days. We cannot exclude the possibility that longer exposures
may have resulted in a lower ciprofloxacin MSC.

These limitations mean that further experiments are required to determine MSCs in
complex environments such as in vivo. Only a single study has assessed the MSC in vivo.
This study found that single doses of the lowest dose of ciprofloxacin concentration tested
(0.6ng/g) could induce ciprofloxacin resistance in Klebsiella pneumoniae [36]. This finding is
concerning as this concentration was 10-fold lower than the ciprofloxacin food
concentration classified as safe by the Food and Agriculture Organization [36]. As reviewed
in the introduction, this concentration is also considerably lower than that of
fluoroquinolones detected in food stuffs in various countries [6-13].

A recent study estimated that AMR infections are responsible for between 1 and 5
million deaths per year [37]. Combating AMR requires a one-health approach whereby all
antimicrobial exposures are kept within safe thresholds [38]. This study contributes to a
growing body of evidence that suggests that ciprofloxacin concentrations below those
classified as safe in food and environmental samples may select for AMR.
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