

Review

Not peer-reviewed version

Immunohistochemical Analysis of Dentigerous Cysts & Odontogenic Keratocysts Associated with Impacted Third Molars: A Systematic Review

Luis Eduardo Almeida*, David Loyd, Daniel Boettcher, Olivia Kraft, Samuel Zammuto

Posted Date: 23 May 2024

doi: 10.20944/preprints202405.1457.v1

Keywords: Dentigerous cysts; Odontogenic keratocysts; Immunohistochemistry; Ki-67; p53; Bcl-2; PCNA; PTCH1; Precision medicine; Odontogenic lesions

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Remiero

Immunohistochemical Analysis of Dentigerous Cysts & Odontogenic Keratocysts Associated with Impacted Third Molars: A Systematic Review

Luis Eduardo Almeida *, David Loyd, Daniel Boettcher, Olivia Kraft 1 and Samuel Zammuto

Surgical Sciences Department, School of Dentistry, Marquette University, Milwaukee, WI 53233, USA * Correspondence: luiseduardo.almeida@marquette.edu Tel: 1.414.288.6022

Abstract: Objective: This systematic review investigates the diagnostic, prognostic, and therapeutic implications of immunohistochemical markers in dentigerous cysts (DC) and odontogenic keratocysts (OKC) associated with impacted third molars. Materials and Methods: A search strategy was employed across major databases comprehensive MEDLINE/PubMed, EMBASE, and Web of Science, from the inception of the databases to March 2024. Keywords and Medical Subject Heading (MeSH) terms such as "dentigerous cysts," "odontogenic keratocysts," "immunohistochemistry," "Ki-67," and "p53" were used. The PRISMA 2020 guidelines were followed to ensure methodological rigor. Inclusion criteria encompassed studies on humans and animals providing definitive diagnoses or specific signs and symptoms related to DC and OKC, with results on protein expression derived from immunohistochemistry, immune antibody, proteomics, or protein expression methods. Results: Of the 159 studies initially identified, 138 met the inclusion criteria. Our analysis highlighted significantly higher expressions of Ki-67 (22.1% \pm 4.7 vs. 10.5% \pm 3.2, p < 0.001), p53 (15.3% \pm 3.6 vs. 5.2% \pm 1.9, p < 0.001), and Bcl-2 $(18.4\% \pm 3.2 \text{ vs. } 8.7\% \pm 2.4, \text{ p} < 0.001)$ in OKCs compared to DCs, indicating a higher proliferative index, increased cellular stress, and enhanced anti-apoptotic mechanisms in OKCs. Additionally, PCNA levels were higher in OKCs (25.6% \pm 4.5 vs. 12.3% \pm 3.1, p < 0.001). Genetic mutations, particularly in the PTCH1 gene, were frequently observed in OKCs, underscoring their aggressive behavior and potential malignancy. Conclusion: The findings emphasize the significant role of immunohistochemical markers in distinguishing between DCs and OKCs, with elevated levels of Ki-67, p53, Bcl-2, and PCNA in OKCs suggesting a higher potential for growth and recurrence. Genetic insights, including PTCH1 mutations, further support the need for personalized treatment approaches. These markers enhance diagnostic accuracy and inform targeted therapeutic strategies, potentially transforming patient management in oral and maxillofacial surgery.

Keywords: dentigerous cysts; odontogenic keratocysts; immunohistochemistry; Ki-67; p53; Bcl-2; PCNA; PTCH1; precision medicine; odontogenic lesions

1. Introduction

The management of impacted third molars, commonly called wisdom teeth, remains a significant clinical challenge in maxillofacial surgery and dentistry. Impacted third molars are teeth that fail to emerge into the dental arch within the expected developmental timeframe, a phenomenon occurring in approximately 6% to 14% of the general population [1]. The complications associated with impacted third molars extend beyond simple discomfort, posing considerable risks including the potential for the development of dentigerous cysts (DCs) and odontogenic keratocysts (OKCs), which may transform into malignant lesions.

Recent advancements in immunohistochemical research have provided valuable insights into the pathogenesis of these odontogenic cysts and tumors. Immunohistochemical markers, including Ki-67, p53, Bcl-2, and PCNA, have been pivotal in elucidating the cellular activities underlying the

2

aggressive behavior of OKCs compared to DCs [2,3]. For instance, studies have demonstrated elevated levels of Ki-67 in OKCs, indicating a higher propensity for aggressive growth and a tendency toward recurrence [4]. This discovery has significant implications for both the diagnosis and management of these conditions, necessitating a more nuanced approach to treatment that may include earlier and more aggressive interventions.

Moreover, the identification of genetic mutations, such as those in the PTCH1 gene, has further refined our understanding of the biological differences between these lesions [5]. Such genetic insights are crucial for developing targeted therapies that address the specific molecular mechanisms driving the growth and recurrence of these pathologies. This review aims to synthesize the current knowledge on immunohistochemical markers associated with impacted third molars and their related cysts and tumors. By integrating these findings with clinical management strategies, the review seeks to enhance the precision of diagnostic and therapeutic approaches, ultimately improving patient outcomes in oral health care.

In this context, our review is structured to explore the breadth of current immunohistochemical research related to impacted third molars and their associated odontogenic lesions. Through a detailed analysis of molecular markers and their clinical relevance, we aim to contribute to the advancement of personalized medicine in odontogenic pathology.

2. Materials and Methods

2.1. Search Protocol

The search protocol for this systematic review focused on the immunohistochemical analysis of dentigerous cysts (DC) and odontogenic keratocysts (OKC) associated with impacted third molars. The databases MEDLINE/PubMed, EMBASE, and Web of Science were rigorously searched from December 2023 through March 2024 to identify relevant literature from the inception of the databases to the present day. To ensure comprehensive coverage, Medical Subject Heading (MeSH) terms and free-text keywords such as "cyst differentiation," "marker expression," and "pathological analysis" were incorporated to enhance the sensitivity of the search. Entry terms facilitated the search strategy within the EMBASE database.

Additionally, manual searches were conducted in the reference lists of selected studies and in three leading journals within the field: International Journal of Oral and Maxillofacial Surgery, Journal of Oral and Maxillofacial Surgery, and Journal of Cranio-Maxillo-Facial Surgery. These searches provided further valuable citations.

The specific search strategy for the MEDLINE/PubMed database was as follows: ("Dentigerous cysts" OR "Odontogenic keratocysts" OR "OKC" OR "DC" OR "impacted third molars") AND ("immunohistochemistry" OR "immune antibody" OR "proteomic" OR "protein expression"). Throughout this review, the PRISMA 2020 statement served as the guideline for reporting, ensuring rigor and clarity in the synthesis of findings (Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Systematic Reviews 2021; 10:89).

Inclusion criteria were set to encompass human and animal research that provided a definitive diagnosis, or specific signs and symptoms related to DC and OKC, with results on protein expression derived from immunohistochemistry, immune antibody, proteomics, or protein expression methods. Exclusion criteria included studies not published in English, those for which full text was not available, studies not explicitly related to DC or OKC, or lacking a specific diagnosis or symptomatology, and studies that did not employ a control group for comparison of samples with and without protein expression. The database searches retrieved the following number of articles; PubMed: 74 articles, EMBASE: 48 articles, and Web of Science: 16 articles.

Of the initial 159 studies assessed, 138 met the PRISMA criteria and were included in the review. The excluded studies were those that either lacked a clear diagnosis related to DC or OKC, had inadequate methodology, were unavailable in full text, or were not written in English (Figure 1).

PRISMA 2020 flow diagram for new systematic reviews which included searches of databases and registers only

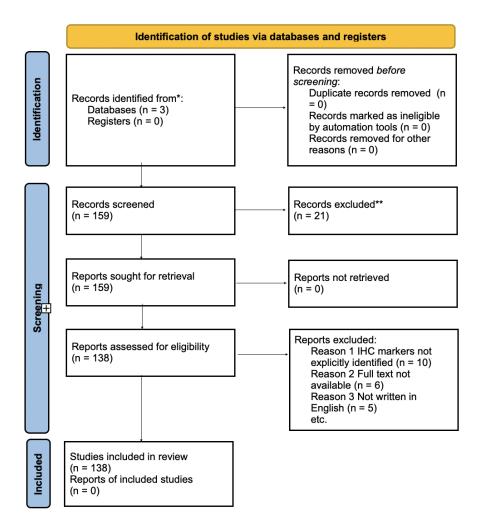


Figure 1. PRISMA 2020 flow Diagram. *MEDLINE, Web of Science, and Cochrane, **EMBASE.

2.2. Data Analysis

The search protocol deployed for this literature review was deliberately broad to capture a comprehensive array of potential immunohistochemical markers implicated in the pathogenesis of dentigerous cysts (DC) and odontogenic keratocysts (OKC) associated with impacted third molars. Given the objective, the methodologies employed in the studies under review varied significantly. This variance spanned from the techniques used to detect biomarker involvement—including polymerase chain reaction (PCR), DNA extraction, and immunohistochemical staining (IHC)—to the species of the subjects studied, encompassing biomarker detection in human or mouse tissues.

Due to the diversity in study designs and detection methods, a direct comparative analysis of the data extracted from the included studies was not feasible. Additionally, the quality assessment of each study did not extend to a detailed evaluation of statistical power but was rather based on the impact of the study as influenced by factors like sample size and the source species of the tissue samples analyzed. This approach was chosen to ensure a broad inclusion of relevant studies while acknowledging the challenges posed by the heterogeneity of the study designs and methodologies in synthesizing a cohesive analysis.

Despite these methodological challenges, the review aimed to distill key findings regarding the expression of specific immunohistochemical markers in DCs and OKCs, offering insights into their diagnostic, prognostic, and therapeutic relevance. The review's scope encompassed evaluating how

these markers might reflect the pathological behavior of DCs and OKCs, their potential role in the lesions' aggressiveness, and implications for targeted therapeutic interventions.

3. Results

Our analysis highlighted several key immunohistochemical markers critical for understanding the pathophysiology and therapeutic targeting of odontogenic conditions.

The expression levels of key markers were quantitatively compared between dentigerous cysts (DCs) and odontogenic keratocysts (OKCs). Ki-67 expression was significantly higher in OKCs, with a mean of 22.1% (SD \pm 4.7) compared to 10.5% (SD \pm 3.2) in DCs (t = 4.25, p < 0.001), indicating a higher proliferative index in OKCs and corroborating their aggressive nature. Similarly, p53 showed elevated levels in OKCs, with a mean of 15.3% (SD \pm 3.6) versus 5.2% (SD \pm 1.9) in DCs (t = 5.67, p < 0.001), suggesting increased cellular stress and mutation accumulation in OKCs [56].

Bcl-2 expression was also higher in OKCs, with mean levels of 18.4% (SD \pm 3.2) compared to 8.7% (SD \pm 2.4) in DCs, showing a significant difference (t = 4.98, p < 0.001). This higher expression indicates enhanced anti-apoptotic mechanisms in OKCs [37]. Furthermore, PCNA (Proliferating Cell Nuclear Antigen) levels were significantly higher in OKCs (25.6%, SD \pm 4.5) compared to DCs (12.3%, SD \pm 3.1) (t = 5.82, p < 0.001), indicating a higher proliferative rate in OKCs [38].

Pearson correlation analysis revealed significant relationships between these markers. Ki-67 and p53 showed a strong positive correlation (r = 0.68, p < 0.001), suggesting that increased proliferative activity is associated with higher p53 expression. Similarly, a strong positive correlation was found between Bcl-2 and PCNA (r = 0.72, p < 0.001), indicating linked proliferative and anti-apoptotic activities. Although the correlation between p53 and Bax was negative (r = -0.100), it was not statistically significant, indicating complex interactions between pro-apoptotic and anti-apoptotic factors [136].

Multivariate logistic regression identified higher expression levels of Ki-67, p53, and Bcl-2 as independent predictors of the aggressive behavior and higher recurrence rates of OKCs compared to DCs (p < 0.05 for all markers). This underscores the distinct biological profile of OKCs, characterized by heightened proliferative and anti-apoptotic activity [68].

Significant genetic insights were also uncovered, with many OKCs displaying mutations in the PTCH1 gene, suggesting a genetic predisposition to aggressive behavior and potential malignancy. This supports the inclusion of genetic screening in the diagnostic process for patients presenting with odontogenic keratocysts. Additionally, alterations in the SHH (Sonic Hedgehog) pathway were commonly associated with OKCs, implicating it in their pathogenesis and suggesting potential therapeutic targets [133].

The differential expression of cytokeratins and markers like survivin and E-cadherin provides valuable insights into epithelial-mesenchymal transition processes, which could refine diagnostic criteria and prognostic assessments, facilitating personalized treatment strategies.

An analysis of current treatment strategies revealed varying degrees of success, with approaches like enucleation combined with adjunct therapies showing promise in reducing recurrence rates. The integration of immunohistochemical data is influencing treatment protocols, suggesting more aggressive or targeted approaches based on specific marker expression.

In conclusion, the findings underscore the significance of immunohistochemical markers in understanding the biological behavior of DCs and OKCs. These insights enhance diagnostic accuracy and facilitate the development of effective, personalized therapeutic strategies, potentially transforming patient management in oral and maxillofacial surgery.

4. Discussion

4.1. Pathophysiology and Molecular Basis

The reclassification of odontogenic keratocysts (OKCs) to keratocystic odontogenic tumors (KCOTs) by the World Health Organization marks a significant advancement in our understanding of these lesions. This change highlights their invasive characteristics, unique histological features,

4

and genetic bases [8]. Central to this reclassification is the identification of mutations in the PTCH1 gene, a critical component of the Sonic Hedgehog (SHH) signaling pathway, which plays a vital role in cell development and differentiation [8].

The SHH pathway's importance in craniofacial development is well established, with its dysregulation linked to conditions such as Nevoid Basal Cell Carcinoma Syndrome (NBCCS) [9]. Anomalies in this pathway can lead to altered palatogenesis and tooth formation, emphasizing its essential role in normal facial and dental growth. Advances in genetic research have shed light on missense mutations in the PTCH1 gene across various odontogenic conditions, highlighting a direct connection to the aggressive and recurrent nature of KCOTs [10]. These insights have opened avenues for targeted therapeutic approaches, such as the use of inhibitors like vismodegib, which has been shown to significantly reduce the size and recurrence rates of these aggressive tumors [10].

The study by Madras and Lapointe (2008) provides an essential review of KCOTs, particularly focusing on their aggressive nature and the implications of their reclassification from cysts to tumors [8]. Their findings on the recurrence rates associated with various treatment modalities are particularly revealing:

- Enucleation and Curettage showed a recurrence rate of 30%.
- Enucleation with Carnoy's Solution and Marsupialization followed by Enucleation/Cystectomy demonstrated substantially lower recurrence rates, around 9-10% and 9-14% respectively.
- Resection, the most definitive treatment, showed a recurrence rate of 0%.

These findings highlight the necessity for aggressive treatment strategies and are in harmony with molecular insights suggesting that targeting the SHH pathway could provide less invasive and more effective treatment options in the future. Understanding the intricate relationship between genetic mutations in the PTCH1 gene and their impact on lesion development and behavior is crucial for advancing diagnosis, management, and the development of targeted treatments. This knowledge plays a pivotal role in the evolution of precision medicine strategies that tailor treatments based on specific genetic profiles, potentially enhancing patient outcomes.

In summary, exploring the genetic and molecular framework of odontogenic lesions, with a focus on the SHH pathway and PTCH1 mutations, offers a comprehensive understanding of these conditions. It paves the way for the development of effective, targeted treatment options, ushering in a new era of personalized care characterized by enhanced treatments and outcomes. The continuous integration of these insights into clinical practice is vital to transforming the treatment landscape for odontogenic lesions, ensuring that therapeutic discoveries are swiftly translated into clinical benefits (Table 1).

Table 1. Pathophysiology & Molecular Basis (PTCH1, Sonic Hedgehog, NBCCS).

Authors	Objective	Study Details	Marker Identificati on Method	Cyst/Tumor Diagnosis Method	Results	Statistical Estimates	Conclusion
		Study Type:			Recurrence	Enucleation:	Aggressive
		Case series			Rate:	30%	treatment
	Review	and literature			29%		(enucleation
	features and	review.				Enucleation &	with Carnoy's
Madras	behavior of				Lesion Size:	Carnoy's	solution,
et al.	OKC (now	Sample Size:	CK1, CK10,	Radiographic	Most 0-15 cm ² ,	Solution: 9%	marsupializati
	KCOT),	21 patients, 27	Ki-67,	and	avg. 14 cm ² .		on followed
(2008)	analyze KCOT	KCOTs.	PTCH, bcl-	histological		Enucleation &	by
[8]	cases, discuss		2, BAX.	examination.	Treatment:	<u>Peripheral</u>	enucleation) is
	reclassification	Age Range:			Enucleation	Ostectomy:	effective.
	and treatment	1912-1986.			and Curettage	18%	Long-term
	implications.				(22), Resection		follow-up is
		Country/Regi			(2),	Enucleation &	essential.
		on:			Marsupializati	Cryotherapy:	Molecular

		Canada.			on (3); All	38%	therapies
		Curiudu			recurrences	2070	targeting SHH
					within 2 years	Marsupializati	
					- PTCH gene	<u>on:</u> 33%	offer future
					and SHH		alternatives.
					pathway	Marsupializati	
					involvement	<u>on & </u>	
					in KCOT	Cystectomy:	
					pathophysiolo	13%	
					gy indicates		
					potential for	Resection: 0%	
					molecular-		
					based		
					treatments.		
					Pericoronal		
					follicles: 64.9%		Mandibles are
					(98 cases).		the most
							frequent
					Dentigerous		location for
		Study Type:			<u>cysts:</u> 35.1%	Predominance	impacted
		Observational			(53 cases).	of impacted	teeth and
	Assess the	study.			T (1 '(1	teeth and	dentigerous
	association	•			Teeth with	dentigerous	cysts.
	between	Sample Size:	DTCI I1		dentigerous	cysts in the	Dentigerous
Cobour	histopathologi	151 cases.	PTCH1,		<u>cysts:</u> 84.9% in	mandible-	cysts tend to
ne et al.	cal diagnoses		SHH	Histopathologi	mandible,	Increase of	increase with
(2009)	of dentigerous	Age Kange	pathway involvemen	cal	49.1%	dentigerous	age, especially
[9]	cysts and pericoronal	63.6% were 20	t.	examination.	mesioangular position,	cysts with age,	in mandibular
	follicles with	years or older.	ι.		66.0% in 20-29	particularly in	teeth in
	the positions				years age	mandibular	mesioangular
	of impacted	Gender &			group - SHH	teeth in	positions.
	third molars.	Ethnicity:70.9			pathway	mesioangular	Potential for
		% female;			involvement	positions.	molecular-
		90.1% white.			indicating		based
					potential		treatments
					molecular		targeting SHH
					targets for		pathway.
					treatment.		
		Study Type:	<u> </u>		Ameloblastom		Genetic
	Analyze	Observational			<u>a (AB):</u> BRAF		mutations in
	genetic	study.			mutation		SMO, BRAF,
	mutations in				(T440P) in 2		PTCH1, and
	SMO, BRAF,	Sample Size:		Clinical course,	patients,		GNAS can be
	PTCH1, and	18 patients;		imaging (X-	PTCH1		identified
Shimura	GNAS using	6 ABs		ray),	mutation		using NGS,
et al.	NGS in	7 OKCs	SMO,	histopathologic	(V582G) in 1		aiding in the
(2020)	patients with	1 Odontoma.	BRAF,	al, and next-	patient	Not specified.	differential
[10]	odontogenic	_	PTCH1,	generation		•	diagnosis of
[-~]		Country/Regi	GNAS.	sequencing	Odontogenic	-	odontogenic
	evaluate the	on:		(NGS) analysis.	Keratocyst		diseases.
	usefulness of	Japan		, , , , , , , , , , , , , , , , , , , ,	<u>(OKC):</u>		Specific
	genetic	(Department			PTCH1		mutations in
	analysis for	of Oral and			mutation in 4		these genes
	differential	Maxillofacial			patients,		are associated
	diagnosis	Surgery,			BRAF		with different
		Dokkyo			mutations		types of

Medical	(T263P, K51N,	odontogenic
University	Y647D) in 2	tumors.
School of	patients, SMO	
Medicine)	mutation	
	(N396T) in 1	
	patient	
	Odontoma (1	
	<u>patient):</u>	
	Mutations in	
	SMO (Y394S),	
	BRAF	

4.2. Genetic and Molecular Alterations

Our review delved deeply into the genetic foundations and molecular dynamics influencing the pathogenesis of odontogenic lesions, such as ameloblastomas (AB), adenomatoid odontogenic tumors (AOT), and odontogenic keratocysts (OKC). A significant focus was on the genetic mutations impacting the Sonic Hedgehog (SHH) pathway and the PTCH1 gene, which are crucially linked to the development, aggressive behavior, and response to treatment of these lesions [11,12].

The SHH pathway, critical for tissue regulation and development, has been shown to be disrupted in the invasive nature of AB and OKC, highlighting the potential for targeting this pathway as an effective therapeutic strategy [11,12]. Inactivating mutations in the PTCH1 gene, prevalent in keratocystic odontogenic tumors (KCOTs), directly relate to the lesions' aggressiveness and offer promising targets for novel treatments [13,14].

Identification of these genetic alterations has significantly advanced diagnostic and prognostic techniques, facilitating the development of personalized treatment plans. Biomarkers such as PTCH1 now guide clinical decision-making, demonstrating how genetic discoveries are directly applied to enhance patient care. For instance, the detection of PTCH1 mutations in patients can lead to the adoption of SHH pathway inhibitors as part of the treatment regimen, enhancing the efficacy of treatments tailored to specific genetic profiles [15].

Advances in techniques such as whole exome sequencing have enabled the differentiation of odontogenic diseases and the customization of treatment based on the genetic characteristics of each lesion, marking a significant progression towards precision medicine. This shift is promoting more effective, targeted, and patient-centered management.

Supporting evidence from Rodrigues et al. (2022) highlights the significance of SHH pathway components in epithelial odontogenic lesions, showing differential expression of SHH, SMO, and GLI-1 proteins across various odontogenic tumors, reinforcing the therapeutic potential of these pathways [11]. Similarly, Stojanov et al. (2020) identified biallelic PTCH1 inactivation as a dominant genomic change in sporadic keratocystic odontogenic tumors, supporting the classification of KCOTs as neoplasms with cystic growth and underscoring the importance of SHH pathway inhibitors in their treatment [12].

Further studies, like those by Grachtchouk et al. (2006) and Zhai et al. (2019), have demonstrated that odontogenic keratocysts in both mice and humans are associated with deregulated Hedgehog signaling due to PTCH1 mutations, suggesting that targeting the Hh signaling pathway could be a potential therapeutic approach for treating OKCs. Specifically, Zhai et al. showed that the SHH pathway inhibitor GDC-0449 effectively inhibits SHH signaling and cell proliferation in an in vitro isogenic cellular model simulating odontogenic keratocysts with a PTCH1 mutation, highlighting the therapeutic potential of SHH pathway inhibitors [13,18].

In conclusion, a deeper understanding of genetic mutations and molecular alterations within the SHH pathway and PTCH1 gene enriches our comprehension of the pathophysiology of odontogenic lesions. This knowledge not only opens the door to targeted therapies but also heralds a new era of personalized care for patients, characterized by improved treatments and outcomes. The ongoing integration of these insights into clinical practice continues to transform the landscape of treatment

for odontogenic lesions, ensuring that new therapeutic discoveries are translated into clinical benefits (Table 2).

Table 2. Genetic & Molecular Changes (Sonic Hedgehog, PTCH1).

			M1			Statistica	L
Authors	Objective	Study Details	Marker Identificati on Method	Cyst/Tumor Diagnosis Method	Results	l Estimate s	Conclusion
Rodrigues et al. (2022) [11]	SMO, GLI-1) ir benign epithelial	gObservational study.	SHH, SMO, GLI-1.	Histopathology, Immunohistochemi stry.	SHH: Higher in AB vs. AOT (p = 0.022) and OKC (p = 0.02) - No differences in SMO - GLI-1. Nuclear: Higher in AB and OKC vs. AOT (p < 0.0001). Positive correlations: GLI-1 in AB (r = 0.482 , p = 0.031) and OKC (r = 0.865 , p < 0.0001); SMO and GLI-1 in AOT (r = 0.667 , p = 0.035) and OKC (r = 0.535 , p = 0.015).	Kruskal- Wallis, Mann- Whitney U, Spearma n's (r); p < 0.05.	SHH pathway involvement in pathogenesis. SHH overexpressio n in AB and GLI-1 in AB and OKC indicate more aggressive behavior compared to AOT.
Stojanov et al. (2020) [12]	Identify recurrent genomic aberrations in sporadic KCOTs using next-generation sequencing.	Age Range:	PTCH1, SMO, SUFU, GLI1, GLI2.	Next-generation sequencing, genomic analysis.	PTCH1 mutations: 93% (41/44 cases). Biallelic PTCH1 inactivation: 80% (35 cases). 9q copy neutral loss of heterozygosit y: 34% (15 cases).		SHH pathway alterations, specifically PTCH1 inactivation, are common in sporadic KCOTs. The high frequency of PTCH1 loss suggests potential for SHH pathway inhibitors as a therapeutic target.

					No	
					aberrations	
					in other SHH	
					pathway	
					members.	
					PTCH1R135X	
					/+ mutation	
					causes	PTCH1
					ligand-	inactivation
					independent	leads to SHH
		Study Typo			activation of	
		Study Type:			SHH	pathway activation in
	Investigate the	Observational			signaling	OKCs. GDC-
	role of PTCH1	•				0449
	inactivation in	Isogonia			SHH	
	OKCs and	Isogenic PTCH1R135X		CRISPR/Cas9, in	pathway	effectively inhibits SHH
Zhai et al.	evaluate the	/+ cellular	PTCH1,	vitro cellular model,	activation	
(2019) [13]	efficacy of SHH	,	SHH		downregulat	pathway activation
	pathway	model using CRISPR/Cas9;	pathway.	epithelial differentiation.	ed by GDC-	and reduces
	inhibitor GDC-	Induction of		umerentiation.	0449 in a	cell
	0449 using an	epithelial			dose-	
	isogenic	-			dependent	proliferation,
	cellular model.	differentiatio			manner -	suggesting its
		n.			Enhanced	potential as a
					proliferation	therapeutic inhibitor for
					of induced	OKC
					cells	treatment.
					suppressed	treatment.
					by GDC-	
					0449.	
					Cyclopamine	
			SHH,		reduced	
			PTCH1,		KCOT cell	
			SMO, GLI1,	,	viability -	
		Study Type:	GLI2,		SHH and	
		Observational	NOTCH1,		NOTCH	Cyclopamine
	Investigate the	study.	NOTCH2,		pathways are active in	significantly
	role of SHH		NOTCH3,		KCOT.	inhibitsSHH
Ren et al.	and NOTCH	Age Range:	JAG2,	Immunohistochemi	RCO1.	signaling and
(2012) [14]	nathways in	KCOT-1 cell	DLL1,	stry, qRT-PCR,		cell growth in
(2012) [14]	KCO1s and the	line	EMPs	Western blot, cell	downregulat specified.	KCOT,
	effect of SMO	established	(AMELX,	viability assays.	ed SHH and	suggesting it
	inhibitor	from a 53-	ENAM,		NOTCH	as a potential
	cyclopamine.	-	AMBN,		pathway	therapeutic
		patient.	AMTN,		components -	agent.
			MMP-20,		Cyclopamine	
			KLK-4,		inhibits	
			ODAM,		KCOT	
			CK14).		growth dose-	
					dependently.	
		Study Type:			Recurrence	The
Vacara -	Examine	Retrospective			more	recurrence of
Yagyuu et	factors	study.	SHH,	Immunohistochemi	frequent in Not	KCOT is
al. (2008) [15]	responsible for		PTCH1,		multilocular specified.	associated
[13]	-	Sample Size:	SMO.	stry.	lesions (64%) specified.	with
	of KCOT.	74 patients.			than	multilocular
		75 sporadic			unilocular	large lesions

	KCOTs; 23 KCOTs.			(7%) (p = 0.0350).		and high SMO
	KCOTs.					_
				expression in all KCOTs (p = 0.0318). GLI1 expression is		
Hasegawa y of Gorlin et al. syndrome- (2017) [16] associated	4 Gorlin syndrome patients with PTCH1 mutations.	SHH, PTCH1,	Immunohistochemi stry, qRT-PCR, Western blot.	higher in fibroblasts and patient-derived iPSCs than in control cells. Patient-derived iPSCs showed lower basal levels of Hh, Wnt, BMP genes. Osteogenic activation enhanced in patient-derived iPSCs.	ANOVA, Bonferro ni testing; p < 0.05.	signaling. Gorlin syndrome iPSCs could be useful for studying pathogenesis and developing new treatments.
Assess the response and Kesireddy resistance et al. mechanisms of (2019) [17] Gorlin-Goltz Syndrome to Vismodegib therapy.	Study Type: Observational case study. Sample Size: 1 patient. Age Range: 38-year-old female.		Genetic testing, clinical diagnosis, radiographic and histopathological examination.	Initial positive response to Vismodegib for BCC lesions - Tumor regrowth and new lesions after 1 year -	-	Vismodegib was initially effective, but resistance developed, leading to the progression of Gorlin syndrome. Optimal

					NI CC 1		<u> </u>
		Carra bara/Daari			No effect on		treatment
		Country/Regi			odontogenic		regimens and
		on:			keratocysts.		durations
		USA.					need further study.
					Hh signaling		study.
					is activated		Constitutive
					in both		Hh signaling,
					mouse and		particularly
	Investigate the				human OKCs		through
	role of Hh	Study Type:			- Gli2		GLI2, plays a
	signaling in the	Experimental			overexpressi		critical role in
	development of	STIIGV	SHH,		on in mice		the
Grachtcho	odontogenic		PTCH1,	Immunohistochemi			pathogenesis
uk et al.	keratocysts	Sample Size:	GLI1, GLI2,		keratocyst	Not	of OKCs
(2006)[18]	(OKCs) using a	Gli2	Cyclin D1,	hybridization.	formation	specified	Targeting
	Gli2 transgenic		Cyclin D2.	ny enaization.	from rests of		GLI function
	mouse model	mice and	-,		Malassez -		may provide
	and human	human OKC			Human		therapeutic
	samples.	samples.			OKCs show		benefits for
	1				elevated		OKCs and
					expression of		related
					Hh target		disorders.
					genes.		
					OOCs in		
					3rd/4th		
					decade		
					(60.4%), male		OOCs show
					predilection		lower
	Report	Study Type:			(66.7%).		proliferative
	clinicopatholog	Observational			Mandible		activity than
Wang et	ic profiles of	study.		Immunohistochemi	location		OKCs and do
al. (2022)	OOCs and		PTCH1,	stry and genetic	predominant		not harbor
[19]	investigate	Sample Size:	SHH, K1-67.	analysis.	-	specified	
	PTCH1	167 OOCs		,	mandible,		mutations,
	mutations.	from 159			ramus).		justifying
		patients.			No PTCH1		their separation
					mutations		from OKCs.
					found except		110111 01100.
					3 known		
					SNPs.		
-		Study Trees			Four novel		
		Study Type: Mutation			and two		
		analysis.			known		
		Sample Size:			mutations in		PTCH defects
		8 sporadic 4			2 sporadic		are associated
Pan et al	Clarify the role	NBCCS-			and 3		with the
	of PTCH in	associated		Genetic analysis,	syndromic		pathogenesis
	NBCCS-related	KCOTs.	PTCH.	PCR, DHPLC,	cases.	Not	of both
	and non-	Country/Regi		sequencing.		specified	syndromic
	syndromic	on:		1 0	<u>Germline</u>		and a subset
	KCOTs.	Peking			mutations:		of non-
		University			c.2179delT,		syndromic
		School and			c.2824delC.		KCOTs.
		Hospital of			Somatic		
		Stomatology,			mutations:		
					11141110110.		

		Beijing,			c.3162dupG,		
		China.			c.1362–		
					1374dup,		
					c.1012 C>T,		
					c.403C>T.		
					Novel		
					PTCH1		
					germline		
					mutation		
					(c.1291delC).		PTCH1
Hellani et al. (2009) [21]	Differentiate between basaloid follicular hamartoma and nevoid basal cell carcinoma in a patient with NBCCS using genetic analysis.	Study Type: Case report. Sample Size: 1 patient. Age Range: 15-year-old boy.	РТСН1.	Histopathology, genetic analysis.	Clinical features: broad confluent eyebrows, frontal bossing, palmoplantar pits, multiple jaw cysts. Radiological features: calcification of falx	Not specified.	mutation confirmed NBCCS diagnosis, distinguishin g it from basaloid follicular hamartoma. Genetic analysis is crucial for accurate diagnosis and management.
		Study Type:			cerebri, spina bifida, bifid ribs.		
		Observational			No LOH at		LOH at
	D	study.			D13S272 in		MIR15A/MIR
۸ ا	Determine if	•			12 informative		16-1 locus is
Asevedo	deletion at	Sample Size:		Constitution 1 str			uncommon in
Campos	13q14 is a	15 OKC cases.	PTCH1,	Genetic analysis,	cases.		OKC. The
de	mechanism		miR-15a,	PCR, capillary	220/ 1 011	Not	regulatory
	t leading to miR-	Country/Regi	miR-16-1,	electrophoresis	22% LOH at	specified.	.mechanism of
al. (2018)	15a/16-1	on:	Bcl-2.	DNA-fragment	D13S273	1	miR-15a and
[22]	aberrant	Universidade		analysis.	marker in 2		miR-16-1
	expression in	Federal de			out of 9		expression in
	OKC.	Minas Gerais,			informative		OKC remains
		Brazil.			cases.		unclear.
		Study Type:			S-KCOT		S-KCOT
		Observational			fibroblasts		fibroblasts
		study.			had higher		exhibit
	Clarify the role	•	PTCH1,		proliferation		greater
	of fibroblasts in		vimentin,		and		
Hong et	the	16 K (() I	CK, Runx2,		osteoclastoge	Student's	aggressivenes s due to
al. (2014)	aggressiveness	cases (8		Immunohistochemi	nic potential	t test,	higher
[23]	of syndromic	syndromic, 8	OCN, OPN,		than	one-way	osteoclastoge
[]	and non-	non-	RANKL,	// 1 1 O10	NS-KCOT	ANOVA;	nic potential,
	syndromic	syndromic).	OPG, COX-		fibroblasts.	p < 0.05.	while NS-
	KCOTs.		2, IL-1α.		NS-KCOT		KCOT
		Country/Regi			fibroblasts		fibroblasts
		on:			had higher		show higher
		Peking			osteogenic		_
		University			potential.		osteogenic

		School and Hospital of Stomatology, Beijing, China.				differentiatio n potential.
Shimada et al. (2013) [24]	Investigate genetic variations and clinicopatholog ical features in KCOTs.	Study Type: Mutation analysis. Sample Size: 36 KCOT patients. Age Range: 10-81 years (median: 32 years). Country/Region: Japan.	PTCH1, PTCH2, SUFU, GLI2, CCND1, BCL2.	Histological classification, immunohistochemi stry.	PTCH1 mutations were found in 9 hereditary PTCH KCOT mutatic patients. No s in 25 pathogenic of case mutations in LOH a PTCH2 or PTCH SUFU. LOH and at PTCH1 SUFU and SUFU loci loci correlat correlated with with epitheli epithelial budding. Nuclear GLI2 localization in germline mutation KCOTs.	suffu play significant roles in KCOT pathogenesis. Genotype-oriented subgroups exhibit different levels of aggressivenes
Pastorino et al. (2012) [25]	clinical and bio-	Age Range:	PTCH1, SHH, SMO.	Histological classification, immunohistochemi stry, genetic analysis.	8 of the 70 patients met the clinical criteria for PTCH NBCCS. Nine mutatio germline s were mutations in found: PTCH1, five 9 of which patient were novel. 25.7% of Clinical patient evaluation of had KCOTs can NBCC be used as screening for NBCCS.	clinical and molecular screening is effective for recognizing NBCCS in patients with
Kaibuchi- Ando et al. (2021) [26]	BCNS and the	Study Type: Case report. Sample Size: 2 BCNS patients. Country/Region: Japan.	РТСН1.	Whole-exome sequencing, Sanger sequencing.	Patient 1: PTCH1 mutation c.2798delC (p.Ala933fs*2 9). Not Patient 2: PTCH1 mutation c.1195T>C (p.Trp399Arg). Patient 2	Odontogenic keratocysts are a significant clue for diagnosing BCNS. Early detection of PTCH1 mutations is crucial for monitoring and early

had multiple	treatment of
BCCs and	BCCs in
odontogenic	BCNS
keratocysts.	patients.
Both patients	
had lamellar	
calcification	
of the falx	
cerebri.	

4.3. Cell Adhesion, Proliferation, and Apoptosis Markers

Cell adhesion, proliferation, and apoptosis markers such as Bcl-2, PCNA, p53, and Ki-67 play pivotal roles in the pathogenesis of odontogenic lesions, including dentigerous cysts (DC), radicular cysts (RC), and odontogenic keratocysts (OKC) [27,29,32,50]. The expression of these markers provides critical insights into the biological behaviors of these lesions and their implications for diagnosis, prognosis, and therapy.

Elevated expressions of Bcl-2 and Ki-67 are associated with the aggressiveness and likelihood of recurrence in these lesions [27,29]. Similarly, increased p53 expression is linked to greater cell proliferation and aggressiveness [32,50]. The variation in the expression of these biomarkers across different odontogenic lesions offers essential diagnostic and prognostic information, aiding in their differentiation and management.

For instance, increased levels of Ki-67 in OKCs often lead clinicians to opt for more aggressive surgical interventions and closer follow-up schedules, integrating marker profiles into personalized treatment plans. Furthermore, the presence of Bcl-2 in recurrent lesions has prompted research into adjuvant therapies that could inhibit this protein to reduce recurrence rates, directly impacting treatment protocols [27]. This demonstrates how the practical application of these biomarker insights is integrated into therapeutic strategies, enhancing the efficacy of treatments tailored to specific genetic profiles [27,29].

Additionally, changes in cell adhesion markers, such as the downregulation of E-cadherin and upregulation of N-cadherin, suggest epithelial-mesenchymal transition (EMT) in KCOTs, presenting potential therapeutic targets to control lesion progression and recurrence [29]. These changes in cellular behavior not only inform on the potential aggressiveness of the lesions but also guide the development of targeted interventions aimed at mitigating invasive growth and improving surgical outcomes.

In essence, the analysis of cell adhesion, proliferation, and apoptosis markers not only enriches our understanding of the pathogenesis of these conditions but also identifies key diagnostic and therapeutic targets. These insights are invaluable for the development of tailored treatment strategies and underscore the importance of ongoing research to find innovative management approaches for odontogenic lesions, with the goal of improving patient outcomes by addressing the molecular basis of these conditions [27,29,32,50] (Table 3).

Table 3. Cell Adhesion, Proliferation, & Apoptosis Markers (Bcl-2, PCNA, p53, Ki-67).

Authors	Objective	Study Details	Marker Identification Method	Cyst/Tumor Diagnosis Method	Results	Statistical Estimates	Conclusion
	To determine	Study Type:			VEGF and	CD34(+),	VEGF and
	the presence	<u>Study Type:</u> Observational study.	VEGF, VEGFR2,		VEGFR2 are	CD146(+),	VEGFR2
Friedland	and				expressed in	and	contribute to
er et al.	distribution of	study.		Immunohistoc	all	PCNA(+)	local bone
	VEGF and	Cample Circu		hemistry	dentigerous	cells	resorption
(2015) [27]	VEGFR2 in	Sample Size: 20	PCNA.	(IHC).	cysts and	significantl	and the
	dentigerous		I CNA.		dental	y more in	development
	cysts compared	dentigerous			follicles.	dentigerou	and
	with normal	cysts, 20			Higher	s cysts (p <	progression of

dental follicles and to evaluate endothelial cells and proliferating cells as indicators of angiogenic activity in these tissues.	Age Range: Mean age: 23 years; More common in males.			positive staining in dentigerous cysts compared to dental follicles. Significant difference in VEGF and VEGFR2 expression (odds ratio = 31.24, p < 0.001).	and inter- examiner	dentigerous cysts.
To assess and compare the immunoexpres sion of VEGF and MMP-9 in radicular cysts (RCs) and residual radicular cysts (RRCs) and relate them to the angiogenic index and intensity of the inflammatory infiltrate.	Study Type: Observational study. Sample Size: 20 RCs, 10 RRCs. Country/Regi on: Brazil.	VEGF, MMP- 9, von Willebrand factor (vWF).	Immunohistoc hemistry (IHC).	Higher VEGF and MMP-9 expression in RCs than in RRCs. Strong epithelial VEGF expression in RCs and RRCs. Lesions with strong MMP-9 expression had more VEGF+ cells and higher MVC. Positive correlation between VEGF+ cells, MVC, and inflammatory infiltrate intensity.	70% of RCs had inflammat ory infiltrate grade III. VEGF+ cells in RCs: mean 565.05, RRCs: mean 443.90. MVC in RCs: mean 250.85, RRCs: mean 217.00. MMP-9 expression	VEGF and MMP-9 are important for angiogenesis in RCs and RRCs. Expression of these molecules and MVC are closely related to the intensity of the inflammatory infiltrate.
To clarify whether epithelial- mesenchymal transition (EMT) is involved in the pathogenesis and development of keratocystic odontogenic tumor (KCOT).	(RC) samples, 10 normal oral mucosa	E-cadherin, N- cadherin, TGF- β, Slug, Pan- cytokeratin (P- CK), MMP-9.	Immunohistoc hemistry,	compared to RC and OM. TGF-β and	expression between KCOT and RC/OM (p < 0.0001). Significant correlation between E- cadherin/P -CK, E- cadherin/Sl	EMT might be involved in the locally aggressive behavior of KCOT. Specific targeting of the EMT process may further advance the treatment of KCOT.

Pereira et al. (2023) [30] t	keratocyst (OKC) and meloblastoma, compare the intensity of these lesions, analyze their intrinsic	Study Type: Comparative study. Sample Size: 20 cases of OKC, 20 cases of ameloblastom a. Age Range: OKC - 32.10 years (mean), ameloblastom a - 35.25 years (mean). Country/Region: India.	SOX2.	Immunohistoc hemistry (IHC).	d by double-labeling immunofluor escence. 45% of OKC cases exhibited strongly positive reactivity for SOX2, while 65% of ameloblasto ma cases were negative. Significant differences in the frequency of SOX2 expression between OKC and ameloblasto ma.	Highly significant difference (p < 0.01) in SOX2 expression between OKC and ameloblast	properties, potentially signifying neoplastic behavior. Weak or absent expression of SOX2 in ameloblastom a suggests different molecular pathways involved in its
Mukhopa (hand) (To evaluate and compare ne expression of WT-1, Syndecan CD138), and Snail in meloblastoma and odontogenic keratocyst (OKC) and analyze their otential role in pathogenesis.	Ameloblasto ma cases, 20 OKC cases. Country/Regi	WT-1, Syndecan (CD138), Snail.	Immunohistoc hemistry (IHC).	Ameloblasto ma and OKC. Syndecan significantly downregulat ed in both lesions. Higher WT-1 and Syndecan	significant differences in expression levels of Syndecan and Snail (p < 0.0001). WT-1, Syndecan, and Snail showed varying immunore activity across cell	Syndecan and upregulation of Snail promote local invasion and poor prognosis. Overexpressi on of WT-1 results in tumorigenesis , proliferation, and localized aggressivenes

	Increased
To assess the immunohistoch emical expression of p53, Bcl-2, and Bax in conventional Escobar et ameloblastoma al. (2023) (CA), unicystic [32] ameloblastoma (UA), and odontogenic keratocysts (OKC) both sporadic (OKC-NS/S) and syndromic (OKC-NBSCC). Study Type: Research. Sample Size: 66 cases: 18 CA, 15 UA, 18 OKC-NS/C, 15 OKC-NBSCC. Age Range: p53, Bcl-2, Bax Mean age: 31.61 years (range 8-75 years). Years (Country/Region: Chile and Spain.	Higher expression of p53 and Bcl-2 in solid tumors (CA) and Bax in CA and MUA compared to OKC-NS/S and OKC-NSSCC. Immunohistoc Significant hemistry differences in hemistry differences in (IHC), Shapiro-Wilk test, expression ANOVA with between Tukey's OKC-NS/S vs. Possion of p53 and Bcl-2 in solid tumors (CA) and focal areas of mural ameloblastom atous proliferation for UA compared to lesions with cystic morphology (OKC and LUA) could
To compare the immunohistoch emical expression of SOX2 and BCL-2 in Odontogenic Silva et al. Keratocyst (2020) [33] (OKC) and Ameloblastoma (AB) specimens, and to identify a possible correlation in their expression. Study Type: Experimental study. Sample Size: 20 OKC samples, 20 AB samples. SOX2, BCL-2. Country/Region: Brazil.	SOX2 and BCL-2 expression observed in all OKC specimens. SOX2 immunostain ing higher in OKC hemistry compared to (IHC), AB (P<0.05). Quantitative BCL-2 and qualitative immunostain scoring system. ing not significantly different between OKC and AB. No significant correlation between SOX2 and BCL-2 expressions in OKC may suggest their relationship with the biological behavior of this lesion, and the higher expression of SOX2 and OKC may suggest their relationship with the biological behavior of this lesion, and the higher expression of SOX2 might be an upstream influence on the Hh signaling pathway.

BCL 2 in OKC and AB specimens. Ameloblasto ma showed stronger bd-2 expression so bd-2 and Ki-67 in OKC and AB specimens. Study Type:		
Ameloblasto ma showed stronger bcl-2 High expressions of than OKCs and K6.8 bcl-2 expression in the whole aggression than OKCs and K6.8 bcl-2 expression in the whole aggression potential of proliferation of proper with a compared with controlling and behaviour.		BCL-2 in
Ameloblasto ma showed stronger bct-2 expression ma showed stronger bct-2 expression than OKCs and RCs. Bct. 67 in OKCs an		OKC and AB
ma showed stronger bel-2 werpressions of than OKCs bel-2 and Ki-67 in OKCs and Ki-67		
High expressions of bel-2 and Ki-and RCs. Bel- 67 in OKCs and RCs. Bel- 67 in OKCs		
Study Type:		
than OKCs and RS. Bel-2 expression in the whole their the apoptotic features and proliferation potential of Soluk odontogenic and proliferation potential of Soluk odontogenic analysing the role of bax, bel-2, [All Park Proliferation on the role of bax, bel-2, [
To determine Experimental study Type: Experimental study Type: Experimental study. Experimental stud		÷
To determine the apoptotic features and proliferation potential of study. Soluk office determine the apoptotic features and proliferation potential of samples. Sample Size teal. Compared with color of samples. 20 OKC samples, 20 AB samp		
To determine the apoptotic features and proliferation goternial of potential of pot		
To determine the apoptotic study. Soluk apoptotic features and proliferation potential of 20 OKC samples, 20 AB samples, et al. compared with 20 AB samples. 20 AB samples, et al. compared with 20 AB samples. To left of bax, bcl. 2, and Ki-67. Country/Regi on Turkey. Age Range: analysing the role of bax, bcl. 2, and Ki-67. Country/Regi on Turkey. Age Range: analysing the role of bax, bcl. 2, and Ki-67. Country/Regi on Turkey. Age Range: analysing the role of bax, bcl. 2, and Ki-67. Country/Regi on Turkey. Age Range: analysing the role of bax, bcl. 2, and Ki-67. Country/Regi on Turkey. Age Range: analysing the role of bax, bcl. 2, and Ki-67. Country/Regi on Turkey. Age Range: analysing the role of bax, bcl. 2, and Ki-67. Country/Regi on Turkey. Age Range: analysing the role of bax, bcl. 2, and Ki-67. Country/Regi on Turkey. Age Range: analysing the role of bax, bcl. 2, and Ki-67. Country/Regi on Turkey. Age Range: analysing the role of bax, bcl. 2, and Ki-67. Country/Regi on Turkey. Age Range: analysing the role of bax, bcl. 2, and Ki-67. Country/Regi on Turkey. Age Range: analysing the role of bax, bcl. 2, and Ki-67. Country/Regi on Turkey. Age Range: analysing the role of bax, bcl. 2, and Ki-67. Country/Regi on Turkey. Age Range: analysing the role of bax, bcl. 2, and Ki-67. Country/Regi on Turkey. Age Range: analysing the role of bax, bcl. 2, and Ki-67. Country/Regi on Turkey. Age Range: analysing the role of bax, bcl. 2,	0. 1. 7.	
the apoptotic features and proliferation potential of Soluk odontogenic et al. compared with (2012) [34] ameleblastoma s and radicular cysts by analysing the role of bax, bd-2, 2, and Ki-67. Country/Regi on: Turkey. To investigate the prognostic relevance of various clinicopatholog clinicopatholog clinicopatholog odontogenic codontogenic co		
Features and proliferation potential of potential of potential of potential of potential of samples, 20 oKC sa		88
Proliferation potential of odontogenic samples, 20 and high protection of control co		1
Potential of Soluk odontogenic samples, 20 Tekkeşım keratocysts et al. Compared with (2012) s4 ameloblastoma samples, 20 AB sample		ĕ
Soluk odontogenic Tekkeşin keratocysts et al. compared with (2012) [34] ameloblastoma s and radicular cysts by analysing the role of bax, bcl-2, and Ki-67. 2 and Ki-67. Country/Regi on: Turkey. Turkey. To investigate the prognostic relevance of various clinicopatholog cilc features as yk et al. immunoexpres (2018) [35] sion of COX-2, And p53 in sporadic odontogenic keratocysts (COX-2, PCNA, and p53 in sporadic odontogenic keratocysts (COX-2, PcNA, and p53 in sporadic odontogenic keratocysts (COXC). Poland. Sex page Range: Act of the compared with (2012) [34] ameloblastoma samples. Samples as and radicular cysts by age Range: 7-69 years. To investigate the prognostic Retrospective relevance of various clinicopatholog contined page and p53 in sporadic odontogenic keratocysts (COX-2, PcNA, and p53 in sporadic odontogenic keratocysts (COX-2, PcNA, and p53 in sporadic odontogenic keratocysts (COX-2) Poland. For investigate the prognostic rate. The prognostic rate. The minumonistost hemistry (IHC). Samples, 20 AR, Bax, Bcl-2, Ki. Immunohistost hemistry (IHC). Samples, 67. (IHC). Samples, 16. (IHC). Samples, 16. (IHC). Samples, 16. (IHC). Samples, 20 (IHC). Samples and return and return and recurrent	<u> </u>	0
Tekkeşin et al. compared with compared with (2012) [34] ameloblastoma is and radicular cysts by analysing the role of bax, belt is a liminopatholog cial features as poradic odontogenic keratocysts (OKC). To investigate the prognostic Raczmarz well as sporadic odontogenic keratocysts (2018) [35] sion of COX-2, 2d-2, PCNA, and p53 in sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmarz well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmarz well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmarz well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmarz well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmarz well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmarz well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmarz well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmarz well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmary well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmary well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmary well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmary well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmary well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmary well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmary well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmary well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmary well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmary well as prognostic Raczmary well as sporadic odontogenic keratocysts (OKC). To investigate the prognostic Raczmary well as prognostic	1	
et al. compared with (2012) [34] ameloblastoma samples. s and radicular cysts by analysing the role of bax, bel-2, and Ki-67. 2, and Ki-67. Country/Region: On: Turkey. Turkey. Turkey. To investigate the prognostic Retrospective relevance of various clinicopatholog clinicopatholog clinicopatholog clinicopatholog clinicopatholog short and p53 in sporadic odontogenic keratocysts (2018) [35] sion of COX-2, and p53 in sporadic odontogenic keratocysts (OKC). Raczmarz well as potential of 67. Study Type: the prognostic Retrospective relevance of various clinicopatholog clinicopatholog control the potential of 67. Study Type: the prognostic Retrospective relevance of various clinicopatholog control the prognostic Retrospective relevance of various clinicopatholog control the prognostic Retrospective relevance of various clinicopatholog control the relatives as and p53 in sporadic odontogenic keratocysts (COX-2, bcl-2, poland.) Sample Size: classing the for one with the prognostic Retrospective relevance of various clinicopatholog control the relative say and p53 in sporadic odontogenic keratocysts (COX-2, bcl-2, poland.) Sample Size: classing the range (FC, one capression in (pc0,002), and the and Ki-67 overexpression in (pc0,002), and the and Ki-67 overexpression in (pc0,002), and the capression in (pc0,002), and the capression in (pc0,002), and the capression in (pc0,002), and the potential file of various RC was (pc0,04), and tisoform (pc0,003), and tisoform (pc0,003), and tisoform (pc0,004), and the capression in (pc0,003), and tisoform (pc0,004), and the capression in (pc0,004), and		1
2012) [34] ameloblastoma s amples. 67. (IHC). RC. Bax expression epithelium expression cpithelium expression (p<0.020), and the expression cpithelium cpit	Bax Bcl-/ Ki	
s and radicular cysts by analysing the role of bax, bel- 2, and Ki-67. Country/Regi on: Turkey. To investigate the prognostic Retrospective relevance of various clinicopatholog ical features as yk et al. immunoexpres (2018) [35] sion of COX-2, bel-2, PCNA, and p53 in sporadic odontogenic keratocysts (OKC). (OKC). Description of the country/Regi on: Poland. Study Type: the prognostic Retrospective relevance of various clinicopatholog ical features as yk et al. immunoexpres (2018) [35] sion of COX-2, bel-2, PCNA, and p53 in sporadic odontogenic keratocysts (OKC). (OKC). Description of country/Regi on: Poland. Study Type: the prognostic Retrospective relevance of various clinicopatholog ical features as yk et al. immunoexpres (2018) [35] sion of COX-2, bel-2, PCNA, and p53 in sporadic odontogenic keratocysts (OKC). (OKC). Description of country/Regi on: Poland. Study Type: the prognostic Retrospective relevance of various clinicopatholog ical features as yk et al. immunoexpres (2018) [35] sion of COX-2, bel-2, PCNA, and p53 in sporadic odontogenic keratocysts (OKC). (OKC). Description of country/Regi on: Poland. Study Type: the prognostic Retrospective relevance of various clinicopatholog ical features as yk et al. immunoexpres (2018) [35] sion of COX-2, bel-2, PCNA, and p53 in sporadic odontogenic keratocysts (OKC). (OKC). Description of country/Regi on: PCNA, p53, and p53 in of COX-2, bel-2, PCNA, and p53 in sporadic odontogenic keratocysts (OKC). (OKC). Description of country/Regi on: PCNA (1002) on: PCNA (1002) on: PCNA (1002) on: PCNA (1002) on: Significantly (p<0.043). and ti-apoptotic expression on of various significantly higher than odontogenic epithelium of expression on of various significantly on this proteins in higher than odontogenic epithelium of expression on of various significantly on the analysis significantly on the analysis significantly on the analysis significantly of various significantly on the analysis significantly on the analysis interms recurrent and non-recurrent and non-r	67	, ,
cysts by analysing the role of bax, bcl- 2, and Ki-67. Country/Regi on: Turkey. Country/Regi on: Turkey.		` '
analysing the role of bax, bel- 2, and Ki-67. Country/Regi on: Turkey. Turkey. Turkey. To investigate the prognostic relevance of various clinicopathology ical features as yk et al. immunoexpres (2018) [35] sion of COX-2, bel-2, PCNA, and p53 in sporadic odontogenic (range 7-69). Mean age: COX-2, bel-2, PCNA, and p53 in sporadic odontogenic (range 7-69). COXC) bel-2, PCNA, and p53 in sporadic odontogenic (range 7-69). COXC) bel-2, PCNA, and p53 in sporadic odontogenic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic odontogenic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic odontogenic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic odontogenic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic odontogenic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic odontogenic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and p53 in sporadic (range 7-69). COX-2, bel-2, PCNA, and passed (range 7-69)		
role of bax, bcl- 2, and Ki-67. Country/Regi On: Turkey. RC was (p<0.043). anti-apoptotic significantly higher than odontogenic cepithelial tumors are significantly not control of CKC and AB. The lining epithelial of CKC showed stronger Ki- 67 expression than AB and RC. Significant Recurrence differences s in 29.27% between of cases. recurrent and RC. Significant Recurrence differences s in 29.27% between of cases. recurrent and recurrent recurrent risk for y, and cortical cal analysis, limmunohistor hemistry (IHC), Fisher's exact test, steet, Mannyahan portional hazard model, sporadic odontogenic keratocysts (OKC). (OKC). ON: Turkey. RC was (p<0.043). anti-apoptotic significantly higher than odontogenic color odontogenic significantly not proteins in this perithelial tumors are significantly for occurrence differences s in 29.27% between of cases. recurrent and not recurrent risk for y, and cortical cal analysis, limmunohistor hemistry (IHC), Fisher's exact test, with lighter than odontogenic significantly for occurrence differences significantly for occurrence differences significantly for course in their clinical stronger Ki- 67 expression than AB and RC Significant Recurrence differences significant for call analysis, limmunohistor hemistry (IHC), Fisher's exact test, y(P=0.029) 1.0589 for with recurrence. Significant for multilocular recurrence. PCNA, and and lesion of C12.1- analyses of size (P < 28.985) for COX-2, bcl-2, possible perforation analysis. Significantly 1.006 for 1 sporadic overlate with ligher than odontogenic significantly 1.006 for 1 sporadic overlate significant for correlate multilocular recurrence provided their clinical stronger Ki- 67 expression than AB and RC. Significant Recurrence differences sin 29.27% between of cases. recurrence with light tumors are significant for currence with light tumors are significant for currence provided to their	, ,	•
2, and Ki-67. Country/Regi ODI: Turkey. Turkey. ODI: Turkey. ODI: Turkey. ODI: Turkey. OKC and AB. The lining epithelium of OKC showed stronger Ki- 67 expression than AB and RC. Significant Recurrence differences s in 29.27% between recurrent and recurrent and recurrent cal analysis, Immunohistor cal analysis, Immunohistor hemistry (IHC), Fisher's exact test, Student's test, Mann- yk et al. immunoexpres (2018) [35] sion of COX-2, Age Range: bcl-2, PCNA, and p53 in sporadic odontogenic keratocysts (OKC). OKC and AB. The lining epithelium of OKC showed stronger Ki- 67 expression than AB and RC. Significant Recurrence differences s in 29.27% between of cases. recurrent and non-recurrent result in terms recurrent cysts in terms recurrence; perforation in dultilocularit test, Mann-Whitney test, COX-2, bcl-2, PCNA, p53. COX-2, bcl-2, PCNA, p53. PCNA, p53. ONC and AB. The lining epithelial tumors are epithelium of OKC showed stronger Ki- 67 expression than AB and RC. Significant Recurrence differences s in 29.27% between of cases. recurrent cysts in terms recurrence; perforation in multilocularit test, Mann-Whitney test, COX-2, bcl-2, PCNA, p53. COX-2, bcl-2, PCNA, p53. PCNA, p53. PCNA, p53. PCNA, p53. Sporadic (oKC). ODI: Poland. ONC showed stronger Ki- 67 expression than AB and RC. Significant Recurrence differences s in 29.27% between of cases. recurrent and recurrent cysts in terms recurrence; perforation in willilocularit cysts in terms recurrence; perforation of 3.362 (95% sporadic OKC multilocularit cysts in terms recurrence; perforation of 3.362 (95% sporadic OKC multilocularit cysts in terms recurrent cysts in terms recurrent cysts in terms recurrence; perforation of 3.362 (95% sporadic OKC multilocularit cysts in terms recurrence; perforation of correlate systs in terms recurrence; perforation of 3.362 (95% sporadic OKC multilocularit cysts in terms recurrent cysts in terms recurrence; perforation of 3.362 (95% sporadic OKC multilocularit cysts in terms recurrence; perforation of 3.362 (9		*
On: Turkey. Turkey. T		· · · · · · · · · · · · · · · · · · ·
Turkey. The lining epithelium of significant for OKC showed stronger Ki- 67 expression than AB and RC. Significant Recurrence differences is in 29.27% between relevance of various clinicopatholog ical features as yk et al. immunoexpres (2018) [35] sion of COX-2, Age Range: bcl-2, PCNA, and p53 in sporadic odonotogenic keratocysts (OKC). (OKC). To investigate the prognostic relevance of study. Various Clinicopatholog ical features as yk et al. immunoexpres (2018) [35] sion of COX-2, Age Range: Dcl-2, PCNA, p53. Turkey. Turkey. Turkey. Suppliedial The lining epithelium of OKC showed their clinical stronger Ki- 67 expression than AB and RC. Significant Recurrence differences is in 29.27% between of cases. recurrent and recurrent risk for y, and cortical vy, and cortical		· ·
epithelium of OKC showed stronger Ki- 67 expression than AB and RC. Significant for their clinical behaviour. 67 expression than AB and RC. Significant for oKC showed stronger Ki- 67 expression than AB and RC. Significant Recurrence differences in 29.27% between of cases. recurrent and leave the prognostic relevance of various clinicopatholog Sample Size: ical features as full of the control of their clinical behaviour. Significant for oKC showed stronger Ki- 67 expression than AB and RC. Significant Recurrence differences in 29.27% between of cases. recurrent and leave the prognostic recurrence in perforation in multilocularity (IHC), Fisher's exact test, Student's test, Mann-Whitney test, Mann-Whitney test, Mann-Whitney test, Mann-Whitney test, Mann-Whitney test, Mann-Whitney test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation odontogenic keratocysts (OKC). Retrospective study. Various COX-2, bcl-2, PCNA, And p53 in 40.24 years sporadic (range 7-69). odontogenic keratocysts (OKC). Poland. Poland. Significant Recurrence differences s in 29.27% between of cases. recurrent mid Larger size. multilocularity correlate of multilocularity (IHC), Fisher's exact test, Student's test, Mann-Whitney test, Mann-Whitney test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation ession of analyses of proportional hazard model, Spearman correlation ession of analyses of proportional hazard model, Spearman correlation ession of analyses of proportion in multilocularity (IHC), Fisher's exact test, Student's test, Mann-Whitney	Turkey.	e e
OKC showed stronger Ki- 67 expression than AB and RC. Significant differences s in 29.27% between of cases. reurrent and non- recurrent and recurrent and system in the prognostic relevance of various clinicopatholog sample Size: ical features as vell as patients. yk et al. immunoexpres (2018) [35] sion of COX-2, bcl-2, PCNA, and p53 in 40.24 years sporadic odontogenic keratocysts (OKC). Significant differences s in 29.27% between of cases. Histopathologi cal analysis, Immunohistoc hemistry (IHC), Fisher's exact test, Student's t- test, Manny Whitney test, Cox proportional hazard model, Spearman correlation analysis. COX-2, bcl-2, PCNA, and D53 in 40.24 years sporadic (range 7-69). odontogenic keratocysts (OKC). Poland. OKC showed their clinical behaviour. Significant recurrence differences s in 29.27% between of cases. recurrent and non- recurrent risk for y, and cortical cysts in terms recurrence: perforation in of 3.362 (95% sporadic OKC multilocularit C1 1.066— may correlate perforation of 2.299, 10.598) for with whitney test, Cox proportional hazard model, Spearman correlation analysis. Significant Recurrence differences s in 29.27% between of cases. Countries perforation in on- recurrent risk for y, and cortical cysts in terms recurrence: perforation in recurrence. With proposition proposition analysis of perforation in on- recurrent and non- recurrent and non- recurrent recurrent and correlation differences s in 29.27% between of cases. Cox-2, bcl-2, Fisher's exact test, Student's t- test, Manny (P = 0.001), 7.801 (95% chemical analyses of PCNA, and Inmunoexpression that the differences of perforation in on- recurrent and non- recurrent and non- recurrent and non- recurrent recurrent recurrence. Significant proposition proposition in on- recurrent recurrent recurrence. Spearman correlation analysis. Significant proposition proposition proposition proposition proposit	,	The lining tumors are
stronger Ki- 67 expression than AB and RC. RC. Significant RC. Significant RC. Significant RC. Significant RC. Significant RC. Significant RC. Larger size, between of cases. recurrent and recurrent risk for various clinicopatholog		epithelium of significant for
67 expression than AB and RC. Significant Recurrence differences is in 29.27% between of cases. To investigate the prognostic relevance of various clinicopatholog cial features as yk et al. immunoexpres (2018) [35] sion of COX-2, bcl-2, PCNA, and p53 in sporadic odontogenic keratocysts (OKC). Discreption of than AB and RC. Significant differences is in 29.27% between of cases. Fecurrent and Larger size, non-recurrent and recurrence: perforation in of 3.362 (95% sporadic OKC multilocularit C11.066 may correlate test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. FONA, p53. Whitney test, Cox proportional hazard model so odontogenic keratocysts (OKC). PONA, p63. Whitney test, Cox proportional hazard model so odontogenic keratocysts (OKC). Poland. FONA, p63. FONA, p64. FONA, p64. FONA, p64. FONA, p64. FONA, p64. FONA, p64. FONA, p65. FONA, p65. FONA, p65.		OKC showed their clinical
than AB and RC. To investigate the prognostic relevance of various clinicopatholog ical features as yk et al. immunoexpres (2018) [35] sion of COX-2, bcl-2, PCNA, and p53 in sporadic odontogenic keratocysts (OKC). ORC Poland. Poland.		stronger Ki- behaviour.
RC. Significant Recurrence differences is in 29.27% between of cases. To investigate the prognostic relevance of various clinicopatholog ical features as yk et al. immunoexpres (2018) [35] sion of COX-2, Bcl-2, PCNA, and p53 in and p53 in dontogenic keratocysts (OKC). Rearrospective relevance of various clinicopatholog ical features as yk et al. immunoexpres (2018) [35] sion of COX-2, Pcl-2, PcnA, and p53 in dontogenic keratocysts (OKC). Rearrospective relevance of study. Various clinicopatholog ical features as yk et al. immunoexpres (2018) [35] sion of COX-2, Pcl-2, PcnA, and p53 in dontogenic keratocysts (OKC). Rearrospective relevance of study. Various clinicopatholog ical features as patients. Volve al. immunoexpres (COX-2, bcl-2, PcnA, p53. COX-2, bcl-2, pcnA, p53. PcnA, p53. PcnA, p53. Retrospective relevance of idifferences is in 29.27% between of cases. Immunohistor recurrent rand recurrence. Systs in terms recurrence: perforation in volves in terms recurrence. Systs in terms recurrence vysts in terms recurrence. Por volves in terms recurrence in vision of 3.362 (95% sporadic OKC multilocularit C11.066 may correlate in the prognostic PcnA, p53. COX-2, bcl-2, pcnA, p53. PcnA, p53. Significant Recurrence differences is in 29.27% between of cases. Larger size, multilocularit C1 1.066 may correlate in the perforation in recurrence. Systs in terms recurrence in vision perforation in recurrence. Systs in terms recurrence in vision in recurrence in the perforation in recurrence in recurrent rand in the prognostic cal analysis. Sudent's treet, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Spearman correlation analysis. PcnA (1.002 utility in sporadic correlates in mm² of OKC. with lesion size radiographic on OKC.		*
To investigate the prognostic Retrospective relevance of various clinicopatholog ical features as yk et al. immunoexpres (2018) [35] sion of COX-2, bcl-2, PCNA, and p53 in sporadic odontogenic keratocysts (OKC). Retrospective relevance of study. Various clinicopatholog Sample Size: ical features as yk et al. immunoexpres (2018) [35] sion of COX-2, bcl-2, pcl-2, pcl-2, pol-1,		
differences s in 29.27% between of cases. To investigate the prognostic relevance of relevance of clinicopatholog ical features as yk et al. immunoexpres (2018) [35] sion of COX-2, PCNA, and p53 in odontogenic keratocysts (OKC). Rear Sporadic (COKC). Rear Size (Study Type: the prognostic relevance of study. Various Clinicopatholog Sample Size: al features as yk et al. immunoexpres (2018) [35] sion of COX-2, PCNA, Mean age: and p53 in odontogenic keratocysts (COKC). Rear Size (Study Type: the prognostic Retrospective relevance of study. Various COX-2, bcl-2, PCNA, Mean age: and p53 in odontogenic keratocysts (COKC). Rear Size (Study Type: the prognostic Retrospective relevance of study. Multilocularit (C1 1.066 may correlate with multilocular recurrence. perforation or cortical perforation or cortical perforation or cortical size (P < 28.985) for COX-2, bcl-2, 10.001). Spearman correlation analysis. Poland. Guifferences s in 29.27% between of cases. Rountilocularit risk for y, and cortical vysts in terms recurrence. perforation in 3.362 (95% sporadic OKC multilocularit (C1 1.066 may correlate with multilocularit (C1 1.066 may corrical perforation or cortical perforation or cortical size (P < 28.985) for COX-2, bcl-2, 0.001). Spearman correlation analysis. Poland. Formultioularit C1 1.066 multilocularit cortical perforation or cortical perforation or cortical perforation or cortical size (P < 28.985) for COX-2, bcl-2, 0.001). Spearman correlation analysis. Formultioularit cortical perforation or cortical size (P < 28.985) for COX-2, bcl-2, 0.001). Spearman correlation analysis. Formultioularit cortical multilocularit cortical perforation or cortical size (P < 28.985) for COX-2, bcl-2, 0.001). Spearman correlation analysis. Formultious analysis. Student's treat, Mann. Whitney test, Cox proportional hazard model, size (P < 28.985) for COX-2, bcl-2, 0.001). Spearman correlation analysis. Formultious analysis. Student's treat, Mann. Whitney test, Cox proportional hazard model, size (P <		
To investigate the prognostic relevance of relevance of various Sample Size: to test with a syket al. immunoexpres Scl-2, PCNA, and p53 in and p53 in odontogenic keratocysts Country/Regi (OKC). On: Poland.		
To investigate the prognostic Retrospective relevance of study. Various clinicopatholog cal features as yk et al. immunoexpres bcl-2, PCNA, and p53 in and p53 in odontogenic keratocysts (OKC). Retrospective relevance of study. Various clinicopatholog Sample Size: 41 OKC (COX-2, bcl-2, and p53 in odontogenic keratocysts (OKC). Retrospective relevance of study. Various clinicopatholog Sample Size: 41 OKC (COX-2, bcl-2, bcl-2, and p53 in odontogenic keratocysts (OKC). Retrospective relevance of study. Various clinicopatholog Sample Size: 41 OKC (HC), Fisher's exact test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Row the student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Row to demistry (IHC), Fisher's exact test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Row to demistry (IHC), Fisher's exact test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Row to demistry (IHC), Fisher's exact test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Row to demistry (IHC), Fisher's exact test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Row to demistry (IHC), Fisher's exact test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Row to demistry (IHC), Fisher's exact test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Row to demistry (IHC), Fisher's exact test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Row to demistry (IHC), Fisher's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Row to demistry (IHC), Fisher's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Row to demistry (IHC), Fis		
To investigate the prognostic relevance of study. Various Clinicopatholog cal analysis, Immunohistor to cal analysis, Immunohistor to cal analysis, Immunohistor to cal features as the patients. Ye et al. immunoexpres (2018) [35] sion of COX-2, Age Range: bcl-2, PCNA, made age: and p53 in soporadic of correlation analysis. Verificial features as poradic (range 7-69). odontogenic keratocysts (OKC). Raczmarz well as patients. Ye et al. immunoexpres COX-2, bcl-2, COX-2, bcl-2, Cox proportional hazard model, Spearman correlation analysis. PONA, p53. Spearman correlation analysis. PONA, p54. Spearman correlation analysis. Spearman correlation analysis. PCNA, and 1.004 prognostic cal analysis, Immunohistor (p1.06— may correlate y (P=0.029), 10.598) for with with coulcint recurrence. With cortical multilocularit CI 1.066— may correlate y (P=0.029), 10.598) for with coulcint recurrence. Note the prognostic of 3.362 (95% sporadic OKC multilocularit correlation in multilocularit correlation in recurrence. Note the prognostic of 3.362 (95% sporadic OKC multilocularit correlates, and cortical perforation in recurrence. Note the prognostic of 3.362 (95% sporadic OKC multilocularit correlates, and cortical perforation in multilocularit correlates, and in the multilocularit correlates, and possible perforation in multilocularit correlates, and lesion of correlates and lesion correlates and lesion correlates and lesion in the multilocularit correlates, and lesion correlates and lesion in the multilocularit correlates and lesion in the mult		
the prognostic Retrospective relevance of study. various clinicopatholog Sample Size: ical features as yk et al. immunoexpres (2018) [35] sion of COX-2, and p53 in sporadic (range 7-69). odontogenic keratocysts (OKC). Rear and p53 in Poland. Retrospective study. various clinicopatholog Sample Size: ical features as 41 OKC Kaczmarz well as patients. yk et al. immunoexpres COX-2, bcl-2, COX-2, bcl-2, and p53 in d0.24 years sporadic (range 7-69). odontogenic keratocysts (OKC). Retrospective cal analysis, Immunohistoc hemistry (IHC), Fisher's exact test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Spearman correlation analysis. Fist for y, and cortical cysts in terms recurrence: perforation in of 3.362 (95% sporadic OKC) multilocularit CI 1.066— may correlate y (P = 0.029), 10.598) for with view, cortical perforation perforation analysis of test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Spearman correlation analysis. Fist for y, and cortical cysts in terms recurrence: perforation in of 3.362 (95% sporadic OKC) multilocularit CI 1.066— may correlate y (P = 0.029), 10.598) for with view, cortical perforation perforation analysis of test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Spearman correlation analysis. Fist for y, and cortical cysts in terms recurrence: perforation in of 3.362 (95% sporadic OKC multilocularit CI 1.066— may correlate y (P = 0.029), 10.598) for with view, perforation in of themistry (IHC), Fisher's exact test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Spearman correlation analysis. Fist for y, and cortical multilocularit CI 1.066— may correlate with proposal correlation of 3.362 (95% sporadic OKC multilocularit CI 1.066— mult		<u> </u>
relevance of study. various clinicopatholog Sample Size: ical features as defeating yet al. immunoexpres (2018) [35] sion of COX-2, PCNA, and p53 in adoption odontogenic keratocysts (OKC). Recurrent Pisk tor yet al. immunohistor hemistry (IHC), Fisher's exact test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Recurrent Cysts in terms recurrence: cysts in terms recurrence: perforation in 3.362 (95% sporadic OKC) multilocularit (CI 1.066 may correlate yet (P = 0.029), 10.598) for corrical multilocular recurrence. Perforation in 3.362 (95% sporadic OKC) multilocularit (CI 1.066 may correlate yet (P = 0.029), 10.598) for corrical perforation of correlation analysis. Cox proportional hazard model, Spearman correlation analysis. Spearman correlation analysis. Poland. Spearman correlation analysis. Fecturrent Pisk tor cysts in terms recurrence: cysts in terms recurrence: perforation in 3.362 (95% sporadic OKC) multilocularit (CI 1.066 may correlate yet (P = 0.029), 10.598) for corrical perforation of correlation analysis. Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Spearman correlation analysis. Fecturrent Pisk tor cysts in terms recurrence: cysts in terms recurrence: perforation in 3.362 (95% sporadic OKC) multilocularit (CI 1.066 may correlate yet (P = 0.029), 10.598) for with corrical perforation of correlation analysis. Fexact test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Fexact test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Fexact test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Fexact test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Fexact test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Fexact test, Student's test, Mann-Whitney test, Co		Histopathologi
various clinicopatholog Sample Size: ical features as 41 OKC Kaczmarz well as patients. yk et al. immunoexpres (2018) [35] sion of COX-2, Age Range: bcl-2, PCNA, and p53 in 40.24 years sporadic (amutomotopenic keratocysts (OKC). On: Poland. Poland. Poland. Poland.		cal analysis recurrent <u>risk for</u> y, and cortical
clinicopatholog Sample Size: ical features as ical features as well as yk et al. immunoexpres (2018) [35] sion of COX-2, bcl-2, and p53 in sporadic odontogenic keratocysts (OKC). COX-2, bcl-2, PCNA, bcl-2, and p53 in sporadic (range 7-69). COX-2, bcl-2, PCNA, bcl-2, and p53 in sporadic (range 7-69). COX-2, bcl-2, PCNA, bcl-2, and p53 in sporadic (range 7-69). COX-2, bcl-2, pcl-2, proportional hazard model, Spearman correlation analysis. COX-2, bcl-2, proportional hazard model, Spearman correlation analysis. Spearman correlation analysis. COX-2, bcl-2, proportional hazard model, Spearman correlation analysis. Spearman correlation analysis. COX-2, bcl-2, proportional hazard model, Spearman correlation analysis. Spearman correlation analysis. COX-2, bcl-2, proportional hazard model, Spearman correlation analysis. Spearman correlation analysis. COX-2, bcl-2, proportional hazard model, Spearman correlation analysis. Spearman correlation analysis. COX-2, bcl-2, proportional hazard model, Spearman correlation analysis. Spearman correlation analysis. Significantly 1.006) for 1 sporadic correlates mm² of OKC. With cortical multilocularit CI 1.06- may correlate with proportion analysis proportion. COX-2, bcl-2, proportional hazard model, Spearman correlation analysis. Spearman correlation analysis. Significantly 1.006) for 1 sporadic correlates mm² of OKC. With cortical multilocularit CI 1.06- may correlate with proportion. COX-2, bcl-2, province test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. COX-2, bcl-2, province test, Student's test, Mann-Whitney test, Cox proportional hazard model, Spearman correlation analysis. Spearman correlation analysis. Spearman correlation analysis. Spearman correlation analysis. Spearman correlation analysi	J .	Immunohistoc '
ical features as 41 OKC patients. Well as patients. yk et al. immunoexpres (2018) [35] sion of COX-2, bcl-2, bcl-2, PCNA, and p53 in adoptogenic keratocysts (OKC). On: Poland. Poland		nemistry
Kaczmarz well as patients. yk et al. immunoexpres (2018) [35] sion of COX-2, Age Range: bcl-2, PCNA, pfs. and pfs in odontogenic keratocysts (OKC). Poland. Polan		
yk et al. immunoexpres		exact test
(2018) [35] sion of COX-2, Age Range: bcl-2, PCNA, Mean age: and p53 in sporadic odontogenic keratocysts (OKC). PCNA, p53. Mean age: Cox proportional hazard model, Spearman correlation analysis. Poland. PCNA, p53. Whitney test, Cox proportional hazard model, Spearman correlation analysis. PCNA, p53. (P = 0.001), 7.801 (95% chemical and lesion CI 2.1— analyses of size (P < 28.985) for COX-2, bcl-2, 0.001). cortical PCNA, and Immunoexpr perforation ession of analysis. PCNA (1.002— utility in significantly 1.006) for 1 sporadic correlates mm² of OKC. with lesion size radiographic on	1	Student's t- perforation r cysts Immunohisto
bcl-2, PCNA, Mean age: and p53 in 40.24 years sporadic (range 7-69). odontogenic keratocysts (OKC). Poland. Whitney test, Cox proportional hazard model, Spearman correlation analysis. Spearman correlation analysis. POLAN (1.002 utility in significantly 1.006) for 1 sporadic correlates mm² of OKC. with lesion size radiographic on	· ·	rest Mann-
and p53 in sporadic (range 7-69). odontogenic keratocysts (OKC). Poland. Spearman correlation analysis. Spearman correlates mm² of OKC. with lesion size (P < 28.985) for COX-2, bcl-2, proportional hazard model, Spearman correlation analysis. With lesion size radiographic on		Whitney test, and lesion CL21– analyses of
sporadic (range 7-69). odontogenic keratocysts Country/Regi (OKC). Poland. sporadic (range 7-69). odontogenic keratocysts Country/Regi (OKC). Poland. spearman correlation analysis. Poland. spearman correlation analysis. PCNA (1.002— utility in significantly 1.006) for 1 sporadic correlates mm² of with lesion size radiographic on	<u>~</u>	cox size (P < 28.985) for COX-2 hcl-2
odontogenic keratocysts Country/Regi (OKC). On: Poland. Immunoexpr perforation p53 lack ession of , and 1.004 prognostic ession of , and 1.002— utility in significantly 1.006) for 1 sporadic correlates mm² of OKC. with lesion size radiographic on	- · · · · · · · · · · · · · · · · · · ·	proportional 0.001) cortical PCNA and
keratocysts Country/Regi (OKC). on: Poland. Poland. Spearman correlation analysis. PCNA (1.002- utility in significantly 1.006) for 1 sporadic correlates mm² of OKC. with lesion size radiographic on	*	Immunoexpr perforation p53 lack
(OKC). on: Poland. Poland. Poland. PCNA (1.002– utility in significantly 1.006) for 1 sporadic correlates mm² of OKC. with lesion size radiographic on	<u> </u>	ession of and 1 004 prognostic
Poland. Poland. analysis. significantly 1.006) for 1 sporadic correlates mm² of OKC. with lesion size radiographic on	, , , , , ,	correlation PCNA (1.002– utility in
correlates mm² of OKC. with lesion size radiographic on		analysis `
radiographic on		
ÿ <u>*</u>		with lesion size
evidence of panoramic		radiographic on
		evidence of panoramic

						radiograph	
					perforation	s.	
					(P = 0.048).		
					Significant		
					positive		
					correlation		
					between		
					COX-2 and		
					bcl-2 (P =		
					0.001) and		
					significant		
					negative		
					correlation		
					between		
					COX-2 and		
					age (P =		
-					0.002).		
					NBCCS-		
					associated		
					OKCs are		
					more prone	NBCCS-	
					to recur than	associated	Syndromic
					sporadic		,
					ones. Larger	OKCs had	OKCs have
					size,	83.33%	higher
	To compare the	Sample Size:			multilocularit	recurrence	recurrence
	prognostic	43 OKC cases.			y, cortical	rate vs.	risk. COX-2
	relevance of	31 sporadic	COX-2, Bcl-2,		perforation in		upregulation
Kisielows	clinicopatholog	-	PCNA, p53,	Histological	sporadic	sporadic	in recurrent
ki et al.	ical factors in	syndromic	Ki-67, OPG,	classification,	OKCs	OKCs ($p =$	sporadic
		OKCs.	RANK,	immunohistoc		0.013). HR	OKCs and
(2023) [30]	sporadic and	ORCs.	RANKL,			for	RANKL/OPG
	syndromic	C , /D ;	RANKL/OPG	hemistry.	higher	recurrence	imbalance in
	odontogenic	Country/Regi	balance.		recurrence	in NBCCS-	recurrent
	keratocysts	on:			risk. COX-2	associated	syndromic
	(OKCs).	Poland.			upregulated		OKCs, though
					in recurrent		findings have
					sporadic		no prognostic
					OKCs.	49.123; p =	relevance.
					Syndromic	-	relevance.
					OKCs exhibit	0.01).	
					higher		
					RANKL >		
					OPG ratio.		
		Sample Size:			Recurrent		
		90 formalin-			OKCs		Recurrent
	To determine				showed		OKC showed
		fixed paraffin-					more
	the biological	embedded			strong	All 12	aggressive
	behaviour of	tissue			positivity for	recurrent	behaviour
	common	samples; 26		_	bcl-2, absent	OKCs	than primary
Naz et al.	O	primary cases		Immunohistoc		showed	counterparts
(2015) [37]	cystic lesions	each of	Bcl-2.	hemistry	cases (p <	strong bcl-	and RC/DC.
	by analysing	radicular		(IHC).	0.05).	2	Bcl-2 is
	and comparing	cysts (RC),			Variation in	_	
	bcl-2	dentigerous			bcl-2	expression	valuable in
	expression	cysts (DC),			expression	(p < 0.05).	determining
	amongst them.	•			between RC		aggressive
	<i>G</i>	odontogenic			and DC is not		biological
		_			significant,		behaviour of
		keratocysts			Significant		

		(OKC), 12 recurrent OKCs. Country/Regi on: Pakistan.			but significant when compared with primary OKCs.		odontogenic lesions.
Rahman et al. (2013) [38	To evaluate and compare the proliferative index in the epithelium surrounding the impacted third molar teeth, dentigerous cysts, and gingiva.	Study Type: Case control study. Sample Size: 40 pericoronal tissues from asymptomatic impacted third molars, 20 dentigerous cysts, 20 normal gingiva samples. Country/Region: India.	Ki-67, Bcl-2.		Bcl-2 overexpresse d in pericoronal tissues with squamous metaplasia and dentigerous cysts. Ki-67 labeling index (Li) is higher in pericoronal tissues with squamous metaplasia compared to reduced enamel epithelium. Ki-67 Li in pericoronal tissues with moderate to severe inflammation is significantly higher than in those with none to mild inflammation		show high proliferative activity and may develop
Byun et al. (2013) [39]	To report on two cases of expansile keratocystic odontogenic tumors (KCOT) in the maxilla and evaluate the immunohistoch emical characteristics.	period: more than 2 years.	BCL2, BAX, Ki-67, p53, p63.	Immunohistoc hemistry (IHC).	Both cases involved large KCOT occupying the entire maxilla and maxillary sinus. Strong expression of p53 and p63 in the lining epithelium. Moderate expression of BCL2 and Ki-67. BAX was almost	ѕресіпеа.	Expansile KCOT possesses increased anti-apoptotic activity and cell proliferation rate but decreased apoptosis, contributing to tumor enlargement, aggressive behavior, and high

					negatively		recurrence
					detected.		rate.
					These		
					findings		
					indicate		
					increased		
					anti-		
					apoptotic		
					activity and		
					cell		
					proliferation		
					rate but		
					decreased		
					apoptosis in		
					KCOT.		
					Fas and		
					ssDNA were		Differences in
					detected in		apoptosis-
	To examine the	Charles Tarres			superficial		related factors
	role of	Study Type:			epithelial		and
	apoptosis-	Comparative			cells; bcl-2		proliferative
	related factors	study.			and Ki-67 in		markers
Edamatsu					enithelial	Significant	suggest roles
et al.	follicles (DFs)	Sample Size:	Fas, bcl-2,	Immunohistoc	cells near the	differences	in DC
(2005) [40]		80 DFs, 27	ssDNA, Ki-67.	hemistry	basement	in bcl-2	pathogenesis
(2003) [40]	dentigerous	DCs.	33D1 V1, IXI-07.	(IHC).	membrane.	expression	and
	cysts (DCs)				bcl-2 lower in	(p < 0.05).	modulation
	•	Country/Regi				L	
	associated with	on:			DFs than		by epithelial
	impacted third	Japan.			DCs. ssDNA		characteristics
	molars.				higher in		and
					DFs; Ki-67		inflammation
					higher in		in DFs.
					DCs.		
					All AB and		
					KCOT cases		
					positively	Significant	VCOT als assess
					stained for	difference	KCOT shows
		C. 1 T			Bcl-2, but not	in Bcl-2	different
	To evaluate	Study Type:			DC. Bcl-2 is	expression	biological
	and compare	Cross-			higher in	between	activity and
	the expression	sectional			peripheral	KCOT and	growth
	of Bcl-2 and	study.			layer of AB	DC	mechanisms
Razavi et	EGFR proteins			Immunohistoc	-	(p=0.02).	compared to
al. (2015)	in keratocystic	Sample Size:	Bcl-2, EGFR.	hemistry		No EGFR	DC and AB.
[41]	odontogenic	16 KCOT, 16	DCI-2, EGFK.	•	layer of		KCOT has
	tumor (KCOT),	DC, 16 AB.		(IHC).	KCOT. EGFR	-	high Bcl-2
	dentigerous				is expressed		expression
	cyst (DC), and	Country/Regi			in all AB and	U	but no EGFR,
	ameloblastoma	on:			DC, but not	EGFR	indicating less
	(AB).	Iran.			KCOT. EGFR	expression	aggressive
	(AD).	nan,			is higher in	in AB and	potential than
					peripheral	DC (p <	•
					layer of AB	0.01).	AB.
					and basal	,	
					layer of DC.		
Sreedhar	To analyze the	Study Type			Inflamed	PCNA and	Inflammation
et al.	effect of	Retrospective		Immunohistoc	OKC and DC		changes the
	inflammation	= .	PCNA, Bcl-2.	hemistry	showed		behavior of
(4014)	пшашшашип	study.		(IHC).		in inflamed	
	on the			(-)	cioniticant		neoniactic

biological <u>Sample Size:</u>			increase in	OKC and	epithelium in
behavior of 10 classical			PCNA	DC were	OKC,
odontogenic OKC, 10			expression	significantl	0
keratocyst inflamed			and decrease	-	
(OKC) and OKC, 10			in Bcl-2		proliferation
dentigerous classical DC,			expression	inflamed	and survival
cyst (DC) using 10 inflamed			compared to		of epithelial
PCNA and Bcl- DC.			non-inflamed	0.05).	cells. In DC,
2 markers.			cysts. The		inflammation
<u>Country/Regi</u>			correlation		leads to
<u>on:</u>			between		changes in the
India.			inflammation		epithelial
			and		lining.
			proliferative and anti-		
			apoptotic		
			activity was		
			statistically		
			non-		
			significant.		
			27 normal		
			PFs (NPFs)		
			and 13		
			hyperplastic		
			PFs (HPFs).		
			87.8% of PFs		
			exhibited		
			epithelium		
			on the		
			surface.		
To associate					Scant
radiographic Sample Size:			Reduced		
and Sample Size:			enamel		epithelial proliferation
histopathologic 140 1 15.		Radiographic	epithelium		in PFs
al features of Age Range:		analysis,	observed in	P-values:	suggests low
Villaiba et pericoronai Mean age:		Histopatholog	61.4% NPFs	Ki-67 PI	risk for
al. (2012) follicles (PFS) of 20.01 years	Ki-67, Bcl-2.	y,	and 46.2%	(P<0.05),	development
[43] asymptomatic (range 9-50)	, .	Immunohistoc	HPFs.	Bcl-2	of
impacted teeth		hemistry		(P>0.05).	odontogenic
and evaluate <u>Country/Regi</u>		(IHC).	Squamous	, ,	pathologies
cell <u>country on:</u>			metaplasia in		without
proliferation Argentina.			13.4% NPFs and 30.8%		additional
and apoptosis in epithelium.			HPFs.		stimulus.
ni epitilenum.			111175.		
			Cystic		
			epithelium in		
			11.8% NPFs		
			and 23%		
			HPFs.		
			<u>Ki-67 PI:</u> NPF		
			(1.97±1.41%),		
			DC (7.07±2.05%)		
			(7.97±2.05%).		

					Bcl-2: 64.3% NPFs, 70%		
Nimmana goti et al. (2019) [44]	emically, the	Sample Size: 30 KCOT cases; Control group: 30 normal oral mucosa. Country/Regi on: Telangana, India.	p53, Bcl-2, COX-2, CD105.	Immunohistoc hemistry.	DCs. 73% p53 positive, 77% Bcl-2 positive, 60% COX-2 positive in KCOT samples. Mean vascular density: KCOT (13.8) vs. normal oral mucosa (4.1).		Angiogenesis, cell proliferation, and antiapoptosis contribute to the unique biological behavior of KCOT.
Phull et al. (2017) [45]	To evaluate bcl- 2 expression and its distribution in the epithelial lining as well as connective tissue cells of ameloblastoma, KCOT, and radicular cyst.	embedded tissues: 40 ameloblastom a, 40 KCOT, and 40 radicular cyst samples.	Bcl-2.	Immunohistoc hemical evaluation.	Positive bcl-2 expression: all KCOTs, 38/40 ameloblasto mas, 10/40 radicular cysts. Higher bcl-2 staining in KCOT vs. ameloblasto ma and radicular cyst. Solid ameloblasto mas showed higher expression than unicystic.	between ameloblast oma, KCOT, and radicular cyst (ANOVA, P = 0.00). Significant differences between KCOT and ameloblast oma, and between ameloblast oma and radicular cyst. There is no significant	High bcl-2 expression in KCOT suggests neoplastic characteristics . Connective tissue cells are important in the biological behavior of odontogenic keratocyst. Further genetic studies are
Sindura et al. (2013) [46]	To study the expression of Bcl-2 protein in ameloblastoma and keratocystic odontogenic	Study Type: Histochemical study. Sample Size:	Bcl-2.	Immunohistoc hemical evaluation.	Positive Bcl-2 expression: 85% (17/20) ameloblasto ma, 85% (17/20) KCOT, 100%	differences in Bcl-2 staining area and	Bcl-2 expression indicates KCOT's neoplastic characteristics . The

	tumor (KCOT) to determine their apoptotic behaviors and biological nature.	Age Range: Mean age: Ameloblasto ma - 31.6 years, KCOT - 37.8 years. Country/Regi on: Bangalore, Karnataka, India.			(3/3) lymphomas. Ameloblasto ma showed expression in peripheral and intermediate cells, KCOT in basal layer.	oma, KCOT, and radicular cyst. Ameloblast oma showed higher expression	suggests a role in the
Cserni et al. (2020) [47]	To analyze jaw cysts for the expression of CK17 and bcl2, assessing their diagnostic value.	Study Type: Histochemical study. Sample Size: 85 cysts from 72 patients. Age Range: Median age: 44 years (range: 11– 76). Country/Region: Szeged, Hungary.	CK17, Bcl-2.	Immunohistoc hemical evaluation.	21 OKCs with typical CK17 and bcl2 expression, non-OKCs showed varied CK17 and bcl2 positivity but weaker than OKCs. Inflammation altered IHC phenotype in OKCs.		CK17 and bcl2 IHC can aid in diagnosing OKCs but must be interpreted with caution. The IHC patterns are adjuncts, not definitive diagnostic tools.
Shetty et al. (2010) [48]	To evaluate the expression of p53 in Odontogenic Keratocyst (OKC) and Ameloblastoma to correlate with the aggressiveness of these lesions.	Sample Size: 36 cases (18 OKC and 18 Ameloblasto ma). Country/Regi on: Ghaziahad	p53.	Immunohistoc hemical evaluation.	peripheral pre- ameloblast- like cells in Ameloblasto	Significant difference in total p53 count between Ameloblast oma and OKC. There is no significant difference in the intensely stained p53 cell count.	High p53 expression in OKC suggests its aggressive nature, warranting more aggressive treatment modalities.

González Moles et al. (2006) [49]	To investigate the association between p53 alterations and HPV infection in odontogenic keratocysts (OKCs), and to study proliferation and epithelial maturation patterns by topographic analysis of Ki-67 expression.	solitary non- recurrent, 20	and Ki-67 (MIB-1); PCR for HPV DNA.	using	basal (p<0.001).	p53 and dysplasia association , p<0.001 for suprabasal vs. basal Ki-67	p53 mutations are unlikely to play a major role; OKCs show neoplasm-like behavior with
Gadbail e al. (2009) [50]	To evaluate the biological aggressiveness of odontogenic keratocyst/kerat tocystic odontogenic tumour (KCOT), radicular cyst (RC), and dentigerous cyst (DC) by observing the		Ki-67, AgNOR count, p53.	Histopathologi cal analysis using Ki-67 Labelling Index, AgNOR count, and p53 protein expression.	cell layers of KCOT, uniform	Not specified.	Quantitative and qualitative differences in proliferative activity and p53 protein expression in sporadic KCOT may be associated with intrinsic growth potential,

actua	.1			AgNOR		explaining its
prolifera				counts		locally
activity				significantly		aggressive
epitheliun				higher in		biological
p53 prot				suprabasal		behavior.
expressi				cell layers of		AgNOR count
expressi	1011.			KCOT.		and p53
				Higher actual	1	=
				proliferative	l	protein detection in
				•		
				activity in		odontogenic
				suprabasal		lesions can
				cell layers of KCOT.		predict
				KCO1.		biological
				Damas		behavior and
				Dense,		prognosis.
				scattered p53		
				immunolabel	<u>[</u>	
				ling in basal		
				and		
				suprabasal		
				cell layers of		
				KCOT.		
				Weakly		
				stained p53		
				positive cells		
				diffusely		
				distributed ir	ı	
				KCOT,		
				mainly in		
				basal cell		
				layer of RC		
-				and DC.		
				PCNA		PCNA and
				expression	Significant	p53
	Study Type:			was	differences	expressions in
	Immunohisto			significantly	between	radicular and
To analyz				greater in the	•	dentigerous
and	study.			basal layer of	keratocysts	cysts show
prolifera	•			radicular	for both	similar
cell nucl				cysts and in	p53	characteristics
antige	=			the	(p=0.01)	despite
, (PCNA				suprabasal	and PCNA	different
de expressio			Histopathologi	-	(p=0.01).	origins.
Oliveira radicular	_		cal analysis	odontogenic	0	
et al.	,	p53, PCNA.	using	keratocysts.	correlation	expression
(2008) [51] cysts			hematoxylin-		between	patterns in
odontog	_		eosin staining.	The	p53 and	odontogenic
keratocy	•			percentage of		keratocysts
and calcif				p53 positive		and Gorlin
odontog				cells was	_	cysts suggest
cysts (Go	•			significantly	•	different
cysts (GC				greater in the	_	_
Cy 3t3)	on:			suprabasal	s and	patterns.
	Brazil.			layer of	Gorlin	Further
	DIUZII.			odontogenic	-	studies are
				keratocysts.	(p<0.05).	needed to
						investigate

				p53 and PCNA expression patterns in dentigerous and radicular cysts were similar. Different patterns observed in odontogenic keratocysts and Gorlin cysts, indicating different tumor growth patterns.		the role of inflammation in these lesions.
To investigate the Gaballah immunohistochet al. emical (2010) [52] expression of P53 protein in odontogenic cysts.	odontogenic	Monoclonal mouse antibody to p53.	Histopathologi cal analysis using hematoxylin- eosin staining.	P53 positive cases: 81.8% OKC, 33.3% DC, 0% RC. P53 expression seen in basal and parabasal cells of epithelial lining.	Data were analyzed using SPSS 10 software. No specific statistical values were	High P53 expression in OKC suggests greater proliferative activity, supporting reclassificatio n as keratocystic odontogenic tumor (KCOT). Low or no P53 expression in RC and DC indicates lower proliferative activity.
To characterize the expression of p53, p63, and p73 in KCOTs and the relationship between their expression and KCOT angiogenesis and recurrence.	Sample Size: 39 KCOTs. Age Range: Mean age: 37.1 ± 21.8 years.	monoclonal antibodies specific to human p53, p63, p73, and CD105.	Histopathologi cal analysis using hematoxylin and eosin staining.	p53 expression: 59% of cases. p63 expression: 82% of cases. p73 expression: 66.7% of cases. Mean MVD: 26.7 ± 15.8 per HPF -	Mann-Whitney U test, Spearman's correlation coefficients , p<0.05 considered statistically	p53, p63, and p73 expression and increased angiogenesis contribute to the locally aggressive and invasive behaviors of KCOTs, supporting their classification as tumors.

		Thailand.			Significant		
					positive		
					relationships		
					noted for		
					p53, p63, p73		
					expression		
					and MVD		
					(p<0.001).		
					(p<0.001).		
					Increased expression of		
					p53, p63, and		
					p73		
					significantly		
					associated		
					with local		
					recurrence (p		
					= 0.001, 0.012,		
					0.017		
					respectively).		
					<u>Initial</u>		
					treatment:		Marsupializat
		C. 1 T			marsupializat		ion is effective
		Study Type:			ion led to		as an initial
		Clinical case			reduced Ki-		treatment for
		report.			67 and bcl-2		extensive
					expression.		OKC, but
	To evaluate the	Sample Size:			-		additional
	management	One case of			Persistent		aggressive
Khan et	and follow-up	extensive		Radiographic	_		treatment
	of an extensive	panmandibul		examination	curettage,	Not	may be
[54]	odontogenic	ar OKC.	Ki-67, bcl-2.	and	extraction,		necessary for
[]	keratocyst			histopathologi	and Carnoy's		complete
	(OKC) over a	Age Range:		cal analysis.	solution		resolution. Ki-
	10-year period.	35-year-old			application.		67 and bcl-2
	To year periou.	female.					are site-
					10-year		specific
		Country/Regi			follow-up		markers
		on:			showed		related to
		Saudi Arabia.			complete		OKC
					resolution		recurrence.
					with no		recurrence.
					recurrence.		
	To understand	Study Type:			n53 nocitive		The biological
	the behavior of	Immunohisto			p53 positive cells mainly		behavior of
	epithelial cells						OKCs may be
	in pathogenesis	chemical			in suprabasal	Cianifi	related to the
	and biological	study.		TT: ((b . l)		Significant	suprabasal
V. 1. 1 ···	aspects of	Carrage 1 - C*		Histopathologi		difference	proliferative
Kadashett	odontogenic	Sample Size:	F0 10	cal analysis	p63 and	(P < 0.01)	compartment.
i et al.	keratocyst	21 cases of	p53, p63,	using	PCNA	between	High levels of
(2020) [55]	(OKC) in	OKCs.	PCNA.	hematoxylin	positive cells		n53 n63 and
	diagnosis by	_		and eosin		suprabasal	PCNA
	analyzing the	Country/Regi		staining.	throughout	cells in	suggest that
	expression of	on:			the lining	OKC.	these proteins
	p53, p63, and	India			epithelium,		contribute to
	proliferating	(Maharashtra)			including		the biological
	cell nuclear	•			basal and		profile and

antigen (PCNA).			suprabasal layers.	possibly the tumorigenesis of OKCs.
			p63 and PCNA showed higher staining intensity compared to p53.	
To assess the expression of the p53 protein in odontogenic keratocysts (OKC) Slusarenk o da Silva et al. (2021) [56] cysts (DC) and ameloblastoma s (AMB) and determine whether OKCs behave more like tumors than cysts. Study Type: Systematic review and meta-analysis. Sample Size: 13 studies included. Country/Region: Brazil, Netherlands.	p53.	Histopathologi cal criteria defined by WHO in 1992, 2005, and 2017.	126 records identified; 13 Risk studies Difference included. (RD) for OKCs have a OKCs vs. 23% higher probability of [-0.39, expressing -0.08], P p53 0.003. compared to DCs (P < RD for 0.003). OKCs vs. AMBs: 0. OKCs have a [-0.11, 4% higher 0.03], P	OKCs are more likely to express p53, indicating a behavior more like tumors rather than cysts. The classification of OKCs as Keratocystic Odontogenic Tumors (KCOT) should be reconsidered. s.
Yanatatsa p53 160 healthy neejit et polymorphism controls.	Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), confirmed by direct sequencing.	Histopathologi cal	Genotype frequencies in controls: Pro/Pro (23.8%), Arg/Pro (49.4%), Arg/Arg (26.9%). Genotype frequencies in KCOT cohort: Pro/Pro (43.0%), Arg/Pro (39.0%), OR = 1.7 (95% CI 1.17-2.50, = 0.0046 adjusted OR = 2.1 (95% CI 1.23-3.84, = 0.0062	The C/C genotype of the p53 gene codon 72 increases the risk of developing sporadic KCOT and may be a useful tool for screening and diagnostic

					Arg/Arg		
		Country/Regi			(18.0%).		
		on:					
		Thailand.			p53 Pro allele		
					associated		
					with		
					increased		
					KCOT risk		
					(OR = 1.77,		
					95% CI =		
					1.22-2.59, p =		
					0.0024).		
					,		
					Sex-adjusted		
					OR = 1.71		
					(95% CI =		
					1.17-2.50, p =		
					0.0046).		
					,		
					p53 Pro		
					homozygous		
					associated		
					with two-fold	-	
					KCOT risk		
					(adjusted OR		
					= 2.17, 95%		
					CI = 1.23-		
					3.84, p =		
					0.0062).		
					p63		
					expression in		
					suprabasal		
					compartment		Higher p63
		Study Type:			of OKC		expression in
		Immunohisto			equivalent to	Significant	OKC suggests
	To investigate	chemical				difference	
	the expression	study.			neoplastic	(P < 0.05)	behavior,
	of p63 protein	•			cells of solid	in p63	supporting
	in odontogenic	Sample Size:			ameloblasto	expression	the
	keratocyst	12 OKC, 12	Anti-p63		ma and	between	classification
	(OKC), solid	solid	polyclonal	Histopathologi	unicystic	OKC vs	as
Varsha et	ameloblastoma,	ameloblastom		cal analysis	ameloblasto	unicystic	keratocystic
al. (2014)	unicustic		super sensitive	using	ma type 3.	ameloblast	odontogenic
[58]	ameioblastoma	ameloblastom		hematoxylin	Significant		tumor.
	and folliciliar	a, 10 follicular	detection	and eosin	difference in	oma type 1, and solid	Different
	tissue, and	tissues.		staining.	p63	ameloblast	eynression
	compare their	ussues.	system.		expression		patterns
	proliferative	Country/Dooi			between	oma vs	among the
	activity and	Country/Regi			OKC and	unicystic	lesions can
	biological	<u>on:</u> In dia			unicystic	ameloblast	guide
	behavior.	India			ameloblasto	oma type	treatment
		(Bangalore,			ma type 1,	1.	modalities
		Karnataka).			and between		and
					solid		prognosis.
					ameloblasto		1 0
					ma and		
					unicystic		
					,		

				ameloblasto		
				ma type 1.		
				Higher expression of p63 in OKC correlates with aggressive behavior. OKC showed 100% PCNA expression; PA showed 60% PCNA expression. OKC showed 60% p53 expression;		OKC shows significant proliferative
Sajeevan et al. (2014) [59] Sajeevan et al. (2014) [69] Keratocy (OKC) ar periapical (PA).	the Study Type: Retrospective, immunohisto chemical study. Sample Size: 10 OKC and	p53, PCNA.	Histopatholog cal examination using hematoxylin and eosin staining.	PA showed 10% p53 expression. i PCNA staining intensity was	= 0.013 for PCNA vs. p53 in OKC).	activity compared to PA using PCNA and p53. PCNA staining is more intense than p53 in both OKC and PA, indicating higher proliferative potential in OKC.
To analyze clinicopath ical and immunohis emical feat of primary recurrer keratocys odontoge tumors (KCOT) focusing on expression identify markers	bescriptive analytic study. toch ures and to see the second state of the second state	Anti-p53 monoclonal antibody.	Histopatholog cal examination using hematoxylin and eosin staining.	significant differences in age, gender, or anatomical location between primary and recurrent	Fisher's exact tests showed significant differences in histopathol ogical features and p53	Predictive factors for KCOT recurrence include epithelial budding, daughter cysts, and odontogenic rests. p53 expression at diagnosis can help predict recurrence.

-						
predictive of	KCOTs: 32.15			daughter	and	
recurrence.	± 16.10 years;			cysts	recurrent	
	Recurrent			(P=0.013),	KCOTs.	
	KCOTs: 27.23			and		
	\pm 13.04 years.			odontogenic		
				rests		
	Country/Regi			(P=0.036)		
	on:			were more		
	Isfahan, Iran.			common in		
				recurrent		
				KCOTs.		
				p53		
				expression		
				was		
				significantly		
				higher in		
				recurrent		
				KCOTs		
				(P=0.041).		
				Recurrent		
				OKCs		
				showed		
				higher		
				expression of		
				MDM2 and		
				AgNOR		
				compared to		
	Study Type:			non-	Mann-	
To investigate	Retrospective,			recurrent	Whitney	
the clinical	immunohisto			cases.	U-test	Higher
behavior of	chemical				showed	expression of
odontogenic	study.			Recurrent	significant	MDM2 and
keratocyst	study.			cases	differences	AgNOR in
(OKC) by	Sample Size:			displayed	in MDM2	recurrent
Chandras evaluating p53			Histopatholog	ihistopatholog	; and	lesions
Chandras MDM2	histologically	p53 and	cal	ical features	AgNOR	indicates their
nekar et		MDM2,	examination	such as	staining (P	indicates their potential use
al. (2020) AgNOR	cases of	AgNOR	using	epithelial	= 0.001),	in predicting
[61] staining, and to		staining.	hematoxylin	budding,	and	recurrence
ascertain if	non-recurrent	staning.	and eosin	daughter	significant	and guiding
these markers			staining.	cysts, and	correlation	additional
correlate with				odontogenic	between	surgical
clinical	Country/Regi			rests.	p53 and	interventions
outcomes and					MDM2,	to improve
recurrence	India			Significant	and	prognosis.
tendency.	(Manipal,			difference in	AgNOR	r-5.10515.
teriacitey.	Karnataka).			MDM2 and	and	
	i i i i i i i i i i i i i i i i i i i			AgNOR	MDM2.	
				staining		
				between		
				recurrent and		
				non-		
				recurrent		
				groups (P =		
				0.001).		

1							
	To evaluate the quantity and intensity of the expression of	Study Type: Cross-			There is no significant difference in p53 scores between recurrent and non-recurrent groups. p53: No significant difference in the basal layer (P = 0.076), significant in the parabasal layer (P = 0.003). TGF-alpha:		OKC shows higher
Deyhimi et al. (2012) [62]	alpha) in	descriptive analytic study. Sample Size: 15 OKC and 15 OOC.	Monoclonal anti-p53 and anti-TGF- alpha antibodies.	Histopathological examination using hematoxylin and eosin staining.	the basal layer (P = 0.284), significant in the parabasal	and Wilcoxon tests; significant differences noted with	expression of p53 and TGF- alpha than OOC, indicating a higher
Ogden et al. (1992) [63]	_	12 radicular cysts, 12	Polyclonal antibody CM- 1 and standard immunoperoxi dase technique.	using	p53 expression detected in 5 of 12 OKCs, but not in radicular or dentigerous cysts. p53-positive cells actively dividing, similar regions	Not provided.	Increased p53 expression in some OKCs suggests higher epithelial activity and potential association with Gorlin Goltz syndrome. p53 expression may be

-		Country/Regi			positive for		indicative of
		on: Scotland.			PCNA. No significant difference in clinical characteristic s or recurrence between p53-positive and p53-negative OKCs. p53-positive OKCs lacked features like cholesterol clefts, hyaline bodies, or		malignant potential within OKC linings.
Aldahash (2023) [64]	expression of p53 in odontogenic		p53.	Histopathologi cal criteria defined by WHO in 1992, 2005, and 2017	probability of expressing p53	Risk difference (RD) for p53 expression between OKCs and DCs: 0.23 [0.39, 0.08], P = 0.003. RD between OKCs and AMBs: - 0.04 [-0.11, 0.03], P = 0.028.	OKCs exhibit higher p53 expression compared to DCs, indicating a more tumorlike behavior. This supports reclassifying OKCs as keratocystic odontogenic tumors (KCOTs).
Gupta et al. (2019) [65]	To compare the expression pattern of p63 in the epithelium of tooth germ, dentigerous cyst (DC), and ameloblastoma (AB).	Descriptive observational study. Sample Size: 30 tooth germs, 30	p63 antibody and Streptavidin- Biotin Detection System HRP- DAB.	using hematoxylin	p63 expression in 100% of tooth germs, 100% of DCs, 100% of ABs. Highest p63 labeling index (LI) in ABs,	significant difference in p63 LI among ABs, DCs, and tooth	and

Country Doci	followed by	marker for
<u>Country/Regi</u>	followed by	
<u>on:</u> India	tooth germs, and then	aggressive and invasive
	DCs.	
(Chhattisgarh, Maharashtra).	DCs.	odontogenic lesions.
Manashtra).		Different p63
	Dense p63	isoforms may
	immunolabel	have distinct
	ing in the	functions in
	basal and	developing
	parabasal	and lesional
	layers of	odontogenic
	DCs;	tissues.
	peripheral	
	cells of	
	ameloblastic	
	follicle in	
	ABs; almost	
	complete	
	epithelium in	
	tooth germs.	
	iNOS-	
	positive cells:	
	OKCs	
	(57.1%), RCs	
	(28.6%), DCs	
	(14.3%).	
	Significant	
	iNOS	
To qualitatively	expression in	
and <u>Study Type:</u>	OKCs (P > Man	ì
Qualitative	0.000) and Whitn	Increased
analyze the	KCs (P >	nd INOS
expression of quantitative	0.001), but Conting	genc expression in
inducible nitric immunohisto	not in DCs.	OKCS may
oxide synthase chemical (iNOS) in the	Histopathologi iNOS coeffici	ent contribute to their
study.	cal staining in	Pd Pe
Akshatha of radicular C 1 C 1	examination OKCs: 47.4% statistic	ally aggressive behavior and
et al. Sample Size: hemistry using	using showed signific	ant malignant
(2017) [00] dentigerous 20 RCS, 20 anti-INOS	homatovylin sovere	notential
cysts (DCs).	and eacin intensity express	sion -
and OKCs.	staining mainly in OKC	s (P
odontogenic Company	hasal and	U), resorption
keratocysts Country/Regi	narahasal RCs (I	and
(OKCs) to <u>on:</u>	lavers: 31.6% 0.001),	accilmiliation
determine the	of RCs and	of wild-type
role of iNOS in Karmatalas	21.1% of DCs values	n53 protein
their Karnataka).	showed	
pathogenesis.	severe	
	intensity.	
	There was no	
	significant	
	difference in	
	staining	
	intensity	
	among the	

					three cyst		
					types.		
Fatemeh et al. (2017) [67	To assess and compare the expression of the tumor suppressor gene p53 in inflamed and non-inflamed types of odontogenic keratocyst (OKC) and dentigerous cyst (DC).	Study Type: Immunohisto chemical study. Sample Size: 34 OKC (18 inflamed, 16 non-inflamed), 31 DC (16 inflamed, 15 non-inflamed), 14 dental follicles. Country/Region: Iran.	Monoclonal mouse antihuman p53 antibody.	Histopathological examination using hematoxylin and eosin staining.	Mean percentage of p53-positive cells: dental follicles (0.7%), non- inflamed OKCs (5.4%), inflamed OKCs (17.3%), non- inflamed DCs (1.2%), inflamed DCs (2.2%) - Significant differences between all groups (p < 0.05) except between inflamed and non-inflamed DCs, and between dental follicles and non-inflamed DCs.	Kruskal- Wallis H and Mann- Whitney U tests showed significant differences (p < 0.05) between the groups for p53 expression.	different growth mechanisms. Inflammation increases p53 expression in OKCs, indicating a
Seyedmaj di et al. (2013) [68	compared with	Study Type: Immunohisto chemical study. Sample Size: 25 RC, 23 DC, 23 KCOT, 23 CCOT.	p53, PCNA.	Histopathological examination using hematoxylin and eosin staining	Highest p53 expression in the basal layer of RC and suprabasal layer of KCOT.	Wallis test (P = 0.008 for p53 in basal, P = 0.031 for p53 in suprabasal, P = 0.009 for PCNA in suprabasal). Wilcoxon Signed Ranks test (P = 0.007 for p53 in basal layer RC, P = 0.024 for p53 in basal layer DC, P =	layer of KCOT supports its neoplastic nature and tendency for

		37
the	p53 in	
suprabasal	basal layer	
layer	KCOT).	
between		
cysts.		
No		
significant		
difference in	Į	
PCNA		
expression ir	ı	
the basal		
layer among		

the cysts.

4.4. Matrix Metalloproteinases (MMPs) and Their Role

Matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, play crucial roles in the development and progression of odontogenic lesions such as dentigerous cysts (DC) and odontogenic keratocysts (OKC) [69–71]. These enzymes are instrumental in the breakdown of extracellular matrix components, contributing to the rapid growth and potential recurrence of these cysts and tumors by enhancing their invasiveness. Genetic studies have linked specific gene variations of MMPs to the aggressive nature of lesions such as ameloblastomas and keratocystic odontogenic tumors (KCOTs), suggesting the potential for therapies targeting these genetic traits [70]. Additionally, the presence of MMP-7 and MMP-9 has been associated with more aggressive behavior in keratocysts related to Nevoid Basal Cell Carcinoma Syndrome (NBCCS), indicating these enzymes as potential markers for distinguishing between syndromic and non-syndromic lesions [71].

The examination of MMPs in lesions like DCs and OKCs not only deepens our understanding of these conditions but also reveals how these enzymes contribute to their pathology, leading to the development of targeted treatments based on the lesions' molecular and genetic characteristics. For instance, studies have specifically linked MMP-9 to the aggressive behavior of odontogenic keratocysts, suggesting that MMP inhibitors could serve as effective therapeutic agents. Clinical case reports have demonstrated that the local application of MMP inhibitors can significantly reduce the invasiveness of these lesions, supporting their use as adjunct therapies alongside conventional surgical methods [72,73]. This practical application highlights how understanding MMP activity can lead to more targeted and effective treatment approaches, demonstrating the direct impact of molecular insights on improving clinical outcomes.

Recent studies have provided significant insights into the role of MMPs in odontogenic lesions. Ortiz-García et al. analyzed the expression levels and proteolytic activities of MMP-2 and MMP-9 in various odontogenic lesions, finding that both enzymes showed higher proteolytic activity in cystic and tumor lesions compared to dental follicles, highlighting their role in the growth and development of these lesions [69]. Aloka et al. conducted a pilot study on the gene polymorphisms of MMP-2 and MMP-9 in aggressive and non-aggressive odontogenic lesions. They found significant associations between specific polymorphisms and the aggressiveness of lesions such as ameloblastomas and KCOTs, indicating that these genetic traits could guide the development of targeted therapies [70]. Furthermore, Loreto et al. examined the expression of MMP-7 and MMP-9 in NBCCS-related, recurrent, and sporadic keratocysts. Their findings suggested that higher expressions of these MMPs in NBCCS-OKCs correlate with the more aggressive and recurrent nature of these lesions, emphasizing the potential of MMPs as therapeutic targets [71].

The practical applications of these findings are significant. The use of MMP inhibitors as adjunct therapies has been shown to reduce the invasiveness of odontogenic lesions, offering a less invasive alternative to conventional surgical methods. This integration of molecular insights into clinical practice can enhance the efficacy of treatments tailored to specific genetic profiles, ultimately improving patient outcomes [72,73].

37

In summary, MMPs offer key insights into the biological processes underlying odontogenic lesions. This knowledge not only aids in diagnosis but also informs the development of targeted therapeutic interventions, promising new, more effective ways to manage these conditions and improve patient outcomes [69–73] (Table 4).

Table 4. Matrix Metalloproteinases (MMP-2, MMP-7, MMP-9).

Autho rs	Objective	Study Details	Marker Identification Method	Cyst/Tumor Diagnosis Method	Results	Statistical Estimates	Conclusion
Ortiz- García et al. (2022) [69]	activities of MMP-2 and MMP-9 in dental follicles (DF), dentigerous cysts (DC), odontogenic keratocysts	Study Type: Immunohistoch emical and proteolytic activity study. Sample Size: 7 DF, 8 DC, 8 OKC, 8 UA. Country/Region : Mexico.	Antibodies for MMP-2 and MMP-9, Westerr blot analysis.	Histopathol ogical examination	expression	Not specified	MMP-2 and MMP-9 play a role in the developme nt of DC, OKC, and UA. Their increased activity suggests involvemen t in lesion growth, but they do not differentiat e between cystic and tumor lesions.
Aloka et al. (2019) [70]	gene polymorphisms with the aggressiveness	Sample Size:	PCR-restriction fragment length polymorphism (PCR-RFLP) and sequencing for MMP2 and MMP9 gene polymorphisms.	ogical confirmation using WHO (2005) criteria.	allele (P = 0.05). Significant	Chi-square analysis	aggressiven ess in ameloblasto

tumors (KCOT),	frequency (P	contribute
and	= 0.03, OR =	to the
dentigerous	2.06)	aggressive
cysts (DC).	between	behavior of
	cases and	ameloblasto
	controls.	mas.
	KCOT	
	samples	
	showed	
	significant	
	differences	
	in genotype	
	(P = 0.01)	
	and allele (P	
	= 0.01, OR =	
	3.42)	
	frequencies	
	compared to	
	controls.	
	Significantly	Different
	increased	expression
	expression	patterns of
	of α -SMA,	MMP-7,
	caldesmon,	MMP-9, α-
	MMP-7, and	SMA,
	MMP-9 in	desmin,
Ct. I. T.	NBCCS-	and
Study Type	OKCs	caldesmon
Immunohisto	compared to	suggest
To analyze the emical study	non-	distinct
immunohistoch	syndromic	biological
emical Sample Size	()K(sin<	behaviors
expression of 40 patients (2	0.001).	of OKC
MMP-7, MMP-	Statistical	subtypes.
9, α -SMA, females) with OKCs: 19	Histopathol Desmin significance	NBCCS-
Loreto desmin, and	s, antibodies for ogical showed a with p-values <	OKCs
et al. caldesmon in 9 recurrent	MMP-7, MMP-9, examination non- 0.05 for α -SMA,	showed
(2022) odontogenic OKCs, 12	α-SMA desmin using significant caldesmon,	higher
[71] keratocysts NRCCS-	α-SMA, desmin, hematoxylin increase in MMP-7, and and caldesmon.	levels of
(OKCs) associated	and eosin expression MMP-9	these
associated with	staining. in non- expressions in	markers,
NBCCS	· · · · · · · · · · · · · · · · · · ·	indicating
compared to Age Range:	OKCs	greater
recurrent and Mean age: 32	+	aggressiven
sporadic 8.7 years	NBCCS-	ess and
keratocysts. Country/Regi	OKCs.	recurrence
<u>:</u>		potential.
<u>.</u> Italy.	NBCCS-	Further
, •	OKCs	studies are
	showed	needed to
	greater	correlate
	distribution	these
	of	findings
	myofibrobla	with
	sts (MFs)	clinical
	compared to	behavior.

				other OKC		
				subtypes.		
				<u>MMP-8:</u>		
				Slightly		
				more		
				expressed in		
				DC		
				epithelium		
				than in HDF		
				epithelium,		
				but not		
	Study Type:			statistically		
	Immunohistoch			significant (p)	Differences
To evaluate the	emical study.			= 0.255).		in MMP
expression of	cimear stady.			0.200).		expression
matrix	Cample Circu			MMD 0	Fisher's non-	-
metalloproteina	Sample Size:		TT: ((b . 1	MMP-9,	parametric	cannot
Suojanses (MMPs) -8, -	10 DCs and 10	Immunohistoche	Histopathol	MMP-25,	exact test: No	solely
en et 9, -25, and -26,	HDFs.	mistry using	ogical	MMP-26,	significant	explain
al. and tissue		polyclonal		and TIMP-1:	differences	dentigerous
(2014) inhibitor of	<u>Age Range:</u>	antibodies for	using	No	found in MMP	cyst
[72] metalloproteina	Mean age: DC	MMPs and	hematoxylin	~	or TIMP-1	expansion,
ses-1 (TIMP-1)	group: 39 years;	TIMP-1.	and eosin	differences	expressions	suggesting
in dentigerous	HDF group: 22	111/11 1.	staining.	in	between	involvemer
cysts (DCs) and	years.			expression		t of other
•				between	groups.	osteolytic
healthy dental	Country/Region			DCs and		mechanism
follicles (HDFs).	<u>:</u>			HDFs.		s.
	Finland.					
				TIMP-1:		
				Strong		
				positivity in		
				both DCs		
				and HDFs,		
				no difference		
				between		
				groups (p =		
	C: 1 F			1.000).		10 m o
	Study Type:			MMP-9		MMP-9
	Immunohistoch			activity and		plays a
	emical and			MMP-		significant
	gelatin			9/TIMP-1		role in the
	zymography			ratio were		pathogenes
To elucidate the	study.			higher in RC		s of RCs,
role of MMP-2,			Clinical	_		while
MMP-9, and	Sample Size:	Calada	Clinical	fluid	Kruskal-Wallis	MMP-2
Kuźni their	20 with	Gelatin		compared to	test followed by	activity is
arz et endogenous	radicular cysts	zymography for		RtC fluid.	Dunn's post hoc	-
al. inhibitors	(RC), 7 with	MMP-2 and	panoramic		test,	significant
(2021) TIMP-1 and	retention cysts	MMP-9, ELISA	X-ray,	No	significance	in RtCs.
[73] TIMP-2 in the	(RtC), 3 with	for TIMP-1 and	-		considered at	MMP-9
		TIMP-2.	gical	differences	P<0.05.	could serve
pathogenesis of	dentigerous		examination	in MMP-2	1 \0.03.	
maxillofacial	cysts (DC).			activity in		as a
cystic lesions.				the wall of		biomarker
	Age Range:			RtCs		for RC
	18-66 years			compared to		etiology.
				Furea to		Further
	(median age:			DCs		
	(median age: 43.2).			DCs.		studies are

To compare the immunohistoch emical wearborson of Andra expression of Andra (PCS). Andra expression of Andra (PCS). Andra expression of Andra (PCS). No Santos et al. (P							
Foland. Serum levels Serum level		Country/Region	<u> </u>		TIMP-1		confirm
in RC patients compared to DC and RtC statistically significant. NF-8 LI higher in OKCs than in DCs and RtC services of the minunohistoch emical december and CDC services (2011) keratocysts (2011) (OKCs) and radicular cysts (2011) (CKCs) (OKCs) (<u>:</u>			serum levels		these
in RC patients compared to DC and RtC statistically significant. NF-8 LI higher in OKCs than in DCs and RtC services of the minunohistoch emical december and CDC services (2011) keratocysts (2011) (OKCs) and radicular cysts (2011) (CKCs) (OKCs) (Poland.			were lower		findings
Compared to Implication Statistically Significant NF-RB LI higher in OKCs than in DCs and RCs (P <					in RC		_
compared to patients, but not statistically significant. NF-RB LI higher in OKCs than in DCs and RCs (P < 001). MMP-9 expression emical expression of compared to patients, but not statistically significant. To compare the immunohistoch emical North MMP-9 expression in eminohistoch and responsive tal. (P < 001). Statistically significant. NF-RB LI higher in OKCs (P < 001). MMP-9 expression of OKCs (90%). RCs (65%; P = 001). No ompared to patients, but not statistically significant (OKCs (90%)). RCs (65%; P = 001). No omage the immunohistoch emical study. Study Type: minunohistoch emical study. NF-RB LI (P < 001). ND ommore the immunohistoch emical study. NF-RB LI (P < 001). ND ommore the immunohistoch emical study. NR-9 expression in emity for NF-sample Size (CKCs, 20) (OKCs). To compare the immunohistoch emical study. NR-9 expression in emity for NF-sample Size (CKCs, 20) (OKCs). To compare the immunohistoch emical study. Study Type: minunohistoch emical study. Sample Size (CKCs, 20) (OKCs, 20) (OKCs					patients		clinical
To compare the immunohistoch emical Andra NF-KB, MMP-9, and CDI05 in Santos Santos and CDI05 in Santos Santos Call (RCs). To compare the immunohistoch emical a tudy. Sample Size: keratocysts (DCs), and radicular cysts (RCs). CMS, and and cost					•		implication
patients, but not statistically significant. Patients Patient							=
To compare the immunohistoch emical and CD105 in Santos Santos CRCs). Andra NF-8B, MMP-9, de and CD105 in Santos Santos CRCs). (RCs). Singlificant own of MMP-9 in the more special and additional radicular cysts (RCs). (RCs). Singlificant own of MMP-9 in the more special and additional radicular cysts (RCs). (RCs). Singlificant own on the statistically significant. NF-8B LI higher in OKCs than in DCs and RCs (P < .001). MMP-9 expression of Significant of MMP-9 in the law of MMP-9 in the lesions of							
statistically significant. No. Fr. & Li I higher in OKCs and RCs (P < .001). MMP-9 expression score 2 in opithelial component (P < .001). To compare the immunohistoch de expression odontogenic expression odontogenic expression solution (DKCs, 20 CKS,					-		
Significant, NF-kB L1 higher in OKCs than in DCs and RCs (P < .001). MMP-9 expression companents immunohistoch emical expression of Andra NF-kB, MMP-9, de and C0105 in Santos et al. (2011) More and Costal et al. (2					statistically		
To compare the immunohistoch emical expression of and CD105 in Santos et al. (2011) (OKCs, 20) (OKCs, 20) (CKCs, 20) (CKC					•		
OKCs than in DCs and RCs (P < 001). MMP-9							
OKCs than in DCs and RCs (P < 0.001). MMP-9					higher in		
RCs (P < .001). MMP-9					-		
To compare the immunohistoch de Andra NF-48, MMP-9, warpression of ONCS, 20 NS, 20 NCS, 20 NCS					in DCs and		
To compare the immunohistoch emical expression of andro NF-rsB, LM MP-9 and CD105 in odontogenic et al. (2011) (NGCs) (OKCs), dentigerous cysts (DCs), and radicular cysts (RCs). (RCs)					RCs (P <		
Second Properties Seco					.001).		
Second Properties Seco							
To compare the immunohistoch emical expression of Andra 2011 (2011) To Compare the immunohistoch emical expression of Andra 2011 (2011) To Compare the immunohistoch emical expression of Andra 2011 (2011) To Compare the immunohistoch emical expression of Andra 2011 (2011) To Compare the immunohistoch emical expression of Andra 2011 (2011) To Compare the immunohistoch emical expression of Andra 2011 (2011) To Compare the immunohistoch emical expression of Andra 2011 (2011) To Compare the immunohistoch emical expression of Andra 2011 (2011) To Compare the immunohistoch emical study. To Compare the immunohistoch emical study. To Compare the immunohistoch emical expression of Andra 20 (ACS) (20 (ACS) 20 (MMP-9		
Pallues:NF- component Pall (P < 01) Pallues:NF- component Pallues:NF-					expression		
Component (Pallec) Compone					score 2 in		
To compare the immunohistoch emical study Type: Histopathol RMP-9 Carpension in equipment (P = 150), which is a pression of de and CD105 in odnotogenic et al. (2011) Keratocysts (2011) COKCs, and radicular cysts (RCs). CRCs) CRCs, and radicular cysts (RCs) CRCs,					<u>epithelial</u>	D violuosi NE	
To compare the immunohistoch emical expression of Andra addicular cysts (RCs). [74] [74] [74] [74] [75] [75] [75] [75] [75] [75] [75] [75					component:		
To compare the immunohistoch de Andra Andra Col105 in odontogenic et al. (2011) [74] [74] [74] [74] [74] [74] [74] [74]					OKCs (90%),	, ,	The more
To compare the immunohistoch emical expression of de Andra (2011) [74] (2011)					DCs (70%),		
To compare the immunohistoch emical expression of Andra de Sambe Size: (OKCs, 20 OKCs, 20 OKC					RCs (65%; P	-	
To compare the immunohistoch emical expression of Andra of CD105 in odontogenic exate (COKCs), and radicular cysts (RCs). [74] Fig. 1. The second of CRCs (RCs) and radicular cysts (RCs). [75] Fig. 1. The second of CRCs (RCs) and radicular cysts (RCs). [76] Fig. 1. The second of CRCs (RCs) and radicular cysts (RCs). [77] Fig. 1. The second of Santos (CRCs) and radicular cysts (RCs). [78] Fig. 1. The second of Santos (CRCs) and radicular cysts (RCs). [78] Fig. 1. The second of Santos (CRCs) and radicular cysts (RCs). [79] Fig. 1. The second of MP-9 (P = cxpression) (P = cx					= .159).	-	_
To compare the immunohistoch emical expression of de serrices of descriptions of donotogenic serrices of donotogenic serrices of donotogenic serrices (OCKCs), and radicular cysts (P=100), and radicular cysts (RCs). The serrice of donotogenic serrices of donotogenic serrices of the services of the service						-	
de expression of Andra odontogenic et al. (2011) [74] [74] [75] [75] [75] [75] [75] [75] [75] [75	To compare the				No		
de expression of Andra NF-kB, MMP-9, and CD105 in odontogenic keratocysts (OKCs), adirigerous cysts (DCs), and radicular cysts (RCs). Fall Properties Prop	immunohistoch				significant	_	
Andra of Santos of Santos et al. (2011) [74] Correct Santos correct Santos et al. (2011) [74] Correct Santos correct Santos et al. (2011) [75] Correct Santos et al. (2011) [76] Correct Santos et al. (2011) [77] Correct Santos correct Santos et al. (2011) [78] Correct Santos et al. (2011) [79] Correct Santos et al. (2011) [70] Correct Santos et al. (2011) [70] Correct Santos et al. (2011) [70] Correct Santos et al. (2011) [71] Correct Santos et al. (2011) [72] Correct Santos et al. (2011) [73] Correct Santos et al. (2011) [74] Correct Santos et al. (2011) [75] Correct Santos et al. (2011) [76] Correct Santos et al. (2011) [77] Correct Santos et al. (2011) [78] Correct Santos et al. (2011) [79] Correct Santos et al. (2011) [70] Correct Santos et al. (2011) [71] Correct Santos expression in express	emical	Study Type			difference in		_
de Santos and CD105 in odontogenic keratocysts (2011) [74] [74] [74] [75] [76] [76] [76] [77] [78]	expression of			Histopathol	NF-κB LI	=	_
Samoto odontogenic keratocysts (OKCs), [74] [74] [74] [74] [75] [76] [76] [76] [77] [78]	NF-KB, MIMP-9.			ogical	according to		
et al. (2011) Keratocysts (OKCs), adentigerous cysts (DCs), and radicular cysts (RCs). CS CS CS CS CS CS CS C	and CD105 in	ennear study.		examination	MMP-9	-	
(2011) (OKCs), (OKCs), dentigerous cysts (DCs), and radicular cysts (RCs). (R	odontogenic	C1- C:	•	using	expression	•	
Colors C				hematoxylin	in epithelial		
dentigerous cysts (DCs), and radicular cysts (RCs). Staining. 282). expression in vessels (P = the lesions studied do microvessel not seem to count (P = .163), be microvessel associated count according with the to MMP-9 expression (P = index689). MMP-9 expression in vessels (P = the lesions studied do microvessel associated count according with the to MMP-9 expression (P = index689). MMP-9 expression in vessels (P = the lesions studied do microvessel associated count according with the to MMP-9 expression (P = index689).	(OKCs)		CD105.	-	_		_
radicular cysts (RCs). Highest MMP-9 expression in fibrous capsule: OKCs (P = .100). MMP-9 expression in vessels: score 2 in OKCs (80%) and RCs (50%), score 1 in DCs (75%; P =	[74] dentigerous	DCs, 20 RCs.		staining.	.282).	•	
radicular cysts (RCs). Highest MMP-9 expression in fibrous capsule: OKCs (P = .100). MMP-9 expression in vessels: score 2 in OKCs (80%) and RCs (50%), score 1 in DCs (75%; P =	cysts (DCs), and					,	
(RCs). MMP-9 expression fin fibrous capsule: OKCs (P = 100).	radicular cysts				<u>Highest</u>		
expression in fibrous capsule: OKCs (P = .100). MMP-9 expression in vessels: score 2 in OKCs (80%) and RCs (50%), score 1 in DCs (75%; P =	(RCs).				MMP-9		
in fibrous capsule: OKCs (P = .100). MMP-9 expression in vessels: score 2 in OKCs (80%) and RCs (50%), score 1 in DCs (75%; P =					expression	, , , , , , , , , , , , , , , , , , , ,	
capsule: OKCs (P = .100). MMP-9 expression in vessels: score 2 in OKCs (80%) and RCs (50%), score 1 in DCs (75%; P =					in fibrous		
OKCs (P = .100). MMP-9 expression in vessels: score 2 in OKCs (80%) and RCs (50%), score 1 in DCs (75%; P =						_	
.100). expression (P = index. .689). MMP-9 expression in vessels: score 2 in OKCs (80%) and RCs (50%), score 1 in DCs (75%; P =					•		
MMP-9 expression in vessels: score 2 in OKCs (80%) and RCs (50%), score 1 in DCs (75%; P =					,	•	ındex.
<u>expression</u> <u>in vessels:</u> score 2 in OKCs (80%) and RCs (50%), score 1 in DCs (75%; P =					,	.689).	
<u>expression</u> <u>in vessels:</u> score 2 in OKCs (80%) and RCs (50%), score 1 in DCs (75%; P =					<u>MMP</u> -9		
in vessels: score 2 in OKCs (80%) and RCs (50%), score 1 in DCs (75%; P =							
score 2 in OKCs (80%) and RCs (50%), score 1 in DCs (75%; P =					-		
OKCs (80%) and RCs (50%), score 1 in DCs (75%; P =							
and RCs (50%), score 1 in DCs (75%; P =							
(50%), score 1 in DCs (75%; P =							
1 in DCs (75%; P =							
(75%; P =							
,							
···· / ·							
					,		

			42
	Mean		
	microvessel		
	count: RCs		
	(16.9), DCs		
	(12.1), OKCs		
	(10.0; P=		
	.163).		
	No		
	significant		
	difference in		
	microvessel		
	count		
	according to MMP-9		
	expression		
	between		
	groups (P =		
	.689).		
	· ·		MMPs 1, 7,
	MMP-1,		9, and 26
	MMP-7, and		contribute
	<u>MMP-9:</u>		to tumor
	score 2 in		growth and
	100% of		expansion
	cases.		in CCOT.
	<u>MMP-2:</u>		The
	score 0 in		presence of
	90% of cases.		these
	yo to of edges.		MMPs in
	MMP-26:		stromal
	varied		cells
T	immunostai		highlights
To evaluate the Study Type:	ning.		their
immunohistoch Immunohistoch		Descriptive	involvemen
emical emical study. Immunohistoche Histopathol	All MMPs	analysis of	t in ECM
Ribeir expression of mistry using ogical matrix Sample Size: monoclonal examination	except	immunohistoch	degradatio n and active
o et al. matrix <u>Sample Size:</u> monoclonal examination o et al. metalloproteina 10 cases of antibodies for using	except MMP-2 were	emical	tumor
(2011) ses (MMPs) 1, 2, CCOT. MMP-1, MMP-2, hematoxylir	expressed in	expression, no	growth.
[75] 7, 9, and 26 in MMP-7, MMP-9, and eosin	tne stroma,	specific	Further
calcifying cystic Country/Region and MMP-26. staining.	indicating	statistical tests	studies
odontogenic <u>:</u>	their role in	mentioned.	using
tumor (CCOT). Brazil.	ECM		additional
,	degradation		techniques
	and tumor		are
	growth.		recommend
	Diff		ed to better
	Diffuse		understand
	immunoreac		the role of
	tivity observed for		these
	MMPs 1, 7,		MMPs in
	9, and 26 in		CCOT.
	parenchyma		
	l cells, while		
	MMP-2		
	showed a		

43

4.5. Cytokeratins and Other Markers

Cytokeratins (CKs) and markers such as survivin, E-cadherin, CD138, and CD38 are critical for understanding the development, behavior, and diagnosis of odontogenic lesions, including cysts and tumors. The expression patterns of these markers provide valuable information about the biological behavior of these lesions, influencing their management and prognosis [76–79].

The presence of these markers in specific lesions such as central adenoid basal (CAB), keratocystic odontogenic tumor (KCOT), dentigerous cyst (DC), and radicular cyst (RC) is crucial for accurate diagnosis and assessment of aggressiveness. For instance, increased survivin expression, typically associated with tumor survival and resistance to apoptosis, has been targeted in recent therapeutic trials with survivin inhibitors, showcasing a direct clinical application of these biomarkers in enhancing treatment efficacy. This emphasizes how differential expression of markers like survivin can inform treatment choices and potentially improve clinical outcomes by targeting specific molecular pathways involved in lesion survival and growth [76,77].

Research into markers like Syndecan-1 (CD138) and CD56 (NCAM) has also revealed their roles in tumor development and their potential to help distinguish between cystic and tumorous odontogenic lesions. Studies have shown strong CD138 expression in KCOTs and dentigerous cysts, aiding in differentiating these from other lesions. Additionally, CD56 has been noted for its aberrant expression in KCOTs, particularly in syndromic cases, helping to differentiate these from orthokeratinized odontogenic cysts (OOCs) and other similar lesions [78,79].

Investigations into CK expression have emphasized its significance in differentiating between various odontogenic lesions, aiding in the identification of their histopathological features and suggesting different underlying causes for conditions such as OOCs and epithelial dysplasia cysts (EDCs). For example, CK10 and CK19 expression patterns have been useful in distinguishing OOCs from epidermoid cysts (EDCs) and odontogenic keratocysts (OKCs), which is crucial for accurate diagnosis and management. Furthermore, the expression of CK14 and CK18 has been explored in various lesions, revealing differences that help understand their pathogenesis and behavior [82–84].

The analysis of these markers not only enriches diagnostic capabilities but also points toward potential new treatments, enhancing the ability to predict and manage the outcomes of odontogenic cysts and tumors more effectively. Understanding these markers' roles in lesion pathophysiology aids clinicians in tailoring therapeutic approaches based on specific diagnostic and prognostic data, ultimately leading to more effective and personalized patient care [79,84].

In conclusion, the study of CKs, survivin, E-cadherin, CD138, and CD38 provides a deeper understanding of the molecular mechanisms underlying odontogenic lesions. This knowledge is instrumental in developing more accurate diagnostic tools and effective therapeutic strategies, leading to improved patient outcomes in the management of odontogenic cysts and tumors [76–79,82–84] (Table 5).

Table 5. Cytokeratins (CK7, CK10, CK13, CK14, CK17, CK18, CK19, survivin, E-cadherin, CD138, CD56, CD38).

Authors	Objective	Study Details	Marker Identification Method	Cyst/Tumor Diagnosis Method	Results	Statistic al Estimate s	Conclusion
	To investigate	Study Type:	Immunohistoch	Histopathol	Cystic		Loss of E-
Özcan	the expressions	Immunohistoc	emistry using	ogical	ameloblastomas	3	cadherin
et al.	of survivin, E-	hemical study.	antibodies for	examination	and KCOTs	Not	expression in
(2015)	cadherin,		survivin, E-	using	showed diffuse	provide	epithelial cells,
[76]	CD138, and	Sample Size:	cadherin,	hematoxyli	and strong	d.	strong CD138
	CD38 in cystic	5 RCs, 5 DCs, 5	CD138, and	n and eosin	nuclear survivin	ı	expression in
	ameloblastoma,	KCOTs, 5	CD38.	staining.	expression.		stromal cells,

	keratocystic	cystic			No specific		and strong
	0	ameloblastoma			survivin		nuclear
	tumor (KCOT),	S.			immunoreactivi	į	survivin
	dentigerous cyst				ty in DCs and		expression in
	(DC), and	Country/Regio			RCs.		cystic
	radicular cyst	<u>n:</u>					ame lob lastoma
	(RC), and their	Turkey.			E-cadherin		s and KCOTs
	potential				expression		are
	diagnostic				stronger in DCs	;	characteristic
	usage.				and RCs		findings,
	<u> </u>				compared to		suggesting a
					other lesions.		role in their
							aggressiveness
					CD138		and
					expression		pathogenesis.
					prominent in		1 0
					stromal cells of		
					cystic		
					ameloblastomas		
					, gradually		
					decreased in		
					other lesions.		
					other resions.		
					All cases were		
					negative for		
					CD38.		
					Syndecan-1		
					expressed in all		C 1 1
	T th				samples except		Syndecan-1
	To assess the				OMs.		may be
	immunohistoche						involved in the
	mical expression of CD138				Significant	Vmuoleal	pathogenesis
		Immunohistoc			differences in		of AOT, AF,
	(syndecan-1) in	nemical study.			percentage and	Wallis	KCOT, and
Tt	adenomatoid	C1- C:	Immunohistoch	n Histopathol	intensity of	test	ameloblastoma
	odontogenic	Sample Size:	emistry using	ogical	syndecan-1		l . However, its
U	tumor (AOT),	7 AOTs, 5	monoclonal	examination	expression	by	effect on
am et al.		OMs, 7 AFs, 29	antibody	using	among the	Bonferro	
(2017)	fibroma (AF),	KCOTs, and 10	againet	hematoxyli	studied OTs (P	ni	aggressiveness
[77]	odontogenic	ameloblastoma	syndecan-1	n and eosin	< 0.001).	analysis	
	myxoma (OM),	S.	(CD138).	staining.		for .	limited.
	and to compare	Communa /Domin			Pairwise	compari	_
	it with	Country/Regio			comparisons		immunoexpres
	ameloblastoma	<u>n:</u>			showed	0.05).	sion in OM
	and keratocystic	Iran.			significant		requires
	odontogenic				difference only		further
	tumor (KCOT).				between OMs		investigation.
					and each of the		
					other tumors.		
	To investigate	Study Type:			NCAM	Firth's	Aberrant
3.7	the	Immuun ahiataa	T 1 * 4 . 1	Histopathol	expression: 0%	logistic	NCAM
Vera-	immunohistoche		IIIIIIuiionistoci	ogical	in OOCs,	regressi	expression in
Sirera et	mical expression	•	emistry using	examination		on test;	KCOTs,
aı.	of neural cell	Sample Size:	monoclonal	บร่าง	KCOTs.	significa	
(2015)	adhesion	12 OOCs and	antibody NCL-	hematoxyli		nt	syndromic
[78]	molecule	46 KCOTs (40	CD56-504 (clone	n and eosin	Focal and	differen	•
	(NCAM, CD56)	•	CD564).	staining.	heterogeneous		suggests a role
	in keratin-	KCOTs, 6		Ø.	NCAM	p < 0.05	in
		,				1 2,00	

producing odontogenic cysts (KTOCs) associated with including including learn tocysts (KTOCs) associated with including learn tocysts (KTOCs) associated with earn tocysts (KTOCs) and criftook retaining the expression of criftook retaining the expression of configuration of the expression of complex criftook earn to the expression of complex configuration expression of complex criftook earn to the expression earn to the expression and lesion criftook earn to the expression earn to		
cysts (KPOCs) associated with keratocystic odontogenic odontogenic cysts (OOCs) Country/Regio odontogenic cysts (OOCs) Spain. Spain Sp		1 1 0
including codontogenic codontogenic syndrome tumors (KCOTs) (NBCS)). Sample Size codontogenic cysts (OOCs) Spain. Series of the		*
keratocystic cell carcinoma codontogenic syndrome codontogenic tumors (KCOTs) (NBCSI), and cells of codontogenic cysts (OOCs) Spain. cells of codontogenic cysts (OOCs) codontogenic cysts (OOC) codontoge		
odontogenic syndrome tumors (KCOTs) (NBCS)). and orthokeratinized Country/Regio odontogenic cysts (OOCs). Spain. Spa	e e	1 ,
tumors (KCOTs) and orthokeratinized Country/Regio odontogenic Cysts (OOCs) Spain. Spa	· · · · · · · · · · · · · · · · · · ·	
orthokeratinized Gountry/Regio odontogenic cysts (OOCs). Spain. S	•	9
odontogenic cysts (OCCs). Spain. Spain. Higher NCAM expression in syndromic KCOTs (66.66%) compared to non-syndromic KCOTs (30%). Significant difference in NCAM expression and lesion recurrence. Significant difference in NCAM expression and lesion recurrence. Sectional, analytical immunohistoc all all adontogenic cysts (COC), and cysts, 10 adontogenic cysts (COC), and cysts, 10 controgenic cysts (COC), and cysts, 10 controgenic cysts (COC), and cysts, 3 COC, 1 glandular and contogenic cysts (COC), and cysts, 3 COC, 1 glandular and contogenic cysts (COC). Country/Regio in and dentigerous and dentigerous and dentigerous controgenic cysts (COC), and cysts, 10 glandular and controgenic cysts (COC), and cysts, 3 COC, 1 glandular and controgenic cysts (COC), and cysts, 3 COC, 1 glandular and controgenic cysts (COC). Country/Regio in and cosmis staining. Significant difference in cysts, and between Nocame expression in and cosmis staining. Significant difference in cysts, and between and dentigerous cysts, and between KCOT.		cells of KCOTs. homogeneousl
cysts (OOCs). Spain. Higher NCAM expression in syndromic KCOTs (66.66%) compared to non-syndromic KCOTs (30%). Significant difference in NCAM expression and lesion recurrence. CD56 expression in munohistoc ameloblastomas, hemical study. dentigerous cysts, eratocystic andiciet al. al. adontogenic cysts (ASA) adontogenic cysts (ASA) adontogenic cysts (COC), and cysts, 3 COC, 1 glandular GOC. and colontogenic cysts (COC), and cysts, 3 COC, 1 glandular GOC. Country/Regio anticode cysts (GOC). Country/Regio and colontogenic cysts (COC), and cysts, 3 COC, 1 glandular GOC. Country/Regio and colontogenic cysts (COC), and cysts, 3 COC, 1 glandular GOC. Country/Regio and colontogenic cysts (COC), and cysts, 3 COC, 1 glandular GOC. Country/Regio and colontogenic cysts (COC), and cysts, 3 COC, 1 glandular GOC. Country/Regio and colontogenic cysts (COC), and cysts, 3 COC, 1 glandular GOC. Country/Regio and colontogenic cysts (COC), and cysts, 3 COC, 1 glandular GOC. Country/Regio and colontogenic cysts (COC), and cysts, 3 COC, 1 glandular GOC. Country/Regio and colontogenic cysts (GOC). Country/Regio and colontogenic cysts, and between KCOT services and colontogenic cysts, and dentigerous cysts, and between KCOT services and dentigerous cysts, and dentigerous cysts, and between KCOT services and colontogenic cysts (GOC). Country/Regio and colontogenic cysts, and between KCOT services and colontogenic cysts (GOC). Country/Regio and colontogenic cysts (GOC) and cysts, 3 COC, and cys	orthokeratinized Country/Regio	daughter cysts. y treated series
Findings. Findings. Findings. Findings. Findings.	odontogenic <u>n:</u>	are needed to
syndromic KCOTs (66.66%) compared to non-syndromic KCOTs (30%). Significant difference in NCAM expression between OOCs and KCOTs (p = 0.012). No association between NCAM expression and lesion recurrence. To examine the expression of analytical completion immunohistoc ameloblastomas, hemical study. definition of completion of control cont	cysts (OOCs). Spain.	O
KCOTs (6666%) compared to non-syndromic KCOTs (30%). Significant difference in NCAM expression between OOCs and KCOTs (p = 0.012). No association between NCAM expression and lesion recurrence. Possion of CD56 in immunohistoc analytical corposition in munohistoc analytical corposition in munohistoc analytical corposition in munohistoc analytical corposition in munohistoc analeblastomas, between CD56 in immunohistoc analeblastoma corposition in KCOTs (p = 0.012). To examine the expression of CD56 in immunohistoc analeblastomas analytical corposition in in munohistoc analeblastoma corposition in KCOTs (p = 0.012). To examine the expression of analytical corposition in in KCOTs (p = 0.012). To examine the expression of analytical corposition in in KCOTs (p = 0.012). To examine the expression of analytical corposition in in KCOTs (p = 0.012). To examine the expression of analytical corposition in in KCOTs (p = 0.012). To examine the expression of analytical corposition in KCOTs (p = 0.012). To examine the expression of analytical corposition in KCOTs (p = 0.012). To examine the expression of analytical corposition in KCOTs (p = 0.012). To examine the expression of analytical corposition in KCOTs (p = 0.012). To examine the expression of analytical corposition in KCOTs (p = 0.012). To examine the expression of analytical corposition in KCOTs (p = 0.012). To examine the expression of analytical corposition in KCOTs (p = 0.012). To examine the expression of analytical corposition in KCOTs (p = 0.012). To examine the expression of analytical corposition in KCOTs (p = 0.012). To examine the expression of analytical corposition between NCAM expression: Significant of the corposition in t		
(66.66%) compared to non-syndromic kCOTs (30%). Significant difference in NCAM expression between OOCs and KCOTs (p = 0.012). No association between NCAM expression and lesion recurrence. Study Type: Cross- To examine the expression of analytical expression of analytical contogenic odontogenic cysts (COC), and cysts, 3 COC, 1 glandular odontogenic cysts (COC), and cysts, 3 COC, 1 glandular odontogenic cysts (COC), and cysts, 3 COC, 1 glandular odontogenic cysts (COC), and cysts, 3 COC, 1 glandular odontogenic cysts (COC). In continuous contours (KCOT), a Classing of the contours of the cysts (COC), and cysts, 3 COC, 1 glandular odontogenic cysts (COC). In contours (KCOT), a Classing of the cysts, 3 COC, 1 glandular odontogenic cysts (COC), and cysts, 3 COC, 1 glandular odontogenic cysts (COC). In contours (KCOT), a Classing of the cysts, 3 COC, 1 glandular odontogenic cysts (COC), and cysts, 3 COC, 1 glandular odontogenic cysts (COC). In contours (KCOT), a Classing of the cysts, 3 COC, 1 glandular odontogenic cysts (COC). In contours (KCOT), a Classing of the cysts, 3 COC, 1 glandular odontogenic cysts (COC). In contours (KCOT), a Classing of the cysts, 3 COC, 1 glandular odontogenic cysts (COC). In contours (KCOT), a Classing of the cysts, 3 COC, 1 glandular odontogenic cysts (COC). In contours (KCOT), a Classing of the cysts, 3 COC, 1 glandular odontogenic cysts (COC). In contours (KCOT), a Classing of the cysts, 3 COC, 1 glandular odontogenic cysts (COC). Contours (KCOT), a Classing of the cysts of		
compared to non-syndromic KCOTs (30%). Significant difference in NCAM expression between OOCs and KCOTs (p = 0.012). No association between NCAM expression and lesion recurrence. To examine the expression of analytical analytical analytical analytical analytical contogenic odontogenic odont		
No. association between OCS and KCOTs (p = 0.012). No. association between NCAM expression and lesion recurrence.		* *
Significant difference in NCAM expression between OCS and KCOTs (p = 0.012). No association between NCAM expression and lesion recurrence.		
Significant difference in NCAM expression between OOCs and KCOTs (p = 0.012). No association between NCAM expression and lession recurrence. NCAM expression		
difference in NCAM expression between OOCs and KCOTs (p = 0.012). No association between NCAM expression and lesion recurrence. CD56 Expression of analytical CD56 in immunohistoc ameloblastomas, hemical study. dentigerous codontogenic all edenomatorial edenomatorial tumors (KCOT), s (14 solia, 8) andie tal. all edenomatorial edenomatorial tumors (KCOT), s (14 solia, 8) andie tal. (2014) (2		100 13 (00 //).
NCAM expression between OOCs and KCOTs (p = 0.012). No association between NCAM expression and lesion recurrence. No association between NCAM expression and lesion recurrence.		Significant
expression between OOCs and KCOTs (p = 0.012). No association between NCAM expression and lesion recurrence. No association between NCAM expression and lesion recurrence. CD56 Expression in dentigerous cysts, and it is a maleoblastomas hemical study. Adw in KCOT, and cysts, and it is a dentigerous cysts, and it is a dentigerous odontogenic and odontogenic cysts (COC), and cysts, 10 and costin staining. CD56 Expression in cysts, and it is and expression and lesion and lesion recurrence. CD56 Expression in cysts and dentigerous cysts. CD56 Expression in cysts, and it is and expression in cysts. CD56 Expression in cysts. CD		difference in
between OOCs and KCOTs (p = 0.012). No association between NCAM expression and lesion recurrence. Study Type: Cross- CD56 expression: 91% in ameloblastomas hemical study. dentigerous cysts, keratocystic odontogenic tumors (KCOT), adenomatoid al. (2014) (20		NCAM
and KCOTs (p = 0.012). No association between NCAM expression and lesion recurrence. Study Type: Cross- CD56 Expression: 91% in ameloblastomas sectional, analytical contingerous cysts, Sample Size: teratocystic odontogenic al. (2014) [79] (2014		•
No association between NCAM expression and lesion recurrence. CD56 expression; 91% in ameloblastoma sectional, analytical and iet al. (2014) [79] Coss Coss CD56 expression; 91% cost CD56 expression; 9		
No association between NCAM expression and lesion recurrence. CD56 expression for analytical expression of analytical ameloblastomas, hemical study. dentigerous cysts, keratocystic odontogenic all. (2014) [79] orthokeratinized codontogenic cysts (COC), and cysts, 3 COC, 1 glandular odontogenic cysts (COC), and cysts, 3 COC, 1 glandular occurrence. CD56 expression: 91% in ameloblastomas, 75% in AOT, 40% in KCOT, 40% in KCOT, 50% in in AOT, 40% in KCOT, 50% in in AOT, 50% in CD56 expression is square lest; significant dentigerous cysts, COC, odontogenic all. (2014) (*
between NCAM expression and lesion recurrence. CD56 expression: 91% in ameloblastomas sectional, ameloblastomas, hemical study. dentigerous cysts, (SCCT), adenomatoid odontogenic cysts, C21 tumors (KCOT), orthokeratinized KCOT, 4 AOT, odontogenic cysts, Calcifying orthokeratinize odontogenic cysts, CCC), and cysts, 3 COC, 1 glandular odontogenic cysts (GOC), and cysts, 3 COC, 1 glandular odontogenic cysts (GOC). Country/Regio Expression is cysts, and didentigerous cysts (GOC). Country/Regio Expression is cysts, and dentigerous and dentigerous and dentigerous cysts (GOC). Country/Regio Expression is staining. Significant of the country of the country of the country of the cysts (GOC). Country/Regio Expression is cysts, calcifying orthokeratinize odontogenic cysts (GOC). Country/Regio Expression is cysts, calcifying orthokeratinize odontogenic cysts (GOC). Country/Regio Expression is staining. CD56 Expression is cysts, calcifying orthokeratinize odontogenic cysts (GOC). Country/Regio Expression is cysts, calcifying orthokeratinize odontogenic cysts (GOC). Country/Regio Expression is cysts, calcifying orthokeratinize odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral cysts, and tumoral cysts, calcifying cysts (GOC). Country/Regio Expression is cysts, and tumoral cysts, calcifying cysts, calcifying cysts, calcifying cysts, calcifying cysts, calcifying cysts, calcifying cysts, calcifyin		0.012).
between NCAM expression and lesion recurrence. CD56 expression: 91% in ameloblastomas sectional, ameloblastomas, hemical study. dentigerous cysts, (SCCT), adenomatoid odontogenic cysts, C21 tumors (KCOT), orthokeratinized KCOT, 4 AOT, odontogenic cysts, Calcifying orthokeratinize odontogenic cysts, CCC), and cysts, 3 COC, 1 glandular odontogenic cysts (GOC), and cysts, 3 COC, 1 glandular odontogenic cysts (GOC). Country/Regio Expression is cysts, and didentigerous cysts (GOC). Country/Regio Expression is cysts, and dentigerous and dentigerous and dentigerous cysts (GOC). Country/Regio Expression is staining. Significant of the country of the country of the country of the cysts (GOC). Country/Regio Expression is cysts, calcifying orthokeratinize odontogenic cysts (GOC). Country/Regio Expression is cysts, calcifying orthokeratinize odontogenic cysts (GOC). Country/Regio Expression is staining. CD56 Expression is cysts, calcifying orthokeratinize odontogenic cysts (GOC). Country/Regio Expression is cysts, calcifying orthokeratinize odontogenic cysts (GOC). Country/Regio Expression is cysts, calcifying orthokeratinize odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral odontogenic cysts (GOC). Country/Regio Expression is cysts, and tumoral cysts, and tumoral cysts, calcifying cysts (GOC). Country/Regio Expression is cysts, and tumoral cysts, calcifying cysts, calcifying cysts, calcifying cysts, calcifying cysts, calcifying cysts, calcifying cysts, calcifyin		No association
Lesion recurrence. CD56 Expression: 91% Esion recurrence. CD56 Expression: 91% Esion recurrence. CD56 Expression: 91% Esion recurrence. CD56 Expression: 91% Expressio		
Lesion recurrence. CD56 Expression: 91% Esion recurrence. CD56 Expression: 91% Esion recurrence. CD56 Expression: 91% Esion recurrence. CD56 Expression: 91% Expressio		expression and
Study Type: Cross- To examine the sectional, expression of analytical CD56 in immunohistoc ameloblastomas, hemical study. dentigerous cysts, andi et al. (2014) [79] [79] [79] [79] [79] [79] [79] [79]		
To examine the expression of analytical expression. 91% of the contingency and it is a meloblastomas tumors (KCOT), and contogenic cysts, calcifying orthokeratinize cysts (COC), and cysts, 3 COC, and cysts (COC). To examine the sectional, expression of analytical expression of analytical expression of analytical expression of analytical expression of immunohistor and entigerous cysts, and tumoral cysts, and tumoral expression is significant on the cysts, and tumoral expression is significant on the cysts, and tumoral expression is significant on the cysts, and tumoral expression is significant and eosin staining. Significant on the cysts (COC), and cysts, 3 COC, and cysts, 3 COC, and cysts, and tumoral odontogenic cysts (GOC). The commine the sectional, analytical expression of analytical expression in maneloblastomas and dentigerous of the commine approach in the cysts, and between kCOT.		recurrence.
To examine the expression of analytical contingence cysts, CCD56 in immunohistoc ameloblastomas, hemical study. dentigerous cysts, keratocystic al. (2014) [79] odontogenic cysts, COC), and cysts, clacifying orthokeratinize cysts (COC), and cysts, addingence cysts (COC), and cysts, addingence cysts (COC), and cysts, addingence cysts (COC). Enterty ameloblastoma ameloblastoma and et al. (2014) [79] odontogenic cysts, COC, and cysts, COC, and cysts, COC, and cysts, COC), and cysts, COC, and c	0. 1. 7	
To examine the expression of analytical cD56 in immunohistor ameloblastomas, hemical study. dentigerous cysts, Cysts, CAC, and COT, adanomatoid odontogenic tumors (ACOT), othokeratinized codontogenic odontogenic cysts, colontogenic codontogenic codontogenic acceptable (COC), and cysts, and lare todontogenic cysts (COC), and cysts, and lare todontogenic cysts (GOC). To examine the expression of analytical analytical communohistors are informational control and control analytical codontogenic all. (2014) (20		
expression of CD56 in immunohistoc ameloblastomas, hemical study. dentigerous cysts, Cysts, CAC, and CTC and COD56 in immunohistoc ameloblastomas, hemical study. dentigerous cysts, Cysts, CAC, and COD56 immunohistoch dentigerous cysts, CAC, and COD56 immunohistoch al. (2014) [79] (
CD56 in immunohistoc ameloblastomas, hemical study. dentigerous cysts, dentigerous cysts, aclifying orthokeratinized codontogenic cysts (COC), and cysts, 3 COC, 1 glandular odontogenic cysts (GOC). CD56 expression is limited to more aggressive cysts and tumors (KCOT), s (14 solid, 8 lmmunohistoch tumors (KCOT), cysts, 10 antibody. The cysts (COC), and cysts, 20 c	•	
ameloblastomas, hemical study. dentigerous cysts, Sample Size: Ashkav andiet al. (2014) [79] [79] [79] [79] [79] [79] [79] [79]	•	40% in KCOT
dentigerous cysts, Sample Size: keratocystic 22 odontogenic ameloblastoma tumors (KCOT), s (14 solid, 8 Immunohistoch adenomatoid unicystic), 13 emistry using odontogenic tumors (AOT), orthokeratinized KCOT, 4 AOT, odontogenic cysts, calcifying orthokeratinize cysts, (COC), and cysts, 3 COC, 1 glandular GOC. odontogenic cysts (GOC). Country/Regio cysts, (GOC). Country/Regio cysts, (Sample Size:		100% in GOC Chi-
cysts, Sample Size: keratocystic 22 Jaafari-Ashkav andi et al. (2014) [79] orthokeratinize odontogenic cysts, COC), and cysts, 2 (COC), and cysts, 3 COC, 1 glandular odontogenic cysts (GOC). Type of the cysts (GOC) odontogenic cysts (GOC). Type of the cysts, 3 COC, 1 odontogenic cysts, 3 COC, 1 odontogenic cysts (GOC). Type of the cysts, 3 COC, 1 odontogenic cysts, 3 COC, 1 odontogenic cysts, 3 COC, 1 odontogenic cysts (GOC). Type of the cysts, 3 COC, 1 odontogenic cysts, 4 COC, 0 odontogenic cysts, 4		expression is
Jaafari-Ashkav andi et al. (2014) [79] odontogenic dentigerous odontogenic odontogenic odontogenic al. (2014) [79] orthokeratinized KCOT, and cysts, alcifying orthokeratinize odontogenic cysts (COC), and cysts, 3 COC, 1 glandular GOC. odontogenic cysts (GOC). Country/Regio	cysts, <u>Sample Size:</u>	No CD56 test:
Ashkav andi et al. (2014) adenomatoid unicystic), 13 emistry using odontogenic dentigerous anti-CD56 tumors (AOT), cysts, 10 antibody. (2014) of thokeratinized KCOT, 4 AOT, odontogenic cysts, calcifying orthokeratinize odontogenic cysts (COC), and cysts, 3 COC, 1 glandular GOC. (2014) antibody. (2014)	keratocystic 22	
andi et al. (2014) adenomatoid unicystic), 13 emistry using odontogenic dentigerous tumors (AOT), cysts, 10 orthokeratinized KCOT, 4 AOT, odontogenic odontogenic odontogenic odontogenic cysts, calcifying orthokeratinize odontogenic cysts (COC), and cysts, 3 COC, 1 glandular odontogenic cysts (GOC). Country/Regio rina.	Ashkay odontogenic ameloblastoma	ogical dendigerous nt
al. (2014) odontogenic dentigerous tumors (AOT), cysts, 10 antibody. (2014) orthokeratinized KCOT, 4 AOT, odontogenic cysts, calcifying orthokeratinize odontogenic cysts (COC), and cysts, 3 COC, 1 glandular GOC. odontogenic cysts (GOC). (2014) GOC. odontogenic cysts (GOC). (2014) Country/Regio codontogenic cysts, and between KCOT codontogenic cysts, and between KCOT codontogenic cysts (GOC). (2014) Country/Regio codontogenic cysts (GOC). (2014) Country/Regio codontogenic cysts, and between KCOT codontogenic cysts (GOC). (2014) Country/Regio codontogenic cysts, and between KCOT	andi et tumors (KCO1), s (14 solid, 8 Immunonist	examination cysts, COC, differen lesions.
(2014) tumors (AOT), cysts, 10 antibody. [79] orthokeratinized KCOT, 4 AOT, odontogenic cysts, calcifying orthokeratinize odontogenic cysts (COC), and cysts, 3 COC, 1 glandular GOC. odontogenic cysts (GOC). Country/Regio n: n: cysts, and lran. odontogenic dentigerous antibody. antibody. n and eosin staining. Significant difference in cysts. In CD56 expression on between cystic and tumoral odontogenic groups. lesions.	al adenomatoid unicystic), 13 emistry usi	ng orthokeratinize ces with
rumors (AO1), cysts, 10 antibody. orthokeratinized KCOT, 4 AOT, odontogenic 3 cysts, calcifying orthokeratinize odontogenic d odontogenic cysts (COC), and cysts, 3 COC, 1 glandular GOC. odontogenic cysts (GOC). Country/Regio n and eosin staining. Significant difference in between specific expression groups. Between ameloblastoma and dentigerous cysts, and between KCOT n and eosin staining. Significant difference in between specific groups. and tumoral odontogenic groups. systs, and between KCOT	(2014) odontogenic dentigerous anti-CD50	hematoxyli a odontogenic P<0.05 can be a useful
odontogenic 3 cysts, calcifying orthokeratinize odontogenic d odontogenic cysts (COC), and cysts, 3 COC, 1 glandular GOC. odontogenic cysts (GOC). Country/Regio n: Cysts (COC) n: Country/Regio n: Cysts (GOC) Staining. Significant on distinguishing between cystic and tumoral odontogenic groups. Lesions. distinguishing between cystic and tumoral odontogenic groups. Lesions.	[79] tumors (AO1), cysts, 10 antibody	n and eosin cysts. In CD56 marker for
cysts, calcifying orthokeratinize odontogenic d odontogenic cysts (COC), and cysts, 3 COC, 1 glandular GOC. odontogenic cysts (GOC). Country/Regio n: cysts, calcifying orthokeratinize difference in cysteween specific groups. between and tumoral odontogenic groups. lesions.		graining - digringilighing
odontogenic d odontogenic cysts (COC), and cysts, 3 COC, 1 expression groups. glandular GOC. between odontogenic cysts (GOC). Country/Regio and dentigerous cysts, and Iran. CD56 specific odontogenic lesions. and dentigerous cysts, and between KCOT	<u>e</u>	nerween cystic
cysts (COC), and cysts, 3 COC, 1 glandular GOC. odontogenic odontogenic odontogenic ameloblastoma cysts (GOC). Country/Regio n: cysts, and Iran. odontogenic lesions. odontogenic cysts, and between KCOT	•	CD56 specific and tumoral
glandular GOC. between ameloblastoma cysts (GOC). Country/Regio and dentigerous cysts, and Iran. between KCOT	e e	expression groups dontogenic
odontogenic ameloblastoma cysts (GOC). Country/Regio and dentigerous n: cysts, and Iran. between KCOT		- lesions
cysts (GOC). Country/Regio and dentigerous n: cysts, and Iran. between KCOT		
Iran. between KCOT		
		cysts, and
and	Iran.	between KCOT
		and

Composition					orthokeratinize		
Sudy Type:					d odontogenic		
SD-1 expression in epithelial and stromal elements significantly associated with lesion extension and involvement of adjacent structures (P = 0.025). For analyze the lemical study expression in epithelial and stromal elements significantly associated with lesion extension and involvement of adjacent structures (P = 0.025). For analyze the lemical study expression in stellate expres					_		
Figure F							
stromal elements significantly associated with lesion extension and involvement of adjacent structures (P = 0.025). To analyze the limmunohistor expression profile of 201abile expression and involvement of adjacent structures (P = 0.025). Altore expression profile of all immunohistor and involvement of adjacent structures (P = 0.025). Altore expression profile of all immunohistor and common odontogenic expression and involve stensio in and involve stensio in and involve stensio in and involve stensio in adjacent structures (P = 0.025). (CD13b) expression in stellater expressi					•		
Study Type: Immunohistock with lesion extension and involvement of adjacent structures (P = 0.025). P. Values lesion extension and involvement of adjacent structures (P = 0.025). P. Values lesion extension and involvement of adjacent structures (P = 0.025). P. Values lesion extension and involvement of adjacent structures (P = 0.025). P. Values lesion extension and involvement of adjacent structures (P = 0.025). P. Values lesion extension and involvement of adjacent structures (P = 0.025). Values lesion extension values values lesion extension values values lesion values lesion values lesion values val					-	•	
Study Type: Immunohistoc Sample Size: Sample Size: Immunohistoch Sample Size: Samp							
and common odontogenic (Cysts: eratocystic ameloblastomas and common odontogenic cysts: erespession profile of seratocystic ameloblastomas and common odontogenic cysts: erespession profile of seratocystic ameloblastomas odontogenic cysts: erespession of tumors odontogenic cysts: erespession and common odontogenic cysts: erespession of CK14 and Bel-2. To analyze the expression profile of Olabi et syndecan-1 (SD-32) al. Immunohistoch emistry using and common odontogenic cysts: erespession and common odontogenic cysts: erespession profile of tumors odontogenic cysts: erespession profile odontogenic cysts: erespession profile odontogenic cysts: erespession profile odon							
Study Type: Immunohistor Immunohistor Study Type: Immunohistor Immunohistor Study Type: Immunohistor Immuno							
To analyze the expression profile of Otabib et 1							
To analyze the repression profile of Otable of 1) and common odontogenic (KCOT), 21 dentigerous and common odontogenic (CVT), 21 dentigerous cysts. CVT, and dentigerous cysts. CVT, and dentigerous cysts (P< 0.0001). P							
All profile of Otable team of Study Type: Immunohistoc all common odontogenic cysts. Sudy Type: Immunohistoc and common odontogenic cysts is a stairing and common odontogenic cysts. Sudy Type: Immunohistoc and common odontogenic cysts is a stairing and common odontogenic cysts. Sudy Type: Immunohistoc							
Study Type: Immunohistoc respression in profile of Otabini et suducens of Cotabini et suducens and common odontogenic cysts. CECT					involvement of		
Al- common and common and common odnotogenic cysts. System S					adjacent		
To analyze the expression profile of ordinary composition and common odontogenic cysts. To determine if specific patterns of CKI4 and Bcl-Z Staining can net al. assist in gamoil assist in specific patterns of CKI4 and Bcl-Z Staining can net al. assist in gamoil assist in gamoil assist in gamoil common of CKI4 and Bcl-Z Staining can net al. assist in gamoil condition of the composition of the composi					structures (P =		
To analyze the expression of the profile of Otalibi et syndecan-1 (SD-Otalibi et syndecan-1 (S					0.025).	D	
Study Type: Immunohistock expression of the memoral study. Expression in stellate reticulum cells of the microsulum stellate reticulum cel							
Study Type: Immunohistoc Immunohistoc Profile of Sample Size: Immunohistoc Profile of Sample Size: Immunohistoch Profile of Sample Size: Profile of Sample Size: Immunohistoch Profile of Sample Size: Profile of Sample					Higher SD-1		
To analyze the hemical study. Expression profile of Otabie 1 of Otabie 1 of Immunohistoche al. (CD13) immunohistoche and common odontogenic cysts. [80] ameloblastomas and common odontogenic cysts. [81] France of Otabie 1 of Otabie 1 of Immunohistoche immunohistoche immunohistoche odontogenic cysts. [82] France of Otabie 1 of Otabie 1 of Immunohistoche immunohistoche immunohistoche odontogenic ameloblastomas odontogenic cysts. [83] France of Otabie 1 of Immunohistoche immunohistoche immunohistoche immunohistoche odontogenic cysts. [84] France of Otabie 1 of Immunohistoche immunoh					~		
To analyze the expression profile of operation of profile of al. 2013) ameloblastoma and common tumors odontogenic cysts.		Study Type:			•		
To analyze the expression expression profile of Sample Size: mistry using al. immunohistoche mically in mucally in mically in mically in ameloblastoma and common odontogenic cysts. [80] Al- (2013) immunohistoche mically in mically in dentigerous cysts. [80] Al- (2013) immunohistoche mically in mically in mically in mically in dentigerous cysts. [80] Al- (2013) immunohistoche mically in mically in mically in mically in mically in dentigerous cysts. [80] Al- (2013) immunohistoche mical y in mically in mically in mically in dentigerous cysts. [80] Al- (2013) immunohistoche mical y in mically in m					reticulum cells	n and	
Al profile of Otabie syndecan-1 (SD- 32 ameloblastoma al. [2013) immunohistoche al. [2013] immunohistoche and common odontogenic and common odontogenic cysts. [2013] cysts. [2013] [80] France and common odontogenic and common odontogenic and common odontogenic cysts. [2013] [80] France and common odontogenic and common odontogenic ocysts. [2013] [80] France and common odontogenic and common odontogenic ocysts. [2013] [80] France and common odontogenic and common odontogenic ocysts. [2013] [80] France and common odontogenic ocysts. [2013] [8	To analyze the						
Al-Otaibi et al. (2013) immunohistoche al. (2013) immunohistoche mically in ameloblastoma and common odontogenic cysts. (KCOT), 21 dentigerous cysts. (KCOT), 21 dentigerous cysts. Value	-	nemical stady.				ment (P	SD-1
Otaibi et al. (2013) immunohistoche al. (2013) immunohistoche mically in ameloblastoma and common odontogenic cysts. (KCOT), 21 dentigerous cysts. (KCOT), 2	*	Cample Cize				= 0.025),	expression in
A common odontogenic cysts. CD138	Δ1_ *		Immunohistoch	1 -	0.0001).	stellate-	stromal cells of
Immunohistoche mically in ameloblastomas and common odontogenic cysts. KCOT, 21 dentigerous cysts. CD138). Immunohistoche mical study. Sepecific patterns of CK14 and Bcl-Krishna 2 staining can net al. assist in altered epithelial analtered epithelial analtered girthelial analtered girthelia analtered girthelia girgins (CD138). In anal deotis equipments staining analtered girthelia entities (CD138). In anal deotis equipments staining analtered girthelia analtered girthelia entities (CD138). In anal deotis equipments staining analtered girthelia paraltered girthelia analtered girthelia analtered girthelia analtered girthelia analtered girthel	Citaini et 1		emistry using	_	C: : C: 1	reticulu	ameloblastoma
To determine if specific patterns of CK14 and Bcl-Krishna 2 staining can net al. assist in galtered epithelial relations and common odonosgenic cysts. Study Type: Immunohistoch altered epithelial relations and common odonosgenic cysts. Study Type: Immunohistoch altered epithelial relations and common odonosgenic cysts. Study Type: Immunohistoch altered epithelial relations and cosmin staining. Study Type: Immunohistoch altered epithelial relations and cosmin staining. Study Type: Immunohistoch emiscry for CK14 and Bcl-Z staining can net al. assist in altered epithelial relations and cosmin staining. Study Type: Immunohistoch emiscry for CK14 and Bcl-Z staining can net al. altered epithelial relations and cosmin staining. Study Type: Immunohistoch emiscry for CK14 and Bcl-Z staining can net al. altered epithelial relations and cosmin staining. Study Type: Immunohistoch emiscry for CK14 and Bcl-Z staining can net al. altered epithelial relations and the matoxyli epithelial relations staining entitle epithelial rand eosism staining amend sats (P < associated with and eosism staining. Study Type: Immunohistoch emistry for CK14 and Bcl-Z staining. Study Type: Immunohistoch emistry for CK14 and Bcl-Z staining. Study Type: Immunohistoch emistry for CK14 and Bcl-Z staining. Study Type: Immunohistoch emistry for CK14 and Bcl-Z staining. Study Type: Immunohistoch emistry for CK14 and Bcl-Z staining. Study Type: Immunohistoch emistry for CK14 and Bcl-Z staining. Study Type: Immunohistoch emistry for CK14 and Bcl-Z staining. Study Type: Immunohistoch emistry for CK14 and Bcl-Z staining. Study Type: Immunohistoch emistry for CK14 and Bcl-Z staining. Study Type: Immunohistoch emistry for CK14 and Bcl-Z staining. Study Type: Immunohistoch emistry for CK14 and Bcl-Z staining. Study Type: Immunohistoch emistry for CK14 and Bcl-Z staining. Study Type: Immunohistoch emistry for CK14 and Bcl-Z staining. Study Type: Immunohistoch emistry for CK14 and Bcl-Z staining. Study Type: Immuno	al '		monoclonal		· ·	m cells	, KCOT, and
Relatorystic against SD-1 (CD138). The nand easing ameloblastomas and common odontogenic cysts. (KCOT), 21 dentigerous cysts. (KCOT), 21 dentigerous cysts. (CD138). The nand easing ameloblastomas staining among staining ameloblastomas staiting ameloblastomas staining ameloblastomas staining ameloblastomas staining ameloblastomas staining ameloblastomas staiting ameloblastomas staining ameloblastomas staiting am	(2013) immunohistoche		antibody	_			
and common tumors odontogenic (KCOT), 21 cysts. dentigerous cysts. dentigerous cysts. cysts. dentigerous cysts. cysts (P < 0.0001). cysts (P < 0.0001). cysts. cysts (P < 0.0001). cysts ([80] mically in	•	•	•		amalohl	
and common tumors odontogenic (KCOT), 21 dentigerous cysts. Mean rank scores (Kruskal-Wallis test): ameloblastomas significantly lower than KCOT and dentigerous cysts; non- significant comparison between KCOT and dentigerous cysts; non- significant comparison between KCOT and dentigerous cyst groups. Cyst groups. Cyst groups. Specific CK14 and Bcl-2 staining patterns could aid in diagnosing for cysts. CK14 and Bcl-2 staining patterns could aid in diagnosing CKCs with altered epithelial features and	ameloblastomas	odontogenic	_			asts (P <	•
dentigerous cysts. dentigerous cysts. cysts. cysts. cysts. cysts. cysts (P < 0.0001). Mean rank Scores (Kruskal-Wallis test): ameloblastomas significantly lower than KCOT and dentigerous cysts; non-significant comparison between KCOT and dentigerous cysts groups. cyst grou	and common	tumors	(CD 100).	staining.	ameloblastomas		
cysts. denngerous cysts (P < 0.0001). staining among groups (P < 0.0001). Wallis test): ameloblastomas significantly lower than KCOT and dentigerous cysts; nonsignificant comparison between KCOT and dentigerous cysts groups. To determine if specific patterns of CK14 and Bcl- Strick and Bcl- Strick and assist in (2023) diagnosing [81] OKCs with altered epithelial features and significant subepithelial and areas with subepithelial subepithelial subepithelial subepithelial cysts and areas with subepithelial epithelial contact and contac	odontogenic	(KCOT), 21			, KCOT, and		•
Mean rank scores (Kruskal-Wallis test): ameloblastomas significantly lower than KCOT and dentigerous cysts; non-significant comparison between KCOT and dentigerous cyst groups. To determine if specific patterns of CK14 and Bcl-Krishna 2 staining can n et al. assist in [2023] diagnosing [81] OKCs with altered epithelial features and altered epithelial features and entered in subepithelial features and entered in subepithelial size of the service of	cysts.	dentigerous			dentigerous	epitilena 1	prognosis.
Mean rank scores (Kruskal Wallis test): ameloblastomas significantly lower than KCOT and dentigerous cysts; nonsignificant comparison between KCOT and dentigerous cysts groups. To determine if specific patterns of CK14 and Bcl-2 Staining can net al. assist in [2023] diagnosing [81] OKCs with altered epithelial features and contact and areas with altered epithelial features and contact and areas with subepithelial subepith		cysts.			cysts (P <	1	
Mean rank scores (Kruskal Wallis test): ameloblastomas significantly lower than KCOT and dentigerous cysts; non-significant comparison between KCOT and dentigerous cyst groups. To determine if specific patterns of CK14 and Bcl-2 Staining can n et al. assist in latered epithelial Mean rank scores (Kruskal Wallis test):					0.0001).	v	
P Not per patterns of CK14 and Bcl-2 Specific CK14 and Bcl-2 Specific CK14 and Bcl-2 Specific CK14 and Bcl-2 Specific patterns of CK14 and Bcl-2 Immunohistoch Histopathol altered epithelial Features and Features and Study Type: Immunohistoch Specific patterns of CK14 and Bcl-2 Specific CK14 and Bcl-2 Specific CK14 Sp						U	
Secores (Kruskal-Wallis test): ameloblastomas significantly lower than KCOT and dentigerous cysts; non-significant comparison between KCOT and dentigerous cyst groups. To determine if specific patterns of CK14 and Bcl-Variable and assist in [2023] diagnosing [81] OKCs with altered epithelial features and CK14 and Bcl-Variable and areas with altered epithelial features and Secores (Kruskal-Wallis test): ameloblastomas significant comparison between KCOT and dentigerous cysts; non-significant comparison between KCOT and dentigerous cysts groups. CK14 Specific CK14 S					Mean rank		
Wallis test): ameloblastomas significantly lower than KCOT and dentigerous cysts; non-significant comparison between KCOT and dentigerous cysts; groups. To determine if specific patterns of CK14 and Bcl-2 of CK14 and Bcl-2 assist in [2023] diagnosing [81] OKCs with altered epithelial features and significant comparison between KCOT and dentigerous cyst groups. Wallis test): ameloblastomas significantly lower than KCOT and dentigerous cysts; non-significant comparison between KCOT and dentigerous cysts groups. CK14 CK14						. `	
ameloblastomas significantly lower than KCOT and dentigerous cysts; non-significant comparison between KCOT and dentigerous cysts; non-significant comparison between KCOT and dentigerous cysts; non-significant comparison between KCOT and dentigerous cyst groups. To determine if specific patterns of CK14 and Bcl-2 of CK14 and Bcl-2 in et al. assist in latered epithelial features and latered epithelial features and latered epithelial features and latered epithelial subepithelial subepithelial subepithelial subepithelial significant comparison between KCOT and dentigerous cysts; non-significant comparison between KCOT and dentigerous cyst groups. Page 1						0.0001).	
significantly lower than KCOT and dentigerous cysts; non-significant comparison between KCOT and dentigerous cyst groups. To determine if specific patterns of CK14 and Bcl-2 remistry for early altered epithelial features and significant comparison between KCOT and dentigerous cyst groups. To determine if specific patterns of CK14 and Bcl-2 remistry for emistry for emistry for altered epithelial features and significantly lower than KCOT and dentigerous cyst groups. To determine if specific patterns of CK14 and Bcl-2 remistry for emistry for emistry for emistry for altered epithelial subepithelial significant comparison between KCOT and dentigerous cyst groups. CK14 Specific CK14 and Bcl-2 Specific CK14 Specific Additional subepithelial Specific							
lower than KCOT and dentigerous cysts; non-significant comparison between KCOT and dentigerous cysts; non-significant comparison between KCOT and dentigerous cyst groups. To determine if specific patterns of CK14 and Bcl-Krishna 2 staining can n et al. assist in [Immunohistoc] (2023) diagnosing (20							
KCOT and dentigerous cysts; non-significant comparison between KCOT and dentigerous cysts; non-significant comparison between KCOT and dentigerous cyst groups. To determine if specific patterns of CK14 and Bcl-Krishna 2 staining can n et al. assist in [Minumohistoch net al. assist in [Minumohistoch net al. assist in altered epithelial features and] [81] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [82] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [83] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [84] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [85] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [86] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [87] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [88] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [88] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [88] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [88] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [88] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [88] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [88] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [88] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [88] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [88] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [88] OKCs with altered epithelial features and [Minumohistoch net al. altered epithelial] [88] OKCs with altered epithelial features and [Minumoh							
dentigerous cysts; non-significant comparison between KCOT and dentigerous cyst groups. To determine if specific patterns of CK14 and Bcl-2 Krishna 2 staining can net al. assist in Immunohistoch (2023) diagnosing (2023) diagno							
cysts; non-significant comparison between KCOT and dentigerous cyst groups. To determine if specific patterns of CK14 and Bcl-2 staining can net al. assist in [2023] diagnosing [81] OKCs with altered epithelial features and significant comparison between KCOT and dentigerous cyst groups. CK14 expression: Restricted to basal and suprabasal emistry for examination layers near cK14 and Bcl-2. Satellite cysts and areas with features and suprabased epithelial subepithelial subepithelial epithelial epithelial epithelial							
significant comparison between KCOT and dentigerous cyst groups. To determine if specific patterns of CK14 and Bcl-Krishna 2 staining can net al. assist in [2023] diagnosing [81] OKCs with altered epithelial features and specific patterns altered epithelial features and specific patterns of CK14 and Bcl-2. Study Type: Immunohistoch emistry for examination conjugate suprabasal emistry for examination conjugate significant comparison between KCOT and dentigerous cyst groups. CK14 and Bcl-2 Restricted to staining patterns could aid in diagnosing of CK14 and Bcl-2. Staining patterns could aid in diagnosing of CK14 and Bcl-2.					_		
Comparison between KCOT and dentigerous cyst groups. To determine if specific patterns of CK14 and Bcl-Krishna 2 staining can net al. assist in Immunohistoch (2023) diagnosing (2023) diagnosing [81] OKCs with altered epithelial features and Immunohistoch features and Immunohistoch altered epithelial features and Immunohistoch opical suprabasal satellite cysts and areas with subepithelial subepithelial subepithelial subepithelial subepithelial subepithelial subepithelial comparison between KCOT and dentigerous cyst groups. CK14 Specific CK14 Spe					•		
between KCOT and dentigerous cyst groups. To determine if specific patterns of CK14 and Bcl- Krishna 2 staining can net al. assist in Immunohistoch (2023) diagnosing (2023) diagnosing altered epithelial features and status (2023) altered epithelial features and status (2023) diagnosing (2023) diagn					~		
To determine if specific patterns of CK14 and Bcl-2 staining can net al. assist in Immunohistoch (2023) diagnosing altered epithelial features and areas with features and specific patterns altered epithelial features and specific patterns of CK14 and Bcl-2 staining can and Bcl-2 staining can could and Bcl-2 staining can could and Bcl-2 staining can could aid in diagnosing can could aid in diagnosing can could aid in could altered epithelial subepithelial subepithelial could could be and areas with subepithelial could could be and areas with subepithelial could could be and dentigerous cyst groups. Specific CK14 and Bcl-2 staining can be appreciately staining patterns could aid in diagnosing could be and areas with subepithelial could be a could be and areas with subepithelial could be a could be					_		
To determine if specific patterns of CK14 and Bcl-2 Staining can net al. assist in Immunohistoc (2023) diagnosing [81] OKCs with altered epithelial features and Staining and features and Staining and the specific patterns of CK14 and Bcl-2. Specific CK14 and Bcl-2 Staining and the specific patterns of CK14 and Bcl-2 Staining and Expression: Restricted to suprabasal and suprabasal satellite cysts and areas with satellite cysts and areas with subepithelial subepithelial subepithelial subepithelial subepithelial subepithelial specific CK14 and Bcl-2 Staining patterns could aid in diagnosing OKCs with altered epithelial subepithelial subepithelial subepithelial subepithelial subepithelial subepithelial subepithelial specific CK14 and Bcl-2 Staining patterns could aid in diagnosing OKCs with altered epithelial subepithelial subepitheli							
To determine if specific patterns of CK14 and Bcl-Krishna 2 staining can net al. assist in Immunohistoc (2023) diagnosing hemical study. [81] OKCs with altered epithelial features and of CK14 and Bcl-2. Study Type: CK14 and Bcl-2. CK14 and Bcl-2. Staining patterns could emistry for examination and areas with features and suppose the control of the c					and dentigerous	;	
specific patterns of CK14 and Bcl- Krishna 2 staining can net al. assist in Immunohistoch (2023) diagnosing altered epithelial features and specific patterns could and Bcl-2 staining can of CK14 and Bcl-2. Mathematical Study Type: Immunohistoch ogical ogical suprabasal emistry for examination altered epithelial sately. CK14 and Bcl-2. Mathematical Study Type: Immunohistoch ogical ogical suprabasal emistry for examination altered examination and areas with features and suprabasal satellite cysts satellite cysts and areas with subepithelial superinfelial superinfel					cyst groups.		
Krishna 2 staining can ne tal. assist in Immunohistoch (2023) diagnosing hemical study. [81] OKCs with altered epithelial features and of the content of the	To determine if				<u>CK14</u>		Specific CK14
Krishna 2 staining can net al. assist in Immunohistoch (2023) diagnosing hemical study. Immunohistoch emistry for examination layers near stellite cysts altered epithelial features and reatures and	specific patterns				expression:		and Bcl-2
Krishna 2 staining can net al. assist in Immunohistoch (2023) diagnosing hemical study. Immunohistoch emistry for examination layers near stellite cysts altered epithelial features and reatures and	• •						staining
n et al. assist in Immunohistock (2023) diagnosing hemical study. (2014) and Bcl-2. (2015) (2	Krishna 2 staining can	Study Type:	T 1	Histopathol		* T :	_
(2023) diagnosing hemical study. CK14 and Bcl-2. examination layers near specific diagnosing OKCs with altered epithelial features and central study. CK14 and Bcl-2. satellite cysts and areas with altered epithelial epithelial				1 -			•
[81] OKCs with altered epithelial subepithelial subepithelial epithelial epithelial			•	examination	_	-	
altered epithelial and areas with altered features and subepithelial epithelial	()		CK14 and Bcl-2		•	d.	
features and subepithelial epithelial	[81] OKCe with	J					
		-		•			
provide insignis split, Entire features and	altered epithelial	-		•	and areas with		altered
	altered epithelial features and	-		•	and areas with subepithelial		altered epithelial

	into their				: 411: -1 1::		
	into their aggressive				epithelial lining showed CK14		provide insights into
	nature.				expression in		their
	nature.				areas of		aggressive
					inflammation		behavior.
					and after		Proper
					marsupializatio		recognition
					n.		and diagnosis
							are essential
					Bcl-2: Typical		for treatment
					basal/suprabasa		planning due
					l staining lost in		to therapeutic
					areas of		consequences
					inflammation,		and high
					and intensity		recurrence
					decreased in		rates.
					OKCs after		
					marsupializatio		
					n.		
					CK10		
					expression:		
					100% in OOCs		CI/10
					and EDCs, 50%		CK10
					in OKCs.		expressions in
							OOCs and
					<u>CK19</u>		EDCs were
	To commons the				expression: 40%		nearly
	To compare the				in OOCs, 30%		identical,
	cytokeratin expressions of	Study Type:			in EDCs, 80% in		indicating OOCs might
	CK10 and CK19	Immunohistoc			OKCs.	P-	not be
	among	hemical study.		Histopathol		values:	distinguished
Padmap	orthokeratinized			ogical	Significant	CK10	from EDCs
riya et	odontogenic	Sample Size:	Immunohistoch	1 examination	difference in	expressi	histologically.
al.	cysts (OOCs),	10 OOCs, 10	emistry using	using	CK10	on $(P =$	CK19
(2020)	epidermoid	EDCs, 10	CK10 and CK19	hematoxyli	expression	0.002),	expression
[82]	cysts (EDCs),	OKCs.	markers.	n and eosin	between OKCs	CK19	showed no
	and odontogenic			staining.	and	expressi	significant
	keratocysts	Country/Regio		Ö	OOCs/EDCs (P	on (P =	differences
	(OKCs) by	<u>n:</u>			= 0.009).	0.061).	between OOCs
	immunohistoche	India.			CI/10		& EDCs or
	mical study.				CK19		OOCs & OKCs,
					expression		implying
					significant between EDCs		OOCs
					and OKCs (P =		resemble both
					0.028), but not		EDCs and
					between OOCs		OKCs.
					& EDCs or		
					OOCs & OKCs.		
	To present a rare	Study Type:			Patient		OKC in the
	case of an	Case report.			presented with		maxillary sinus
Sheethal		1		TIDA C. S.	pain and pus		is rare and can
et al.	keratocyst	Sample Size:	NT-1 21 11	Histopathol	discharge in the	Not	be mistaken for
(2019)	(OKC) arising in		Not applicable	~	upper left back		
[83]	the maxillary	Ü	(case report).	examination	teeth region.	le.	like sinusitis or
	sinus and	Age Range:		•	J		antral polyps.
	discuss its	15-year-old			Radiographs		Proper
	clinical,	female.			revealed an ill-		recognition

and <u>Country/Regio</u>	defined	and diagnosis
	radiolucent	are crucial due
histopathologica <u>n:</u>	lesion	to its
l features. India	associated with	aggressive
(Bengaluru,	an impacted	behavior and
Karnataka).	third molar in	high
	the maxillary	recurrence rate.
	sinus.	Long-term
	Historythalogia	follow-up is
	Histopathologic	· · · · · · · · · · · · · · · · · · ·
	al examination showed	monitor for recurrence.
	parakeratinized	
	stratified	
	squamous	
	epithelium,	
	nuclear	
	hyperchromatis	
	m, and	
	palisading of	
	basal cells.	
	The lesion was	
	diagnosed as	
	OKC in the	
	maxillary sinus.	
	<u>CK10:</u> Positive	
	in all layers	
	except basal	
	layer in DMCs,	
	EDMCs, and	
To perform an Study Type:	OOCs; negative	
To perform an Immunohistoc immunohistoche	in KCOTs.	
mical analysis of		
cytokeratins	<u>CK13 and</u>	
(CKs) and Sample Size:	<u>CK17:</u> Positive	The
langerin to 7 DMCs, 30	in all layers	immunohistoc
EDIMUS, 11	except basal	hemical
differences in OOCs, 28 Im	ohistoch Histopathol layer in OOCs;	profiles of CKs
Hoshino the lining KCOTs. e	ogical negative in	and langerin in
et al. epithelium of	odles DMCS/EDMCs.	Not DMCs/EDMCs,
(2015) dermoid cysts Mean ages: (CK10, using CK14 and	specifie KCOTs suggest
[84] (DMCs), DMCs (42.9)	CK17. nematoxyll CK16: Positive	d. that these are
epidermoid vears) FDMCs	and n and eosin in all lavers in	independent
cysts (EDMCs), (40.8 years)	staining. DCs; CK14	diseases with
orthokeratinized OOCs (36.3	positive in all	distinct
odontogenic vears) KCOTs	except surface	biological
cysts (OOCs), (33.5 years)	layer in DMCs,	characteristics.
and keratocystic	EDMCs, OOCs,	
odontogenic <u>Country/Regio</u>	and KCOTs.	
tumors n:		
(VCOT-) ==	<u>CK19:</u> Negative	
(KCOTs). <u></u> Japan.	_	
(RCO1s).	in OOCs;	
(RCO1s).	in OOCs; positive in all	
(RCO1s).		
(RCO1s).	positive in all	

					Langerin:		
					Positive in		
					Langerhans cells in the		
					spinous layer of		
					DMCs, EDMCs,		
					and OOCs;		
					rarely positive		
					in KCOTs;		
					negative in		
					DCs.		
					The patient had		
					a cystic lesion in		
					the right buccal		
					mucosa,		
					initially diagnosed as an		
					epidermoid		The keratocyst
					cyst.		in the buccal
		Cr. 1. T			J		mucosa
		Study Type:		Listanathal	Histopathologic		showed
		Case report.		Histopathol ogical	al examination		characteristics
	To report a case	tocyst in Single case.		examination	revealed		of KCOT,
Yamam	of keratocyst in		Immunohistoch		parakeratinized		suggesting an
oto et al	l. the buccal	O	emistry using		squamous	Not	odontogenic
(2013)		Age Range:	antibodies for	n and eosin	epithelium with palisading basal	applicab	origin. Accurate
[85]	keratocystic	74-year-old	CK17, CK10,	staining,	cells.	le.	diagnosis and
	odontogenic	male.	and Ki-67.	clinical and	Immunohistoch		differentiation
	tumor (KCOT).	C 1 /D :		imaging	emistry showed		from other
	,	Country/Regio		examination	positive CK17		cystic lesions
		<u>n:</u> Japan.		•	and high Ki-67		are crucial for
		јаран.			labeling,		appropriate
					indicating high		treatment and
					proliferation		management.
					potential, and		
					negative CK10.		
					Features were		
					consistent with		
					KCOT.		
	To analyze the				CK10: Similar	Chi-	The IHC
	immunohistoche	Study Type:			expression in	-	profile of OOC
	mical (IHC)	Immunohistoc			OOC and EDC;		is different
	expression of cytokeratins	hemical study.			negative in DC, positive only in	Spearma n's	KCOT but
	(CK10, CK13,			Histopathol			closer to EDC.
	CK19) and		Immunohistoch	ogical	layer of KCOT.	on;	CK10
Kureel	fibronectin in	25 cases for	emistry using	examination	•	,	expression in
et al.	orthokeratinized	each study	CK10, CK13,	using	CK13: Mild	nt	OOC suggests
(2019)	odontogenic	group: OOC, EDC, DMC,	CK19, and fibronectin	hematoxyli	expression in	differen	normal
[86]	cyst (OOC),	DC, KCOT.	antibodies.	n and eosin	OOC and EDC;	ces in	orthokeratiniza
	epidermoid cyst	DC, RCO1.	artibodies.	staining.	intense in	CK10,	tion. Strong
	(EDC), dermoid	Country/Regio			KCOT and DC.	CK13,	CK19
	cyst (DMC),	n·			CV10 No. "	CK19,	expression in
	dentigerous cyst	India.			CK19: Negative		DC and KCOT
	(DC), and keratocystic				to mild in OOC; negative in	tin	confirms odontogenic
					negauvem	LILL	ouomogeme

odontog tumor (K to elucida pathogen OOC	COT) te the esis of			EDC; positive in DC and KCOT. Fibronectin: Predominantly diffuse nonfibrillar (DN) pattern in EDC, followed by DC, KCOT, and OOC; focal nonfibrillar (FN) not detected in OOC.	ons among the study groups (P ≤ 0.05).	origin. OOC likely represents the intraosseous counterpart of EDC.
To evalua intensity express pattern Bhakhar Cytoker et al. (CK) 18 a (2016) in Odonto (OKC) Dentige Cysts (DC) Radicular (RCs)	and Study Type: Immunohistoc s of hemical study. atins and 19 Sample Size: ogenic 20 OKCs, 20 ysts DCs, 20 RCs. s), rous Country/Regio s), and Cysts India.	Immunohistoch emistry using monoclonal antibodies for CK18 and CK19.	ogical examination using	CK19 expression: 75% in OKCs, 100% in DCs and RCs, with intense and "ALL" expression in DCs and RCs, and moderate in OKCs.	nt differen ces in CK18 and CK19 expressi ons among the cysts (P ≤ 0.05). CK18	higher intensity and expression in all cyst types compared to CK18, suggesting CK19 as a valuable diagnostic aid in differentiating between OKCs, DCs, and RCs.
To under the expre pattern cytokera (CK) 14 Shruthi et al. (2014) [88] dentiger cysts, de follicular adenome odontog tumors (A and unic ameloblas	ssion Immunohistoc hemical study. hemical study. hemical study. hemical study. hemical study. hemical size: 20 dentigerous cysts, 20 reduced hissue, enamel hemical depithelium/denation follicles, 10 hoot, follicular type hystic of AOT, 10	monoclonal antibodies for CK14 and	Histopathol ogical examination using hematoxyli n and eosin staining.	AOT, moderate in dentigerous cysts and UCA, least in dental follicle/reduced enamel epithelium (REE).	mean percenta ge of CK14 positive cells (highest in AOT,	dentigerous cysts, UCA,

ameloblastoma	; T-test limited role in
s (UCA).	Significant for their
	differences in percenta pathogenesis.
Country/Regio	CK14 ge, Further studies
<u>n:</u>	expression positivit are needed to
India	among the y, explore the
(Karnataka,	lesions, with intensity oncofetal
Madhya	AOT showing , and transformation
Pradesh).	more Remmel and
	percentage, e score histogenesis of
	positivity, and (statistic follicular type
	intensity ally of AOT.
	compared to significa
	dentigerous nt
	cysts and UCA. differen
	ces
	between
	AOT
	and
	dentiger
	ous
	cyst/UC
	A).
	iNOS
	expression
	observed in
	entire thickness
	of epithelial
	linings in 10
	OKCs (40%
To analyze the	intensely stained, 20%
expression of	
inducible nitric	moderately ANOVA stained, 20% and Chi- iNOS
oxide synthase	mildly stained, square overexpression
(iNOS) in the <u>Study Type:</u>	20% no tests in OKCs
epithelial lining Immunohistoc	staining). showed compared to
of adaptogonic hamical study Historial	•
Swetha keratocysts Immunonistoch ogical	· ·
et al (OKCs) Sample Size: emistry using examinati	ion cases showed differen in the
(2014) dentigerous 10 OKCs 10 rabbit	intense staining, ces in aggressive
[89] cysts (DCs), and DCs, 10 RCs. polyclonal hematox	yli 20% moderate, iNOS behavior of
radicular cysts antibody n and eos	sin 30% mild, 40% expressi OKCs,
(RCs) to <u>Country/Regio</u> against iNOS. staining	g. no staining. on supporting the
understand its <u>n:</u>	between view that
role in the India.	In RCs, 40% of the cyst OKCs are
neoplastic	cases showed groups neoplastic in
nature and local	mild staining, $(P < nature.$
aggressiveness	60% no 0.01).
of these cysts.	staining.
	Significant
	difference in
	iNOS staining
	intensity
	between OKCs,
	DCs, and RCs
	(P < 0.01).

					CK14: Positive		
					in 90% of		
					follicular AOT		
					(FAOT) and		
					100% of		CK14
		of Ketrospective			extrafollicular		expression in
					AOT (EAOT),		AOT and DC
					positive in all		supports their
	To analyze the				DC cases.	Descript	odontogenic
	expression of					ive	epitnellai
	cytokeratin 14	hemical study.			<u>Vimentin:</u>	statistics	origin.
	(CK14) and	riemiear state).	Immunohistoch	_	Positive in 44%	and	Vimentin
Sudhak		Sample Size:	emistry using	ogical	of AOT cases,	measure	expression in
ara et al		16 AOT (10	monoclonal		negative in 56%;	s of	AOT is
(2016)	odontogenic	follicular, 6	antibodies for	using	in DC, 73%	central	variable,
[90]	tumor (AOT)	extrafollicular)	CK14 and		negative, 20%	tendenc	suggesting a
	and dentigerous	15 DC.	vimentin.	n and eosin		y used	minor role in
	cyst (DC) to			staining.	positive, 7%	to	pathogenesis.
	understand their	Country/Regio			weak positive.	analyze	The study
	origin and	<u>n:</u>			CV14	results.	indicates a
	pathogenesis.	India.			CK14		potential origin
					predominantly expressed in		from reduced enamel
					Type B cells in		epithelium and
					AOT,		dental lamina.
					suggesting		acritar farinia.
					odontogenic		
					epithelial		
					origin.		
_					CK7 expression		
					was highest in		
					DCs (66.66%),		
		Study Type:			followed by		CK7
		Immunohistoc			RCs (41.66%),		expression
		hemical study.			and least in		correlates with
		6 1 6			OKCs (16.6%).		the degree of
		Sample Size:			CV7		epithelial
		15 dentigerous			CK7 positive in		differentiation.
	To elucidate the	cysts (DC), 12 odontogenic			suprabasal (60%) and		Well-
	role of	keratocysts	Immunohistoch	Histopathol		Chi-	differentiated
Saluja et		(OKC), 12	emistry using	ogical	layers (40%) in	_	epithelium (RC
al.	(CK7) in the	radicular cysts	Monoclonal	examination	-		and DC) shows
(2019)	pathogenesis of	(RC), and 8	Mouse Anti-	using	superficial and	significa	
[91]	odontogenic	control	Human	hematoxyli	-	nt	expression,
[]	cysts by	specimens	Cytokeratin-7	•	in RCs and		while less well-
	immunohistoche	•	•	staining.	OKCs.		differentiated
	mistry.	carcinoma,	J	O		$p \le 0.05$.	-
	,	nasopalatine			Statistically		(OKC) shows
		duct cysts, and			significant		slight
		dental follicle).			difference in		positivity. CK7
		,			CK7 expression		can be used to
		Country/Regio			between DCs		differentiate OKC from DC
		<u>n:</u>			and OKCs ($p =$		and RC.
		India.			0.009), but not		and NC.
					between RCs		
					and DCs or RCs	i	
					and OKCs.		

4.6. Ki-67 and Other Proliferative Markers

Proliferative markers, particularly Ki-67, are instrumental in understanding the growth behavior, aggressiveness, and recurrence likelihood of odontogenic lesions such as odontogenic keratocysts (OKC), dentigerous cysts (DC), ameloblastomas (AB), and unicystic ameloblastomas (UA) [92,93]. Ki-67, a marker indicating cellular proliferation, shows notably higher levels in OKCs compared to DCs, suggesting a more aggressive growth pattern and a greater propensity for recurrence [52].

The interaction of Ki-67 with other markers like p63 and MCM3 provides deeper insights into the complex biology of these lesions, enabling clinicians to better predict their behavior and tailor treatment approaches accordingly. For instance, p63, which is associated with the regulation of epithelial cell proliferation and differentiation, shows higher expression in OKCs and ABs compared to DCs, correlating with their more aggressive behavior [94,95]. MCM3, another proliferation marker, also demonstrates higher expression in OKCs and ABs, further supporting their higher proliferative activity compared to DCs [96].

Elevated Ki-67 levels, particularly in OKCs and ABs, signal a higher risk of recurrence, guiding clinicians towards more aggressive management strategies, from surgical resections to closer post-operative monitoring. The incorporation of Ki-67 staining in routine diagnostic procedures has improved the stratification of recurrence risk, enabling clinicians to tailor follow-up intervals and treatment intensities based on individual patient profiles, thereby optimizing clinical outcomes [97,98]. For example, studies have shown that OKCs exhibit a significantly higher cellular proliferation index in the suprabasal layers compared to DCs, indicating their potential for more aggressive behavior and higher recurrence rates [52,93].

Additionally, research indicates that the expression of Ki-67 and MCM3 in different odontogenic lesions not only reflects their proliferative capacity but also aids in distinguishing between more and less aggressive types. For example, the mean Ki-67 labeling index in ameloblastomas is significantly higher than in DCs, highlighting the neoplastic nature of ameloblastomas compared to the more benign behavior of DCs [108]. Furthermore, the positive correlation between Ki-67 and p53 expression in OKCs and DCs underscores the role of these markers in understanding the pathogenesis and biological behavior of these lesions [112].

To modify and personalize therapy based on these markers, non-surgical approaches such as targeted therapies could be explored. For instance, lesions with high Ki-67 expression might benefit from treatments that inhibit cellular proliferation. The development of targeted inhibitors against specific pathways involved in cell proliferation, such as p63 or MCM3, could provide alternative or adjunctive treatments to traditional surgical methods. Additionally, personalized follow-up schedules based on Ki-67 levels could improve patient outcomes by ensuring timely intervention for recurrent lesions.

In summary, the evaluation of proliferative markers like Ki-67 marks a significant advancement in the field of oral health care. These markers provide crucial insights into how odontogenic lesions develop and respond to treatments, improving the prediction of outcomes and enabling more effective planning and execution of therapeutic strategies. Ongoing research into these markers is vital for refining management approaches and achieving better patient care outcomes [52,92–98,108,112] (Table 5).

Table 6. Proliferative Markers (Ki-67, Maspin, CD138, Syndecan-1, p67, MCM-2, MCM-3, EGF, CD34, COX-2).

Authors	Objective	Study Details	Marker Identification Method	Cyst/Tumor Diagnosis Method	Results	Statistical Estimates	Conclusion
Portes	To evaluate and	Study Type:	Immunohistoc	Histopatholo	There are no	Mann-	Increased
et al.	compare the	Immunohisto	hemistry	gical	statistically	Whitney	Ki-67
(2020)	immunoexpression	chemical	using	examination	significant	test,	immunoexp
[92]	and	study.	monoclonal	using	differences in	Student's t-	ression in

			 .		<u> </u>		
	immunostaining	C 1 C'	Ki-67	hematoxylin		test, and	the
	intensities of Ki-67	_	antibody	and eosin	immunoexpr	~	suprabasal
	antigen in	15 OKCs, 6	(clone MIB-1)	staining.	ession or	used for	layers of
	odontogenic	DCs.	and		staining	statistical	OKCs
	keratocysts (OKCs)		computerized		intensities	analysis;	suggests a
	and dentigerous	Country/Regi	•		between	significance	different
	cysts (DCs) using	on:	Aperio			level set at α	0
	computerized	Brazil.	Technologies		DCs.	= 0.05.	behavior
	analysis.		Inc. System.		OVC		and more
					OKCs		aggressive
					showed a		proliferation
					significantly		potential
					higher		compared to
					cellular		DCs.
					proliferation		Computeriz
					index in		ed
					suprabasal		evaluation
					layers		provides a
					compared to		more
					basal layers.		reliable
					TEN		method for
					There are no		assessing
					significant		immunoexp
					differences in		ression.
					Ki-67		
					expression		
					between		
					OKCs from		
					maxilla		
					versus		
					mandible or		
					primary		
					versus		
					recurrent OKCs.		
							Ki-67
					Maspin:		expression
					Lower		indicates
					expression in		higher
					OKC and DC		proliferative
					compared to		activity in
	To investigate the	Study Type:			AB, but not	ANOVA	OKC similar
	expressions of	Immunohisto			statistically	and	to AB,
	maspin, syndecan-	chemical	Immunohistoo hemistry	Histopatholo	significant.	Student's t-	higher than
Hamma	* *	analysis.	hemistry	gical	Syndecan-1:	test used;	in DC.
d et al.	odontogenic		using	examination	Lower	significant	Expressions
(2020)	keratocysts (OKCs)	Sample Size:	antibodies	using	expression in		of maspin
[93]	compared to	26 OKCS, 11	against	hematoxylin	OKC and AB	in Ki-67	and
[ادر]	dentigerous cysts	DCs, 10 ABs.	maspin,	and eosin	compared to	scores	syndecan-1
	(DCs) and		syndecan-1,	staining.	DC, but not	between	are not
	ameloblastomas	Country/Regi	and Ki-67.	stanning.	statistically	OKC and	significantly
	(ABs).	on:			significant.	DC (P <	different
	(ADS).	Jordan.			<u>Ki-67:</u>	0.05).	
					Significantly		among OKC, AB,
					higher		and DC,
					expression in		suggesting
					OKC		further
					compared to		
							investigatio

				DC (P < 0.05), like AB.		n into the biological behavior of OKC is needed.
Alsaegh et al. (2020) [94] [94] To investigate p63 immunoexpression and its relation to the proliferation of epithelial lining in dentigerous cyst (DC), odontogenic keratocyst (OKC), and ameloblastoma (AB).	OKC, 15 AB. Age Range: Mean age: 40.11 years (+17 567	Immunohistoc hemistry using antibodies against p63 and Ki-67.	gical examination using hematoxylin and eosin staining.	among DC, OKC, and AB (p=0.022). Higher in OKC compared to DC (p=0.007). Positive correlation between p63 and Ki-67 in DC (σ = 0.757, P = 0.004) and OKC (σ = 0.741, P = 0.022). No correlation in AB group.	Kruskal- Wallis test, Mann- Whitney U test, Spearman's correlation analysis (P < 0.05).	The diverse expression and correlation of p63 with proliferation in odontogenic lesions suggest different roles and pathways of Δ Np63 in odontogenic tumors versus cysts, aiding in understanding their pathogenesis and behavior.
Jaafari- Ashkav andi et al. (2015) [95] [95] To investigate the diagnostic impact of P63 protein on dentigerous cysts and various types of ameloblastoma and compare its expression with the Ki-67 proliferation marker.	Sample Size: 25 dentigerous cysts, 21 unicystic	Immunohistoo hemistry using monoclonal anti-P63 antibody and Ki-67 antibody.	Histopatholo gical examination using hematoxylin and eosin staining.	P63 expression higher in ameloblasto ma compared to unicystic ameloblasto ma and dentigerous cysts (P < 0.05). No significant difference in P63 expression between unicystic ameloblasto ma and	Mann-Whitney test, T-test, correlation coefficient test, ROC curve analysis; significant differences with P < 0.05.	Higher P63 expression indicates more aggressive odontogenic lesions. No correlation found between P63 and Ki-67, suggesting different roles in tumor genesis and proliferation . P63 could be a useful diagnostic marker for

	Mean age: 27 ± 15.2 years.			dentigerous cysts.		aggressive odontogenic
	± 15.2 years. Country/Regi on: Iran.			A 90% cut-off point for basal layer gave 88% sensitivity and 78% specificity to distinguish more invasive lesions. No correlation between P63 and Ki-67		odontogenic lesions.
				immunostain ing in the three study groups.		
To investigate the proliferative activity of dentigerous cysts (DC), odontogenic keratocysts (OKC), and ameloblastomas (AB) using minichromosome maintenance 3 (MCM3) and Ki-67 proliferation markers.	OKCs, 15 ABs (11 solid, 4 unicystic). Age Range:	Immunohisto hemistry using anti- MCM3 and anti-Ki-67 antibodies.	Histopatholo gical examination using hematoxylin and eosin staining.	higher than Ki-67 in all groups.	and Tukey tests showed significant differences in MCM3 and Ki-67 expression among all groups (P < 0.000). Spearman's correlation test showed weak positive correlation between MCM3 and Ki-67 (Q = 0.57, P = 0.002).	Ki-67. Higher expression of both markers in OKCs and ABs suggests higher proliferative activity and supports

To compare the expression of Ki-67, Immunohisto Syndecan-1 chemical (CD138), and the Brito- molecular triad Mendoz RANK, RANKL, a et al. and OPG in (2018) odontogenic [97] keratocysts (OKC), unicystic ameloblastomas (UA), and dentigerous cysts (DC). To compare the expression of Ki-67, Immunohistoc hemistry Sample Size: using examination using hematoxylin and eosin staining. Yes a study. Immunohistoc hemistry sample Size: using examination using hematoxylin and eosin staining.	difference in expression between inflamed and non-inflamed cysts. Higher Ki-67 expression in OKC compared to UA and DC (p < 0.0001). Greater loss of CD138 in UA compared to OKC (p = 0.0034). Higher RANKL expression in UA epithelium and stroma (p = 0.0002, p = 0.0004). DC showed lower expression of all markers.	Chi-square test, Kruskal- Wallis test, Tukey- Kramer method, Spearman's Rho; significant differences with p < 0.05.	Increased RANKL expression and reduced CD138 expression in UA indicate higher invasive and destructive potential. The higher proliferation rate in OKC is related to its continuous intrabony growth. DC expansion does not seem to be related to these factors.
Study Type: To compare the Immunohisto expression of Ki-67 chemical in odontogenic study	± 4.24, RC: 5.08 ± 3.11. Ki-67 expression significantly higher in suprabasal layer of OKC	significant differences in Ki-67 expression in suprabasal layers between OKC and	Increased Ki-67 expression in the suprabasal cell layers of OKC indicates higher proliferative activity and aggressive behavior, suggesting that OKC may be neoplastic rather than a developmen

					2.31) and RC		
					(3.12 ± 2.19) .		
					No		
					significant		
					difference in		
					Ki-67 LI in		
					the basal		
					layer among		
					all groups.		
					<u>Ki-67</u>		·
					expression:		
					DCs (Absent:		
					25%, Weak:		
					50%, Mild:		
					12.5%,		
					Strong:		
					12.5%); ABs		
					(Absent:		
					23.52%,		
					Weak:		
					41.17%, Mild:		
		Study Type:			17.64%,		COX-2 and
		Immunohisto			Strong:		Ki-67
		chemical			17.64%).		expression
		study.				N f	indicate
	To evaluate COX-2				COX-2	Mann-	higher
	expression and its	Sample Size:		TT: ((b . 1 .	expression:	Whitney U	proliferative
A 1 l-	correlation with the	e 16 DCs, 17	Immunohistoo	Histopatholo	DCs (Absent:	test and	activity in
Alsaegh	proliferation of	ABs.	hemistry	gical	18.75%,	Spearman's	odontogenic
et al.	odontogenic		using	examination .	Weak:	rank	epithelium
(2017)	epithelium in	Age Range:	antibodies for	using	18.75%, Mild:	correlation	of DCs and
[99]	dentigerous cysts	12-74 years;	COX-2 and	nematoxylin	43.75%,	coefficient;	ABs,
	(DCs) and	mean age:	Ki-67.	and eosin	Strong:	significant	suggesting
	ameloblastomas	36.2 years.		staining.	18.75%); ABs	differences	COX-2 as a
	(ABs).	,			(Absent:	with P <	potential
	,	Country/Regi			5.89%, Weak:	0.05.	target in
		on:			29.41%, Mild:		managing
		China, UAE,			52.94%,		these
		Iraq, Japan.			Strong:		lesions.
		Port			11.76%).		
					Significant		
					positive		
					correlation		
					between Ki-		
					67 and COX-		
					2 expression		
					in DCs		
					(P=0.018) and		
					ABs		
					(P=0.004).		
	To investigate the	Study Type:			Ki-67	Kruskal-	Higher
Güler et	association between		Immunohistoo	-	expression:	Wallis test,	MCM-2
al.	inflammation and	chemical	hemistry	gical	DF (9 64 +	Mann-	expression
(2012)	the expression of	study.	using Ki-67	examination	5.99), RC	Whitney U	in RCs
[100]	cell cycle markers	-) -	and MCM-2	using	$(12\ 17 + 4\ 49)$	test,	compared to
	Ki-67 and MCM-2	Sample Size:	antibodies.	hematoxylin	DC (7.43 ±	Student's t-	KCOTs
	: : := =				,		

in dental follicles	70 dental		and eosin	3.99), KCOT	test;	suggests a
(DF) and	follicles (DF)		staining.	(16 ± 13.46)	significant	potential
odontogenic cysts.	and 20					sensitivity to
	odontogenic			MCM-2	with P <	inflammatio
	cysts (6			expression:	0.05.	n. Both Ki-
	$\begin{array}{cccc} \text{cysts (6} & & & & \text{expression:} & 0.05. \\ \text{radicular} & & & \text{DF (6.34} \pm \\ \text{cysts (RC), 7} & & & 3.81), \text{ RC} \\ \text{dentigerous} & & & (19.17 \pm 3.76), \\ \text{cysts (DC), 7} & & & \text{DC (7} \pm 4.25), \\ \text{keratocystic} & & & \text{KCOT (15.43} & 10.000) \\ \text{odontogenic} & & & & \pm 14.04). & & \pm 14.04 \\ \text{tumors} & & & & & \pm 14.04 \\ \text{(KCOT)).} & & & & & \text{Significant} \\ & & & & & & \text{correlation} & & & \pm 14.04 \\ \text{odorelation} & & & & \pm 14.04 \\ \text{odorelation} & & & & & \pm 14.04 \\ \text{odorelation} & & & & & \pm 14.04 \\ \text{odorelation} & & & & & \pm 14.04 \\ \text{odorelation} & & & & & \pm 14.04 \\ \text{odorelation} & & & & & \pm 14.04 \\ \text{odorelation} & & & & & \pm 14.04 \\ \text{odorelation} & & & & & \pm 14.04 \\ \text{odorelation} & & & & & \pm 14.04 \\ \text{odorelation} & & & & & \pm 14.04 \\ \text{odorelation} & & & & & \pm 14.04 \\ \text{odorelation} & & & & & \pm 14.04 \\ \text{odorelation} & & & & & \pm 14.04 \\ \text{odorelation} & & $	67 and				
	•			3.81), RC		MCM-2 are
	0			,		useful in
	• • •			, ,		assessing
	•			KCOT (15.43		proliferative
	odontogenic			± 14.04).		activity and
						the influence
	(KCOT)).			~		of
						inflammatio
						n in
						odontogenic
	0 ,					cysts and
	. 0					dental
				-		follicles.
	_					
				•		
	22–67 years).			0.01).		
	Country/Posi					
	Turkey.					
	rurkey.			OKCs		
				showed		OKCs are
				greater		characterize
				proliferative		d by
				potential and		increased
				more		cell
				apoptotic		proliferation
				reactions		and
	Cr. 1 Tr			than DCs.		apoptosis,
To seed that the	Study Type:					indicating a
To evaluate the	Immunohisto			Proliferating		unique
comparative proliferative	chemical			cells		proliferative and
activity and	study.	Immunohistoc hemistry	Histopatholo	primarily in		differentiati
Kim et apoptosis in	Sample Size:	hemistry	gical	the	Statistical	on process.
al. odontogenic	32 OKCs (16	using Ki-67	examination	suprabasal	significance	_
(2003) keratocysts (OKCs)	,	for	using	layer and	not	aggressive
[101] associated with or	impacted	proliferation	hematoxylin	apoptotic	explicitly	behavior or
without an	tooth, 16	and TUNEL	and eosin	cells in the	stated.	recurrence
impacted tooth and		method for	staining.	superficial	statea.	in
between unilocular		apoptosis.	staning.	layer of		multilocular
and multilocular	tooth), 10			OKCs.		OKCs is
OKC varieties.	dentigerous					likely due to
erre varieties.	cysts (DCs).			There is no		incomplete
	-, - 10 (2 00).			significant		removal or
				difference in		other
				proliferative		contributing
				activity or		factors
				apoptosis		rather than
				between		
				OKCs		intrinsic

(2011)	cal expression of				expression in	_	
[103]	syndecan-1 (CD138)		antibodies for	0	85.7% RC,		factor in the
	and Ki-67 in	study.	•	hematoxylin		coefficient;	distinct
	radicular cysts	C 1 C:	(CD138) and	and eosin	and 94.1%	_	histopatholo
	(RC), dentigerous	Sample Size:	Ki-67.	staining.	KOT.	differences	gical
		35 RC, 22 DC,			IV: 47 II: 1	with P <	features and
	keratocystic	17 KOT.			Ki-67: Higher	0.05.	biological
	odontogenic tumors				suprabasal 		behavior of
	(KOT).	Age Range:			expression in		the studied
		RC: Mean age			KOT		lesions.
		42.2 years;			compared to		However, a
		DC: Mean			RC and DC		positive
		age 29 years;			(p < 0.0001).		correlation
		KOT: Mean			D '''		between
		age 45.8			Positive		syndecan-1
		years.			correlation		and Ki-67
		C /D :			between		indicates its
		Country/Regi			syndecan-1		potential
		<u>on:</u> Brazil.			and Ki-67 in RC (n = 0.01)		role in cell
		Brazii.			RC (p = 0.01)		proliferation
					and KOT (p =		in RC and
					0.01).		KOT.
					Intense		
					inflammation		
					reduces		
					syndecan-1		
					expression in		
					RC and KOT.		
					High Ki-67,		
					CD34, and		
					podoplanin		0
					expression		Overexpress
		Charles Trans.			levels were		ion of CD34
		Study Type:			associated		may be a
		Retrospective immunohisto			with tumor		potent predictor of
		chemical			recurrence.		=
		study.			Univariate		tumor recurrence.
	To identify the most	t study.			analysis	Univariate	Radical
	useful markers for	Sample Size:			revealed a	and	treatment of
	predicting the	65 tumor	Immunohistoc	Histopatholo	· ·	multivariate	
Naruse	recurrence of	samples from	hemistry	gical	association	logistic	contact with
et al.	keratocystic	63 nationts	using	examination	between high	regression	tumors is
(2017)	_	s patients.	antibodies for	using	CD34	analyses;	recommend
[104]	(KCOTs) by	Age Range:	Ki-67, CD34,	-	-	significant	ed to
	evaluating the	Median age:	and	and eosin	and tumor	differences	prevent
	expression profiles	41 vears	podoplanin.	staining.	recurrence	with P <	recurrence.
	of Ki-67, CD34, and	(range 10-87			(P=0.034), as	0.05.	Conservativ
	podoplanin.	years).			well as		e treatment
		,>)•			conservative		was
		Country/Regi			surgical		significantly
		on:			treatment		associated
		Japan.			(P=0.003).		with higher
		y . F			Multivariate		recurrence
					analysis		rates.
					identified		
					conservative		
					treatment as		

							02
Selvi et al. (2012) [105]	nucleolar organizing regions (AgNOR) in differentiating recurrent and non- recurrent keratocystic odontogenic tumors	Sample Size: 22 KCOT cases. Country/Regi on:	Immunohistoc hemistry for Ki-67 and silver staining for AgNOR.	gical examination using hematoxylin	the greatest independent risk factor for tumor recurrence (odds ratio=13.337, P=0.018) Recurrence in 3 patients (13.6%) during a mean follow-up period of 37.8 months (about 3 years). Significantly higher Ki-67 and AgNOR counts in recurrent lesions compared to non-recurrent lesions (p = 0.045 for Ki-67; p = 0.049 for AgNOR). Positive correlation between Ki-67 and AgNOR counts (r = 0.853, p = 0.0001).	test, Fisher's exact test, and Spearman's correlation;	Ki-67 and AgNOR may serve as prognostic markers for KCOT recurrence. The findings support the classification of KCOT as an odontogenic tumor and suggest that enucleation with
							_
Ba et al. (2010) [106]	between radiographic	Study Type: Retrospective radiographic and immunohisto chemical study.	hemistry	Histopatholo gical examination using hematoxylin and eosin staining.	types: Unilocular (64.79%),	ANOVA, least significant difference test; significant differences	A high correlation exists between the biological behavior of KCOTs and their

	NDCC	20 14 D 4	
odontogenic tumors <u>Sample Size:</u> (KCOTs). 284 KCOT	NBCC associa		imaging features. The
cases for	(3.52%		solitary
radiographic	(3.327	0).	KCOTs
analysis; 30	<u>Ki-6</u>	7	seem less
cases for Ki-	express		biologically
67	Higher		aggressive
immunohisto	NBCC		and should
chemical	associa		be classified
analysis.	KCO	Тs	as cysts
•	compare	ed to	rather than
Age Range:	solitary		tumors.
Mean age: 32	multip	ole	More than
years (range	KCO	Тs	half of
9–87 years).	(P=0.0	18,	KCOTs
	0.002	2).	manifest as
<u>Country/Regi</u>			ordinary
<u>on:</u>	Signific	cant	cysts.
China and	differen	ce in	
Japan.	Ki-6'		
	express	sion	
	betwe		
	multiloo		
	and		
	unilocul		
	BCCS		
	associa		
	KCO:		
	(P=0.00	*	
	No		
	signific differe		
	betwe		
	solitary		
	multi		
	KCO		
	(P=0.22		
	COX-		COX-2 may
	express		be an
	Mild		important
	strong		marker
	100%		involved in
To investigate the	cases	S.	the
association between Immunohisto		Statistical	biological
the expression of chemical hemistry	Histopatholo <u>p53</u>	relevance of	behavior of
Mendes cyclooxygenase-2	gical <u>express</u>	olifferences	K('(')T'
et al. (COX-2) in COX-2 anti-	examination Positive	e in	Despite its
(2011) Keratocystic Sample Size: Ki-67 and	using 75% of c	cases. COX-2, Ki-	rare usage in
[107] odontogenic tumors 20 KCOT anti-n53	nematoxylin	67, and p53	assessing
(KCO1) and more hiopsy monoclonal	and eosin <u>Ki-6'</u>	expressions	KCO1S, ItS
commonly used specimens antibodies	staining. <u>express</u>	not found	roie in
markers, such as	Positive	e in	tumorigenes
p53 and Ki-67.	90% of c	ases.	is suggests
	3. T		its
	No		significance.
	statistic	•	Larger studies are
	signific differe		
	differe	iice	required to

	between the understand
	expressions the possible
	of COX-2, Ki-role of COX
	67, and p53. 2 in KCOT
	pathogenio
	mechanism
	Significant
	<u>Ki-67:</u> Weak differences
	in dental in Ki-67 and
	follicle (12), PCNA
	moderate in expressions
Study Type:	dentigerous among
Immunohisto	cyst (14), dental
chemical	intense in follicle,
study.	ameloblasto dentigerou
	ma (10). cyst,
To investigate the Sample Size:	unicystic
expression of	PCNA: Weak Cni-square ameloblasto
Nafarza PCNA and Ki-67 in	in dental test, Pearson ma and
deh et dental follicle, dental hemistry gical	follicle (12), correlation, ameloblaste
al. dentigerous cyst, follicle, using anti-Ki- examinat	moderate in One way ma. Ki-67
(2013) unicystic dentigerous 67 and anti-	dentigerous and PUNA
[108] ameloblastoma and cyst, PCNA nematoxy	ylin cyst (14) significant can be used
ameloblastoma to unicystic monocional and eos	in differences to estimate
assess their ameloblasto antibodies. staining	amelohlasto proliterativ
proliferative status.	ma (13). 0.05. promerative status and
ameloblasto	aggressiven
ma.	<u>Correlation</u> ss, aiding in
	<u>coefficient</u> understand
<u>Country/Regi</u>	<u>between Ki-</u> ng the
<u>on:</u>	<u>67 and</u> biological
Iran.	PCNA: 0.88, behavior
	statistically and
	significant prognosis o
	(P<0.001). these
	lesions.
	Recurrence High Ki-67
	rate: 12.5% (4 expression
	out of 32 in the basa
	subjects). layer of
To determine Study Type:	KCOTs is
prognostic factors Retrospective	<u>High Ki-67</u> significantly
for the recurrence study	<u>expression</u> associated
Kurova of keratocystic Histopath	
nagi et odontogenic tumors Sample Size. Immunonistoc gical	basal layer: Cox recurrence
al. (KCOTs) following 32 subjects hemistry examinat	1 1
(2009) simple enucleation diagnosed using using	
[109] by examining with KCOT antibodies for nematoxy	
clinico-pathologic K1-67 and pos. and eos.	ě .
and <u>Country/Regi</u> staining	•
immunohistochemi <u>on:</u>	group (P = guide the
cal findings. Japan.	0.025). use of
· · · · · · · · · · · · · · · · · · ·	appropriate
	<u>p53</u> adjunctive
	expression: surgical
	75.0% in procedures
	recurrent to prevent

					group vs. 39.3% in non-		recurrence and serve as
					recurrent group (P =		a prognostic marker.
					0.295). Hazard risk for recurrence with high Ki- 67 expression: 4.02 (95% CI 1.42–18.14, P = 0.009). Clinical findings: All		
Ono et al. (2022) [110]	To determine the clinical, pathological, and genetic characteristics of multiple orthokeratinized odontogenic cysts (OOC).	Sample Size: 3 cases of multiple	Immunohistochemistry using antibodies for Ki-67 and Bcl-2; Next-generation sequencing (NGS) for PTCH1 mutations.	Histopatholo gical examination using	orthokeratini zed stratified squamous epithelium; no OKC features observed. Immunohisto chemical findings: Low Ki-67 labeling		Multiple OOCs occur more often in younger patients and show mild biological behavior with no recurrence, distinguishi ng them from OKCs. Both multiple and solitary OOCs are considered related diseases within the entity of odontogenic
Park et al.	To assess changes in histology and	Study Type:	Immunohistoo hemistry	: Histopatholo gical	Decompressi		cysts and are distinct from OKCs.
(2020) [111]	expression of proliferation	Clinical and immunohisto	using antibodies for	examination	on period: 4 to 12 months	~	ssignificantly change the

markers in	chemical		hematoxylin		considered	~
odontogenic	study.	Ki-67, P53,	and eosin	months).	significant.	behavior or
keratocysts (OKCs)		PCNA, and	staining.			recurrence
before and after	Sample Size:	SMO.		No		rate of
decompression	38 OKC			significant		OKCs.
treatment.	tissue			change in		EGFR values
	samples from			Bcl-2, Ki-67,		changed
	19 patients.			P53, PCNA, and SMO		significantly, but no other
	Age Range:			values before		markers
	Mean age:			and after		showed
	38.8 years			decompressio		significant
	(range 19–81			n.		change,
	years).					indicating
	,			Significant		decompressi
	Country/Regi			change in		on does not
	on:			EGFR values		reduce the
	South Korea.			before and		aggressive
				after		behavior of
				decompressio		OKCs.
				n (P = 0.040).		
				There is no		
				correlation		
				between		
				clinical shrinkage		
				and		
				morphologic		
				changes or		
				expression of		
				proliferation		
				and growth		
				markers.		
				OKCs		
				recurred in 3		
				patients'		
				post-		
				decompressio		
				n. Dental		Ki67 and
To analyze the	Study Type:			follicles:		MCM3 are
immunoexpression	Immunohisto			Positive for		the most
of Ki67, p53,	chemical			PCNA	C1 :	useful
MCM3, and PCNA	study.			(96.77%),	Chi-square	markers for
in dental follicles of	,	Immunohistoc	Histopatholo	, ,	test, Mann-	evaluating
Coşarcă impacted teeth, dentigerous cysts	Sample Size:	hemistry	gical	(90.32%),	Whitney	the
et al. (DCs) and	62 dental	using	examination	MCM3	test, Spearman's	proliferative
(2016) keratocystic	follicles of	antibodies for	U	(74.19%), p53	correlation;	capacity and
[112] odontogenic tumors	impacted	Ki67, p53,	hematoxylin	(64.51%).	significant	distinguishi
(KCOTs) to	teetn, 20 DCs,		and eosin		differences	ng between
evaluate their	20 KCOTs.	PCNA.	staining.	Significant	with P <	DCs and
proliferative	C			differences in	0.05.	KCOTs.
capacity and	Country/Regi			Ki67, p53,		KCOTs
evolutionary	<u>on:</u> Pomania			and MCM3		show more
behavior.	Romania.			between basal and		aggressive behavior
				vasai dilu		Dellavior

		11.1
	parabasal	and higher
	layers in DCs	proliferative
	and KCOTs.	capacity
		compared to
	Positive	DCs.
	correlation	
	between Ki67	
	and MCM3 in	
	basal and	
	parabasal	
	layers of	
	KCOTs.	
	Ki67 and	
	MCM3 are	
	useful in	
	distinguishin	
	g between	
	DCs and	
	KCOTs.	
	<u>Ki-67 LI in</u>	
	<u>benign</u>	
	<u>odontogenic</u>	
	<u>tumors:</u> < 5%.	
	<u>Ki-67 LI in</u>	
	<u>malignant</u>	
	<u>odontogenic</u>	
	tumors:	Ki-67 LI is a
	>15.3%.	reliable
		marker for
	Highest Ki-67	distinguishi
	LI in Random-	_
	ameloblasto effects	benign and
Study Type:	ma (4.39 ± model for	_
Iabbarz 10 assess the KI-6/	Histopatholo 0.47) among	I odontogenic
labeling index (LI) adeh et review and review and		% lesions. The
al. in odontogenic meta-	toc examination tumors. CI;	high Ki-67
cysts and filmors hemistry to	or using significan	
through a Ki-6/	homotovalin Highort Ki 6'/ °	
[113] systematic review Samula Since	and eosin <u>LI in</u> heterogene	eit suggests
and meta-analysis Sample Size:	staining odontogenic y (Q=/43.0	
608 lesions.	cycts:	more like
	odontogenic P<0.001,	tumors,
	keratocyst I2=96.23)	1 5 0
	(OKC) (3.58 ±	need for
	0.51).	tumor-like
	,	treatment
	Significant	plans.
	difference in	
	Ki-67 LI	
	between	
	malignant	
	and benign	
	odontogenic	
	lesions (P <	
	0.001).	
	0.001).	

Bhola ei al. (2024) [114]	To compare the expression of MCM-3 and Ki-67 in odontogenic cysts and evaluate the sensitivity of these markers to inflammation.	dentigerous cysts, 37	Immunohistoo hemistry using antibodies for Ki-67 and MCM-3.	gical examination	MCM-3 proteins proved more accurate for determining proliferation potential and were not sensitive to external stimuli like inflammation	Statistical analysis with P < 0.05 considered significant.	MCM-3 is a more accurate marker for determining proliferation potential and is not influenced by inflammatio n, unlike Ki-67, making it more reliable for evaluating odontogenic cysts.
Embaló et al. (2018) [115]	To evaluate the metabolism and epithelial cell proliferation of odontogenic keratocyst (OKC), dentigerous cyst (DC), and unicystic ameloblastoma (UA) by quantifying the nucleolar organizing regions (AgNORs) and Ki-67 protein immunoexpression	Sample Size: 16 OKC, 16 DC, 16 UA.	Immunohistoo hemistry for Ki-67 and AgNOR.	Histopatholo gical examination using hematoxylin and eosin staining.	suprabasal cell layers of OKC with	Significant differences with P < .001.	Ki-67 and AgNOR reinforce the aggressive character of OKC, presenting high metabolism and cellular proliferation compared to DC and UA, possibly due to its more aggressive clinical behavior and high recurrence rate.

							69
					cell layers		
					and observed		
					throughout		
					the lining		
					epithelium of		
					DC and UA.		
					OKC		
					presented		
					high		
					metabolism		
					and cellular		
					proliferation		
					compared to		
					DC and UA,		
					suggesting its		
					aggressive		
					clinical		
					behavior and		
					high		
					recurrence		
					rate.		
					<u>Ki-67</u> expression:		
					60% in Group		
					1 (18-29		
					years), 75% in		
					Group 2 (30+		DE I
					years).		DFs have
					•		more
					Significant		proliferative potential in
		Study Type:			differences in		older
	To assess the cell	, , ,			Ki-67		individuals
	proliferation	chemical			expression		compared to
	activity of dental	study.			between the		younger
	follicles (DF)	-			two age		ones.
Kucukk	surrounding	Sample Size:		Histopatholo	groups in both basal		Squamous
olbasi et	asymptomatic	44 specimens l	Immunohistoc	~	and sunra-	Statistically	•
al.	impacted third	of DFs.	hemistry	examination	basal layers.	significant	may be an
(2014)	molar teeth using		using Ki-67	using	-	differences	, 0
[116]	the Ki-67	Age Range:	monoclonal	hematoxylin	Histological	with P <	developing
	proliferation	18 to 62 years	antibody.	and eosin	examination	0.05.	odontogenic
	marker and to evaluate the	(mean age: 32		staining.	showed		lesions, and
	variation of cell	years).			higher		histopatholo
	proliferation	Country/Regi			squamous		gical changes
	depending on age.	on:			proliferation		could be
		Turkey.			and		found in
		J.			inflammation		DFs without
					in older		clinical and
					patients.		radiographic
					Sauamous		alterations.
					Squamous metaplasia		
					was observed		
					in all follicles,		
					indicating a		
					potential		

				early sign of		
				developing		
				odontogenic		
				lesions.		
				<u>Mean</u>		
				AgNORs per		
				<u>nucleus</u>		
				(mAgNOR):		
				1.43 (range:		
				1.0-2.42),		Odontogeni
				with		c epithelial
				significant		cells in some
				differences		pericoronal
				among		follicles
				pericoronal		have
				follicles from		proliferative
To evaluate the	Study Type			upper and		potential,
proliferative	Study Type: Immunohisto	Silver		lower teeth (p		suggesting
potential and cell	1 . 1		Wistonatholo	= 0.041).		their
Cimado proliferation rate of	chemical	impregnation technique for	gical			association
n et al. odontogenic	study.	AgNOR,	examination	Ki-67	Significant	with the
(2014) epithelial cells	Sample Size	immunohistoc		immuno stain	differences	developmen
[117] using AgNOR and	42 cases of	hemical	hematoxylin	ing was	with P <	t of
K1-67, and to	pericoronal	staining for	and eosin	negative in	0.05.	odontogenic
perform	follicles of	Ki-67 and	staining.	all cases.		lesions.
immunohistochemi	impacted	EGFR.	staning.			Non-
cal staining for	third molars.			EGFR		erupted
EGFR.				immunolabel		teeth,
				ing was		especially of
				mainly		the lower
				cytoplasmic		jaw, should
				and more		be
				intense in		monitored
				islands and		and possibly
				cords		removed.
				compared to		
				the reduced		
				epithelium of		
				the enamel		
	O: 1 F			organ.		TC: CF 1
	Study Type:			<u>Ki-67:</u>		Ki-67 and
	Immunohisto			Positive		GPC3 are
	chemical			correlation		valuable
	study.			with		markers for
To distinguish	C1- C:			aggressivenes		differentiati
aggressive from	Sample Size:	I	Histopatholo	s ($P < 0.001$).	Pearson	ng
Chatury nonaggressive		Immunohistoc	gical	CDC2. Massa	correlation	aggressive
edi et al. benign odontogenic	ameloblasto	hemistry	examination	GPC3: More	coefficient; I	from
(2022) tumors using the	mas (8	using	using	useful than	< 0.001	nonaggressi
[118] immunohistochemi	follicular, 8	antibodies for Ki-67 and	hematoxylin	Ki-67 in	considered	ve benign
cal expression of Ki-	plexiform, 4	GPC3.	and eosin	distinguishin	highly	odontogenic
67 and Glypican-3	acanthomato	GrC3.	staining.	g	significant.	tumors. GPC3 is
(GPC3).	us), 4		_	aggressivenes		
	unicystic ameloblasto			s among		more sensitive in
	mas, 28			aggressive tumors (P <		determining
				0.001).		the
	keratocystic			0.001).		
	odontogenic					aggressivene

	tumors (KCOTs), 5 adenomatoid odontogenic tumors, and 2 calcifying cystic odontogenic tumors. Country/Region: India.			Intensity of GPC3: Maximum in plexiform ameloblasto ma, followed by follicular and acanthomato us ameloblasto mas, and		ss among aggressive odontogenic tumors.
	Huiu.			KCOTs GPC3 is not expressed in unicystic ameloblasto mas. <u>Initial</u> <u>diagnosis:</u>		OKC can transform
To describe the transformation of an odontogenic keratocyst (OKC) into a solid variant of odontogenic keratocyst/keratoa meloblastoma (SOKC/KA) during long-term followup and analyze genetic mutations.	Sample Size: Single case study. Age Range: 26-year-old man at initial presentation.	for mutations.	Histopatholo gical examination using hematoxylin and eosin staining; CT imaging.	Recurrence: transformed to SOKC/KA with higher Ki-67 (~10%) and p53 positivity compared to primary lesion. Genetic mutations: APC (p.Arg876*), KRAS (p.Gly13Asp), and TP53 (p.Val31Ile). IHC: p-S6 and p-ERK1/2 positive in recurrent lesions.		into SOKC/KA upon recurrence, indicated by increased proliferative activity and genetic mutations. The study suggests a close histogenetic relationship between OKC and SOKC/KA, and emphasizes the importance of genetic analysis in understandi ng tumor behavior.
To analyze the Dong et clinicopathologic al. features of 61 cases (2010) of Orthokeratinized [120] Odontogenic Cysts (OOCs) in a Chinese population	and l immunohisto chemical study.	Immunohistoc	and	9.84% are maxilla.	Expression levels of Ki- 67 and p63 were significantly lower in OOCs compared to KCOTs (P < 0.001).	ogically distinct from KCOT and should constitute its

		61 cases of			s, 12.96%		
		OOC.			multilocular.		
		Age Range:			50%		
		13 to 75 years			associated		
		(average			with an		
		38.93 years).			impacted		
					tooth.		
		Country/Regi					
		on:			No		
		China.			recurrence in		
					42 patients		
					after 76.8		
					months		
					(about 6 and		
					a half years)		
					follow-up		
							The
							proliferative
		Study Type:			Fewer Ki-67 +	_	activity,
		Original			cells in		evaluated by
		Research			radicular		Ki-67
		Article.			cysts,		marker, was
		Tittele.			dentigerous		significantly
	 Analysis of 	Sample Size:			cycte and	Two-tailed	greater in
	histopathologic	10 cases of		Histopatholo	sialo-	P value <	the
	findings in			gic		0.0001.	epithelial
Mustan	odontogenic cysts	odontogenic		examination	odontogenic		lining before
sir-Ul-	before and after	cysts.	Immunohistoo	of incisional	cyst	Confidence	e decompressi
Hassnai	decompression.	A as Panası	hemistry	and	compared to	interval	on
n et al.		Age Range:	using Ki-67	excisional	odontogenic	95%.	compared to
(2021)	2. Analysis of Ki-67	Average age	monoclonal	biopsies	keratocysts		after
[121]	expression in	26 ± 9.2 years	antibody.	before and	(OKCs).	Hazard ratio	decompressi
	odontogenic jaw	(range not specified).		after	Arranaga	for	on.
	cysts before and	specified).		decompression	Average	recurrence	Decompress
	after	Country/Posi		n.	scores were	not	ion
	decompression.	Country/Regi			2.2 before	applicable.	significantly
		on:			and 1 after		diminishes
		Greater			decompression		the
		Noida, Uttar			n (statistically		proliferative
		Pradesh,			significant		rate of the
		India.			difference).		cystic
							epithelial
							lining.
		Study Type:			Increased	P values:	
		Original			inflammation	0.029	Surgical
		Study.		Surgical	(p=0.029),	(inflammati	Surgical decompressi
	To evaluate the			Surgical decompression	loss of	on), 0.007	on induces
Trujillo-	histological effects	Sample Size:		n with	, parakeratiniz	(parakeratir	structural
Gonzále	of decompression	21 samples.	Immunohisto	٦	ation	ization),	
z et al.	treatment on OKC,		hemistry (Ki-	histological evaluation	(p=0.007),	0.002	changes in OKC but
(2022)	including cell	Age Range:	67, MCM4/7,	_	absence of	(palisade	does not
[122]	proliferation and	9-58 years.	Bax, Bcl2).	and	palisade cell	cell	
	apoptosis of			immunohisto	distribution	distribution	significantly
	epithelial cyst.	Country/Regi		chemical	(p=0.002).	, 0.323 (Ki-	alter cell
	-	on:		staining.	No	67), 0.079	proliferation or apoptosis
		Venezuela,			significant	(MCM4/7),	or apoptosis.
		Uruguay.			changes in	0.392 (Bax),	

					D.1.0 :	
				expression of	Bcl-2 not	
				Ki-67	specified.	
				(p=0.323),		
				MCM4/7,		
				Bax, or Bcl-2.		
				<u>Demographic</u>		
				Findings: 28		
				males and 20		
				females, with		
				an average		
				age of 33.50		
				years.		
						OOCs
				Location: 40		predominan
				cases in the		tly affect the
				mandible and		mandible,
				8 in the		exhibit
				maxilla.		lower
						proliferative
				Radiological		activity than
				Features: All		OKCs, and
<u>Stı</u>	udy Type:	Immunohistoc	,	OOCs were	Ki-67	are
	rospective	hemistry was	Histological	unilocular	Expression:	
	nicopatnoi	performed	examination	radiolucencie	OOCs:	with
•	gical and	using a	and	s with well-	2.50% ±	buccolingual
To demonstrate the rac	diological	DAKO	radiological	defined	0.25%,	expansion
clinicopathological a	analysis.	AutostainerLi	imaging	margins,	OKCs:	and cortical
and radiological <u>Saı</u>	<u>mple Size:</u>	nk 48, with	(panoramic	83.33%	12.50% ±	bone
features of 48 G	OOC cases	paraffin-	radiographs	showed	1.42%, p <	destruction.
Zhou et orthokeratinized an	d 20 OKC	embedded	and CT) were	buccolingual	0.001.	Due to their
al. odontogenic cysts	cases.	samples cut	used to	expansion.	0.001.	lower
(2022) (OOCs) and analyze		=	diagnose	expansion.	Cyclin D1	
[123] the epithelial cell As	ge Range:	into 4-µm	OOCs. The	I lintal animal	•	aggressivene
proliferative	13 to 61	sections,	presence of	Histological	_	
activity between	years.	deparaffinize	orthokeratini	<u>Features:</u>	OOCs:	recurrence
OOCs and		d, and	zed stratified	Thin,	9.71% ±	rate,
odontogenic <u>Cor</u>	untry/Regi	rehydrated.	squamous	uniform	1.38%.	minimally · ·
keratocysts (OKCs).	on:	Ki-67 and	epithelial	orthokeratini	01/0	invasive
S	hanghai	cyclin D1	lining	zed lining	OKCs:	surgical
	Ninth	antibodies	characterized	epithelium	32.50% ±	methods like
I	People's	were used for	OOCs.	with a	3.98%, p <	enucleation
	Hospital.	staining.		prominent	0.001.	or
	1			granular cell		decompressi
				layer.		on followed
						by
				<u>Proliferative</u>		enucleation
				<u>Activity:</u> Ki-		are
				67 and cyclin		recommend
				D1		ed for
				expression		treating
				were		OOCs.
				significantly		
				lower in		
				OOCs		
				compared to		
				OKCs (p <		
				0.001).		

					Treatment: 40)	
					cases treated		
					with		
					enucleation, 8	}	
					with		
					decompression)	
					n followed by		
					enucleation.		
					criacication.		
					Follow-Up:		
					Average		
					follow-up of		
					32.50 ± 27.58		
					months		
					(about 2 and		
					a half years),		
					with a 4.44%		
					recurrence		
					rate.		
					<u>Ki-67</u>		
					Expression:		
					<u>UA:</u> 26.1%.		
						<u>Ki-67 LI:</u>	
					OKC: 66.7%,	UA: 1.3%.	
					DC: 12.5%,		
					RC: 10.0%.	OKC: 7.7%.	
					The mean Ki-		
					67 LI was	DC: 1.7%.	
			Five		1.3% for UA,		
		Study Type:	micrometer		7.7% for	RC: 15.3%.	
		Retrospective			OKC, 1.7%	Significant	
	To compare the	analysis.	were made		for DC, and	difference	
	proliferative	,	from the	***	15.3% for RC.	between UA	The Ki-67 LI
	capacity and	Sample Size:	tissue blocks	Histopatholo		and OKC (P	
	antiapoptotic	23	and mounted	gical	Bcl-2	= 0.024).	differentiate
	capacity of	histopatholog		examination	Expression:	,	OKC from
Orikpet	unicystic	ically	glass slides.	was used for	<u>UA:</u> 69.6%.	Bcl-2 LI:	UA, and the
e et al.	ameiobiastoma	diagnosed	Immunohistoo	diagnosis,			Bcl-2 LI may
(2020)	(UA), odontogenic	UAs, 6 OKCs,		confirmed by	OKC: 83.3%.		be useful in
[124]	keratocyst (OKC),	8 DCs, and 10	•	nematoxylin		OKC: 58.8%	differentiati
[]	dentigerous cyst	RCs were	using Ki-67	and eosin	DC: 62.5%.	<u> </u>	ng UA from
	(DC), and radicular	selected from	and Bcl-2	staining of		DC: 5.2%	DCs, as well
	cyst (RC) by	archival	primary	fresh sections	<u>RC:</u> 50.0%.	<u>20.</u> 0.270.	as OKC
	assessing the Ki-67	specimens.	antibodies,	from the	The mean	<u>RC:</u> 10.3%.	from DC
	labeling index (LI)	эресписия.	followed by	tissue blocks.	Bcl-2 LI was		and RC.
	and Bcl-2 LI,	Country/Regi	-		44.7% for UA	U	and icc.
	respectively.	, ,	detection and			between UA	
		<u>on:</u> Nigeria.	staining				
		Nigeria.	procedures.			,	
			procedures.			,	
					10.3% for RC.		
					Ctatistics1	OKC and	
						both DC (P	
					Significance:	,	
					Significant	RC (P =	
					differences in	0.049).	
					Ki-67 LI		
					between UA		
					and OKC (P =	=	

0.024).	
Significant	
differences ir	ı
Bcl-2 LI	
between UA	
and DC ($P =$	
0.048), and	
between	
OKC and	
both DC (P =	
0.026) and RC	-
(P = 0.049).	
All cases	
were in the	
anterior	
gingiva (2 in	
maxilla and 1	POKC is a
in mandible)	rare gingival
The aim of this	lesion that
study is to present Immunohistoc None of the	seems to
and discuss the Study Type: hemical study cases	originate
salient Case series included CK7, corresponded	from
clinicopathological and literature CK14, CK19, Diagnosis of to Gorlin-Lafuent	remnants of
e-Ibáñez i	dental
de diagnosis, and systematic based on syndrome.	lamina or
Mendoz epithelial Sample Size: review of the clinicopathol munohistochemi 3 new cases literature was ogical High	Not from the
a et al. cal profile of three of POKC (2 performed features and expression of	applicable. basal cells of
(2022) additional cases of women and 1 using immunohisto CK14 in all	the gingival
11251	epithelium
peripheral man; age PubMed, chemical cases, CK19 odontogenic range: 14-74 Scopus, and profile. and CK7	and presents
keratocyst (POKC) years). Web of were only	a similar
and to present a Science focally	histopatholo
review of the databases. positive, and	gy as
literature. Ki-67	compared to
expression	intraosseous
was in the	OKC.
basal and	
parabasal	
cells in all	
cases.	

4.7. Therapeutic Insights and Surgical Management

Understanding the molecular and biochemical underpinnings of odontogenic lesions, particularly odontogenic keratocysts (OKC), has significantly improved their therapeutic management and surgical outcomes. Insights into the biochemical behavior of these lesions have led to the refinement of surgical techniques and the development of treatments tailored to their specific pathophysiological features.

Marsupialization, a pre-surgical technique used for OKCs, not only reduces the size of the lesion but also induces biochemical changes within the cyst, such as increased Slug expression [126]. These changes are associated with fibrosis of the cyst wall, which facilitates easier surgical removal and reduces the likelihood of aggressive recurrence. The biochemical insights gained from studying odontogenic lesions have led to significant improvements in surgical management. Techniques like marsupialization, which have been shown to alter biochemical markers within the cyst, are now routinely used to prepare lesions for less invasive surgery, reducing the risk of recurrence. The use of pre-surgical marsupialization based on biochemical marker changes exemplifies how molecular

insights are integrated into surgical planning, enhancing therapeutic outcomes by modifying the biological behavior of lesions before more definitive surgical interventions.

These therapeutic insights emphasize the importance of considering the biological behavior of lesions in surgical planning, moving beyond mere removal to positively influencing the lesion's biochemical environment. Utilizing biochemical markers like Slug in surgical planning allows for more customized and effective interventions, aiming to minimize the risk of recurrence and enhance overall treatment outcomes.

Research into the effects of marsupialization has shown that this procedure significantly increases epithelial thickness and collagen production within the cyst wall [126]. These changes are crucial for reducing the size and aggressiveness of OKCs, facilitating their surgical management. Furthermore, the study by Baris et al. highlighted that marsupialization leads to a significant reduction in the radiographic size of OKCs and an increase in fibrosis, which are key factors in preventing recurrence [126].

The potential for new therapeutic targets based on the molecular and biochemical profiles of odontogenic lesions points towards an era of targeted, specific treatments. For instance, targeting pathways involved in epithelial-mesenchymal transition (EMT) and inflammation could provide new avenues for therapy. The increased expression of Slug post-marsupialization indicates its role in EMT and fibrosis, suggesting that therapies targeting Slug could enhance the efficacy of marsupialization and other surgical interventions.

The advancements in understanding the molecular and biochemical behavior of odontogenic lesions have significant implications for personalized therapy. By integrating molecular insights into surgical planning and postoperative management, clinicians can tailor interventions to the specific characteristics of each lesion, improving patient outcomes. The use of targeted therapies alongside traditional surgical methods could further reduce recurrence rates and enhance the overall effectiveness of treatment.

In summary, the study of the molecular and biochemical aspects of odontogenic lesions, particularly OKCs, has led to significant advancements in their therapeutic management. The integration of biochemical markers into surgical planning and the development of targeted therapies promise to improve patient outcomes by aligning treatment strategies with the underlying causes of lesion behavior [126] (Table 7).

Table 7. Therapeutic and Surgical Managment (OKCs).

Autho	Objective	Study Details	Marker Identification Method	Cyst/Tumor Diagnosis Method	Results	Statistical Estimates	Conclusion
Baris	on on	Retrospective analysis. Sample Size: 48 paraffine blocks of 24 OKC cases between 2012 and 2018. Country/Region:	TNF α , Slug, and Snail was performed on 4 μ m thick sections of formalin-fixed paraffin OKC sections. The BOND Polymer Refine Detection Kit and BOND Polymer Refine Red Detection Kit were used for staining on the	Diagnosis was based on histological and histomorphomet ric analysis, and radiological data including measurements on orthopantomographs.	Marsupializa tion Period: Mean period was 8.8 ± 6.5 months (range: 3-25 months). Radiographic Findings:	= 0.002). <u>Collagen</u> <u>Production:</u> Increased significantly post- marsupialization (P =	may contribute to
			Leica BOND-		Mean size of		fibrosis,

MAX fully	OKC <u>Inflammatio</u> potentially
automated IHC	significantly <u>n Scores:</u> aiding in
and ISH staining	reduced from Positive subsequent
system.	57.1 ± 53.5 correlations surgical
	mm to 22.6 \pm with TNF α procedures.
	19.9 mm after and IL-1 α
	marsupializat expressions
	ion (P = $(P < 0.001)$
	0.002). and $P =$
	0.008,
	<u>Histological</u> respectively).
	Findings:
	Increased <u>Slug</u>
	epithelial <u>Expression:</u>
	thickness (P = Significantly
	0.002) and higher in the
	collagen connective
	production tissue post-
	(P = 0.034) marsupializa
	post- tion (P =
	marsupializat 0.019).
	ion. Positive
	correlation of
	inflammation
	score with
	TNF α (r: 0.69,
	P < 0.001)
	and IL-1 α (r:
	0.58, P =
	0.008)
	expressions
	in connective
	tissue.
	Significant
	increase in
	Slug _.
	expression
	after
	marsupializat
	ion (P =
	0.019).

4.8. Emerging Markers and Therapeutic Targets

The treatment landscape for odontogenic lesions, such as odontogenic keratocyst (OKC), adenomatoid odontogenic tumor (AOT), and ameloblastoma (AB), is evolving rapidly due to new discoveries in molecular markers and therapeutic targets like survivin, EGFR, BMP4, FOXN1, and paxillin [127–130]. These markers are shifting treatment paradigms from traditional surgical interventions to innovative, targeted therapies that address the underlying molecular and genetic drivers of these lesions.

Research into these molecular pathways and genetic mutations has unveiled new therapeutic opportunities. For instance, the roles of molecules such as survivin and EGFR suggest novel approaches for managing lesion growth. Studies have demonstrated that survivin expression is highest in ameloblastoma, followed by OKC, AOT, and reduced enamel epithelium, suggesting that survivin plays a role in inhibiting apoptosis and influencing the biological behavior of these lesions [127]. Similarly, EGFR and survivin have been shown to play crucial roles in the pathogenesis of

ameloblastoma, OKC, and calcifying odontogenic cyst, highlighting the potential of targeting these markers in therapeutic approaches [128].

Differences in BMP4 and FOXN1 expression are opening new diagnostic and treatment avenues, potentially allowing for the modulation of cellular behaviors within lesions. Higher expression of BMP4 and FOXN1 in orthokeratinized odontogenic cysts (OOCs) compared to OKCs suggests a higher level of activation of pathways involved in more mature epithelial differentiation in OOCs, potentially contributing to their more benign behavior [129]. This distinction could aid in differential diagnosis and guide targeted therapeutic strategies.

The discovery of new molecular markers and therapeutic targets is transforming the treatment landscape for odontogenic lesions. The identification of EMT-related markers such as Snail and Slug in odontogenic cysts has prompted the exploration of EMT inhibitors as potential therapeutic options, aiming to prevent the invasive progression of these lesions. Significant expression of EMT markers like Snail and Slug in keratocystic odontogenic tumors (KOTs) suggests their role in EMT induction and potential as targets for therapeutic intervention [132].

The exploration of markers related to cell growth, apoptosis, and EMT is leading to therapies that directly target these cellular processes. Such targeted approaches are part of a broader shift towards precision medicine in the treatment of odontogenic lesions, aiming for more effective management with fewer adverse effects and more personalized treatment plans. Differential protein expressions in peripheral ameloblastoma and oral basal cell carcinoma have been shown to aid in accurate classification and tailored treatments [138].

Understanding the molecular and biochemical underpinnings of odontogenic lesions, particularly OKCs, has significantly improved their therapeutic management and surgical outcomes. Insights into the biochemical behavior of these lesions have led to the refinement of surgical techniques and the development of treatments tailored to their specific pathophysiological features. For example, marsupialization, a pre-surgical technique used for OKCs, not only reduces the size of the lesion but also induces biochemical changes within the cyst, such as increased Slug expression [126]. These changes are associated with fibrosis of the cyst wall, which facilitates easier surgical removal and reduces the likelihood of aggressive recurrence. Marsupialization significantly reduces the size of OKCs and increases epithelial thickness and collagenization, suggesting fibrosis and cyst wall strengthening, thus supporting its use as an effective treatment for reducing OKC size and potential recurrence [126].

These therapeutic insights emphasize the importance of considering the biological behavior of lesions in surgical planning, moving beyond mere removal to positively influencing the lesion's biochemical environment. Utilizing biochemical markers like Slug in surgical planning allows for more customized and effective interventions, aiming to minimize the risk of recurrence and enhance overall treatment outcomes.

The potential for new therapeutic targets based on the molecular and biochemical profiles of odontogenic lesions points towards an era of targeted, specific treatments. These advancements promise to align therapeutic strategies more closely with the underlying causes of a lesion's behavior, enhancing the effectiveness of interventions and leading to better patient outcomes [127–130].

In summary, the evaluation and incorporation of molecular and biochemical markers in the management of odontogenic lesions represents a significant advancement in the field. These markers provide crucial insights into how these lesions develop and respond to treatments, improving the prediction of outcomes and enabling more effective planning and execution of therapeutic strategies. Ongoing research into these markers is vital for refining management approaches and achieving better patient care outcomes (Table 8).

Table 8. Markers and Therapeutic Targets (OKC, AOT, AB, Survivin, EGFR, BMP4, FOXN1, paxillin).

Author s	Objective	Marker Study Details Identificat Method	ion Diagnosis	Results	Statistical Estimates	Conclusion
-------------	-----------	---	---------------	---------	--------------------------	------------

	Survivin		_
	Expression:		
	Total Positive		
	Cells: REE:	_	
	313.3, AOT:		
	1930.16, OKC		
	2153.583,	•	
	•		
	Ameloblasto		T T' 1
	ma: 2399.5823	•	High
	<u>Nuclear</u>		survivin
	Expression:		expression
	REE: 73.91,		was
	AOT: 270.83,		observed in
	OKC: 358.66,		Ameloblasto
	Ameloblasto		ma,
	ma: 379.663.		followed by
			OKC, AOT,
Study Type: Immunohistoch	<u>Cytoplasmic</u>	Total Positive	and REE.
Quantitative emistry was	Expression:	$\underline{\text{Cells:}} P =$	The
pertormed	REE: 169.833,	0.00657.	expression
analysis. Perromed using survivin	AOT:		of survivin
To access the Sample Size antibody. The	1029.833,	Nuclear	in these
To assess the Sample Size: sections were	OKC: 1003.58	Expression: P	odontogenic
anti-apoptotic 48 samples (12 stained with Histopatholo	^g Ameloblasto	= 0.00219.	cysts and
survivin each) of hematoxylin ical	ma: 1180.50.		tumors
expression in Reduced and eosin for examination		Cytoplasmic	suggests its
Reduced Enamel confirmatory using routin	viemprane	Expression: P	role in the
Latha Enamei Epitnelium diagnosis nematoxylir	Expression:	= 0.00213.	inhibition of
et al Epithelium, (REE), and eosin	REE: 20.67,		apoptosis
Adenomatoid Adenomatoid immunohistoch staining,	AOT: 89.66.	Membrane	and its
[127] Odontogenic Odontogenic emical analysis	OKC: 174,	Expression: P	potential as
Tumor, Tumor (AOT), The slides were	Ameloblasto	= 0.000542.	a
examined examined	ma: 180.0833.		therapeutic
Keratocyst, Keratocyst under a BX43 analysis with	າ	CytoplasmMe	=
and (OKC), and microscope survivin	<u>CytoplasmMe</u>		Higher
Ameloblastom Ameloblastom with a ProgRes antibody.	mbrane	Expression: P	
a. a. microscope	Expression:	= 0.00101.	expression
camera and the	REE: 67.9167,		indicates
Country/Regio survivin	AOT: 453.583,		worse
<u>n:</u> expression was	OKC: 617.33,	•	prognosis,
India. analyzed.	Ameloblasto	0.00005987.	and its
anaryzea.	ma: 659.416.	0.00003707.	study may
	IIIa. 057.410.		aid in
	Intensity of		understandi
	•		
	Staining:		ng the
	Mild: REE:		biological
	50%, AOT:		behavior of
	25%, OKC:		odontogenic
	25%,		cysts and
	Ameloblasto		tumors.
	ma: 17%.		
	Moderate:		
	REE: 33%,		
	AOT: 33%,		
	OKC: 25%,		
	Ameloblasto		
	ma: 42%.		
	111a. 42 70.		

			80
	Intense: REE:		
	17%, AOT:		
	42%, OKC:		
	50%,		
	Ameloblasto		
	ma: 50%.		
	Survivin		
	expression		
	was highest in		
	Ameloblasto		
	ma, followed		
	by OKC,		
	AOT, and		
	REE. The		
	expression		
	showed		
	significant		
	statistical		
	differences (P		
	< 0.05).		
	<u>EGFR</u>		
	Expression:E		
	GFR positivity		
	was found in		
	all cases.		
Income a bi ata da			The study
Immunohistoch	Predominant	ECED.	provides
emistry was	cytoplasmic	EGFR:	insight into
performed	staining with	IRS Scores:	the role of
using primary	variations in	AB $(p = 0.02)$,	EGFR and
antibodies	intensity.	OKC (p =	survivin in
against EGFR	,	0.005), COC	the
and survivin.	Intensity: AB	(p = 0.006).	pathogenesi
To assess and Study Type: The staining	(p = 0.007),		s of AB,
compare the Immunohistoc procedure	OKC (p =	Intensity: AB	OKC, and
expression of hemical study. included	0.005), COC	(p = 0.007),	COC. OKC
Baddire EGFR and dewaxing, Diagnosis was	(p = 0.006).	OKC (p =	appears to
ddy et survivin in <u>Sample Size:</u> renydration, confirmed by	d ,	0.005), COC	be more
al ameloblastom 30 AB, 15 antigen examining	IRS Scores:	(p = 0.006).	aggressive
(2023) a (AB), OKC, and IU retrieval, archival	Significant		than AR and
1281 odontogenic COC. blocking, nematoxylin	difference	Survivin: IKS	COC due to
keratocyst primary and and eosin	between	Scores: AB (p	its higher
(OKC), and <u>Country/Regio</u> secondary (H&E) slides.	lesions (p =	= 0.03), OKC	IRS scores.
calcifying <u>n:</u> antibody	0.02).	(p = 0.09),	The study
odontogenic India and incubation, and	0.02).	COC(p =	highlights
cyst (COC). USA. chromogen	Survivin	0.06).	the potential
development.	Expression:96		for EGFR
The slides were	% positive in	Intensity: AB	and survivin
examined	AB, 100%	(p = 0.03)	as targets for
under an	nocitivo in	OKC (p =	therapeutic
Olympus BX51	OKC and	0.09), COC (p	intervention
research	COC.	= 0.06).	
microscope.	COC.		s in these lesions.
	Prodominant		iesions.
	Predominant		
	cytoplasmic		
	staining with		
	variations in		
	intensity.		

	<u>Intensity:</u>	_
	Significant	
	difference in	
	AB peripheral	
	and central	
	cells $(p = 0.03)$.	
	IRS Scores:	
	Significant	
	difference	
	between	
	study groups	
	(p = 0.001).	
	BMP4_	
	<u>Expression:</u> Epithelial:	
	Detected in	
	81.25% OOC	
	vs. 35% OKC.	
	Connective	
	Tissue:	
	Observed in	The greater
	65% OKC and	expression
	75% OOC.	of BMP4
	FOVA 14	and FOXN1
	FOXN1	in OOC
To compare	<u>Expression:</u> <u>Detected</u> in	suggests a more
BMP4 and	75% OOC vs.	mature
FOXN1	30% OKC.	epithelial
expression in Study Type: Immunohistoch		phenotype
orthokeratiniz Immunohistoc emistry was used to assess	BMP4	and a
Thermo odontogenic hemical the expression	<u>epithelial and</u>	greater
s et al. cysts (OOC) comparison. of BMP4 and	The diagnosis <u>connective</u>	activation of
(2022) and FOXN1 in the	was based on <u>tissue</u> Not specified.	the
[129] odontogenic Sample Size: enithelial and	histological <u>positivity and</u>	DIVIE 4/FUX
keratocysts sporadic OKC	examination. <u>FOXN1</u> epithelial	N1 pathway in OOC
and 16 OOC tissues of OKC	positivity:	compared to
investigate and OOC	56.25% OOC	OKC. This
their role in samples.	vs. 10% OKC.	indicates a
epithelial		role in the
differentiation	Greater	differing
•	expression of	biological
	BMP4 and	behavior
	FOXN1 in	and
	OOC suggests	differentiati
	greater activation of	on of these
	activation of this pathway	cysts.
	in OOC,	
	contributing	
	to its more	
	mature	
	epithelium	
	and	
	resemblance	

					to an		
					epidermal		
					phenotype.		
					Fra-1, c-Jun,		
					and c-Fos		
					Expression:		
					<u>Increased</u>		
			T		significantly		
			Immunohistoch		in OKCs		Tile to a const
	Ta	Cha das Tassas	emistry and real-time-		compared to		This study revealed for
	_	Study Type: Immunohistoc			OM and DC		the first time
	potential involvement	hemical and	quantitative polymerase		tissue		
	of Fra-1, c-Jun,		chain reaction		samples.		that Fra-1, c- Jun, and c-
	and c-Fos,	analysis.	(RT-qPCR)	Diagnosis was			Fos were
	three vital	artary 515.	were used to	based on	Positively		overexpress
Zhang	members of	Sample Size:	investigate the	histological	associated		ed in OKCs
et al.	the AP-1	10 normal oral	~	examination	with the	Not specified.	
(2018)	complex, in		levels of Fra-1,	and	expression		close
[130]	the	10 dentigerous		immunohistoc			correlation
	pathogenesis	cysts (DC),	Fos. Double-	hemical	67, PCNA,		with
	of	and 32 OKC	labelling	analysis.	and Bcl-2.		proliferation
	odontogenic	specimens.	immunofluores		A 1i-		and anti-
	keratocysts		cence analysis		<u>Analysis</u> Methods:		apoptosis
	(OKCs).		was also used		Double-		potential of
			to confirm the		labelling		OKCs.
			associations.		immunofluore	•	
					scence		
					analysis		
					Hierarchical		
					analysis.		
					Tryptase	P-values:<	The higher
					Expression:	Total number	expression
					Higher mast	of mast cells	of tryptase
			Immunohistoch		cell means	in epithelium:	in
			emistry was		were found in	p = 0.016.	degranulate
			used to assess		RCs		d mast cells
	To evaluate		the expression		compared to	_	is linked to
	tryptase and	Study Type:	of tryptase and		OKCs.	Degranulated	
	E-cadherin	Immunohistoc	E-cadherin in			mast cells in	
	protein	hemical	tissue samples.	_		epithelium: p	of E-
D. 1 .	expression in		Tryptase	was based on	O		cadherin,
Pinheir	odontogenic	J	expression was	0	mast cells		suggesting a
o et al.	keratocysts	Sample Size:	quantitatively	examination	were	expression	change in
(2020)	(OKCs) and	30 OKCs and	assessed by	and	predominant	and total	epithelial
[131]	radicular cysts	30 RCs.	counting mast	~ .			permeability
	(RCs) and		cells, and E- cadherin	measurements of the cystic	and RCs.	$\frac{\text{mast cells: } p = 0.011.$	and contributing
	their	Country/Regio	expression was	•	Negative	0.011.	to increased
	relationship	<u>n:</u>	semi-	lesion sizes.	correlation	E-cadherin	
	with lesion	Brazil.	quantitatively		between E-		content and
	size.		analyzed by		cadherin	and	lesion
			estimating the		expression	<u>degranulated</u>	
			proportion of		and total	mast cells: p =	U
			positive cells.		number of	0.040.	RCs may
			r total cons.		mast cells,	3.0 20.	initiate
					degranulated	E-cadherin	cystic
					mast cells,	expression	formation,

					and lesion	and.	while in
						and degranulated	
					size.	~	
					E sa dhassin	mast cells in	
					E-cadherin	<u>superficial</u>	advanced
					Expression:	<u>connective</u>	stages,
					Negative	tissue: p =	contributing
					correlation	0.035.	to bone
					with total		resorption
					number of	E-cadherin	and lesion
					mast cells ($p =$	expression	expansion.
					0.011),	<u>and</u>	
					degranulated	degranulated	_
					mast cells ($p =$	mast cells in	_
					0.040), and	<u>deep</u>	
					degranulated	connective	
					mast cells in	tissue: p =	
					both	0.009	
					superficial (p		
					= 0.035) and		
					deep		
					connective		
					tissues (p =		
					0.009).		
					0.007).		
					Lesion Size:		
					RCs: 67% ≤ 2		
					cm, $27\% > 2$ to		
					4 cm, 6% > 4		
					cm.		
					OKCs: 47% ≤		
					2 cm, 37% > 2		
					to 4 cm, 16% >		
					4 cm.		
					Negative		
					correlation		
					correlation between		
					_		
					between		
					between lesion size		
					between lesion size and total		
					between lesion size and total number of mast cells in		
					between lesion size and total number of mast cells in the epithelium		
					between lesion size and total number of mast cells in the epithelium (p = 0.016) and		
					between lesion size and total number of mast cells in the epithelium (p = 0.016) and degranulated		
					between lesion size and total number of mast cells in the epithelium (p = 0.016) and degranulated mast cells in		
					between lesion size and total number of mast cells in the epithelium (p = 0.016) and degranulated mast cells in the epithelium		
	To evaluate	Study Type			between lesion size and total number of mast cells in the epithelium (p = 0.016) and degranulated mast cells in the epithelium (p = 0.049).		The high
	To evaluate	Study Type:	Immunohistoch	n Diagnosis was	between lesion size and total number of mast cells in the epithelium (p = 0.016) and degranulated mast cells in the epithelium (p = 0.049). E-cadherin:		The high
	the epithelial-	Immunohistoc	emistry was	n Diagnosis was based on	between lesion size and total number of mast cells in the epithelium (p = 0.016) and degranulated mast cells in the epithelium (p = 0.049). E-cadherin: Preserved in		immunoexp
	the epithelial– mesenchymal	Immunohistoc	emistry was	~	between lesion size and total number of mast cells in the epithelium (p = 0.016) and degranulated mast cells in the epithelium (p = 0.049). E-cadherin: Preserved in most cases of		immunoexpression of
orto et	the epithelial- mesenchymal transition	Immunohistoc hemical study	emistry was	based on	between lesion size and total number of mast cells in the epithelium (p = 0.016) and degranulated mast cells in the epithelium (p = 0.049). E-cadherin: Preserved in		immunoexpression of Snail and
orto et al.	the epithelial— mesenchymal transition (EMT) in	Immunohistochemical study. <u>Sample Size:</u>	emistry was used to	based on histological	between lesion size and total number of mast cells in the epithelium (p = 0.016) and degranulated mast cells in the epithelium (p = 0.049). E-cadherin: Preserved in most cases of KOT.		immunoexpression of Snail and nuclear Slug
orto et al. (2016)	the epithelial- mesenchymal transition (EMT) in keratocystic	Immunohistochemical study. <u>Sample Size:</u> 32 KOTs, 15	emistry was used to evaluate the	based on histological examination	between lesion size and total number of mast cells in the epithelium (p = 0.016) and degranulated mast cells in the epithelium (p = 0.049). E-cadherin: Preserved in most cases of KOT. N-cadherin:		immunoexy ression of Snail and nuclear Slu in KOTs
orto et al. (2016)	the epithelial- mesenchymal transition (EMT) in keratocystic odontogenic	Immunohistochemical study. Sample Size: 32 KOTs, 15 radicular	emistry was used to evaluate the expression	based on histological examination and	between lesion size and total number of mast cells in the epithelium (p = 0.016) and degranulated mast cells in the epithelium (p = 0.049). E-cadherin: Preserved in most cases of KOT. N-cadherin: Increased in		immunoexp ression of Snail and nuclear Slug in KOTs suggests
orto et al. (2016)	the epithelial- mesenchymal transition (EMT) in keratocystic odontogenic tumors	Immunohistochemical study. Sample Size: 32 KOTs, 15 radicular cysts, and 8	emistry was used to evaluate the expression levels of E- cadherin, N-	based on histological examination and immunohistoc hemical	between lesion size and total number of mast cells in the epithelium (p = 0.016) and degranulated mast cells in the epithelium (p = 0.049). E-cadherin: Preserved in most cases of KOT. N-cadherin: Increased in the tumor		immunoexp ression of Snail and nuclear Slug in KOTs suggests these
Porto et al.	the epithelial– mesenchymal transition (EMT) in keratocystic odontogenic tumors (KOTs) by	Immunohistochemical study. Sample Size: 32 KOTs, 15 radicular cysts, and 8 dental	emistry was used to evaluate the expression levels of E- cadherin, N- cadherin, Snail,	based on histological examination and immunohistoc hemical	between lesion size and total number of mast cells in the epithelium (p = 0.016) and degranulated mast cells in the epithelium (p = 0.049). E-cadherin: Preserved in most cases of KOT. N-cadherin: Increased in the tumor epithelium,		immunoexpression of Snail and nuclear Slug in KOTs suggests these proteins act
Porto et al. (2016) [132]	the epithelial- mesenchymal transition (EMT) in keratocystic odontogenic tumors	Immunohistochemical study. Sample Size: 32 KOTs, 15 radicular cysts, and 8	emistry was used to evaluate the expression levels of E- cadherin, N-	based on histological examination and immunohistoc hemical analysis of the collected	between lesion size and total number of mast cells in the epithelium (p = 0.016) and degranulated mast cells in the epithelium (p = 0.049). E-cadherin: Preserved in most cases of KOT. N-cadherin: Increased in the tumor		immunoexp ression of Snail and nuclear Slug in KOTs suggests these

Sion of E
Snail, and Slug and comparing and comparing them to comparing them to radicular cysts and dental follicles. Shail in the epithelium. Also correlated with high Snail immunoexpression. Shail immunoexpression. Shail immunoexpression. Shail immunoexpression. Shail immunoexpression in the epithelium, correlated with high Snail expression in KOTs. Stroma: N-cadherin positively correlated with Slug. Strom
Snail, and Slug and comparing them to radicular cysts and dental follicles. Shall replicating in the switching comparing them to radicular cysts and dental follicles. Shall role in the switching correlated with high shall role in immunoexpre sion. Shall role in immunoexpre sion in the epithelium, correlated with high Shall expression in the epithelium, correlated with high Shall expression. Shall High immunoexpre sion in KOTs. Stroma, N-cadherin positively correlated with Slug. Stroma, N-cadherin positivel
and comparing them to comparing them to radicular cysts and dental follicles. Such that the switching's and dental follicles. Such that the special follicles is special follicles is special follicles is special follicles. Since the special follicles is special follicles is special follicles. Since the special follicles. Since the special follicles is special follicles. Since the special follicles. Since the special follicl
comparing them to radicular cysts and dental follicles. Final study. To analyze the immunohistoch hemical expression of paxillin in munohistoch hemical expression of paxillin in manuholistoch hemical expression of paxillin in manuholistoch hemical expression of paxillin in manuholistoch hemical ooks. I consist the peptithelial munohistoch hemical ooks. I consist the paxillin in munohistoch hemical ooks. I consist the peptithelial munohistoch hemical ooks. I consist the peptithelial munohistoch hemical ooks. I consist the paxillin of the paxillin in munohistoch hemical ooks. I consist the paxillin of the paxillin of the peptithelial munohistoch hemical ooks. I consist the paxillin of the paxillin of the paxillin of the peptithelial munohistoch hemical ooks. I consist the paxillin of the paxillin of the paxillin of the peptithelial munohistoch in the peptithelial munohistoch hemical ooks. I consist the paxillin of the paxillin of the peptithelial munohistoch in the peptit
them to radicular cysts and dental follicles.
radicular cysts and dental follicles. If a proper series of the sample state and dental follicles. If a proper series of the sample state and dental follicles. If a proper series of the sample state and dental follicles. If a proper series of the sample state and dental follicles. If a proper series of the correlated with high shall expression in the epithelium, correlated with high shall expression. If a proper series of the correlated with high shall expression. If a proper series of the correlated with high shall expression. If a proper series of the correlated with high shall expression in kOTs. If a proper series of the correlated with shigh shall express on shall. If a proper series of the correlated with shigh shall express on shall. If a proper series of the correlated with shigh shall express on shall. If a proper series of the correlated with shigh shall express on shall. If a proper series of the correlated with shigh shall express on shall. If a proper series of the correlated with shigh shall express on sha
and dental follicles.
role in role in role in inducing sign. Follicles. Foll
role in inducing EMT in odontogenic tumors is still limited. Final
inducing EMT in odontogenic tumors is sion. Sing: Heterogeneous and nuclear expression in the epithelium, correlated with high Shail expression. Small; High immunoexpression in KOTs. Stroma: N-cadherin positively correlated with Slug. P-values: Staining immunoexpression in KOTs. P-values: Staining: OKC 1 (3%), AB 0 (0%). Staining: P = (0.432. Significant on the option of the option
Singh parallin in munohistoch lemical expression of bemical expression of bemical expression of lemical expression in the le
odontogenic tumors is still limited. Heterogeneous of and nuclear expression in the epithelium, correlated with high Snail expression. Snail: High immunoexpression in KOTs. Stroma: N-cadherin positively correlated with Slug.
tumors is still limited. Sug: Heterogeneous and nuclear expression in the epithelium, correlated with high Snail expression. Snail: High immunoexpression in KOTs. Stroma: N-cadherin positively correlated with Slug.
Study Type: Observational study. To analyze the immunohistoch hemical expression of jamilum in munohistoch hemical expression of jamilum in the immunohistoch hemical expression of jamilum in the epithelian (OKC). Sample Size: To analyze the immunohistoch hemical expression of jamilum in the emistry was used to stain of jamilum in ameloblastom and a (AB) and a 10-20 years: 2 antibody. Heterogeneou s and nuclear expression in the epithelium, correlated with high Snail expression. Snail: High immunoexpre sion in KOTs. Stroma: N-cadherin positively correlated with Slug. Staining Intensity: Score of the position of the epithelian (OKC). Staining: OKC 13%), AB 0 (0%). Sample Size: Sample Size: Sample Size: Staining in the epithelian (Ountitative Staining): OKC 13%), AB 0 (0%). Score: P = title Immunohistoch staining: OKC 13 (Staining):
s and nuclear expression in the epithelium, correlated with high Snail expression. Snail: High immunoexpre ssion in KOTs. Stroma: N-cadherin positively correlated with Slug. Staining: Doservational study. Staining: Intensity: Score of (No staining): OKC 1 (3%), AB and 30 of Manual in the epithelial on the epit
expression in the epithelium, correlated with high Snail expression. Singh parillin in Immunohistoch Lemical expression in Age Range: oKC: ameloblastom et al. ameloblastom et al. ameloblastom a (AB) and a (AB
the epithelium, correlated with high Snail expression. Snail: High immunoexpre ssion in KOTs. Stroma: N-cadherin positively correlated with Slug.
epithelium, correlated with high Snail expression. Snail: High immunoexpre ssion in KOTs. Stroma: N-cadherin positively correlated with Slug. Paxillin expression in KOTs.
correlated with high Snail expression. Snail: High immunoexpre ssion in KOTs. Stroma: N-cadherin positively correlated with Slug.
with high Snail expression. Snail: High immunoexpression in KOTs. Stroma: N-cadherin positively correlated with Slug. P-values: Staining expression is Staining: Observational study. Sample Size: Observational immunohistoch hemical expression of paxillin in ameloblastom et al. (2003) Singh et al. (2003) Age Range: ameloblastom a (AB) and (10-20 years: 2 antibody. Nistopathologi (43%), AB 6 Cases (30
Snail expression. Snail: High immunoexpression in KOTs. Stroma: N-cadherin positively correlated with Slug. Pavallin expression in KOTs.
expression. Snail: High immunoexpression in KOTs. Stroma: N-cadherin positively correlated with Slug. P-values: Staining Intensity: Score 0 (No staining): OKC 1 (3%), AB 0 (0%). Staining: P = both OKC and AB, suggesting et al. ameloblastom a (AB) and an ameloblastom and ameloblastom and ameloblastom and ameloblastom and ameloblastom and ameloblastom and ameloblastom a (2003). a (AB) and a 10-20 years: 2 antibody. histopathologi (43%), AB 6 ameloblastom and ameloblastom ameloblastom and ameloblastom and ameloblastom ameloblastom ameloblastom ameloblastom ameloblastom and ameloblastom amelobl
Study Type: Observational study. To analyze the immunohistoc hemical expression of Paxillin in ameloblastom et al. (2023) Singh Paxillin in ameloblastom a (AB) and
immunoexpression in KOTs. Stroma: N-cadherin positively correlated with Slug. Paxillin expression is Staining: Staining lintensity: Score 0 (No staining): OKC 1 (3%), AB 0 (0%). Staining: Paxillin expression is significant in the epithelial outside of the mical expression of paxillin in ameloblastom et al. (2023) Singh et al. (2023) Paxillin in ameloblastom a (AB) and a (
Study Type: Observational study. To analyze the immunohistoch hemical expression of paxillin in ameloblastom of et al. (2023) Singh et al. (2023) Study Type: Observational study. Staining Intensity: Score e 0 (No staining): OKC 1 (3%), AB 0 (0%). Socre 1 OKC: OKC: OKC: OKC: OKC: OKC: OKC: OKC:
Study Type: Observational study. To analyze the immunohistoch hemical expression of paxillin in ameloblastom of et al. Singh et al. Age Range: a meloblastom a (AB) and 10-20 years: 2 antibody. Study Type: Observational study. Study Type: Observational study. Staining Staining Staining Staining Staining Staining Expression is significant on the expression is in the epithelial lining of Staining: P = both OKC O.432. and AB, suggesting its role in Score: P = cell-matrix of the positively correlated with Slug. Staining Staining Staining Staining Staining Expression is intensity: P = significant on the epithelial lining of Staining: P = both OKC O.432. and AB, suggesting its role in Score: P = cell-matrix of the positively correlated with Slug. Staining OKC 1 (3%), AB 0 (0%). Staining: P = both OKC O.432. and AB, Suggesting its role in Score: P = cell-matrix of the positively correlated with Slug.
Cadherin positively correlated with Slug. Cadherin positive position Cadherin po
Cadherin positively correlated with Slug. Cadherin positive position Cadherin po
Study Type: Observational study. Sample Size: Sample Size: OKC 1 (3%), hemical expression of expression of paxillin in et al. (2023) Age Range: and of the circle of
Study Type: Observational study. To analyze the immunohistoch hemical expression of paxillin in Age Range: et al. Singh et al. (2023) Age Range: Age Range: and AB) and 10-20 years: 2 antibody. Study Type: Observational study. Study Type: Observational study. Staining Intensity: Scor e 0 (No staining): OKC 1 (3%), AB 0 (0%). Staining Staining Intensity: P = significant on the epithelial Ouantitative Staining: OKC 1 (3%), AB 0 (0%). Staining Staining OKC 1 (3%), AB 0 (0%). Staining: P = both OKC 0.432. and AB, Final suggesting of tissue sections confirmed staining): OKC 13 (3%), AB 6 (0.503. interactions and other paxillin or of the paxillin of the epithelial ouantitative suggesting of tissue sections confirmed staining): OKC 13 (3%), AB 6 (
Study Type: Observational study. To analyze the immunohistoc hemical expression of paxillin in Age Range: et al. Singh et al. (2023) Study Type: Observational study. Study Type: Observational study. Study. Staining Intensity: Scor e 0 (No staining): OKC 1 (3%), AB 0 (0%). Staining: OKC 1 (3%), AB 0 (0%). Staining: OKC 1 (3%), AB 0 (0%). Staining: Ouantitative staining: Ouantitative Staining: P = both OKC O.432. and AB, Suggesting Summation its role in Score: P = cell-matrix O.503. interactions
Study Type: Observational study. To analyze the immunohistoc hemical expression of paxillin in ameloblastom et al. Singh et al. Study Type: Observational study. Sample Size: Observational study. Sample Size: OKC 1 (3%), AB 0 (0%). Sample Size: OKC 1 (3%), AB 0 (0%). Sample Size: OKC 1 (3%), AB 0 (0%). Singh et al. OKC: With a paxillin using OKC: OKC 1 (3%), AB 0 (0%). Singh et al. OKC: With a paxillin using OKC: OKC 1 (3%), AB 0 (0%). Singh et al. OKC: With a paxillin using OKC: OKC 1 (3%), AB 0 (0%). Singh et al. OKC: With a paxillin using OKC 13 OKC
Staining of Staining: P =
Singh et al. (2023) Content
To analyze the immunohistoc hemical expression of paxillin in paxillin in ameloblastom et al. Singh et al. (2023) Singh (2023) (2023) Singh (2023) Sin
To analyze the immunohistoc hemical expression of paxillin in ameloblastom et al. (2023) AB and 30 Immunohistoch emistry was expression of a (2023) AB and 30 Immunohistoch emistry was expression of a (2023) AB and 30 Immunohistoch emistry was emistry was esctions confirmed staining: OKC 1 (3%), AB 0 (0%). Staining: P = both OKC 0.432. and AB, Final suggesting staining: (Weak staining): OKC 1 (3%), AB 0 (0%). Staining: P = both OKC 0.432. Final suggesting staining: OKC 1 (3%), AB 0 (0%). Staining: P = both OKC 0.432. Final suggesting staining: OKC 1 (3%), Staining: P = both OKC 0.432. and AB, Final suggesting of Score: P = cell-matrix OKC 1 (3%), AB 0 (0%). Staining: P = both OKC 0.432. and AB, Final suggesting of Score: P = cell-matrix OKC 1 (3%), AB 0 (0%). Staining: P = both OKC 0.432. and AB, Final suggesting of Score: P = cell-matrix OKC 1 (3%), AB 0 (0%). Staining: P = both OKC 0.432. and AB, Final suggesting of Score: P = cell-matrix OKC 1 (3%), AB 0 (0%). Staining: P = both OKC 0.432. and AB, Final suggesting of Score: P = cell-matrix OKC 13 (0%).
To analyze the immunohistoc hemical expression of paxillin in ameloblastom et al. (2023) AB and 30 Immunohistoch emistry was sections and AB, and 30 Immunohistoch simmunohistoch emistry was and AB, and 30 Immunohistoch emistry was sections confirmed staining): Singh et al. (2023) (2023) To analyze the 60 cases (30
immunohistoc hemical oKC). Immunohistoch emistry was expression of paxillin in ameloblastom et al. (2023) AB and 30 Immunohistoch emistry was oxofirmed staining: P = both OKC and AB, Score 1 (Weak stain Diagnosis was confirmed staining): OKC 13 (OKC) with a paxillin using OKC 13 (OKC) interactions oxofirmed staining: P = both OKC and AB, Suggesting Summation its role in OKC 13 (OKC) oxofirmed staining: P = both OKC and AB, Suggesting Summation its role in OKC 13 (OKC) oxofirmed staining: P = both OKC and AB, Suggesting Summation its role in OKC 13 (OKC) oxofirmed staining: P = both OKC and AB, Suggesting Summation its role in OKC 13 (OKC) oxofirmed staining: P = both OKC and AB, Suggesting Summation its role in OKC 13 (OKC) oxofirmed staining: P = both OKC and AB, Suggesting Summation its role in OKC 13 (OKC) oxofirmed staining: P = both OKC and AB, Suggesting Summation its role in OKC 13 (OKC) oxofirmed staining: P = both OKC and AB, Suggesting Summation its role in OKC 13 (OKC) oxofirmed staining: P = both OKC and AB, Suggesting Summation its role in OKC 13 (OKC) oxofirmed staining: P = both OKC oxofirmed staining: P = both OKC oxofirmed oxofirmed staining: P = both OKC oxofirmed oxof
hemical OKC). emistry was Score 1 expression of used to stain Diagnosis was (Weak paxillin in ameloblastom et al. (2023) a (AB) and 10-20 years: 2 antibody. histopathologi (43%), AB 6
expression of paxillin in Age Range: tissue sections confirmed staining): Singh et al. (2023) a (AB) and 10-20 years: 2 antibody. histopathologi (43%), AB 6 used to stain Diagnosis was (Weak Summation its role in Score: P = cell-matrix 0.503. interactions
Singh et al. (2023) a (AB) and 10-20 years: 2 antibody. histopathologi (43%), AB 6 (Weak Summation Diagnosis was (Weak Summation Diagnosis was (Weak Summation its role in Score: P = cell-matrix onto onto onto onto onto onto onto ont
et al. a (AB) and 10-20 years: 2 antibody. histopathologi (43%), AB 6
et al. (2023) a (AB) and 10-20 years: 2 antibody. histopathologi (43%), AB 6
(2023) · · · · and
(2020) adamta annia cana Chaining and (2007)
[133] donotogenic cases. Staining cal criteria and (20%). [134] Gender-wise tumorigenes
keratocyst 21-30 years: 16 intensity and haematoxylin (OVC) to great a great table of the comparison is. The
(OKC) to cases. quantitative and eosin Score 2 in OKC: P < expression
appraise their 31-40 years: 6 staining were staining. (Moderate 0.05. pattern
roles in cell- cases. evaluated and staining): indicates its
matrix 41-50 years: 3 scored. OKC 10 Gender-wise involvement (33%), AB 6
(omparison in the
50 years: 3 (20%). in AB: biological
cases. AB: Score 3 Quantitative behavior of
AB: Score 3
staining P < these
10-20 years: 6 (Strong cases. (Strong staining P < these 0.001, Final odontogenic staining):

21-30 years: 11	OKC 5 (17%),	= 0.027,	Further
cases.	AB 8 (27%).	Staining	studies with
31-40 years: 5		intensity P =	larger
cases.	Score 4 (Very	0.091	sample sizes
41-50 years: 5	strong		and
cases.	staining):		molecular
50 years: 3	OKC 1 (3%),		analyses are
cases.	AB 10 (33%).		needed to
<u>Country/Regio</u>	Statistical		confirm paxillin's
<u>n:</u> India.	<u>Comparison:</u>		exact role
<u></u> 1111111	Significant (P		and
	= 0.013).		potential as
			a
	Quantitative		therapeutic
	Staining:		target.
	Score 0 (No		
	staining):		
	OKC 1 (3%),		
	AB 0 (0%).		
	Score 1		
	(<25% of		
	cells): OKC 9		
	(30%), AB 5		
	(17%).		
	Score 2 (25-		
	50% of cells):		
	OKC 5 (17%),		
	AB 5 (17%).		
	Score 3 (50-		
	75% of cells):		
	OKC 5 (17%),		
	AB 10 (33%).		
	Score 4		
	(>75% of		
	cells): OKC 10		
	(33%), AB 10		
	(33%).		
	Statistical		
	<u>Statisticar</u> <u>Comparison:</u>		
	Non-		
	significant (P		
	= 0.432).		
	<u>Final</u>		
	Summation		
	Score: Score 0		
	(No staining): OKC 1 (3%),		
	AB 0 (0%).		
	112 0 (070).		
	Score 1-4		
	(Weak		

staining): OKC 16 (53%), AB 11 (37%). Score 5-8 (Strong staining): OKC 13 (43%), AB 19 (63%). Statistical Comparison: Nonsignificant (P = 0.503). Gender-wise Comparison: OKC: Significant (P < 0.05). AB: Quantitative staining and final summation significant (P < 0.001 and P = 0.027),staining intensity nonsignificant (P = 0.091). Age-wise Comparison: OKC: Weak staining predominant in 21-30 years (53%). AB: Strong staining predominant in 21-30 years (66%)

					(0070)		
	To assess the	Study Type:	Immunohistoch	Diagnosis was	Calretinin	<u>P-values</u> :	Calretinin
	expression of	Immunohistoc	emistry was	based on	Expression in	Calretinin	expression is
Cesinar	calretinin in	hemical	performed on	histological	OKCs: GGS-	expression in	significantly
o et al.	odontogenic	analysis.	4-μm thick	examination	OKCs: 10	OKCs: $p =$	lower in
(2020)	keratocysts		sections using	according to	negative, 2	0.02.	GGS-OKCs
[134]	(OKCs) and	Sample Size:	anti-calretinin	the WHO	focally	Calretinin	compared to
[134]	basal cell	28 OKCs: 16	SP65 pre-	classification	positive.	expression in	sporadic
	carcinomas	sporadic	diluted	of head and		BCCs: Not	OKCs,
	(BCCs) in	OKCs from 15	monoclonal	neck tumors.	Sporadic	significant.	suggesting a
	sporadic and	patients, 12	rabbit antibody.		OKCs: 6	Calretinin	potential

Gorlin-Goltz GGS-related Immunostainin	negative, 6 expression in link between
syndrome OKCs from 11 g was	focally cutaneous SHH
(GGS) cases. patients. evaluated as	positive, 4 cysts: Not pathway
34 BCCs: 19 negative,	diffusely significant. dysfunction
BCCs and 2 focally positive	positive. and
cutaneous (<5% of cells),	Significant calretinin
keratocysts or positive	difference expression
from 4 GGS (>5% of cells).	between in GGS-
patients, 15	sporadic and related
sporadic BCCs	GGS-OKCs (p tumors.
and 3	= 0.02). However,
steatocystoma	calretinin's
S.	<u>Calretinin</u> value in
Age Range:	Expression in differential
Sporadic	BCCs: GGS- diagnosis
OKCs: 10 to 61	BCCs: 14 between
years (Mean:	negative, 4 sporadic
39.6 years, SD:	focally and
14.71)	positive, 1 syndromic
GGS-OKCs: 26	diffusely tumors
to 44 years	positive. appears
(Mean: 32.7	Sporadic limited.
years, SD:	BCCs: 7
5.82)	negative, 8
	focally
<u>Country/Regio</u>	positive.
<u>n:</u> Italy.	No significant
	difference
	between GGS
	and sporadic
	BCCs.
	Calretinin
	Expression in
	Cutaneous
	Cysts: GGS-
	Cutaneous
	Keratocysts: 2
	negatives.
	Sporadic
	Steatocystoma
	s: 1 negative, 1
	focally
	positive, 1
	diffusely
	positive
To perform an Study Type:	PCNA: The results
immunohistoc Immunohistoc	Immunopositi suggest that
hemical hemical streptavidin-	osis was vity observed Non- KCOT
assessment of analysis. biotin-bas	ed on in all cases, parametric presents
protein 53 peroxidase histo	ological predominantl Mann- distinct
et al. (n53) Sample Size: method was	ination y in the Whitney U- biological
proliferating 11 radicular used With	and suprabasal test and behavior
[135] cell nuclear cysts 11 antibodies immur	nohistoclayer of KCOT Kruskall- compared to
antigen dentigerous against pos, her	mical epithelial Wallis test (P odontogenic
(PCNA) B-cell cysts 11 PCNA, bci-2,	alysis. lining (SD \pm \leq 0.05). cysts, in
and MIDM2	
lymphoma 2 KCOTs.	19.44), but no terms of
(bcl-2), and proteins.	19.44), but no terms of significant proliferation

murine double				differences		, apoptosis,
minute 2				among the		and
(MDM2)				groups.		differentiati
expression in						on. This
odontogenic				<u>Bcl-2:</u>		supports the
cysts and				Immunoexpre		neoplastic
keratocystic				ssion		nature of
odontogenic				observed		KCOT.
tumor				especially in		
(KCOT),				the basal layer		
analyzing				of KCOT.		
their						
correlation				<u>PCNA LI:</u>		
with the				Significantly		
biological				higher than		
behavior of				bcl-2 LI in		
these lesions.				KCOT.		
				MDM2 and		
				p53:		
				Immunoexpre		
				ssion not		
				detected in		
				the lesions		
				studied.		
				KCOT:		
				Showed		
				different		
				immunoexpre		
				ssion of		
				proliferation		
				and apoptosis		
				markers		
				compared to		
				other		
				odontogenic		
				cysts.		
						Anontosis
To investigate				Expression of	•	Apoptosis regulatory
the expression				Proteins: All		proteins, as
of Bcl-2, Bax,		Immunohistoch		lesions		well as cell
and p53 to	Study Type:	emistry		exhibited	Kruskal-	cycle
nerrer		technique was		staining for	Wallis and	proteins, are
understand	hemical	performed for	Diagnosis was	p53, Bcl-2,	Spearman	differently
Tenório the possible	analysis.	the antibodies	based on	and Bax.	tests (p <	expressed in
et al. role of these	ariary sis.	p53, Bcl-2, and	histological		0.05).	epithelial
proteins in	Sample Size:	Bax.	examination	Statistical	,	odontogenic
	=	Immunoreactiv	and	Analysis: No	Coefficients:	lesions.
as (AMBs),			immunohistoc	statistically		
odontogenic	OKCs, 20 AOTs.	ity was observed in the	hemical	significant	p53 and Bcl-2: $r = 0.200$, p53	
keratocysts	AUIS.		analysis.	associations	r = 0.200. p53	-
(OKCs), and		epithelial	-	between the	and Bax: r = -	1 /
adenomatoid		component.		expression of	0.100	related to
odontogenic				proteins and		the
odomogeme				•		biological
tumors				the lesions.		_
				the lesions.		behavior of AMBs,

			Correlations:		OKCs, and
			Positive		AOTs.
			correlation		
			between the		
			expression of		
			p53 and Bcl-2		
			(r = 0.200).		
			Negative		
			correlation		
			between p53		
			and Bax		
			expressions (r		
			= -0.100).		
			p53 and Bax		
			were similarly		
			expressed		
			between		
			AMBs and		
			OKCs. Bcl-2		
			was similarly		
			expressed in		
			AMBs and		
			AOTs.		
			Ameloblasto		
			ma (AB):		The review
			Dysregulation		highlights
			of genes such		the
			as FOS,		significant
			TNFRSF1A,		role of
To summarize			SHH, TRAF3,		dysregulate
the current			ARHGAP4,		d genes,
data on the			DCC, CDH12		genetic
expression	Gene		and 13,		polymorphi
patterns of <u>Study Type:</u>	expression		TDGF1,		sms, and
genes in Review	profiling,		TGFB1,		miRNA/lnc
ameloblastom	immunohistoch	.	WNT1, IGF2,		RNA
a (AB), Sample Size:	emistry, cDNA	_	⁶ P63, WT1, IL-		expressions
Ghafou dentigerous Various	microarray, RT-	based on	6, PTEN,		in the
ri-Fard cyst (DC) and studies and	qPCR, Western	_	COX-2, and		pathogenesi
et al. odontogenic samples were	blotting, loss of		many others.		s of AB DC
(2021) keratocyst mentioned	heterozygosity	and various	,	Not specified.	and OKC.
[137] (OKC), and to within the	(LOH), PCR-	genetic and	High		These
examine the review.	RFLP, next-	molecular	incidence of		molecular
association	generation	assays.	BRAF V600E		markers can
between <u>Country/Regio</u>	sequencing,		and SMO		potentially
genetic <u>n:</u> Iran.	methylation-		L412F		aid in the
polymorphism	specific PCR,		mutations.		diagnosis,
s and the	and microarray		Over-		prognosis,
development	studies.		expression of		and
of these			long non-		developmen
lesions.			coding RNAs		t of
			(lncRNAs)		therapeutic
			such as		approaches
			ENST0000051		for these
			2916 and		odontogenic
			KIAA0125.		lesions.

Genetic polymorphis ms in genes like MMP9, APC, XRCC1, P53, RECK, and PTCH1.

Dentigerous Cysts (DC): Differential expression of genes related to extracellular matrix formation, adhesion, invasion, metabolic pathways, cell signaling, cytokine functions, inflammation, and immune responses. Genetic polymorphis ms are associated

Odontogenic <u>Keratocysts</u> (OKC):

with the PTCH gene region.

Overexpressio n of genes like PTCH, SHH, SMO, GLI1, CCND1, and BCL2. Genetic polymorphis ms and mutations in PTCH1, P53, IL-1, survivin gene promoter, and MIR15A/MIR 16-1. Lower expression of calretinin in

syndromic OKCs compared to

	sporadic
	cases.
	PA: Strong
	positive for
	ameloblastin,
	KL1, p63,
	carcinoembry
	onic antigen
	(CEA), focal
	adhesion
	kinase (FAK),
	and cathepsin PA and
	K. Slightly OBCC diffe
	positive for in their
	amelogenin,
	Krox-25, E-
	cagnerin, and profiles
	PICH with PA
	Exhibited
	odontogenic
Study Type:	differentiation
Case study	and active
tne protein with	ectomesenchy
expression immunohistocImmuno	histoch mal exhibiting
profiles of hemical emistry	interaction. hasaloid
peripheral examination 50 ant	isera Higher enidermal
ameloblastom selecte	ed for Histological positivity for differentiati
Kim et (PA) and Sample Size: impor	examination proteins on These
al Oral basal cell One case of signa	ling associated differences
(2014) carcinoma PA in a 61- pathw	immunohistoc with Not specified suggest
[138] (OBCC) year-old male Stainin	g was nemical odontogenic distinct
occurring in and one case, evaluate	analysis based epithelium,
the same of OBCC in a confir	med epithelial is pathways
mandibular 33-year-old thro	samples. adhesion, and and could
molar area to male, repea	oted bone aid in
better testi	resorption.
Country/Regio	OBCC: Strong
tneir n: Korea	positive for Further
tumorigenesis.	EpCam, investigation
	MIMP-1, α 1-
	antitrypsin, required to
	CK-/, pos, fully
	survivin, elucidate
	pAKT1, TGF- characterist
	β1, N-RAS, c protein
	1Gase-1, and expressions
	in these
	Consistently
	positive for β-
	catenin,
	MMP-2,
	cathepsin G,
	TGase-2, SOS-
	1, SHH, and
	β-defensins 1,
	2, and 3
	exhibited
	basaloid

epidermal
differentiation
influenced by
growth
factor/cytokin
e-related
signals.
Higher
positivity for
proteins
associated
with
proliferation,
apoptosis, and
inflammation.

Common Markers: Both PA and OBCC showed positive reactions for PCNA, NFkB, MMP-9, eIF5A, BCL-2, PARP, PIM1, NF-1, HSP-70, 14-3-3, HIF, vWF, and VEGF, indicating similar tumor growth potential

5. Conclusion

This systematic review has comprehensively explored the roles of immunohistochemical markers in dentigerous cysts (DC) and odontogenic keratocysts (OKC) associated with impacted third molars. By synthesizing data from 138 articles, the review highlights the diagnostic, prognostic, and therapeutic importance of markers such as Ki-67, p53, Bcl-2, and PCNA. These markers have proven instrumental in predicting aggressive behavior and guiding management strategies for OKCs, which are prone to aggressive growth and recurrence.

The findings indicate that the elevated expressions of Ki-67 and p53 in OKCs are particularly significant, suggesting that these markers can critically inform clinical decisions regarding the timing and extent of surgical interventions. Additionally, the identification of PTCH1 gene mutations and alterations in the SHH pathway presents promising targets for developing novel therapeutic approaches, potentially leading to more effective treatments tailored to the genetic profiles of individual lesions.

However, the review acknowledges several limitations, including the heterogeneity of the study designs, sample sizes, and methodologies used, which may affect the generalizability of the findings. Most studies were limited by small sample sizes and the retrospective nature of data collection, which can introduce bias and limit the applicability of the results to a broader population. Furthermore, the predominance of research from high-resource settings may not accurately represent the global burden and characteristics of these conditions.

To address these limitations, future research should focus on conducting large-scale, multicentric prospective studies that include diverse populations to enhance the external validity of the findings. There is also a pressing need for longitudinal studies to assess the long-term outcomes of different therapeutic interventions and their impact on the patient's quality of life. Exploring the molecular mechanisms driving the expression of these immunohistochemical markers could uncover additional therapeutic targets. Furthermore, the development of non-invasive diagnostic tools based on these markers could revolutionize the early detection and management of DCs and OKCs, offering substantial improvements in patient care.

In summary, while this review makes significant strides toward understanding the complex pathology of odontogenic cysts and tumors, it also underscores the crucial need for continued research and innovation in this field. Ensuring that future studies address the identified limitations will be essential for producing findings that are robust, replicable, and applicable to diverse patient populations. By integrating immunohistochemical data into clinical practice, clinicians can optimize therapeutic outcomes and reduce the recurrence rates of these potentially aggressive conditions, ultimately advancing patient care in oral and maxillofacial surgery.

Author Contributions: Conceptualization, L.E.A. and A.D.; methodology, L.E.A.; software, L.E.A.; validation, L.E.A., A.D. and M.L.B.; formal analysis, L.E.A.; investigation, L.E.A.; resources, L.E.A.; data curation, L.E.A.; writing—original draft preparation, L.E.A.; writing—review and editing, M.L.B.; visualization, M.L.B.; supervision, L.E.A.; project administration, L.E.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional review Board Statement: Not applicable.

Data Availability Statement: Data can be found on PubMed.

Acknowledgments: We would like to acknowledge the Marquette University School of Dentistry for their support with this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Vigneswaran, A. T., & Shilpa, S. (2015). The incidence of cysts and tumors associated with impacted third molars. *Journal of pharmacy & bioallied sciences*, 7(Suppl 1), S251–S254.
- 2. Passi, D., Singh, G., Dutta, S., Srivastava, D., Chandra, L., Mishra, S., Srivastava, A., & Dubey, M. (2019). Study of pattern and prevalence of mandibular impacted third molar among Delhi-National Capital Region population with newer proposed classification of mandibular impacted third molar: A retrospective study. *National journal of maxillofacial surgery*, 10(1), 59–67.
- 3. Miranda da Rosa, F., Oliveira, M. G., Palmeira da Silva, V., Rados, P. V., & Sant'Ana Filho, M. (2015). Relationship between the positions of impacted third molars and the presence of dentigerous cysts. General dentistry, 63(4), 43–46.
- 4. Mehta, D. N., Thakkar, V. C., Mandviya, P., Jadav, B., Goswami, R., & Chavda, R. (2023). Dermatoglyphic Patterns in Patients Having Impacted and Erupted Third Molars-A Comparative Study. Journal of pharmacy & bioallied sciences, 15(Suppl 2), S1142–S1144.
- 5. Li, K., Xu, W., Zhou, T., Chen, J., & He, Y. (2022). The radiological and histological investigation of the dental follicle of asymptomatic impacted mandibular third molars. BMC oral health, 22(1), 642.
- 6. Özcan, A., Yavan, İ., & Günhan, Ö. (2015). Immunohistochemical characteristics of cystic odontogenic lesions: a comparative study. *Turk patoloji dergisi*, *31*(2), 104–110.
- 7. Hunter, K. D., & Speight, P. M. (2014). The diagnostic usefulness of immunohistochemistry for odontogenic lesions. Head and neck pathology, 8(4), 392–399.
- 8. Madras, J., & Lapointe, H. (2008). Keratocystic odontogenic tumour: reclassification of the odontogenic keratocyst from cyst to tumour. *Journal (Canadian Dental Association)*, 74(2), 165–165h.
- 9. Cobourne, M. T., Xavier, G. M., Depew, M., Hagan, L., Sealby, J., Webster, Z., & Sharpe, P. T. (2009). Sonic hedgehog signalling inhibits palatogenesis and arrests tooth development in a mouse model of the nevoid basal cell carcinoma syndrome. Developmental biology, 331(1), 38–49.
- Shimura, M., Nakashiro, K. I., Sawatani, Y., Hasegawa, T., Kamimura, R., Izumi, S., Komiyama, Y., Fukumoto, C., Yagisawa, S., Yaguchi, E., Hitomi-Koide, M., Hyodo, T., Uchida, D., & Kawamata, H. (2020). Whole Exome Sequencing of SMO, BRAF, PTCH1 and GNAS in Odontogenic Diseases. In vivo (Athens, Greece), 34(6), 3233–3240.

- 11. Rodrigues, K. S., Santos, H. B. P., Morais, E. F., & Freitas, R. A. (2022). Immunohistochemical analysis of SHH, SMO and GLI-1 proteins in epithelial odontogenic lesions. Brazilian dental journal, 33(5), 91–99.
- 12. Stojanov, I. J., Schaefer, I. M., Menon, R. S., Wasman, J., Gokozan, H. N., Garcia, E. P., Baur, D. A., Woo, S. B., & Sholl, L. M. (2020). Biallelic PTCH1 Inactivation Is a Dominant Genomic Change in Sporadic Keratocystic Odontogenic Tumors. The American journal of surgical pathology, 44(4), 553–560.
- 13. Zhai, J., Zhang, H., Zhang, J., Zhang, R., Hong, Y., Qu, J., Chen, F., & Li, T. (2019). Effect of the sonic hedgehog inhibitor GDC-0449 on an in vitro isogenic cellular model simulating odontogenic keratocysts. International journal of oral science, 11(1), 4.
- 14. Ren, C., Amm, H. M., DeVilliers, P., Wu, Y., Deatherage, J. R., Liu, Z., & MacDougall, M. (2012). Targeting the sonic hedgehog pathway in keratocystic odontogenic tumor. The Journal of biological chemistry, 287(32), 27117–27125.
- 15. Yagyuu, T., Kirita, T., Sasahira, T., Moriwaka, Y., Yamamoto, K., & Kuniyasu, H. (2008). Recurrence of keratocystic odontogenic tumor: clinicopathological features and immunohistochemical study of the Hedgehog signaling pathway. Pathobiology: journal of immunopathology, molecular and cellular biology, 75(3), 171–176.
- 16. Hasegawa, D., Ochiai-Shino, H., Onodera, S., Nakamura, T., Saito, A., Onda, T., Watanabe, K., Nishimura, K., Ohtaka, M., Nakanishi, M., Kosaki, K., Yamaguchi, A., Shibahara, T., & Azuma, T. (2017). Gorlin syndrome-derived induced pluripotent stem cells are hypersensitive to hedgehog-mediated osteogenic induction. PloS one, 12(10), e0186879.
- 17. Kesireddy, M., Mendiola, V. L., Jana, B., & Patel, S. (2019). Long-term Response to Vismodegib in a Patient with Gorlin-Goltz Syndrome: A Case Report and Review of Pathological Mechanisms Involved. Cureus, 11(8), e5383.
- 18. Grachtchouk, M., Liu, J., Wang, A., Wei, L., Bichakjian, C. K., Garlick, J., Paulino, A. F., Giordano, T., & Dlugosz, A. A. (2006). The American journal of pathology, 169(3), 806–814.
- 19. Wang, Y. J., Zhang, J. Y., Dong, Q., & Li, T. J. (2022). Orthokeratinized odontogenic cysts: A clinicopathologic study of 159 cases and molecular evidence for the absence of PTCH1 mutations. Journal of oral pathology & medicine: official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology, 51(7), 659–665.
- 20. Pan, S., Xu, L. L., Sun, L. S., & Li, T. J. (2009). Identification of known and novel PTCH mutations in both syndromic and non-syndromic keratocystic odontogenic tumors. International journal of oral science, 1(1), 34–38.
- 21. Hellani, A., Baghdadi, H., Dabbour, N., Almassri, N., & Abu-Amero, K. K. (2009). A novel PTCH1 germline mutation distinguishes basal cell carcinoma from basaloid follicular hamartoma: a case report. Journal of medical case reports, 3, 52.
- 22. Asevedo Campos de Resende, T., de Fátima Bernardes, V., Carolina da Silva, J., De Marco, L. A., Santiago Gomez, R., Cavalieri Gomes, C., & Gonçalves Diniz, M. (2018). Loss of heterozygosity of MIR15A/MIR16-1, negative regulators of the antiapoptotic gene BCL2, is not common in odontogenic keratocysts. Oral surgery, oral medicine, oral pathology and oral radiology, 125(4), 313–316.
- 23. Hong, Y. Y., Yu, F. Y., Qu, J. F., Chen, F., & Li, T. J. (2014). Fibroblasts regulate variable aggressiveness of syndromic keratocystic and non-syndromic odontogenic tumors. Journal of dental research, 93(9), 904–910.
- 24. Shimada, Y., Katsube, K., Kabasawa, Y., Morita, K., Omura, K., Yamaguchi, A., & Sakamoto, K. (2013). Integrated genotypic analysis of hedgehog-related genes identifies subgroups of keratocystic odontogenic tumor with distinct clinicopathological features. PloS one, 8(8), e70995.
- 25. Pastorino, L., Pollio, A., Pellacani, G., Guarneri, C., Ghiorzo, P., Longo, C., Bruno, W., Giusti, F., Bassoli, S., Bianchi-Scarrà, G., Ruini, C., Seidenari, S., Tomasi, A., & Ponti, G. (2012). Novel PTCH1 mutations in patients with keratocystic odontogenic tumors screened for nevoid basal cell carcinoma (NBCC) syndrome. PloS one, 7(8), e43827.
- 26. Kaibuchi-Ando, K., Takeichi, T., Ito, Y., Takeuchi, S., Yamashita, Y., Yamada, M., Muro, Y., Ogi, T., & Akiyama, M. (2021). Odontogenic keratocysts are an important clue for diagnosing basal cell nevus syndrome. Nagoya journal of medical science, 83(2), 393–396.
- 27. Friedlander, L. T., Hussani, H., Cullinan, M. P., Seymour, G. J., De Silva, R. K., De Silva, H., Cameron, C., & Rich, A. M. (2015). VEGF and VEGFR2 in dentigerous cysts associated with impacted third molars. Pathology, 47(5), 446–451.
- 28. Ruiz, P. A., Toledo, O. A., Nonaka, C. F., Pinto, L. P., & Souza, L. B. (2010). Immunohistochemical expression of vascular endothelial growth factor and matrix metalloproteinase-9 in radicular and residual radicular cysts. Journal of applied oral science: revista FOB, 18(6), 613–620.
- 29. Zhong, W. Q., Chen, G., Zhang, W., Ren, J. G., Wu, Z. X., Zhao, Y., Liu, B., & Zhao, Y. F. (2015). Epithelial-mesenchymal transition in keratocystic odontogenic tumor: possible role in locally aggressive behavior. BioMed research international, 2015, 168089.

- 30. Pereira, T., Shetty, S. J., Punjabi, V., Vidhale, R. G., Gotmare, S. S., & Kamath, P. (2023). Immunohistochemical expression of SOX2 in OKC and ameloblastoma: A comparative study. Journal of oral and maxillofacial pathology: JOMFP, 27(4), 685–692.
- 31. Mukhopadhyay, A., Panda, A., Mishra, P., Chowdhary, G., Mohanty, A., & Sahoo, P. D. (2023). Comparative immunohistochemical analysis of WT-1, Syndecan and Snail in Ameloblastoma and odontogenic keratocyst: A retrospective study. Journal of oral and maxillofacial pathology: JOMFP, 27(2), 295–301.
- 32. Escobar, E., Gómez-Valenzuela, F., Peñafiel, C., Chimenos-Küstner, E., & Pérez-Tomás, R. (2023). Aberrant immunoexpression of p53 tumour-suppressor and Bcl-2 family proteins (Bcl-2 and Bax) in ameloblastomas and odontogenic keratocysts. Journal of clinical and experimental dentistry, 15(2), e125–e134.
- 33. Silva, B. S., Silva, L. R., Lima, K. L., Dos Santos, A. C., Oliveira, A. C., Dezzen-Gomide, A. C., Batista, A. C., & Yamamoto-Silva, F. P. (2020). SOX2 and BCL-2 Expressions in Odontogenic Keratocyst and Ameloblastoma. Medicina oral, patologia oral y cirugia bucal, 25(2), e283–e290.
- 34. Soluk Tekkeşin, M., Mutlu, S., & Olgaç, V. (2012). Expressions of bax, bcl-2 and Ki-67 in odontogenic keratocysts (Keratocystic Odontogenic Tumor) in comparison with ameloblastomas and radicular cysts. Turk patoloji dergisi, 28(1), 49–55.
- 35. Kaczmarzyk, T., Kisielowski, K., Koszowski, R., Rynkiewicz, M., Gawełek, E., Babiuch, K., Bednarczyk, A., & Drozdzowska, B. (2018). Investigation of clinicopathological parameters and expression of COX-2, bcl-2, PCNA, and p53 in primary and recurrent sporadic odontogenic keratocysts. Clinical oral investigations, 22(9), 3097–3106.
- 36. Kisielowski, K., Drozdzowska, B., Szuta, M., & Kaczmarzyk, T. (2023). Prognostic relevance of clinicopathological factors in sporadic and syndromic odontogenic keratocysts: A comparative study. Advances in clinical and experimental medicine: official organ Wroclaw Medical University, 32(2), 245–259.
- 37. Naz, I., Mahmood, M. K., & Nagi, A. H. (2015). Expression of Bcl-2 in Primary and Recurrent Odontogenic Keratocysts in Comparison with Other Odontogenic Lesions. Asian Pacific journal of cancer prevention: APJCP, 16(15), 6289–6292.
- 38. Rahman, F., Bhargava, A., Tippu, S. R., Kalra, M., Bhargava, N., Kaur, I., & Srivastava, S. (2013). Analysis of the immunoexpression of Ki-67 and Bcl-2 in the pericoronal tissues of impacted teeth, dentigerous cysts and gingiva using software image analysis. Dental research journal, 10(1), 31–37.
- 39. Byun, J. H., Kang, Y. H., Choi, M. J., & Park, B. W. (2013). Expansile keratocystic odontogenic tumor in the maxilla: immunohistochemical studies and review of literature. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 39(4), 182–187.
- 40. Edamatsu, M., Kumamoto, H., Ooya, K., & Echigo, S. (2005). Apoptosis-related factors in the epithelial components of dental follicles and dentigerous cysts associated with impacted third molars of the mandible. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics, 99(1), 17–23.
- 41. Razavi, S. M., Torabinia, N., Mohajeri, M. R., Shahriyary, S., Ghalegolab, S., & Nouri, S. (2015). Expression of Bcl-2 and epithelial growth factor receptor proteins in keratocystic odontogenic tumor in comparison with dentigerous cyst and ameloblastoma. Dental research journal, 12(4), 342–347.
- 42. Sreedhar, G., Raju, M. V., Metta, K. K., Manjunath, S., Shetty, S., & Agarwal, R. K. (2014). Immunohistochemical analysis of factors related to apoptosis and cellular proliferation in relation to inflammation in dentigerous and odontogenic keratocyst. Journal of natural science, biology, and medicine, 5(1), 112–115.
- 43. Villalba, L., Stolbizer, F., Blasco, F., Mauriño, N. R., Piloni, M. J., & Keszler, A. (2012). Pericoronal follicles of asymptomatic impacted teeth: a radiographic, histomorphologic, and immunohistochemical study. International journal of dentistry, 2012, 935310.
- 44. Nimmanagoti, R., Nandan, S., Kulkarni, P. G., Reddy, S. P., Keerthi, M., & Pupala, G. (2019). Protein 53, B-Cell Lymphoma-2, Cyclooxygenase-2, and CD105 Reactivity in Keratocystic Odontogenic Tumors: An Immunohistochemical Analysis. International journal of applied & basic medical research, 9(1), 27–31.
- 45. Phull, K., Metgud, R., & Patel, S. (2017). A study of the distribution of B-cell lymphoma/leukemia-2 in odontogenic cyst and tumors: Histochemical study. Journal of cancer research and therapeutics, 13(3), 570–575.
- 46. Sindura, C., Babu, C., Mysorekar, V., & Kumar, V. (2013). Study of immunohistochemical demonstration of Bcl-2 protein in ameloblastoma and keratocystic odontogenic tumor. Journal of oral and maxillofacial pathology: JOMFP, 17(2), 176–180.
- 47. Cserni, D., Zombori, T., Vörös, A., Stájer, A., Rimovszki, A., Daru, K., Baráth, Z., & Cserni, G. (2020). A Clinicopathological Approach to Odontogenic Cysts: the Role of Cytokeratin 17 and bcl2 Immunohistochemistry in Identifying Odontogenic Keratocysts. Pathology oncology research: POR, 26(4), 2613–2620.

- 48. Shetty, D. C., Urs, A. B., Godhi, S., & Gupta, S. (2010). Classifying odontogenic keratocysts as benign cystic neoplasms: a molecular insight into its aggressiveness. Journal of maxillofacial and oral surgery, 9(1), 30–34.
- González-Moles, M. A., Mosqueda-Taylor, A., Delgado-Rodríguez, M., Martínez-Mata, G., Gil-Montoya, J. A., Díaz-Franco, M. A., Bravo-Pérez, J. J., & M-González, N. (2006). Analysis of p53 protein by PAb240, Ki-67 expression and human papillomavirus DNA detection in different types of odontogenic keratocyst. Anticancer research, 26(1A), 175–181.
- 50. Gadbail, A. R., Chaudhary, M., Patil, S., & Gawande, M. (2009). Actual Proliferating Index and p53 protein expression as prognostic marker in odontogenic cysts. Oral diseases, 15(7), 490–498.
- 51. de Oliveira, M. G., Lauxen, I.daS., Chaves, A. C., Rados, P. V., & Sant'Ana Filho, M. (2008). Immunohistochemical analysis of the patterns of p53 and PCNA expression in odontogenic cystic lesions. *Medicina oral, patologia oral y cirugia bucal, 13*(5), E275–E280.
- 52. Gaballah, E. T., & Tawfik, M. A. (2010). Immunohistochemical analysis of P53 protein in odontogenic cysts. The Saudi dental journal, 22(4), 167–170.
- 53. Chandrangsu, S., & Sappayatosok, K. (2016). p53, p63 and p73 expression and angiogenesis in keratocystic odontogenic tumors. Journal of clinical and experimental dentistry, 8(5), e505–e511.
- 54. Khan, A. A., Qahtani, S. A., Dawasaz, A. A., Saquib, S. A., Asif, S. M., Ishfaq, M., Kota, M. Z., & Ibrahim, M. (2019). Management of an extensive odontogenic keratocyst: A rare case report with 10-year follow-up. *Medicine*, 98(51), e17987.
- 55. Kadashetti, V., Patil, N., Datkhile, K., Kanetakar, S., & Shivakumar, K. M. (2020). Analysis of expression of p53, p63 and proliferating cell nuclear antigen proteins in odontogenic keratocyst: An immunohistochemical study. Journal of oral and maxillofacial pathology: JOMFP, 24(2), 273–278.
- 56. Slusarenko da Silva, Y., Stoelinga, P. J. W., Grillo, R., & da Graça Naclério-Homem, M. (2021). Cyst or Tumor? A systematic review and meta-analysis on the expression of p53 marker in Odontogenic Keratocysts. Journal of cranio-maxillo-facial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery, 49(12), 1101–1106.
- 57. Yanatatsaneejit, P., Boonsrang, A., Mutirangura, A., Patel, V., & Kitkumthorn, N. (2015). P53 polymorphism at codon 72 is associated with keratocystic odontogenic tumors in the Thai population. Asian Pacific journal of cancer prevention: APJCP, 16(5), 1997–2001.
- 58. Varsha, B., Gharat, A. L., Nagamalini, B., Jyothsna, M., Mothkur, S. T., & Swaminathan, U. (2014). Evaluation and comparison of expression of p63 in odontogenic keratocyst, solid ameloblastoma and unicystic ameloblastoma. Journal of oral and maxillofacial pathology: JOMFP, 18(2), 223–228.
- 59. Sajeevan, T. P., Saraswathi, T. R., Ranganathan, K., Joshua, E., & Rao, U. D. (2014). Immunohistochemical study of p53 and proliferating cell nuclear antigen expression in odontogenic keratocyst and periapical cyst. Journal of pharmacy & bioallied sciences, 6(Suppl 1), S52–S57.
- 60. Razavi, S. M., Khalesi, S., & Torabinia, N. (2014). Investigation of clinicopathological parameters alongside with p53 expression in primary and recurrent keratocysticodontogenic tumours. The Malaysian journal of pathology, 36(2), 105–113.
- 61. Chandrashekar, C., Patel, P., Thennavan, A., & Radhakrishnan, R. (2020). Odontogenic keratocyst: Analysis of recurrence by AgNOR, p53 and MDM2 profiling. Journal of oral and maxillofacial pathology: JOMFP, 24(1), 184–185.
- 62. Deyhimi, P., & Hashemzade, Z. (2012). Comparative study of TGF-alpha and P53 markers' expression in odontogenic keratocyst and orthokeratinaized odontogenic cyst. Dental research journal, 9(Suppl 1), S39–S44
- 63. Ogden, G. R., Chisholm, D. M., Kiddie, R. A., & Lane, D. P. (1992). p53 protein in odontogenic cysts: increased expression in some odontogenic keratocysts. Journal of clinical pathology, 45(11), 1007–1010.
- 64. Aldahash F. (2023). Systematic review and meta-analysis of the expression of p53 in the odontogenic lesions. Journal of oral and maxillofacial pathology: JOMFP, 27(1), 168–172.
- 65. Gupta, R., Chaudhary, M., Patil, S., Fating, C., Hande, A., & Suryawanshi, H. (2019). Expression of p63 in tooth germ, dentigerous cyst and ameloblastoma. Journal of oral and maxillofacial pathology: JOMFP, 23(1), 43–48.
- 66. Akshatha, B. K., Karuppiah, K., Manjunath, G. S., Kumarswamy, J., Papaiah, L., & Rao, J. (2017). Immunohistochemical evaluation of inducible nitric oxide synthase in the epithelial lining of odontogenic cysts: A qualitative and quantitative analysis. Journal of oral and maxillofacial pathology: JOMFP, 21(3), 375–381.
- 67. Fatemeh, M., Sepideh, A., Sara, B. S., & Nazanin, M. (2017). P53 Protein Expression in Dental Follicle, Dentigerous Cyst, Odontogenic Keratocyst, and Inflammatory Subtypes of Cysts: An Immunohistochemical Study. Oman medical journal, 32(3), 227–232.
- 68. Seyedmajidi, M., Nafarzadeh, S., Siadati, S., Shafaee, S., Bijani, A., & Keshmiri, N. (2013). p53 and PCNA Expression in Keratocystic Odontogenic Tumors Compared with Selected Odontogenic Cysts. International journal of molecular and cellular medicine, 2(4), 185–193.

- 69. Ortiz-García, J. Z., Munguía-Robledo, S., Estrada-Orozco, J. J., Licéaga-Escalera, C., & Rodríguez, M. A. (2022). Expression level and proteolytic activity of MMP-2 and MMP-9 in dental follicles, dentigerous cysts, odontogenic keratocysts and unicystic ameloblastomas. Journal of oral biology and craniofacial research, 12(3), 339–342.
- 70. Aloka, D., Padmakumar, S. K., Sathyan, S., Sebastian, M., Banerjee, M., & Beena, V. T. (2019). Association of matrix metalloproteinase 2 and matrix metalloproteinase 9 gene polymorphism in aggressive and nonaggressive odontogenic lesions: A pilot study. Journal of oral and maxillofacial pathology: JOMFP, 23(1), 158.
- 71. Loreto, C., Polizzi, A., Filetti, V., Pannone, G., Dos Santos, J. N., Venezia, P., Leonardi, R., & Isola, G. (2022). Expression of Matrix Metalloproteinases 7 and 9, Desmin, Alpha-Smooth Muscle Actin and Caldesmon, in Odontogenic Keratocyst Associated with NBCCS, Recurrent and Sporadic Keratocysts. Biomolecules, 12(6), 775.
- 72. Suojanen, J., Lehtonen, N., Färkkilä, E., Hietanen, J., Teronen, O., Sorsa, T., & Hagström, J. (2014). Common Matrix Metalloproteinases (MMP-8, -9, -25, and -26) Cannot Explain Dentigerous Cyst Expansion. Journal of clinical and diagnostic research: JCDR, 8(9), ZC82–ZC85.
- 73. Kuźniarz, K., Luchowska-Kocot, D., Tomaszewski, T., & Kurzepa, J. (2021). Role of matrix metalloproteinases and their tissue inhibitors in the pathological mechanisms underlying maxillofacial cystic lesions. Biomedical reports, 15(2), 65.
- 74. de Andrade Santos, P. P., de Aquino, A. R., Oliveira Barreto, A., de Almeida Freitas, R., Galvão, H. C., & de Souza, L. B. (2011). Immunohistochemical expression of nuclear factor κB, matrix metalloproteinase 9, and endoglin (CD105) in odontogenic keratocysts, dentigerous cysts, and radicular cysts. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics, 112(4), 476–483.
- 75. Ribeiro, B. F., Ferreira de Araújo, C. R., dos Santos, B. R., & de Almeida Freitas, R. (2011). Immunohistochemical expression of matrix metalloproteinases 1, 2, 7, 9, and 26 in the calcifying cystic odontogenic tumor. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics, 112(5), 609–615.
- 76. Özcan, A., Yavan, İ., & Günhan, Ö. (2015). Immunohistochemical characteristics of cystic odontogenic lesions: a comparative study. Turk patoloji dergisi, 31(2), 104–110.
- 77. Etemad-Moghadam, S., & Alaeddini, M. (2017). A comparative study of syndecan-1 expression in different odontogenic tumors. Journal of oral biology and craniofacial research, 7(1), 23–26.
- 78. Vera-Sirera, B., Forner-Navarro, L., & Vera-Sempere, F. (2015). NCAM (CD56) expression in keratin-producing odontogenic cysts: aberrant expression in KCOT. Head & face medicine, 11, 3.
- 79. Jaafari-Ashkavandi, Z., Dehghani-Nazhvani, A., & Razmjouyi, F. (2014). CD56 Expression in Odontogenic Cysts and Tumors. Journal of dental research, dental clinics, dental prospects, 8(4), 240–245.
- 80. Al-Otaibi, O., Khounganian, R., Anil, S., & Rajendran, R. (2013). Syndecan-1 (CD 138) surface expression marks cell type and differentiation in ameloblastoma, keratocystic odontogenic tumor, and dentigerous cyst. Journal of oral pathology & medicine: official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology, 42(2), 186–193.
- 81. Krishnan, R. P., Pandiar, D., & Sagar, S. (2024). Immunohistochemical Expression of CK14 and Bcl-2 in Odontogenic Keratocyst and Its Variants. *Applied immunohistochemistry & molecular morphology : AIMM*, 32(3), 151–156.
- 82. Padmapriya, V. M., Kavitha, B., Sivapathasundram, B., & Nagaraj, J. (2020). Comparison of cytokeratin expressions among orthokeratinized odontogenic cysts, epidermoid cysts and odontogenic keratocysts: An immunohistochemical study. Journal of oral and maxillofacial pathology: JOMFP, 24(3), 472–478.
- 83. Sheethal, H. S., Rao, K., H S, U., & Chauhan, K. (2019). Odontogenic keratocyst arising in the maxillary sinus: A rare case report. Journal of oral and maxillofacial pathology: JOMFP, 23(Suppl 1), 74–77.
- 84. Hoshino, M., Inoue, H., Kikuchi, K., Miyazaki, Y., Yoshino, A., Hara, H., Terui, T., Kusama, K., & Sakashita, H. (2015). Comparative study of cytokeratin and langerin expression in keratinized cystic lesions of the oral and maxillofacial regions. Journal of oral science, 57(4), 287–294.
- 85. Yamamoto, K., Matsusue, Y., Kurihara, M., Takahashi, Y., & Kirita, T. (2013). A keratocyst in the buccal mucosa with the features of keratocystic odontogenic tumor. The open dentistry journal, 7, 152–156.
- 86. Kureel, K., Urs, A. B., & Augustine, J. (2019). Cytokeratin and fibronectin expression in orthokeratinized odontogenic cyst: A comparative immunohistochemical study. Journal of oral and maxillofacial pathology: JOMFP, 23(1), 65–72.
- 87. Bhakhar, V. P., Shah, V. S., Ghanchi, M. J., Gosavi, S. S., Srivastava, H. M., & Pachore, N. J. (2016). A Comparative Analysis of Cytokeratin 18 and 19 Expressions in Odontogenic Keratocyst, Dentigerous Cyst and Radicular Cyst with a Review of Literature. Journal of clinical and diagnostic research: JCDR, 10(7), ZC85–ZC89.
- 88. Shruthi, D. K., Shivakumar, M. C., Tegginamani, A. S., Karthik, B., & Chetan, B. I. (2014). Cytokeratin 14 and cytokeratin 18 expressions in reduced enamel epithelium and dentigerous cyst: Possible role in

- oncofetal transformation and histogenesis- of follicular type of adenomatoid odontogenic tumor. Journal of oral and maxillofacial pathology: JOMFP, 18(3), 365–371.
- 89. Swetha, P., Ramesh, K., Madhavan, N., Veeravarmal, V., & Sameera, A. (2014). Expression of inducible nitric oxide synthase in the epithelial linings of odontogenic keratocyst, dentigerous cyst and radicular cyst: a pathological insight. Annals of medical and health sciences research, 4(4), 583–589.
- 90. Sudhakara, M., Rudrayya, S. P., Vanaki, S. S., Bhullar, R. K., Shivakumar, M. S., & Hosur, M. (2016). Expression of CK14 and vimentin in adenomatoid odontogenic tumor and dentigerous cyst. Journal of oral and maxillofacial pathology: JOMFP, 20(3), 369–376.
- 91. Saluja, P., Arora, M., Dave, A., Shetty, V. P., Khurana, C., Madan, A., Rai, R., & Katiyar, A. (2019). Role of Cytokeratin-7 in the pathogenesis of odontogenic cysts an immunohistochemical study. Medicine and pharmacy reports, 92(3), 282–287.
- 92. Portes, J., Cunha, K. S. G., da Silva, L. E., da Silva, A. K. F., Conde, D. C., & Silva Junior, A. (2020). Computerized Evaluation of the Immunoexpression of Ki-67 Protein in Odontogenic Keratocyst and Dentigerous Cyst. Head and neck pathology, 14(3), 598–605.
- 93. Hammad, H. M., Nagrash, O. M., & Safadi, R. A. (2020). Maspin, Syndecan-1, and Ki-67 in the Odontogenic Keratocyst: An Immunohistochemical Analysis. International journal of dentistry, 2020, 7041520.
- 94. Alsaegh, M. A., Altaie, A. M., & Zhu, S. (2020). p63 Expression and its Relation to Epithelial Cells Proliferation in Dentigerous Cyst, Odontogenic Keratocyst, and Ameloblastoma. Pathology oncology research: POR, 26(2), 1175–1182.
- 95. Jaafari-Ashkavandi, Z., Geramizadeh, B., & Ranjbar, M. A. (2015). P63 and Ki-67 Expression in Dentigerous Cyst and Ameloblastomas. Journal of dentistry (Shiraz, Iran), 16(4), 323–328.
- 96. Jaafari-Ashkavandi, Z., Mehranmehr, F., & Roosta, E. (2019). MCM3 and Ki67 proliferation markers in odontogenic cysts and ameloblastoma. *Journal of oral biology and craniofacial research*, 9(1), 47–50.
- 97. Brito-Mendoza, L., Bologna-Molina, R., Irigoyen-Camacho, M. E., Martinez, G., Sánchez-Romero, C., & Mosqueda-Taylor, A. (2018). A Comparison of Ki67, Syndecan-1 (CD138), and Molecular RANK, RANKL, and OPG Triad Expression in Odontogenic Keratocyts, Unicystic Ameloblastoma, and Dentigerous Cysts. Disease markers, 2018, 7048531.
- 98. Modi, T. G., Chalishazar, M., & Kumar, M. (2018). Expression of Ki-67 in odontogenic cysts: A comparative study between odontogenic keratocysts, radicular cysts and dentigerous cysts. Journal of oral and maxillofacial pathology: JOMFP, 22(1), 146.
- 99. Alsaegh, M. A., Miyashita, H., Taniguchi, T., & Zhu, S. R. (2017). Odontogenic epithelial proliferation is correlated with COX-2 expression in dentigerous cyst and ameloblastoma. Experimental and therapeutic medicine, 13(1), 247–253.
- 100. Güler, N., Comunoğlu, N., & Cabbar, F. (2012). Ki-67 and MCM-2 in dental follicle and odontogenic cysts: the effects of inflammation on proliferative markers. The Scientific World Journal, 2012, 946060.
- 101. Kim, D. K., Ahn, S. G., Kim, J., & Yoon, J. H. (2003). Comparative Ki-67 expression and apoptosis in the odontogenic keratocyst associated with or without an impacted tooth in addition to unilocular and multilocular varieties. Yonsei medical journal, 44(5), 841–846.
- 102. de Oliveira, M. G., Lauxen, I.daS., Chaves, A. C., Rados, P. V., & Sant'Ana Filho, M. (2011). Odontogenic epithelium: immunolabeling of Ki-67, EGFR and survivin in pericoronal follicles, dentigerous cysts and keratocystic odontogenic tumors. Head and neck pathology, 5(1), 1–7.
- 103. Nadalin, M. R., Fregnani, E. R., Silva-Sousa, Y. T., & Perez, D. E. (2011). Syndecan-1 (CD138) and Ki-67 expression in odontogenic cystic lesions. Brazilian dental journal, 22(3), 223–229.
- 104. Naruse, T., Yamashita, K., Yanamoto, S., Rokutanda, S., Matsushita, Y., Sakamoto, Y., Sakamoto, H., Ikeda, H., Ikeda, T., Asahina, I., & Umeda, M. (2017). Histopathological and immunohistochemical study in keratocystic odontogenic tumors: Predictive factors of recurrence. Oncology letters, 13(5), 3487–3493.
- 105. Selvi, F., Tekkesin, M. S., Cakarer, S., Isler, S. C., & Keskin, C. (2012). Keratocystic odontogenic tumors: predictive factors of recurrence by Ki-67 and AgNOR labelling. International journal of medical sciences, 9(4), 262–268.
- 106. Ba, K., Li, X., Wang, H., Liu, Y., Zheng, G., Yang, Z., Li, M., Shimizutani, K., & Koseki, T. (2010). Correlation between imaging features and epithelial cell proliferation in keratocystic odontogenic tumour. Dento maxillo facial radiology, 39(6), 368–374.
- 107. Mendes, R. A., Carvalho, J. F., & van der Waal, I. (2011). A comparative immunohistochemical analysis of COX-2, p53, and Ki-67 expression in keratocystic odontogenic tumors. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics, 111(3), 333–339.
- 108. Nafarzadeh, S., Seyedmajidi, M., Jafari, S., Bijani, A., & Rostami-Sarokolaei, A. (2013). A comparative study of PCNA and Ki-67 expression in dental follicle, dentigerous cyst, unicystic ameloblastoma and ameloblastoma. International journal of molecular and cellular medicine, 2(1), 27–33.
- 109. Kuroyanagi, N., Sakuma, H., Miyabe, S., Machida, J., Kaetsu, A., Yokoi, M., Maeda, H., Warnakulasuriya, S., Nagao, T., & Shimozato, K. (2009). Prognostic factors for keratocystic odontogenic tumor (odontogenic keratocyst): analysis of clinico-pathologic and immunohistochemical findings in cysts treated by

- enucleation. Journal of oral pathology & medicine: official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology, 38(4), 386–392.
- 110. Ono, S., Hirose, K., Sukegawa, S., Nakamura, S., Motooka, D., Iwamoto, Y., Hori, Y., Oya, K., Fukuda, Y., & Toyosawa, S. (2022). Multiple orthokeratinized odontogenic cysts: clinical, pathological, and genetic characteristics. Diagnostic pathology, 17(1), 82.
- 111. Park, S., Jung, H. S., Jung, Y. S., Nam, W., Cha, J. Y., & Jung, H. D. (2020). Changes in Cellular Regulatory Factors before and after Decompression of Odontogenic Keratocysts. Journal of clinical medicine, 10(1), 30.
- 112. Coşarcă, A. S., Mocan, S. L., Păcurar, M., Fülöp, E., & Ormenişan, A. (2016). The evaluation of Ki67, p53, MCM3 and PCNA immunoexpressions at the level of the dental follicle of impacted teeth, dentigerous cysts and keratocystic odontogenic tumors. Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie, 57(2), 407–412.
- 113. Jabbarzadeh, M., Hamblin, M. R., Pournaghi-Azar, F., Vakili Saatloo, M., Kouhsoltani, M., & Vahed, N. (2021). Ki-67 expression as a diagnostic biomarker in odontogenic cysts and tumors: A systematic review and meta-analysis. Journal of dental research, dental clinics, dental prospects, 15(1), 66–75.
- 114. Bhola, R., Narwal, A., Kamboj, M., & Devi, A. (2024). Immunohistochemical Comparison of Ki-67 and MCM-3 in Odontogenic Cysts: An Observational Study. Applied immunohistochemistry & molecular morphology: AIMM, 32(2), 111–116.
- 115. Embaló, B., Parize, H. N., & Rivero, E. R. C. (2018). Evaluation of cell proliferation in cystic lesions associated with impacted third molars. *Microscopy research and technique*, 81(11), 1241–1245.
- 116. Kucukkolbasi, H., Esen, A., & Erinanc, O. H. (2014). Immunohistochemical analysis of Ki-67 in dental follicle of asymptomatic impacted third molars. *Journal of oral and maxillofacial pathology: JOMFP*, 18(2), 189–193.
- 117. Cimadon, N., Lauxen, I. S., Carrard, V. C., Sant'Ana Filho, M., Rados, P. V., & Oliveira, M. G. (2014). Analysis of the proliferative potential of odontogenic epithelial cells of pericoronal follicles. *The journal of contemporary dental practice*, 15(6), 761–765.
- 118. Chaturvedi, T. P., Gupta, K., Agrawal, R., Naveen Kumar, P. G., & Gupta, J. (2022). Immunohistochemical expression of Ki-67 and Glypican-3 to distinguish aggressive from nonaggressive benign odontogenic tumors. Journal of cancer research and therapeutics, 18(Supplement), S205–S209.
- 119. Yamasaki, S., Shintani, T., Ando, T., Miyauchi, M., & Yanamoto, S. (2024). Transformation of an odontogenic keratocyst into a solid variant of odontogenic keratocyst/keratoameloblastoma during long-term follow-up: A case report. Molecular medicine reports, 29(3), 44.
- 120. Dong, Q., Pan, S., Sun, L. S., & Li, T. J. (2010). Orthokeratinized odontogenic cyst: a clinicopathologic study of 61 cases. Archives of pathology & laboratory medicine, 134(2), 271–275.
- 121. Mustansir-Ul-Hassnain, S., Chandavarkar, V., Mishra, M. N., Patil, P. M., Bhargava, D., & Sharma, R. (2021). Histopathologic and immunohistochemical findings of odontogenic jaw cysts treated by decompression technique. Journal of oral and maxillofacial pathology: JOMFP, 25(2), 272–278.
- 122. Trujillo-González, D., Villarroel-Dorrego, M., Toro, R., Vigil, G., Pereira-Prado, V., & Bologna-Molina, R. (2022). Decompression induces inflammation but do not modify cell proliferation and apoptosis in odontogenic keratocyst. Journal of clinical and experimental dentistry, 14(1), e100–e106.
- 123. Zhou, Q., Xu, L., Li, H., & Xia, R. H. (2022). Orthokeratinized odontogenic cyst (OOC): Clinicopathological and radiological features of a series of 48 cases. Pathology, research and practice, 236, 153969.
- 124. Orikpete, E. V., Omoregie, O. F., & Ojo, M. A. (2020). Proliferative and anti-apoptotic indices of unicystic ameloblastoma, odontogenic keratocyst, dentigerous cyst and radicular cyst. Journal of oral and maxillofacial pathology: JOMFP, 24(2), 399.
- 125. Lafuente-Ibáñez de Mendoza, I., Aguirre-Urizar, J. M., Villatoro-Ugalde, V., Magaña-Quiñones, J. J., Lana-Ojeda, J., & Mosqueda-Taylor, A. (2022). Peripheral odontogenic keratocyst: Clinicopathological and immunohistochemical characterization. Oral diseases, 28(4), 1198–1206.
- 126. Baris, E., Secen, A., Karabulut, S., & Gultekin, S. E. (2022). Investigation of the effects of marsupialization on histomorphological and immunohistochemical markers of odontogenic keratocysts. Nigerian journal of clinical practice, 25(9), 1548–1556.
- 127. Latha, H. A., Prakash, A. R., Kanth, M. R., Reddy, A. V. S., Sreenath, G., & Vidya, K. S. (2023). Expression of anti Apoptotic survivin in odontogenic keratocyst, adenomatoid odontogenic tumor and ameloblastoma. Journal of oral and maxillofacial pathology: JOMFP, 27(3), 601.
- 128. Baddireddy, S. M., Manyam, R., & Thomas, D. C. (2023). Expression of EGFR and survivin in ameloblastoma, odontogenic keratocyst and calcifying odontogenic cyst An immunohistochemical study. Journal of oral and maxillofacial pathology: JOMFP, 27(2), 424.
- 129. Thermos, G., Piperi, E., Tosios, K. I., & Nikitakis, N. G. (2022). Expression of BMP4 and FOXN1 in orthokeratinized odontogenic cyst compared to odontogenic keratocyst suggests an epidermal phenotype. Biotechnic & histochemistry: official publication of the Biological Stain Commission, 97(8), 584–592.

- 130. Zhang, L. Z., Man, Q. W., Liu, J. Y., Zhong, W. Q., Zheng, Y. Y., Zhao, Y. F., & Liu, B. (2018). Overexpression of Fra-1, c-Jun and c-Fos in odontogenic keratocysts: potential correlation with proliferative and antiapoptotic activity. Histopathology, 73(6), 933–942.
- 131. Pinheiro, J. C., de Carvalho, C. H. P., Galvão, H. C., Pereira Pinto, L., de Souza, L. B., & de Andrade Santos, P. P. (2020). Relationship between mast cells and E-cadherin in odontogenic keratocysts and radicular cysts. Clinical oral investigations, 24(1), 181–191.
- 132. Porto, L. P., dos Santos, J. N., Ramalho, L. M., Figueiredo, A. L., Carneiro Júnior, B., Gurgel, C. A., Paiva, K. B., & Xavier, F. C. (2016). E-cadherin regulators are differentially expressed in the epithelium and stroma of keratocystic odontogenic tumors. Journal of oral pathology & medicine: official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology, 45(4), 302–311.
- 133. Singh, A., Astekar, M. S., Sapra, G., Agarwal, A., & Murari, A. (2023). Immunohistochemical expression of paxillin in ameloblastoma and odontogenic keratocyst: An observational study. Journal of oral and maxillofacial pathology: JOMFP, 27(4), 727–734.
- 134. Cesinaro, A. M., Burtini, G., Maiorana, A., Rossi, G., & Migaldi, M. (2020). Expression of calretinin in odontogenic keratocysts and basal cell carcinomas: A study of sporadic and Gorlin-Goltz syndrome-related cases. Annals of diagnostic pathology, 45, 151472.
- 135. Galvão, H. C., Gordón-Núñez, M. A., de Amorim, R. F., Freitas, R.deA., & de Souza, L. B. (2013). Immunohistochemical expression of protein 53, murine double minute 2, B-cell lymphoma 2, and proliferating cell nuclear antigen in odontogenic cysts and keratocystic odontogenic tumor. Indian journal of dental research: official publication of Indian Society for Dental Research, 24(3), 369–374.
- 136. Tenório, J. R., Santana, T., Queiroz, S. I., de Oliveira, D. H., & Queiroz, L. M. (2018). Apoptosis and cell cycle aberrations in epithelial odontogenic lesions: An evidence by the expression of p53, Bcl-2 and Bax. Medicina oral, patologia oral y cirugia bucal, 23(2), e120–e125.
- 137. Ghafouri-Fard, S., Atarbashi-Moghadam, S., & Taheri, M. (2021). Genetic factors in the pathogenesis of ameloblastoma, dentigerous cyst and odontogenic keratocyst. Gene, 771, 145369.
- 138. Kim, Y. S., & Lee, S. K. (2014). Different Protein Expressions between Peripheral Ameloblastoma and Oral Basal Cell Carcinoma Occurred at the Same Mandibular Molar Area. *Korean journal of pathology*, 48(2), 151–158.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.