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Abstract: We describe a family of paraxial and quasi-monochromatic optical wave packets with finite energy and

smoothly shaped amplitude in space and time that develops a singularity in the intensity when spatiotemporally

focused by imparting a converging spherical wave front and a negative temporal chirp. This singular behavior

upon ideal focusing is manifested in actual focusing with finite apertures and in media with high-order dispersion

in an "exploding" behavior featuring indefinitely increasing concentration of the energy when opening the aperture

radius, thus exercising a continuous control on the focal intensity and spatial and temporal resolution. These wave

packets offer a new way of focusing that outperforms what can be achieved with standard Gaussian wave packets

in terms of focal intensity and resolution, and new possibilities in applications where energy concentration and its

control are crucial.

Keywords: structured light; beam shaping; pulse shaping; ultrafast optics

1. Introduction

Structured light has gained attraction in the past decades, being now one of the central research
directions in photonics. The ultimate goal is to explore all degrees of freedom of light to tailor arbitrary
optical fields. In the basic scenario of monochromatic fields, complex amplitude and polarization
manipulation is the domain of modern photonic technologies such as spatial light modulators [1],
digital micromirror devices [2], metamaterials [3], etc. At its simplest, shaping amplitude and phase in a
certain polarization state is essential to realize arbitrary scalar beams, where the vectorial feature of light
plays no role. This is the case of the well known free-space eigenmodes such as Laguerre-Gaussian (LG)
and Hermite-Gaussian beams [4], Airy beams [5], Ince-Gaussian beams [6] etc. By further combining
orthogonal polarisation states, complex vector beams with inhomogeneous polarisation textures are
obtained, such as radial/azimuthal cylindrical vector beams [7], full-Poincaré beams [8], optical
skyrmions [9], etc.

The present work is in the broader context of spatio-temporal light shaping, which involves
sculpturing the properties of light fields simultaneously in the spatial and temporal (spectral) domains.
Compared to monochromatic fields, or space-time separable fields, non-separable spatio-temporal
light fields feature radically different behaviours [10], which have been studied in various contexts
such as toroidal electrodynamics and anapole radiation [11,12], spatio-temporal vortices [13,14], scalar
hopfions [15], etc.

A recent trend in structured light are singular beams, initially monochromatic beam solutions of
the Schrödinger equation for paraxial propagation in non-dispersive media that yield singular (infinite)
focal intensity under ideal focusing conditions, mimicking focusing of a plane wave but with finite
power. In this context, one-dimensional “concentrating" beams were first described in [16] and later
observed in experiments in [17]. It was followed by two-dimensional exploding beams and vortex
beams with cylindrical symmetry [18], and by their recently recent experimental realization using
metasurfaces [19]. Although the singularity would appear only under ideal conditions, in real settings
singular beams provide much larger peak intensities and finer spatial resolutions than other standard
beams with the same power, which is of great interest in areas such as atom trapping [20], microscopy
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[21], material processing [22], etc. Indeed, concentrating the electromagnetic energy in minimal spots
has been investigated since the invention of lasers and the development of beam shaping techniques
[23], from binary optics [24], all the way to the present days with approaches such as superoscillatory
fields [25]. Along with revolutionary pulse amplification techniques [26,27] with which modern pulsed
laser systems have achieved powers up to 1015 W and peak intensities of 1023 W/cm2 [28], shaping the
beam and pulse degrees of freedom is crucial to reach even larger levels.

In the present work we continue previous research on singular fields and extend the concept to the
three-dimensional, spatiotemporal domain, describing what we call exploding wave packets (EWPs)
with non-separable, spatiotemporal spherical symmetry. These EWPs are finite-energy analytical
solutions to the paraxial diffraction integral, or to the linear Schrödinger equation in second-order
dispersive media, that develop a singular (infinite) intensity when they are ideally spatiotemporally
focused, i.e., focused spatially and compressed temporally. As for its predecessors, the ideal singu-
larity disappears under real focusing conditions with finite apertures and in media with high-order
dispersion. Nevertheless, the existence of the ideal singularity has physical manifestations such as
a continuous increase of the focal intensity and a continuous diminution of the transversal spot size
with increasing aperture radius that makes them to arbitrarily improve the focusing capabilities of
standard Gaussian wave packets under similar conditions of peak intensity and energy. High-order
dispersion sets a limit to the minimum duration; nevertheless this duration is substantially smaller
than that achievable with Gaussian pulses.

Note that, as with preceding singular beams [16–19], we do not resort here to strong, non-paraxial
focusing with large numerical apertures, but focus, however redundant, on paraxial focusing to
emphasize the focusing properties of the spatiotemporally shaped exploding profile itself through its
analytical properties. In fact, all our examples are fully paraxial. As pointed out in [19], non-paraxial
focusing of exploding beams yields even stronger concentration of energy.

2. Methods

2.1. Propagation of Spatiotemporal Symmetric Wave Packets in Dispersive Media

We consider a quasi-monochromatic pulsed beam E = ψe−iω0t+ik0z of carrier frequency ω0 and
propagating along the z direction, whose complex envelope ψ is governed by the Schrödinger equation

∂ψ

∂z
=

i
2k0

∆⊥ψ −
ik′′0
2

∂2ψ

∂t′2
, (1)

where ∆⊥ = ∂2/∂x2 + ∂2/∂y2, k0 is the propagation constant at the carrier frequency, k′′0 is the GVD, t′

is the local time t′ = t − k′0z, and 1/k′0 is the group velocity. Assuming anomalous dispersion (k′′0 < 0),

we introduce the time τ = t′/
√

k0|k′′0 | with units of length, and Eq. (1) becomes

∂ψ

∂z
=

i
2k0

(
∂2ψ

∂x2 +
∂2ψ

∂y2 +
∂2ψ

∂τ2

)
, (2)

The propagator of Eq. (2) that yields the propagated envelope of an arbitrary illumination ψ(x′, y′, τ′, 0)
has a well-known analogous in the quantum mechanics of a free particle, and reads here as a Fresnel
diffraction integral generalized to three dimensions,

ψ(x, y, τ, z) =

(
k0

2πiz

)3/2 ∫
R3

ψ(x′, y′, τ′, 0)e
ik0
2z [(x−x′)2+(y−y′)2+(τ−τ′)2]dx′dy′dτ′

=

(
k0

2πiz

)3/2
e

ik0
2z (x2+y2+τ2)

×
∫
R3

ψ(x′, y′, τ′, 0)e−
ik0
z (xx′+yy′+ττ′)e

ik0
2z (x′2+y′2+τ′2)dx′dy′dτ′. (3)
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We consider wave packets whose complex envelope only depends on r = (x2 + y2 + τ2)1/2, which we
will call spatiotemporal spherically symmetric wave packet. For these wave packets the Schrödinger
equation (2) can be written as

∂ψ

∂z
=

i
2k0

1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
, (4)

which in particular implies that this symmetry is preserved on propagation. The propagator in Eq.
(3) can be accordingly simplified. We introduce spatiotemporal spherical coordinates x = r sin ϕ cos θ,
y = r sin ϕ sin θ and τ = r cos ϕ, (and similar for x′, y′ and τ′) to rewrite Eq. (3) as

ψ(r, z) =

(
k0

2πiz

)3/2
e

ik0
2z r2

∫ ∞

0
ψ(r′, 0)e

ik0
2z r′2 r′2dr′

∫ π

0
e−

ik0
z rr′ cos ϕ cos ϕ′

sin ϕ′dϕ′

×
∫ 2π

0
e−

ik0
z rr′ sin ϕ sin ϕ′ cos(θ−θ′)dθ′. (5)

The integral in θ′ is 2π J0(k0rr′ sin ϕ sin ϕ′/z), where J0(·) is the Bessel function of the first kind and
order zero, which introduced in Eq. (5) gives

ψ(r, z) = 2π

(
k0

2πiz

)3/2
e

ik0
2z r2

∫ ∞

0
ψ(r′, 0)e

ik0
2z r′2 r′2dr′

×
∫ π

0
e−

ik0
z rr′ cos ϕ cos ϕ′

J0

(
k0rr′

z
sin ϕ sin ϕ′

)
sin ϕ′dϕ′. (6)

In the last integral, only the cosine of the exponential contributes. Since the spatiotemporal
symmetry is preserved, the integral in ϕ′ must be independent of ϕ, and it can conveniently be
evaluated with ϕ = 0, i.e.,

∫ π

0
cos

(
k0

z
rr′ cos ϕ′

)
sin ϕ′dϕ′ =

2z
k0rr′

sin
(

k0rr′

z

)
. (7)

Introducing Eq. (7) into Eq. (6) we obtain

ψ(r, z) = 4π

(
k0

2πiz

) 3
2
ei k0r2

2z

∫ ∞

0
ψ(r′, 0)e

ik0
2z r′2sinc

(
k0rr′

z

)
r′2dr′ (8)

where sinc α ≡ sin α/α, and provides the simplified form of the propagator for spatiotemporal
spherically symmetric wave packets in the dispersive medium.

Let us choose ψ(r, 0) = ψ(r)e−ik0r2/2 f , where ψ(r) is real. Displaying the exponential e−ik0r2/2 f as
e−ik0r2/2 f = e−ik0(x2+y2)/2 f e−it′2/2 f |k′′0 | it is evident that ψ(r)e−ik0r2/2 f represents focusing spatiotempo-
rally the illumination ψ(r) with focal length f > 0 and a negative chirp −1/2 f |k′′0 | in such a way that
the spatiotemporal spherical symmetry is preserved. Equation (8) then becomes

ψ(r, z) = 4π

(
k0

2πiz

) 3
2
ei k0r2

2z

∫ ∞

0
ψ(r′)e

ik0
2 r′2

(
1
z −

1
f

)
sinc

(
k0rr′

z

)
r′2dr′ , (9)

and at the focal plane z = f ,

ψ(r, f ) = 4π

(
k0

2πi f

) 3
2
ei k0r2

2 f

∫ ∞

0
ψ(r′)sinc

(
k0rr′

f

)
r′2dr′ , (10)

which provides the spatiotemporal focused field.
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2.2. Exploding Wave Packets

Let the illuminating wave packet be

ψ(r) =

√
E
C

[
1

1 + r2/β2

]µ+1/2
=

√
E
C

[
1

1 + (x2 + y2)/β2 + t′2/(k0|k′′0 |β2)

]µ+1/2
, (11)

where β determines the spatial size and temporal duration ∆t =
√

k0|k′′0 |β. If µ > 1/4 then the energy

of this wave packet is finite. If we choose C =
√

k0|k′′0 |π3/2β3Γ(2µ − 1/2)/Γ(2µ + 1) in Eq. (11),
where Γ(·) is the gamma function, it can be readily seen that E also in Eq. (11) coincides with the finite

energy carried by the wave packet, i.e., E =
∫

dxdydt′|ψ|2 = 4π
√

k0k′′0
∫ ∞

0 drr2|ψ(r)|2. Equation (11)
into Eq. (10) yields the optical disturbance at the focal plane. The resulting integral can be performed
analytically by using integral 3.251.2 in Ref. [29], obtaining, after some algebra,

ψ(r, f ) =

√
E
C

βµ+2 2
π

(
1
ir

) 3
2
ei k0r2

2 f

(
k0r
2 f

)µ+ 1
2

cos(πµ)Γ
(

1
2
− µ

)
K1−µ

(
k0βr

f

)
, (12)

where Kν(·) is the modified Bessel function of the second kind and order ν. Considering the asymptotic
behaviour of Kν(α) ≃ (1/2)Γ(ν)(α/2)−ν for small values of α, the field at the focus r = 0 is seen to
present a singularity, ψ → ∞ when r → 0, if µ < 1. In short, if we take the parameter µ in the range

1/4 < µ < 1, (13)

the input illumination in Eq. (11) carries finite energy and produces a focused field with infinite
intensity at the focus. Note that for µ = 1/2, the singularity of the gamma function is removed by
the zero of the cosine; indeed cos(πµ)Γ(1/2 − µ) = π for µ = 1/2. In addition, use of K1/2(α) =√

π/(2α)e−α leads to the simpler expression

ψ(r, f ) =

√
E
C

β2(−i)3/2

√
πk0

2 f
ei k0r2

2 f
1
r

e−
k0βr

f (14)

for µ = 1/2. Figures 1(a) and (b) show an example of the EWP spatiotemporal radial profile in Eq. (11)
at z = 0 and the focal plane in Eq. (14), respectively, in fused silica at a wavelength with anomalous
dispersion. How it looks in real space-time is shown in Figs. 1(c) and (d). They are compared with
spatiotemporal spherically symmetric Gaussian wave packets of the same peak intensity and energy,
ψ =

√
E/Ce−r2/w2

e−ik0r2/2 f , that are spatiotemporally focused in the same way, where the choice

w3 = 4C/
√

k0|k′′0 |2π3 equates the energies.
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Figure 1. EWP at ω0 = 1.4 rad/fs (λ0 = 1.346 µm) ideally focused in fused silica (k0 = 6754 mm−1,
k′0 = 4876 fs mm−1, k′′0 = −6.508 fs2 mm−1). (a) Spatiotemporal radial intensity profile of the EWP
(blue) with β = 0.25 mm and µ = 1/2, and of Gaussian wave packet (orange) with w = 0.428 mm of
the same peak intensity and energy E = 1 µJ. (b) Their focused intensity profiles with f = 50 mm. (c)
The same EWP (top) and Gaussian wave packet (bottom) in space and real time, of width of duration

∆t =
√

k0|k′′0 |β = 104.8 fs. (d) Their focused intensity profiles.

Figure 2 shows the on-axis intensity as it grows up to infinity to verify that the singularity is only
formed at the focal plane, and to compare it with the on-axis intensity of the Gaussian wave packet
of the same intensity and energy. We note that for the chosen parameters, there is a small focal shift
for the Gaussian wave packet. The on-axis intensity of the EWP is also slightly asymmetric, but the
singularity is only formed at the focal plane z = f .

Figure 2. On-axis intensity of the same EWP (blue) and Gaussian wave packet (orange) as in Figure 1
as functions of propagation distance z.

3. Results

Of course the singularity is not observed in any real setting with a finite aperture. Also, high-
order material dispersion has to be properly taken into account when the pulse shrinks in time
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without bound during propagation. However, the theoretical existence of the singularity has physical,
observable consequences that makes EWPs to feature unconventional focusing properties. With
increasing aperture, the peak intensity grows without bound towards the ideal singularity, and the
transversal size diminishes without bound, always outperforming the focusing capabilities of standard,
Gaussian-like wave packets, since the latter do not experience any change as the aperture increases
above a certain value. Third and high-order dispersion sets a limit to the minimum achievable duration,
but still our particular non-separable, spatiotemporal profile produces at the focus a pulse shape of
significant shorter duration than a Gaussian pulse.

The circular aperture and high-order dispersion break the spatiotemporal spherical symmetry of
the exploding illumination, and only cylindrical symmetry in space remains. To take into account their
effects properly, we consider the temporal frequency spectrum Ê(ρ, ω, 0) = (1/2π)

∫ ∞
−∞ E(ρ, t, 0)eiωtdt

of the exploding illumination E(ρ, t, 0) = ψ(ρ, t, 0)e−iω0t,

ψ(ρ, t, 0) =

√
E
C

[
1

1 + ρ2/β2 + t2/(k0|k′′0 |β2)

]µ+1/2
e−it2/2 f |k′′0 | , (15)

where ρ =
√

x2 + y2, including the temporal chirp. Then we propagate each frequency from the
focusing lens of finite radius R towards the focus as described by Fresnel diffraction integral for
cylindrically symmetric beams [18] with the exact propagation constant k(ω) = n(ω)(ω/c), where
n(ω) is the refractive index of the medium, namely,

Ê(ρ, ω, z) = eik(ω)z k(ω)

iz
e

ik(ω)ρ2
2z

∫ R

0
dρ′ρ′Ê(ρ′, ω, 0)e

ik(ω)ρ′2
2

(
1
z −

1
f

)
J0

[
k(ω)ρρ′

z

]
, (16)

where focusing of each monochromatic component is accounted for by the factor e
−ik(ω)ρ′2

2 f , and then
come back to time domain E(ρ, t, z) =

∫ ∞
−∞ Ê(ρ, ω, z)e−iωtdω.

For numerical computation it is convenient to evaluate the envelope ψ(ρ, t′, z) of E(ρ, t, z) =

ψ(ρ, t′, z)e−iω0t+ik0z in the local time, given by ψ(ρ, t′, z) =
∫ ∞
−∞ dΩψ̂(ρ, Ω, z)e−iΩt′ , where Ω = ω − ω0,

ψ̂(ρ, Ω, z) = ei[k(ω0+Ω)−k0−k′0Ω]z k(ω0 + Ω)

iz
e

ik(ω0+Ω)ρ2

2z

×
∫ R

0
dρ′ρ′ψ̂(ρ′, Ω, 0)e

ik(ω0+Ω)ρ′2
2

(
1
z −

1
f

)
J0

[
k(ω0 + Ω)ρρ′

z

]
, (17)

and ψ̂(ρ, Ω, 0) = (1/2π)
∫ ∞
−∞ dtψ(ρ, t, 0)eiΩt.

3.1. Manifestations of the Singular Behaviour in Real Settings

Figure 3 shows focal [(ρ, z) = (0, f )] pulse temporal shapes of an EWP (blue curves) and a
Gaussian (orange) wave packets of the same peak intensity on the focusing system and carrying the
same energy. From Figure 3(a) to 3(c) the aperture radius increases. For strong the aperture truncation
in (a) the peak intensity of the Gaussian wave packet is higher than that of the EWP since its tails
are completely removed. As the aperture radius increases, larger volumes of the low, widespread
EWP periphery is encircled and contributes to the focal intensity, which grows without bound and
surpasses the peak intensity produced by the Gaussian wave packet, which does not experience any
change in this process above a certain aperture radius. It is important to notice that the finiteness of
the energy, or mathematically, the convergence of the integral E =

∫
dxdydt′|ψ|2 for the EWP, implies

that the encircled energy does not significantly change when opening the aperture above several times
β. The increase of the peak intensity originates instead from the constructive interference effect of the
enlarging encircled EWP periphery carrying nevertheless increasingly negligible energy.

As another manifestation of the mathematical singularity on the focal concentration of the energy,
we show in Figure 4 the transverse radial profiles of the same EWP and Gaussian wave packet at the
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instants of time of maximum intensity seen in Figure 3. The peak intensities have been equated for a
better comparison of the widths. As the radius of the aperture increases, the EWP always becomes
more and more concentrated radially at the focal plane, while increasing the aperture radius has no
effect on the concentration of the Gaussian wave packet above a certain value.

Figure 3. EWP at ω0 = 1.2 rad/fs (λ0 = 1.57 µm) focused in fused silica modelled by a Sellmeier
relation with three resonances. Comparison between the temporal shape at the focus of the EWP with
µ = 1/2 and β = 0.25 (blue) and a Gaussian wave packet (orange) of the same initial peak intensity
and the same energy with (w = 0.428 mm) when the raddi of the aperture are R = 0.5 mm (a), R = 1
mm (b) and R = 2 mm (c).
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Figure 4. EWPs at ω0 = 1.2 rad/fs (λ = 1.57 µm) focused in fused silica modelled by a Sellmeier
relation with three resonances. Comparison between the radial profiles at the focal plane at instant of
time of maximum intensity of the EWP with µ = 0.5 and β = 0.25 (blue) and of the Gaussian wave
packet (orange) of the same initial peak intensity and energy when the aperture radii are R = 0.5 mm
(a), R = 1 mm (b) and R = 2 mm (c).

4. Discussion and Conclusions

As a summary of the above properties, Figs. 5 (a) and (b) represent the focal peak intensity and
transversal size of EWPs with different values of the decaying parameter µ as functions of the aperture
radius R (solid curves), compared to the same properties for standard Gaussian wave packets of the
same peak intensity on the focusing system and the same energy. The slower the EWP decays (smaller
µ), the easier it is to achieve higher peak intensity and smaller width.

Also, Figure 5 (c) shows the pulse duration at the focus [(ρ, z) = (0, f )] as a function of the aperture
radius R. As already seen in Figure 3, high-order dispersion, particularly third-order dispersion, sets
a limit to the minimum achievable duration when increasing the aperture radius, which does not
approach zero but a constant value, as for the Gaussian wave packets. However, also as a manifestation
of the particular EWP profile, this minimum duration is seen in Figure 5 (c) to be significantly smaller
than the minimum duration achievable with the Gaussian wave packets of the same peak intensity
and energy.
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Figure 5. Properties of EWPs at ω0 = 1.2 rad/fs (λ = 1.57 µm) and β = 0.25 mm focused in fused
silica modelled by a Sellmeier relation with three resonances. (a) Peak intensity for the indicated values
of the decay parameter µ as a function of the radius of the aperture R, compared to the same property
for Gaussian wave packets of the same peak intensity and energy. (b) Radial FWHM of the same EWPs
and Gaussian wave packets as functions of R. (c) Temporal FWHM of the EWPs and Gaussian wave
packets as functions of R.

In conclusion, we have described a spatiotemporal light wave packet carrying finite energy, and
therefore a physically realizable wave packet, that ideally develops a singularity in its intensity when
focused in space and time in a medium with anomalous group velocity dispersion, and have studied
the real-world manifestations of such a singular behavior. The concentration of the focused energy can
be increased as desired with the same illuminating wave packet just by increasing the aperture radius
of the focusing system. In contrast to previous works, the concentration of the energy takes place in all
dimensions, i.e., (x, y, t′), or equivalently, (x, y, z).

The spontaneous development of a singularity resembles the phenomenon of collapse in nonlinear
Kerr-type media. However, this phenomenon occurs here in a linear medium, and therefore occurs
independently of the energy of the wave packet. In fact, the exploding wave packet is a solution of the
linear Schrödinger equation in three dimensions, and as such the same wave packet is of interest not
only in optics but in other of fields of physics such as quantum mechanics or acoustics.
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