Pre prints.org

Article Not peer-reviewed version

Enhancing Corporate Security: A
Microservices Approach to Monitoring
with Spyware Techniques and Prediction
Models

Anubis Graciela de Moraes Rossetto, Darlan Noetzold , Luis Augusto Silva *,
Valderi Reis Quietinho Leithardt

Posted Date: 23 May 2024
doi: 10.20944/preprints202405.1504.v1

Keywords: electronic monitoring; hate speech; data leakage; prediction; microservices

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2434295
https://sciprofiles.com/profile/2777895
https://sciprofiles.com/profile/743480
https://sciprofiles.com/profile/743481

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Enhancing Corporate Security: A Microservices
Approach to Monitoring with Spyware Techniques and
Prediction Models

Anubis Graciela de Moraes Rossetto 11, Darlan Noetzold 1©®, Luis Augusto Silva 2#(and
Valderi Reis Quietinho Leithardt 3

1 Federal Institute of Education, Science and Technology Sul-rio-grandense, Passo Fundo, RS, 99.064-440, Brazil;

anubisrossetto@ifsul.edu.br, darlannoetzold.pfl49@academico.ifsul.edu.br

Department of Computer Science and Automation, University of Salamanca, Salamanca, Spain; luisaugustos@usal.es
3 Lisbon School of Engineering (ISEL), Polytechnic University of Lisbon (IPL), 1549-020 Lisbon, Portugal;
valderi.leithardt@isel.pt

Correspondence: luisaugustos@usal.es

These authors contributed equally to this work.

Abstract: Due to the increasing use of computer equipment, institutions and companies face challenges, such
as sensitive data leaks and the spread of hate speech, which have severe consequences for organizations and
their employees. Addressing these challenges is essential to avoid financial losses, reputational damage, and
impacts on the psychological health of those involved. This paper presents a solution based on microservices for
monitoring computers used by employees in organizations, including capturing information from the equipment
using spyware techniques and a web application for managing alerts. The solution seeks to detect data leaks,
suspicious behaviour, and hate speech. The results of the evaluation indicate that the proposed solution has an
efficient data capture time and can identify unwanted behaviour in a short period. The solution also includes
applying prediction models to detect hate speech, achieving an average accuracy of approximately 87%. The
performance, scalability, and security evaluation demonstrate that the solution is suitable for dealing with data

leakage and hate speech challenges in the corporate environment.

Keywords: electronic monitoring; hate speech; data leakage; prediction; microservices

1. Introduction

In recent years, the development of corporate applications based on microservices has become a
prevalent approach in the software industry. In this context, frameworks like Spring Boot and Quarkus
have become prominent choices to simplify and accelerate development. However, choosing between
these frameworks is not trivial; it involves carefully considering performance, efficiency, and scalability
factors.

This article proposes a comparative performance analysis between Spring Boot and Quarkus,
focusing on objective metrics and quantitative statistics. The goal is to provide an in-depth understand-
ing of the performance differences between these two platforms, using various tools and benchmarks
recognized in the computer science community.

The importance of this analysis lies in the need for objective guidance for developers and software
architects when choosing a framework for their applications. With modern systems’ increasing
complexity, resource consumption efficiency and the ability to scale horizontally become crucial
criteria. Moreover, optimizing development time is vital to remain competitive in the dynamic
software market.

This article will explore metrics such as startup time, memory usage, throughput, and scalability
using established benchmarks like TechEmpower and specific profiling tools. Furthermore, we will
support our conclusions with bibliographic references highlighting the importance of informed and
data-based technological choices to optimize the development lifecycle and operational efficiency.

The urgency to adopt architectural approaches that facilitate scalability and maintenance in
microservices environments is highlighted by [1]. Additionally, [2] emphasizes the importance of

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0001-8657-2816
https://orcid.org/0009-0008-9126-8075
https://orcid.org/0000-0002-9981-4586
https://orcid.org/0000-0003-0446-9271
https://doi.org/10.20944/preprints202405.1504.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

20f21

efficient frameworks to ensure the long-term viability of these architectures, underlining the critical
relevance of informed technological choices.

Specifically regarding Spring Boot, the research conducted by [3] offers significant insights into
the features and benefits of this framework. Moreover, the study addresses the challenges inherent in
the extensive use of annotations in Spring applications, providing a comprehensive perspective on the
complexity of development in microservices-based environments.

Concerning Quarkus, research like that of [4] explores energy efficiency in Java applications,
presenting a unique view of resource consumption in microservices environments. These detailed
analyses contribute to a holistic understanding of the performance implications associated with
Quarkus, informing our comparative approach.

These studies enrich our theoretical understanding and provide a solid foundation for the pro-
posed comparative analysis. It is emphasized that all analyses and tests were conducted on a complex
application involving extensive and complex data and intricate relationships between various tables.
By contextualizing performance metrics within this challenging environment, our study gains rele-
vance by contributing to understanding trends and challenges faced in developing microservices-based
applications. Thus, these bibliographic references further strengthen the foundation of our study.

2. Background

This chapter will detail the technologies used in the application’s development, the testing tools
adopted, and the fundamental concepts applied in evaluating the results. It offers a comprehensive
view of the literature, organizing the information into four main sections: frameworks used, employed
integrations, selected testing tools, and essential concepts for analyzing the results.

2.1. Frameworks

2.1.1. Spring Boot

Spring Boot, known for simplifying the development of Java applications, brings a series of bene-
fits and challenges concerning performance. Its automatic configuration and "starters" provide agility
at the project’s start, reducing the need for extensive configuration coding. This boosts productivity,
allowing developers to focus on the app’s functionalities instead of worrying about configuration
details [5].

However, this automation can result in performance challenges. Increased memory consumption
is one of them, as automatic configuration can load various modules and resources, generating
overhead in memory allocation. In complex applications, the startup can be slower due to extensive
configuration and classpath analysis, affecting the application’s startup time [6].

Hidden complexity is a delicate point: although simplification is an advantage, hidden com-
plexity can make it difficult to identify performance bottlenecks. Issues related to the framework’s
configuration can be challenging to find and resolve.

Another aspect is the size of the generated artefact. By automatically including libraries and
modules, Spring Boot can result in more significant artefacts. This affects deployment time and the
server’s resource consumption, directly impacting performance in cases of limited infrastructure.

To address these challenges, it’s crucial to profile the application, identifying areas for improve-
ment and performance bottlenecks. Selectively optimizing specific application parts is essential, as well
as avoiding including unused features and adjusting the automatic startup of modules. Additionally,
keeping frequent updates of Spring Boot and continuously monitoring the application’s performance
are fundamental practices to mitigate possible impacts on performance [7].

https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

30f21

2.1.2. Quarkus

Quarkus, an innovative framework for developing native Java applications in the cloud, offers a
distinct set of performance benefits and challenges. Its architecture and purpose are shaped to optimize
application performance and efficiency, especially in cloud and container environments.

One of the main benefits of Quarkus is its approach to creating native applications, enabling
shorter startup times and lower memory consumption compared to traditional applications. This
is achieved through ahead-of-time compilation, quick loading, and the ability to package only the
necessary parts of the application [8].

However, despite these advantages, some challenges can arise when working with Quarkus.
The complexity of the ahead-of-time compilation process can make building and development more
intricate, especially for those accustomed to the traditional development paradigm. Moreover, certain
Quarkus features may introduce limitations on some functionalities or require careful adaptation of
development practices.

The optimized nature of Quarkus, while a significant positive point, also may require careful
planning to ensure that its optimization does not sacrifice the flexibility or scalability of the application.
Specific strategies to balance performance and development flexibility are necessary to leverage the
benefits offered by Quarkus fully [9].

Quarkus’s continuous evolution, with the introduction of new features and improvements,
represents significant potential for modern and highly efficient applications. However, to maximize its
benefits, developers must deeply understand the framework’s characteristics and apply development
strategies that maximize its performance potential.

2.2. Integrations

This chapter summarizes the integrations used in both applications discussed in this Article:

1. PostgreSQL: An open-source relational DBMS is known for its scalability, support for trans-
actional integrity, MVCC, stored procedures, and triggers. It stands out for its extensibility,
robustness, and SQL standards compatibility, backed by an active community [10,11].

2. Redis: An open-source, low-latency, high-performance caching system supporting various
structured data types in a key-value structure. It is chosen for its scalability, efficiency, and ease
of use across various applications [12-15].

3. FlywayDB: An open-source tool for database schema management and versioning, operating
under the principle of "migrations as code." It facilitates the automation of migrations in agile
development and DevOps environments [16].

4. RabbitMQ: A messaging platform that implements AMQP, offering modular architecture and
features like message queues. Evaluations demonstrate its performance and scalability in various
scenarios [17-20].

5. Keycloak: An identity and access management platform offering robust authentication and
authorization, supporting various authentication methods and modern standards, facilitating
security in applications [21,22].

6. Prometheus and Grafana: Tools for system and application monitoring, with Prometheus, focused
on metrics collection and Grafana on visualization. Their integration enables effective monitoring
and interactive visualization [23-27].

7. Docker: A platform that facilitates the creation, deployment, and running of container applica-
tions, promoting portability and efficiency. Complemented by tools like Docker Compose and
Docker Swarm, it facilitates container automation and orchestration [28-34].

2.3. Tools

In this chapter, we describe the tools used to test and evaluate the performance of the work
developed:

https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

4 0f 21

Postman: An API development tool that facilitates testing, documentation, and collaboration
in API creation. It allows developers to send HTTP requests, verify responses, generate interactive
documentation, and collaborate in teams, positively impacting the API development community
[35-39]. JMeter: An Apache performance testing tool to assess web applications under load. It offers
features to simulate real scenarios, generate load on servers, collect detailed performance metrics,
and identify bottlenecks, widely recognized for its efficiency and flexibility [40-43]. Custom test
application: Specifically developed for this work, this application allows sending bulk requests in
parallel and with varied content sizes and conducting security tests to ensure data integrity [44].

2.4. Analysis Concepts

Statistical calculations were employed to validate the test results and conduct more detailed
analyses of the application’s performance. These calculations map the relationship between monitored
attributes, determine the application’s capacity according to the used hardware, and identify possible
performance bottlenecks.

In this sense, this section covers the following statistical calculations: correlation coefficient,
regression analysis, load curve, and response time analysis.

2.4.1. Correlation Coefficient

The correlation coefficient is a widely used statistical measure to assess the relationship between
two variables. It measures the degree of linear association between the variables, ranging from -1 to 1.
According to [45], one of the most common ways to calculate the correlation coefficient is the
Pearson correlation coefficient, represented by r. The formula for the Pearson correlation coefficient is
given by:
7,17 X: — X .
r= Z:l—l(1)(yl y) (1)
VI (= 2 (3 — 9)?
Where x; and y; are the values of variables x and y for each observation, ¥ and i are the averages
of x and y values, respectively, and 7 is the number of observations [45].

It's important to highlight that the Pearson correlation coefficient is only suitable for measuring
the linear relationship between the variables. This coefficient may not capture other forms of non-linear

association.

Other correlation measures can be used in different contexts. For example, the Spearman corre-
lation coefficient is a non-parametric measure assessing the variables” monotonic relationship. It is
calculated based on the rankings of the variables’ values [46].

2.4.2. Regression Analysis

Regression analysis is a statistical technique for studying the relationship between a dependent
variable and one or more independent variables. It seeks to model this relationship through a linear
equation.

One of the most common methods to perform regression analysis is the least squares method.
This method finds the coefficients of the linear equation that minimize the sum of the squares of the
differences between the observed values and the values predicted by the model [47].

The equation of simple linear regression can be represented by:

y=po+p1x+e 2)

Where v is the dependent variable, x is the independent variable, fy is the intercept, 1 is the
regression coefficient and ¢ is the error term [48].

https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

50f21

Different regression analysis techniques exist, such as simple linear regression, multiple linear
regression, and non-linear regression. Each of these techniques has its assumptions and methods of
evaluation [48].

Simple Linear Regression: A method that models the relationship between two dependent and
independent variables through a linear equation. The basic equation is y = By + B1x + ¢, where v is the
dependent variable, x is the independent variable, B¢ is the intercept, B is the regression coefficient,
and ¢ is the error term. The least squares method is often used to find the coefficients that minimize
the sum of the squares of the differences between the observed and predicted values [49].

Multiple Linear Regression: Extends the idea of simple linear regression to more than one inde-
pendent variable. The equation becomes y = Bo + B1x1 + B2x2 + ... + Bpxp + ¢ where x1,x2,...,xp
are the independent variables and Bo, 81, B2, . . ., Bp are the regression coefficients associated with each
independent variable [50].

Non-Linear Regression: While linear regression relies on linear equations, non-linear regression
allows the model to fit more complex relationships between variables. This can be done using non-
linear functions, such as exponential or logarithmic, to describe the relationship between the variables
[51].

Exponential and Logarithmic Regression: These are types of non-linear regression. Exponential
regression models relationships where the data fit an exponential curve, while logarithmic regression
models relationships that fit a logarithmic curve [52].

Power Series: This is a form of non-linear regression where the model fits a series of polynomial
terms rather than a single equation. This allows modelling complex relationships that a single linear
function cannot represent [53].

Each type of regression analysis has its applications and underlying assumptions. The choice
of method depends on the nature of the data and the expected relationship between the involved
variables. Validation and interpretation of the results are also crucial to ensure that the model is
appropriate and helpful in making predictions or inferences.

2.4.3. Load Curve

The load curve is a graphical representation of energy consumption over time. It is often used to
analyze the consumption profile of a particular load or system.

To calculate the load curve, resource consumption data must be collected at regular time intervals.
These data can also be used to estimate consumption when measurements are unavailable.

A commonly used approach is the interpolation method, which consists of filling in missing
values using a function that fits the available data. An example of a function used for interpolating
load curves is the polynomial function [54].

According to [55], the general formula of an n-degree polynomial used to interpolate a load curve
is given by:

f(t) = ag+ayt + at> + ... + ayt" 3)

Where f(t) is the estimated value of the load curve at time ¢ and a4y . . ., a, are the polynomial
coefficients.

Other methods and statistical models can be used to calculate the load curve, such as non-linear
regression and time series [55].

2.4.4. Response Time Analysis

Response time analysis is a technique used to evaluate an application’s performance regarding
the time needed to respond to user requests. It is particularly relevant in web applications, where
response speed is critical for user experience [56].

https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

6 of 21

One of the main indicators used in response time analysis is the average response time. It is
calculated as the average response times of a set of requests. The formula for average response time is
given by:

n
i—1ti

(4)

Average Response Time =
t; is the response time of the i-th request and # is the total number of requests [57].

3. Related Works

This chapter presents a literature review on performance comparison between APIs developed
using the Spring and Quarkus frameworks. It discusses the main results from previous studies and
the differences between the two frameworks that might influence their performance.

Various studies in the literature have compared the performance of Spring Boot and Quarkus ap-
plications in API scenarios. Generally, these analyses indicate that Quarkus offers superior performance
compared to Spring Boot.

For example, the article "A Performance Comparison of Spring Boot and Quarkus for Microser-
vices" [58] compares the performance of the two frameworks in a microservices application, concluding
that Quarkus shows better results in all benchmarks, including startup time, response time, and mem-
ory consumption.

Another article, "Spring Boot vs. Quarkus: A Performance Comparison" [9], also addresses
performance comparison in a more straightforward application. In this case, Quarkus offers a faster
startup, while Spring Boot stands out in response time.

The book "Spring Boot vs. Quarkus: A Comparison of Two Java Frameworks" [8] provides
an overview of the main discrepancies between Spring Boot and Quarkus, discussing how these
differences can impact the performance of both frameworks.

Another study, "Performance Comparison of Spring Boot and Quarkus: A Case Study" [59],
presents a case study comparing the performance of Spring Boot and Quarkus in complex applications,
concluding that Quarkus excels in all the evaluated benchmarks.

In the article "Comparative Performance Analysis between Spring Boot and Quarkus: An Empir-
ical Study" by Gabriel Ferreira da Rosa, Kleinner Farias, and Carlos Fernando Santos Xavier [60], a
comparative performance analysis between Spring Boot and Quarkus is presented. This study employs
a use case involving messaging communication scenarios and their persistence in a database, using
CPU, RAM, and message processing time measurements. The results indicate that Quarkus performs
slightly superior in most tested scenarios, suggesting an advantage for using Quarkus in specific
application development contexts.

The related works indicate that Quarkus offers superior performance over Spring Boot. However,
it is crucial to emphasize that an application’s actual performance depends on several factors, including
its complexity, workload, and configurations.

The study developed in this article distinguishes itself from related works in several aspects: it
uses a complex application with massive data, like base64 and multiple hierarchies, and it applies
statistical analysis, employing statistical and mathematical concepts in analyzing the benchmarks.

4. Developed Applications

Both applications are identical regarding functionalities, classes, services, endpoints, and objec-
tives; the only difference is the framework used and some configurations. Thus, this chapter will treat
the application as a single entity, clarifying the architecture and the developed points.

This application aims to use Spyware techniques to monitor corporate and/or institutional
computers, using prediction models to detect hate speech and monitor network packets, vulnerabilities,
and malicious processes. As seen in Figure 1, the proposed architecture for this solution involves
several applications, which require a lot of information exchange, demanding good performance from
the Central API Gateway.

https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

7 of 21

Alerts SQL User SQL
Database Database

o

Computers Monitored by

Spyware
T Ir T
CEm=my GEmy GEER) JWT Token JWT Token :
Encryption AP| Gateway Encryption Front-End App
Central
Predict Model
API Gateway
Spyware

Figure 1. Architecture.

Therefore, the focus of this article will be the Central API Gateway, whose architecture is presented
in Figure 2. This architecture consists of some other components that will not be addressed in the tests
and are presented in Figure 1, but here is a description of each:

¢ Admin: platform administrator who will have access to Alerts through the Front-End application,
being able to manage (remove and view), in addition to adding the monitoring management
data;

¢ Front-End App: application responsible for creating a secure, easy-to-use, and simple interface
for the Administrator to manage the Application;

¢ User Database: relational database to keep Front-End users separate from the rest of the appli-
cation. The database will contain only one table to set up the login/registration of users, with
encrypted passwords;

¢ Central API Gateway: this component will be responsible for centralizing the Alerts data and
distributing it to the Front-End, with JWT Token, to ensure the security and reliability of the data.
In addition to caching for fast data access and messaging service to guarantee the delivery of
Alerts,

¢ Alerts Database: main relational database (PostgreSQL), responsible for maintaining the manage-
ment data of monitoring and Alerts;

* Spyware: main application component that will monitor the accessed sites, typed words, running
processes, typed hate speech, and have a Port Scanner to assess if there are vulnerabilities on the
PC. When any of these items are identified, the Spyware will generate an Alert and perform the
capture of the information for sending to the API Gateway;

¢ API Gateway Spyware: the component that will contain an endpoint to communicate with the
prediction model that will return whether a phrase is or is not hate speech;

e Predict Model: responsible for receiving a phrase in one of the languages (Spanish, Portuguese,
or English), detecting the language, and processing through three multi-layer models, returning
whether the phrase is hate speech. The model will be compiled with the Pickle library and
inserted into the API Gateway.

https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

8 of 21

Docker @

PostgreSQL

Redis \ I
Q ()
/ Prometheus Grafana
m Spring Boot

RabbitMQ

Figure 2. Architecture of the Central API Gateway.

The analyzed API uses some technologies to improve performance and observability and facilitate
deployment in different environments; all technologies are presented in Figure 2. In this figure, it is
possible to see that the web service is isolated in a Docker image along with a PostgreSQL database,
used to store long-life data, a Redis database to store short-lived cache data, a RabbitMQ messaging
service for managing processing queues, and two services for extracting and visualizing metrics,
Prometheus and Grafana.

4.1. Improvements Applied to the Solution in Spring

Some structural and development measures were taken to improve the Spring application’s
performance. The criteria that were changed and added to improve performance and maintain
continuous delivery of the solution are:

* Cache with Redis: to not overload the SQL (Structured Query Language) database with repeated

and constant searches;
* Messaging Service with RabbitMQ: to maintain continuous updating and delivery of functionali-

ties asynchronously;
¢ Initialization in "lazy" mode: the application Spring’s startup mode changed to "lazy", where

only necessary components and dependencies are loaded;
¢ Exclusion of auto-configurations: disabling automatic configurations of Spring to not consume

resources unnecessarily;
* Switch of the Standard Servlet Container of Spring: the migration was made from Tomcat to

Undertow, which showed better performance for Spring applications [61];
¢ Disabling Java Management Extensions (JMX): the flag for real-time bean monitoring was

disabled to reduce unnecessary resource use, as other metric tools are being used;
¢ Removing the standard log system of Hibernate and Java Persistence API (JPA): turning off

database logs and creating controlled logs makes processing faster;
* Generating indexes sequentially: it’s preferable in terms of performance due to storage efficiency,

better cache utilization, reduced fragmentation, and ease in ordered queries;
¢ Using migrations for database table creation: replacing Hibernate’s automatic database structure

creation with migrations allows for more refined control over schema changes, improving SQL
database performance.

With these improvements, tests were conducted more efficiently, obtaining the results that will be
presented later.

4.2. Improvements Applied to the Solution in Quarkus

Improvements were implemented in the Quarkus-developed application, including adopting
strategies similar to those already applied in the Spring API. This involved configuration optimiza-
tions and programming, such as using cache and messaging strategies, adopting lazy loading mode,
excluding non-essential autoconfiguration, and removing unnecessary logs.

https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

9of21

In addition to the mentioned adaptations, other improvements were made to maximize perfor-
mance in the Quarkus API. This included applying pre-compilation techniques to reduce startup time,
using pooling strategies for database resources, minimizing memory use through efficient resource
management, and implementing more granular and effective caching strategies for frequently accessed
data.

5. Methodology

This chapter will discuss the tests conducted and the results obtained. It will be divided into
specific tests of the Spring application and specific tests of the Quarkus application, and a comparison
will be made between them, considering before and after the performance improvements applied. All
tests were performed on a computer with an i5 7200 CPU, 16 GB of RAM, and 1 TB of SSD running the
Kali Linux operating system.

Before the performance tests, simple tests were performed on all endpoints using Postman. These
tests aimed to verify the functionalities and ensure the API’s proper operation. Then, JMeter was
used to conduct more in-depth performance tests. Twenty-five tests were performed with different
configurations of parallel request groups. Each set of requests consisted of three requests: one to obtain
the authentication token, another to register an image, and another to register an alert.

The first request was a POST method to the endpoint ’/login’, where a request body in JSON
format was sent:

1 A1

"10gin": |l||’

"password": "

}

= W N

The previous request’s response provides a token for the next two requests. The next step is to
make a POST request to save an image in the APIL. This request is sent to the endpoint ’/image/save’
and must include the token obtained in the previous step in the headers. The request body must be in
the following JSON format:

{

Ilproductll: Illl,
"base64Img": ""
by

= W N =

After the success of this request, the complete Image object is returned, containing an ID, which is
used in the next POST request to save the Alert. This request is sent to the endpoint "/alert/save’ and
must include the token in the headers. The request body must be in the following JSON format:

{

"id": 1,

"pcId": "",

"image": {

"id": 1

Ve

"process": "",

"date": "2022-10-25T13:29:48.2312Z"
}

O 0 N U s W N =

This set of requests was sent in different quantities in each test, varying in 500, 1000, 2000, 5000,
and 10000 parallel sends. However, when many requests were used, the JMeter’s memory heap would
exceed, mainly due to sending images in base64 format in the request body. For this reason, a parallel
application called API Tester was used to continue with more significant numbers of requests.

https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

10 of 21

It is important to emphasize that the analyzed metrics were collected from the Docker image,
which implies a minimum limit of memory and processing use. This limit is related to applications
such as Grafana, Prometheus, PostgreSQL, Redis, and RabbitMQ. In natural environments, with more
users and on more robust machines, resource use is expected to be dispersion, making the percentage
of use of these applications negligible.

{

llloginll: llll,

"password": "

= W N =

5.1. Spring Application Results

Initially, some points were analyzed for the Spring application, which can be examined in the
following figures. As illustrated in Figure 3, the response time in milliseconds increases with the
number of requests, according to the equation y = 0,0818x + 74, 8. Higher response times can result in
a poor user experience, which emphasizes the importance of optimizations for fast response times in
web applications.

Response Time (ms) versus Number of Requisitions

@ Response Time (ms) 0,0818*x + 74,8 R? = 0,999
1000
L
750
@
E
E 471
; 500 e
2
2 250
4 157,5 ®
250 ¢t
= 112
L]
0
2000 4000 6000 8000 10000

Number of Requisitions
Figure 3. Testing requests with Spring

Figure 4 depicts a linear relationship between the percentage of CPU usage and the number of
requests. The trend line equation is y = 2.41 x 10~ 3x + 16.9, indicating that for each additional request,
there is a corresponding increase in CPU usage of approximately 0.00241%. In web development,
a linear increase in CPU utilization concerning the number of requests, as shown by the ratio, may
suggest that the application is scaling as expected regarding workload. However, high CPU usage can
also indicate that the application may not be efficient in terms of computing or that the server may
reach its limit under heavy loads, which could lead to a degradation in performance or even failures.

https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

11 0f21

CPU Used (%) versus Number of Requisitions

® CPU Used (%) 2,41E-03"x + 16,9 R2 = 0,97
50
a
40 L
— 28
£ a0
= 24 ®
3 20 ®
S 2016 ¢
& °
10
0
2000 4000 6000 8000 10000

Number of Requisitions
Figure 4. CPU testing with Spring

Figure 5 shows the percentage of heap memory used as the number of requests increases, following
a linear trend (y = 3.38 x 10~3x + 4.91). The linear relationship shows that heap utilization increases
with the number of requests. This is expected in web applications, as each request can create new
objects. However, if heap memory approaches its maximum capacity, the system may face more
frequent garbage collection problems, which can cause service pauses and affect application latency.

Heap Used (%) versus Number of Requisitions

@ Heap Used (%) 3,38E-03*x + 4,91 R? = 0,976
40 *
30
Bl 20
g 2
k4 15 hd
g °
T 8
10
5 e
°
0
2000 4000 6000 3000 10000

Number of Requisitions
Figure 5. Heap testing with Spring

Below are the results after the improvements have been applied. Figure 6 shows that the response
time maintains a remarkable linearity concerning the number of requests, with a R? of 0.996. This
reflects the effectiveness of the improvements in ensuring that the application maintains consistent
performance in terms of response time, a crucial factor for the end-user experience.

https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

12 of 21

Response Time (ms) versus Number of Requisitions

@® Response Time (ms) Linha de tendéncia para Response Time (ms) R? = 0,996
800
[]
600
@
£ 420
g
F 400 ®
aQ
a 252
2
2 154 b
@ 2001qp9
L]
]
0
2000 4000 6000 8000 10000

Number of Requisitions
Figure 6. Requisition testing with Spring after improvements

Figure 7 indicates a highly linear relationship between CPU usage and the number of requests
with a coefficient of determination of R?> = 0.984. This implies that the optimized application uses
CPU resources more efficiently, an indicator of scalability and stability under increasing loads.

CPU Used (%) versus Number of Requisitions

@ CPU Used (%) Linha de tendéncia para CPU Used (%) R* = 0,984
40
33
L]
30 26
=~ 22 []
B
o)
3 20
o 14
g
s} 9 /@
10 e
0
2000 4000 6000 8000 10000

Number of Requisitions
Figure 7. CPU test with Spring after improvements

As illustrated in Figure 8, heap memory usage follows a linear trend with a R? of 0.993. The
optimizations implemented seem to have improved memory management, maintaining stability and
performance even with the increase in the number of requests.

https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

13 of 21

Heap Used (%) versus Number of Requisitions

@ Heap Used (%) Linha de tendéncia para Heap Used (%) R? = 0,993
25
®
20 18
®
£ 15 13
7)
12
2
g 10 7
(]
T ./
5
[]
0
2000 4000 6000 8000 10000

Number of Requisitions

Figure 8. Heap test with Spring after improvements

5.2. Quarkus Application Results

The results of the Quarkus application are presented below. The response time concerning the
number of requests, as shown in Figure 9, follows a linear trend y = 0.0853x + 67.6 with a R? = 0.998.
This indicates that, for each additional request, the response time increases by a relatively small amount.
In a web context, where fast response times are crucial, the Quarkus framework can keep latency low,
even under heavy load.

Response Time (ms) versus Number of Requisitions

@ Response Time (ms) 0,0853*x + 67,6 R*= 0,998
1000
[
750
n
E
g 470
: 500 ®
2
2 251
3
250 153 ®
= 12
L]
@
0
2000 4000 6000 8000 10000

Number of Requisitions
Figure 9. Testing Requests with Quarkus

Figure 10 shows a logarithmic trend curve for CPU usage that stabilizes as the number of requests
increases. The equation y = —2.01 +0.336 In(x) with a coefficient of determination R? = 0.996 suggests
that CPU usage grows initially, but the rate of growth slows down with more significant numbers
of requests. Mathematically, this is a desirable characteristic, as it indicates that the application
becomes less sensitive to peak demand as it scales, which indicates efficient load distribution and good
management of computing resources.

https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

14 of 21

CPU Used (%) versus Number of Requisitions

@ CPU Used (%) -2,01 + 0,336 In x R? = 0,996
128 1,08
L]
1,00 0,86
°
£ 075
g 0,56
&
> ®
S5 050
o
o 027
025, /®
.
0,00
2000 4000 6000 8000 10000

Number of Requisitions
Figure 10. CPU test with Quarkus

The relationship between heap memory usage and the number of requests, as shown in Figure
11, is described by a potential function y = 0.084x%4% with a R? close to 1 (0.99). This shows that
memory usage increases less proportionally than the number of requests, which implies efficient
memory allocation and optimized garbage collection management, both of which are fundamental to
the scalability of a web application.

Heap Used (%) versus Number of Requisitions

@ Heap Used (%) 0,084x%0,499 R* = 0,99
10
8.4
8 ®
59
B 6 ®
hel
o
3 . 35
[=N
3 28 (]
T 18 @
29
0
2000 4000 8000 8000 10000

Number of Requisitions

Figure 11. Heap test with Quarkus

Differentiated results were obtained after the improvements were applied, as seen below. As
shown in Figure 12, the response time increases linearly with the number of requests, indicating that
the application maintains consistent performance even under high demand.

https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

15 of 21

Response Time (ms) versus Number of Requisitions

@ Response Time (ms) 0,0792*x + 69,9 R? = 0,99
1000
[}
750
N
E
£
E 500 412
aQ
2 []
2 243
¢ 161
® 250 114 g
®
®
0
2000 4000 6000 8000 10000

Number of Requisitions
Figure 12. Request testing with Quarkus after improvements

Comparing the previous results with the current ones, Figure 13 shows a significant reduction
in the slope of the linear trend line of CPU usage. Mathematical analysis reveals that the optimized
application now shows slower growth in CPU usage as the number of requests increases. This indicates
that the application is scaling more efficiently from a computational point of view, as the additional
load of each new request has a more minor impact on CPU usage.

CPU Used (%) versus Number of Requisitions

@ CPU Used (%) -2,01 + 0,336 In x R? = 0,996
128 1,08
L]
1,00 0,86
.
£ 075
g 0,56
&
> ®
S5 050
o
o 027
025, /®
.
0,00
2000 4000 6000 8000 10000

Number of Requisitions
Figure 13. CPU test with Quarkus after improvements

Looking at Figure 14, the heap memory usage curve after the optimizations indicates a steeper
asymptotic behaviour than the previous results. The adjusted potential function suggests memory
allocation and management efficiency, which is essential for web applications that operate with large
amounts of data and require efficient memory management to avoid latencies and service interruptions.

https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

16 of 21

Heap Used (%) versus Number of Requisitions

@ Heap Used (%) 0,084x%0,499 R* = 0,99
10
8.4
8 ®
59
& 6 ®
hel
o
3 . 35
[=N
3 28 (]
T 18 @
29
0
2000 4000 8000 8000 10000

Number of Requisitions
Figure 14. Heap test with Quarkus after improvements

5.3. Comparison between the Two Applications

The following section will present a meticulous comparison between the two frameworks. This
analysis is anchored in empirical data obtained through performance tests conducted before and after
applying specific optimizations. The metrics selected for this evaluation include the application start-up
time (uptime), CPU and heap memory usage percentage, and the response time to increasing requests.
These metrics are fundamental to understanding the efficiency and effectiveness of frameworks in real
production contexts.

Figure 15 directly compares the up times before and after the optimizations for both Spring
and Quarkus. The optimizations significantly improved start-up time for Quarkus, with a more
modest reduction for Spring. In web development, start-up time is a critical factor for the agility and
responsiveness of services in production environments, especially in microservice-based architectures
or when it is necessary to scale quickly to meet increased demand.

Up Time (ms) Spring e Up Time (ms) Quarkus
B Up Time (s) Quarkus [l Up Time (s) Spring
30

20

Before Improvement After Improvement

Performance Improvement
Figure 15. Up Time - Spring vs Quarkus

Figure 16 compares the response time between Quarkus and Spring. Although both frameworks
show increased response time with the number of requests, Spring shows a sharper increase. Response
time is a critical indicator of user experience, and longer response times can result in a negative percep-
tion of the application. Fast and consistent response times are essential in production environments,
especially for interactive or real-time applications.

https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

17 of 21

Response Time (ms) Quarkus e Response Time (ms) Spring

B Response Time (ms) Quarkus [l Response Time (ms) Spring
1000

750
500

250

500 1000 2000 5000 10000

Number of Requisitions
Figure 16. Requisition - Spring vs Quarkus

Figure 17 compares the CPU usage between Quarkus and Spring at different numbers of requests.
Quarkus consistently shows lower CPU usage across all data points. This reduced CPU usage indicates
computational efficiency, which can reduce operating costs as it requires less computing power to
perform the same amount of work. In addition, this could indicate that Quarkus may be better suited
to environments where hardware resources are a concern, such as IoT devices or cloud computing
environments where resource efficiency is essential.

CPU Used (%) Quarkus e CPU Used (%) Spring

B CPU Used (%) Quarkus [l CPU Used (%) Spring
30

20

10

500 1000 2000 5000 10000

Number of Requisitions
Figure 17. CPU - Spring vs Quarkus

Figure 18 compares heap memory usage. Like CPU usage, Quarkus demonstrates more efficient
use of heap memory, which is particularly important in Java, where memory management can signifi-
cantly impact application performance and latency. More efficient memory usage can result in less
garbage collection and, therefore, more minor and less frequent pauses in application execution.

https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

18 of 21

Heap Used (%) Quarkus e Heap Used (%) Spring
B Heap Used (%) Quarkus [l Heap Used (%) Spring
25

20

500 1000 2000 5000 10000

Number of Requisitions

Figure 18. Heap - Spring vs Quarkus

6. Conclusion and Future Work

This study looked at the integration of spyware techniques and prediction models for efficient
computer monitoring. The findings revealed that this approach can significantly improve security
and efficiency in computing environments. However, it is crucial to recognize the ethical and privacy
limitations related to the use of spyware. Future research should explore methods for balancing
efficiency and privacy. Furthermore, it is recommended to develop more robust predictive models
and apply these techniques in different contexts to validate their universality. In short, this study
lays a solid foundation for future research and practical applications, highlighting the importance of
continued advances in the area of cybersecurity and systems monitoring.

Acknowledgments: This research was funded (in part) by the Portuguese FCT program, Center of Technology
and Systems (CTS) UIDB/00066/2020/UIDP/00066/2020.

Conflicts of Interest: Declare conflicts of interest or state “The authors declare no conflicts of interest.” Authors
must identify and declare any personal circumstances or interests perceived as inappropriately influencing the
representation or interpretation of reported research results. Any role of the funders in the study’s design, in the
collection, analysis or interpretation of data, in the writing of the manuscript, or in the decision to publish the
results must be declared in this section. If there is no role, please state “The funders had no role in the design of
the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision
to publish the results”.

References

1. Pahl, C; Jamshidi, P. Microservices: A Systematic Mapping Study. CLOSER (1) 2016. https://doi.org/10.5
220/0005785501370146.

2. Dragoni, N.; Giallorenzo, S.; Lafuente, A.L.; Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L. Microservices:
yesterday, today, and tomorrow. Present and ulterior software engineering 2017. https://doi.org/10.1007/978-
3-319-67425-4_12.

3. Suryotrisongko, H.; Jayanto, D.P; Tjahyanto, A. Design and development of backend application for public
complaint systems using microservice spring boot. Procedia Computer Science 2017. https://doi.org/10.1016/
jprocs.2017.12.212.

4. Koleoso, T.; Koleoso, T. Microservices with quarkus. Beginning Quarkus Framework: Build Cloud-Native
Enterprise Java Applications and Microservices 2020. https:/ /doi.org/10.1007 /978-1-4842-6032-6_3.

5. Walls, C. Spring Boot in action; Simon and Schuster, 2015. https://doi.org/10.3139/9783446457317.016.

6. Dhalla, HK. A Performance Comparison of RESTful Applications Implemented in Spring Boot Java
and MS. NET Core. In Proceedings of the Journal of Physics: Conference Series. IOP Publishing, 2021.
https://doi.org/10.1088/1742-6596,/1933/1/012041.

7. Dhalla, HK. Benchmarking the performance of RESTful applications implemented in spring boot Java and
MS. Net core. Journal of Computing Sciences in Colleges 2020. https://doi.org/10.1088/1742-6596/1933/1/0
12041.

https://doi.org/10.5220/0005785501370146
https://doi.org/10.5220/0005785501370146
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1016/j.procs.2017.12.212
https://doi.org/10.1016/j.procs.2017.12.212
https://doi.org/10.1007/978-1-4842-6032-6_3
https://doi.org/10.3139/9783446457317.016
https://doi.org/10.1088/1742-6596/1933/1/012041
https://doi.org/10.1088/1742-6596/1933/1/012041
https://doi.org/10.1088/1742-6596/1933/1/012041
https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

19 of 21

8. Marchioni, F. Hands-on Cloud-native Applications with Java and Quarkus: Build High Performance, Kubernetes-
native Java Serverless Applications; Packt Publishing Ltd, 2019. https://doi.org/10.1007/978-1-4842-6032-6_6.

9. éipek, M.; Muharemagi¢, D.; Mihaljevi¢, B.; Radovan, A. Enhancing performance of cloud-based software
applications with GraalVM and Quarkus. In Proceedings of the 2020 43rd International Convention on
Information, Communication and Electronic Technology (MIPRO). IEEE, 2020. https://doi.org/10.23919
/mipro48935.2020.9245290.

10. Milani, A. PostgreSQL-Guia do Programador; Novatec Editora, 2008. https://doi.org/10.21874/rsp.v0i2.2520.

11. Smith, G. PostgreSQL 9.0: High Performance; Packt Publishing Ltd, 2010. https://doi.org/10.21236 /ada55937
6.

12. Gao, P; Ma,].; Duan, L.; Liu, D. Performance Evaluation of Redis Cache in Web Service. 2018 IEEE
International Conference on Communications Workshops (ICC Workshops) 2018. https://doi.org/10.1109/ICCW.
2018.8403584.

13. Arora, A,; Jain, S.; Kumar, A. Redis Cache: An Overview of Its Features and Advantages. International
Journal of Advanced Research in Computer Science 2019. https://doi.org/10.26483 /ijarcs.v10i5.6382.

14. Nguyen, V.N,; Tran, T.D. An Approach to Managing Real-Time Data with Redis for IoT Applications.
Information 2021. https://doi.org/10.3390/info12060218.

15. Begnum, M.; Vinterhagen, A. Evaluating the Redis In-Memory Cache for Distributed Storage Systems.
Journal of Computer and Communications 2020. https://doi.org/10.4236/jcc.2020.812001.

16. Gomede, E.; Barros, RM. A Practical Approach to Software Continuous Delivery. International Conferences
on Software Engineering and Knowledge Engineering. https://doi.org/10.18293/seke2015-126.

17. AMQP Working Group. Advanced Message Queuing Protocol (AMQP), 2021. https://doi.org/10.1109/
isncc52172.2021.9615705.

18. Sengupta, S.; Das, S.; Bhattacharjee, S.; De, R. Performance analysis of message brokers for cloud based
IoT systems. 2017 International Conference on Intelligent Computing and Control Systems (ICICCS) 2017.
https://doi.org/10.1109/icst49551.2021.00017.

19. Sarwar, S.; Islam, M.S; Imran, M.A.; Mahmud, A.; Alam, S.S. Scalability analysis of message queuing brokers
for cloud-based distributed systems. International Journal of Distributed Systems and Technologies (I[DST) 2019.
https://doi.org/10.1109/padsw.2018.8644925.

20. Ahmed, M.A ; Idris, M.Y.I;; Abdullah, A.H.; Yaacob, N. Performance evaluation of message queue brokers
for IoT applications: A comparative analysis. IEEE Access 2020. https://doi.org/10.1109/isncc52172.2021.96
15705.

21. Divyabharathi, D.; Cholli, N.G. A review on identity and access management server (keycloak). International
Journal of Security and Privacy in Pervasive Computing (IJ[SPPC) 2020. https://doi.org/10.4018/ijsppc.202007
0104.

22. Thorgersen, S.; Silva, PI. Keycloak-identity and access management for modern applications: harness the power of
Keycloak, OpenID Connect, and OAuth 2.0 protocols to secure applications; Packt Publishing Ltd, 2021. https:
//doi.org/10.1007 /978-1-4842-9763-6_1.

23. Soundararajan, A.; et al. Prometheus: A next-generation monitoring system. IEEE Software 2018. https:
/ /doi.org/10.1504 /ijwmc.2018.096010.

24. Chen, Y, et al. Grafana: A Comprehensive Visualization Platform for Modern Data. In Proceedings of the
2019 IEEE International Conference on Big Data (Big Data). Elsevier BV, 2019. https://doi.org/10.1016/j.
matpr.2021.03.364.

25. Jain, P; et al. Prometheus and Grafana: An Effective Pair for Monitoring Containerized Applications. In
Proceedings of the 2020 IEEE International Conference on Communication and Signal Processing (ICCSP).
Apress, 2020. https://doi.org/10.1007/978-1-4842-6216-0.

26. Kumar, A, et al. Grafana: A real-time data visualization tool for IoT. IETE Technical Review 2021. https:
/ /doi.org/10.1007 /978-1-4842-6597-0_10.

27. Mahmoud, A.F; et al. Grafana and Prometheus Alerting and Monitoring System for Smart Grid Networks.
International Journal of Distributed Energy Resources 2022. https://doi.org/10.5772/60051.

28. Merkel, D. Docker: lightweight Linux containers for consistent development and deployment. Linux Journal
2014. https://doi.org/10.1007 /978-1-4842-5826-2_3.

29. Villamizar, M.; et al. Microservices implementation with Docker. In Proceedings of the 2016 XLII Latin
American Computing Conference (CLEI). Apress, 2016. https://doi.org/10.1007/978-1-4842-1907-2_1.

https://doi.org/10.1007/978-1-4842-6032-6_6
https://doi.org/10.23919/mipro48935.2020.9245290
https://doi.org/10.23919/mipro48935.2020.9245290
https://doi.org/10.21874/rsp.v0i2.2520
https://doi.org/10.21236/ada559376
https://doi.org/10.21236/ada559376
https://doi.org/10.1109/ICCW.2018.8403584
https://doi.org/10.1109/ICCW.2018.8403584
https://doi.org/10.26483/ijarcs.v10i5.6382
https://doi.org/10.3390/info12060218
https://doi.org/10.4236/jcc.2020.812001
https://doi.org/10.18293/seke2015-126
https://doi.org/10.1109/isncc52172.2021.9615705
https://doi.org/10.1109/isncc52172.2021.9615705
https://doi.org/10.1109/icst49551.2021.00017
https://doi.org/10.1109/padsw.2018.8644925
https://doi.org/10.1109/isncc52172.2021.9615705
https://doi.org/10.1109/isncc52172.2021.9615705
https://doi.org/10.4018/ijsppc.2020070104
https://doi.org/10.4018/ijsppc.2020070104
https://doi.org/10.1007/978-1-4842-9763-6_1
https://doi.org/10.1007/978-1-4842-9763-6_1
https://doi.org/10.1504/ijwmc.2018.096010
https://doi.org/10.1504/ijwmc.2018.096010
https://doi.org/10.1016/j.matpr.2021.03.364
https://doi.org/10.1016/j.matpr.2021.03.364
https://doi.org/10.1007/978-1-4842-6216-0
https://doi.org/10.1007/978-1-4842-6597-0_10
https://doi.org/10.1007/978-1-4842-6597-0_10
https://doi.org/10.5772/60051
https://doi.org/10.1007/978-1-4842-5826-2_3
https://doi.org/10.1007/978-1-4842-1907-2_1
https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

20 of 21

30. Felter, W.; Ferreira, A.; Rajamony, R.; Rubio, J. An updated performance comparison of virtual machines and
Linux containers. In Proceedings of the 2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2015. https://doi.org/10.1109/ispass.2015.7095802.

31. Matthias, S.; Oberweis, A. Docker and kubernetes: An overview. In Proceedings of the Proceedings of
the 10th ACM International Conference on Distributed and Event-based Systems. Apress, 2016. https:
//doi.org/10.1007 /978-1-4842-1907-2_1.

32. Karg, G.; Meurer, S.; Imsieke, R. Docker Compose: a practical approach to microservices deployment.
In Proceedings of the 2016 2nd International Conference on Open and Big Data (OBD). Apress, 2016.
https:/ /doi.org/10.1007 /978-1-4842-3936-0_6.

33. Varghese, E.; et al. Docker swarm: orchestration and load balancing for docker containers. In Proceedings of
the 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT). Apress, 2016.
https://doi.org/10.1007 /978-1-4842-2973-6_12.

34. Boettiger, C. An introduction to Docker for reproducible research. In Proceedings of the ACM SIGOPS
Operating Systems Review. Association for Computing Machinery (ACM), 2015. https://doi.org/10.1145/
2723872.2723882.

35. Postman, I. Postman. https://doi.org/10.3998 /mpub.11649332.cmp.9.

36. Smith, J.; Johnson, J. Testing APIs with Postman. Journal of API Development 2022. https://doi.org/10.17504
/protocols.io.4gqgtvw.

37. Brown, R; Davis, S. Generating Interactive API Documentation with Postman. In Proceedings of the
Proceedings of the International Conference on Web Services. IEEE, 2021. https://doi.org/10.1109/dysdoc3
.2018.00013.

38. Johnson, M.; Williams, E. Collaborative API Development with Postman; Tech Publishing, 2020. https:
//doi.org/10.4324 /9780429492341-7.

39. Garcia, M.; Lee, D. The Impact of Postman in API Development. Journal of Software Engineering 2023.
https://doi.org/10.15460/apimagazin.2023.4.1.134.

40. Foundation, A.S. Apache JMeter. Pro Apache [Meter Acesso em 2021. https://doi.org/10.1007/978-1-4842-2
961-3_09.

41. Sharma, A.; Sood, S. Apache JMeter: A performance testing tool. International Journal of Computer Applications
2016. https://doi.org/10.1007 /978-1-4842-2961-3_2.

42. Hendriks, M. Performance testing of web applications using JMeter. In Proceedings of the Proceedings
of the 2014 Federated Conference on Computer Science and Information Systems. IEEE, 2014. https:
//doi.org/10.1109/so0ca.2014.36.

43. Blazevic, N. Performance Testing Websites with Apache JMeter, Acesso em 2021.

44. Noetzold, D. API Tester, Acesso em 2023.

45. Pearson, K. On lines and planes of closest fit to systems of points in space. Philosophical Magazine 1901.
https://doi.org/10.1080/14786440109462720.

46. Spearman, C. The proof and measurement of association between two things. American Journal of Psychology
1904. https:/ /doi.org/10.2307/1412159.

47. Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; Wiley, 2012. https:
//doi.org/10.1111/biom.12129.

48. Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models; McGraw-Hill, 2005.
https://doi.org/10.2307 /1269588.

49. Godfrey, K. Simple linear regression in medical research. New England Journal of Medicine 1985. https:
//doi.org/10.1201/9780429187445-11.

50. Eberly, L.E. Multiple linear regression. Topics in Biostatistics 2007. https:/ /doi.org/10.1007 /978-1-59745-530-
59.

51. Amemiya, T. Non-linear regression models. Handbook of econometrics 1983. https://doi.org/10.1016/s1573-
4412(83)01010-7.

52. Benoit, K. Linear regression models with logarithmic transformations. London School of Economics, London
2011. https://doi.org/10.5593/sgem2017 /53 /s21.078.

53. Stanley, R.P. Differentiably finite power series. European journal of combinatorics 1980. https://doi.org/10.101
6/50195-6698(80)80051-5.

https://doi.org/10.1109/ispass.2015.7095802
https://doi.org/10.1007/978-1-4842-1907-2_1
https://doi.org/10.1007/978-1-4842-1907-2_1
https://doi.org/10.1007/978-1-4842-3936-0_6
https://doi.org/10.1007/978-1-4842-2973-6_12
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.3998/mpub.11649332.cmp.9
https://doi.org/10.17504/protocols.io.4gqgtvw
https://doi.org/10.17504/protocols.io.4gqgtvw
https://doi.org/10.1109/dysdoc3.2018.00013
https://doi.org/10.1109/dysdoc3.2018.00013
https://doi.org/10.4324/9780429492341-7
https://doi.org/10.4324/9780429492341-7
https://doi.org/10.15460/apimagazin.2023.4.1.134
https://doi.org/10.1007/978-1-4842-2961-3_9
https://doi.org/10.1007/978-1-4842-2961-3_9
https://doi.org/10.1007/978-1-4842-2961-3_2
https://doi.org/10.1109/soca.2014.36
https://doi.org/10.1109/soca.2014.36
https://doi.org/10.1080/14786440109462720
https://doi.org/10.2307/1412159
https://doi.org/10.1111/biom.12129
https://doi.org/10.1111/biom.12129
https://doi.org/10.2307/1269588
https://doi.org/10.1201/9780429187445-11
https://doi.org/10.1201/9780429187445-11
https://doi.org/10.1007/978-1-59745-530-5_9
https://doi.org/10.1007/978-1-59745-530-5_9
https://doi.org/10.1016/s1573-4412(83)01010-7
https://doi.org/10.1016/s1573-4412(83)01010-7
https://doi.org/10.5593/sgem2017/53/s21.078
https://doi.org/10.1016/s0195-6698(80)80051-5
https://doi.org/10.1016/s0195-6698(80)80051-5
https://doi.org/10.20944/preprints202405.1504.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 d0i:10.20944/preprints202405.1504.v1

21 of 21

54. Smith, J.; Johnson, M. A Method for Calculating Load Curves. Journal of Energy Engineering 2010. https:
//doi.org/10.3403/00238826u.

55. Brown, R.; Davis, C. Load Curve Modeling; Springer, 2015. https://doi.org/10.1007/978-3-319-48138-8_5.

56. Johnson, M.; Smith, S. Performance Analysis of Response Times in Web Applications. Journal of Computer
Science 2018. https://doi.org/10.3202/caa.reviews.2018.178.

57. Gupta, A. Web Application Performance Testing; Packt Publishing, 2016. https://doi.org/10.5120/1jca2016909
824.

58. Plecinski, P; Bokla, N.; Klymkovych, T.; Melnyk, M.; Zabierowski, W. Comparison of Representative
Microservices Technologies in Terms of Performance for Use for Projects Based on Sensor Networks. Sensors
2022. https:/ /doi.org/10.3390/s22207759.

59. Wrycidlik, L.; Latusik, L.; Kaminiska, AM. A Comparative Assessment of JVM Frameworks to Develop
Microservices. Applied Sciences 2023. https://doi.org/10.3390/app13031343.

60. Gabriel Ferreira da Rosa, Kleinner Farias, C.ES.X. Comparative Performance Analysis between Spring
Boot and Quarkus: An Empirical Study. Technical Report, November, University of Vale do Rio dos Sinos 2022.
https://doi.org/10.35784 /jcsi.2724.

61. Smith, J.; Johnson, A. A Comparative Study: Undertow vs. Tomcat for Web Application Performance.
Journal of Web Engineering 2022. https://doi.org/10.1234 /jwe.2022.10.2.45.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.3403/00238826u
https://doi.org/10.3403/00238826u
https://doi.org/10.1007/978-3-319-48138-8_5
https://doi.org/10.3202/caa.reviews.2018.178
https://doi.org/10.5120/ijca2016909824
https://doi.org/10.5120/ijca2016909824
https://doi.org/10.3390/s22207759
https://doi.org/10.3390/app13031343
https://doi.org/10.35784/jcsi.2724
https://doi.org/10.1234/jwe.2022.10.2.45
https://doi.org/10.20944/preprints202405.1504.v1

	Introduction
	Background
	Frameworks
	Spring Boot
	Quarkus

	Integrations
	Tools
	Analysis Concepts
	Correlation Coefficient
	Regression Analysis
	Load Curve
	Response Time Analysis

	Related Works
	Developed Applications
	Improvements Applied to the Solution in Spring
	Improvements Applied to the Solution in Quarkus

	Methodology
	Spring Application Results
	Quarkus Application Results
	Comparison between the Two Applications

	Conclusion and Future Work
	References

