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Abstract: Visual object tracking is an important technology in camera based sensor networks, which 1

has a wide range of practicability in auto drive system. A transformer is a deep learning model 2

that adopts the mechanism of self-attention, and it differentially weights the significance of each 3

part of the input data. It has been widely applied in the field of visual tracking. Unfortunately, 4

the security of the transformer model is unclear. It makes such transformer-based applications be 5

exposed to security threats. In this work, the security of the transformer model is investigated 6

with the important component of autonomous driving, visual tracking. Such deep-learning-based 7

visual tracking is vulnerable to adversarial attacks, so adversarial attacks are implemented as the 8

security threats to conduct the investigation. First, adversarial examples are generated on top of 9

video sequences to degrade tracking performance, and the frame-by-frame temporal motion is 10

taken into consideration when generating perturbations over the predicted tracking results. Then, 11

the influence of perturbations on performance is sequentially investigated and analyzed. Finally, 12

numerous experiments on OTB100, VOT2018, and GOT-10k data sets demonstrate that the executed 13

adversarial examples are effective on the performance drops of the transformer-based visual tracking. 14

Keywords: autonomous driving; visual tracking; adversarial attacks; transformer model 15

0. Introduction 16

In recent years, autonomous vehicles have relied heavily on advanced sensor technolo- 17

gies, such as LIDAR, radar, GPS, and ultrasonic sensors, to navigate and understand their 18

environments. Cameras, as a significant part of this sensor suite, provide crucial visual data 19

for tasks like target tracking, traffic sign recognition, and lane detection. This image data 20

plays a pivotal role in understanding dynamic scenes and tracking moving objects for safe 21

autonomous driving. However, reliance on image data also brings particular vulnerabilities. 22

Visual target tracking, which primarily depends on this camera-based image data, has 23

seen remarkable improvements with the advent of deep learning models, particularly 24

transformer. The transformer is a foundation model to drive a paradigm shift in artificial 25

intelligence, and it has attracted increasing attention due to its remarkable ability to capture 26

long-range dependencies and model sequential data, and it learns context and thus mean- 27

ing by tracking relationships in sequential data. In transformer models, the self-attention 28

technique is applied to detect subtle ways even distant data elements in a series influence 29

and depend on each other. On these capabilities basis, the transformer model is driving a 30

wave of advances in machine learning, and it greatly improves the performance in visual 31

tracking. However, the security of the transformer model in visual tracking has not been 32

thoroughly investigated yet. Although the transformer model has shown impressive per- 33

formance in many tasks, it is vulnerable to adversarial attacks which can cause the model to 34
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produce incorrect outputs or even fail completely. In visual tracking, adversarial examples 35

have successfully attacked deep learning tasks such as image classification, object detection, 36

and semantic segmentation. Adversarial attacks are particularly concerning in the context 37

of transformer-model-based visual tracking, where the consequences of a misclassification 38

or a false positive can be severe. The adversarial example study in deep visual tracking can 39

not only help people understand its weakness, but also direct to improve the robustness of 40

algorithms in visual tasks. Therefore, it is important to investigate the robustness and the 41

security of deep-learning-based trackers. 42

In this paper, our work aims to investigate the security of transformer models in 43

visual tracking, and evaluate their robustness against different types of adversarial attacks. 44

Specifically, the vulnerability of the transformer models in visual tracking is explored to 45

white-box [1], [2], [3], gray-box [4], [5], [6], [7] and black-box attacks [8], [9]. Moreover, this 46

paper analyzes the impact of different attack methods on the tracking performance. The 47

goal of our work is to provide insights into the security of the transformer models in visual 48

tracking, and identify potential vulnerabilities that need to be addressed in future research. 49

Three attacks are deployed in the investigation experiments, cooling-shrinking at- 50

tack [4], IoU attack [8] and RTAA attack [1], and the experiments are carried on three data 51

sets, OTB100 [10], VOT2018 [11] and GOT-10k [12]. 52

Figure 1 gives an example: the RTAA attack causes two transformer-model-based 53

trackers to track wrong targets.

MixFormer TransT

(a) Original Tracking Results (b) Adversarial Attack Results

Figure 1. The adversarial attack, RTAA, in two transformer-model-based trackers (TransT [13] and
MixFormer [14]). The TransT tracker effectively locates targets in the original video sequences. The
MixFormer utilizes the flexibility of attention operations, and there is a mixed attention module for
simultaneous feature extraction and target information integration. The adversarial attack strategy
decreases the tracking accuracy as shown in (b), with the RTAA attack, i.e., the TransT and MixFormer
trackers output incorrect bounding boxes to track wrong targets.

54

The contributions of this paper are summarized as follows: 55

1. Investigation and analysis. Adversarial attacks against visual tracking tasks are 56

investigated to analyze the tracking principle, the advantage and weakness of the 57

transformer-model-based trackers. Moreover, the influence of the adversarial attacks 58
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is studied as well. It is important to direct the design of robust and secure deep- 59

learning-based trackers for visual tracking. 60

2. Implementation and verification. Three adversarial attacks are implemented to per- 61

form the attacks on the transformer-model-based visual tracking, and the effectiveness 62

of these attacks is verified on three data sets. 63

1. Adversarial Attacks on Transformer-based Visual Tracking 64

1.1. Transformer Architecture 65

The transformer model is introduced by Vaswani et al., and applied in machine 66

translation. It is an architecture for transforming one sequence into another with the help of 67

attention-based encoders and decoders. The attention mechanism takes an input sequence 68

into each step, and decides at each step, to facilitate capturing the global information from 69

the input sequence. 70

The transformer architecture has been used to replace recurrent neural networks in 71

these sequential tasks: natural language processing, speech processing and computer vision, 72

and gradually extended to handle non-sequential problems. 73

As the important mechanism of transformer architecture, the attention mechanism 74

has been introduced into the tracking field. In [15], Choi et al. adopt channel-wise attention 75

to provide the matching network with target-specific information. It merely borrows the 76

concept of attention to conduct model or feature selection. In [16], Yu et al. explore both 77

self-attention and cross-branch-attention to improve the discriminative ability of target 78

features before applying the depth-wise cross correlation. In [17], Du et al. propose CGACD 79

to learn attention from the correlation result of the template and search region, and then 80

adopt the learned attention to enhance the search region features for further classification 81

and regression. These works have improved the tracking accuracy with the attention 82

mechanism, but they still highly rely on the correlation operation in fusing the template 83

and search region features. In [13], Chen et al. design an attention-based network to directly 84

fuse template and search region features without using any correlation operation. 85

1.2. Transformer Tracking 86

Transformer tracking is a state-of-the-art object tracking method which uses the trans- 87

former model to achieve accurate and robust object tracking. Compared to traditional 88

object tracking methods, transformer tracking has shown superior performance in handling 89

object deformation and occlusion. The key idea of transformer tracking is to represent 90

each object as a vector learned by the transformer model. During tracking, the feature 91

representation of the object is first converted into a vector and fed into the transformer 92

model for processing, which generates a new representation of the object. The location and 93

state of the object in the next frame are predicted based on the similarity between the old 94

and new representations. Transformer tracking has several advantages over traditional 95

tracking methods. First, the transformer model is capable of capturing the context infor- 96

mation of the object, making the tracker more robust to object deformation and occlusion. 97

Second, the representation vector of the object can be adapted dynamically during tracking, 98

which allows the tracker to better adapt to the object’s motion and deformation. Finally, 99

pre-training can be applied to the transformer model to accelerate training and improve 100

the tracking performance. 101

There have been several recent studies on transformer tracking, such as TransT [13], 102

TMT [18], STARK [19], AiATrack [20], OSTrack [21], SwinTrack [22], TFITrack [23] and 103

TrTr [24]. They utilize the encoder-decoder network to extract the global and rich contextual 104

inter-dependencies. In addition, MixFormer is presented in [14] as a compact tracking 105

framework, and it is built upon transformers. It is proposed to simplify the multi-stage 106

pipeline of feature extraction, target information integration, and bounding box estimation. 107

Moreover, it unifies the process of feature extraction and target information integration. 108
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1.3. Adversarial Attacks on Transformer Tracking 109

Vision is the core and foundation of tracking, and the adversarial robustness of the 110

vision transformer decides the robustness of the tracking with the transformer framework. 111

In recent years, the vision transformer has achieved attention. In [25], the authors have 112

showed that standard vision transformer models perform more robust than standard CNNs 113

under adversarial attacks. In [26], the authors have revealed that vision transformer models 114

are not more robust than CNNs, if both are trained in the same training framework. It is 115

observed that the accuracy of standard models can be easily reduced to near zero under 116

standard attacks. In addition, Fu et al. [27] studied attacking vision transformer models in a 117

patch-wise approach, and it reveals the unique vulnerability of vision transformer models. 118

To boost the adversarial robustness of vision transformer models, in [28], authors have 119

explored multiple-step adversarial training to the vision transformer models. However, 120

multi-step adversarial training is computationally expensive. To reduce computational 121

cost, in [29], Wu et al. took the step of exploring fast single-step adversarial training on 122

vision transformer models. 123

2. Generating Adversarial Examples 124

Three attack methods are implemented, they are: cooling-shrinking attack [4], IoU 125

attack [8] and RTAA attack [1], and they are acted on TransT [13] and MixFormer [14]. 126

2.1. Attack Principles 127

The attack principles of three attack methods are analyzed in detail as follows. 128

Cooling-shrinking attack’s principle. In the cooling-shrinking attack, the proposed 129

adversarial perturbation generator aims to deceive the SiamRPN++ tracker by making the 130

target invisible and leading to tracking drift. This is achieved by training the generator 131

with a cooling-shrinking loss. The generator is designed to attack either the search regions 132

or the template, where the search regions are the target located, and the template is given 133

in the initial frame. 134

The designed cooling-shrinking loss is composed of the cooling loss LC to interfere the 135

heat maps MH , and the shrinking loss LS to interfere the regression maps MR, where the 136

heat maps MH and the regression maps MR are important components of the SiamRPN++ 137

tracker. 138

In the generator, the cooling loss LC is designed to cool down the hot regions where 139

the target may exist on, causing the tracker to lose the target, and the shrinking loss LS is 140

designed to force the predicted bounding box to shrink, leading to error accumulation and 141

tracking failure. 142

IoU attack’s principle. The IoU attack method aims to decrease the IoU scores between 143

the predicted bounding boxes and ground truth bounding boxes in a video sequence, 144

indicating the degradation of tracking performance. It is designed to counter existing 145

black-box adversarial attacks that target static images for image classification. Unlike the 146

existing black-box adversarial attacks, the IoU attack generates perturbations by considering 147

predicted IoU scores from both current and previous frames. By decreasing the IoU scores, 148

the IoU attack reduces the frame-by-frame accuracy of coherent bounding boxes in video 149

streams. During the IoU attack, learned perturbations are utilized and transferred to 150

subsequent frames to initiate a temporal motion attack. In the IoU attack, there is an 151

increase in noise level as the IoU scores decrease, but this relationship is not linear: in 152

an IoU attack, a clean input frame is subjected to the addition of heavy uniform noise, 153

resulting in a heavily-noised image with a low IoU score. During the addition process, the 154

IoU scores gradually decline as the noise level increases. 155

The following employed strategy achieves the effectiveness and imperceptibility of 156

the IoU attack in video streams: there exists a positive correlation between the direction 157

of decrease in IoU and the direction of increase in noise. However, this relationship is not 158

linear. The IoU attack gradually reduces the IoU score for each frame in a video stream 159

by adding the minimum amount of noise. It identifies the specific noise perturbation that 160
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results in the lowest IoU score among an equal amount of noise levels through orthogonal 161

composition. 162

RTAA attack’s principle. The RTAA attack takes temporal motion into consideration 163

over the estimated tracking results frame-by-frame. 164

The RTAA attack creates a pseudo classification label and a pseudo regression label, 165

and both labels are used to design the adversarial loss. The adversarial loss is set to make 166

Lc and Lr be the same when correct and pseudo labels are used separately, where the Lc 167

denotes the binary classification loss, and the Lr is the bounding box regression loss, and 168

they are two important parameters in deep visual tracking algorithms. 169

In deep visual tracking, the binary classification loss is a measure used to evaluate 170

the performance of a visual tracking algorithm. Visual tracking is often framed as a 171

binary classification problem, where the goal is to distinguish between the target and 172

the background. The binary classification loss function in visual tracking measures the 173

difference between the predicted class probabilities and the true class labels. In this case, the 174

two classes are the target and the background. The loss function is used to train the visual 175

tracking algorithm and adjust its parameters so that it improves its ability to accurately 176

track the target over time. Moreover, the bounding box regression loss in visual tracking is 177

a measure used to evaluate the performance of a visual tracking algorithm in predicting 178

the location and the size of the bounding box that encloses the target. In visual tracking, 179

the goal is to track the target of interest over time, and the bounding box regression loss 180

function is used to adjust the parameters of the tracking algorithm so that it can accurately 181

predict the location and size of the bounding box that encloses the target in each frame of 182

the video sequence. 183

2.2. Advantages and Weaknesses of Attacks 184

Cooling-shrinking attack’s advantages. There are two advantages: (i) the use of a 185

cooling-shrinking loss allows for fine-tuning of the generator to generate imperceptible 186

perturbations while still effectively deceiving the tracker, and (ii) the method is able to attack 187

the SiamRPN++ tracker, which is currently one of the most powerful trackers, achieving 188

the state-of-the-art performance on almost all tracking data sets. 189

Cooling-shrinking attack’s weaknesses. There are three weaknesses: (i) the method 190

is specifically designed to attack the SiamRPN++ tracker, and may not be effective against 191

other types of trackers, and (ii) the generator is trained with a fixed threshold, so it may not 192

be effective against different scenarios or environments, and (iii) the attack method may 193

have limited use in real-world applications, as adding adversarial perturbations to targets 194

being tracked. 195

IoU attack’s advantages. There are three advantages: (i) the IoU attack involves 196

both spatial and temporal aspects of target motion, making it more comprehensive and 197

challenging for visual tracking, (ii) the method uses a minimal amount of noise to gradually 198

decrease the IoU scores, making it more effective in terms of computational costs, and (iii) 199

the IoU attack can be applied to different trackers as long as they predict one bounding box 200

for each frame, making it more versatile. 201

IoU attack’s weaknesses. There are three weaknesses: (i) the exact relationship be- 202

tween the noise level and the decrease of IoU scores is not explicitly modeled, making it 203

difficult to optimize the noise perturbations, (ii) the method involves a significant amount 204

of computation during each iteration, which might affect its efficiency in real-world ap- 205

plications, and (iii) the method relies on the assumption that the trackers use a single 206

bounding box prediction for each frame, which might not always be the case in some 207

complex scenarios. 208

RTAA attack’s advantages. There are three advantages: (i) the RTAA attack generates 209

adversarial perturbations based on the input frame and the output response of deep 210

trackers, which makes the adversarial examples more effective and realistic, (ii) the attack 211

uses the tracking-by-detection framework, which is widely used in computer vision tasks 212

and helps to increase the robustness of the attack, and (iii) the method can effectively 213
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confuse the classification and regression branches of the deep tracker, which results in rapid 214

degradation in performance. 215

RTAA attack’s weaknesses. There are four weaknesses: (i) the method relies on a fixed 216

weight parameter λ, which may not be optimal for different types of deep trackers and 217

attack scenarios, (ii) the method uses a random offset and scale variation for the pseudo 218

regression label, which may not be effective for all tracking scenarios, (iii) the method 219

requires multiple iterations to produce the final adversarial perturbations, which increases 220

the computational complexity of the attack, and (iv) the method considers the adversarial 221

attacks in the spatiotemporal domain, which may limit its applicability to other computer 222

vision tasks that do not have a temporal aspect. 223

2.3. Transformer Tracking Principles 224

TransT’s principle. Correlation acts as an important role in tracking. However, the 225

correlation operation is a local linear matching process, which easily leads to lose semantic 226

information and falls into local optimum. To address this issue, inspired by transformer 227

architecture, TransT [13] is proposed with the attention-based feature fusion network, and 228

it combines the template and search region features solely using an attention-based fusion 229

mechanism. 230

TransT consists of three components: backbone network, feature fusion network and 231

prediction head. The backbone network extracts the features of the template and the 232

search region, separately. With the extracted features, then, the features are enhanced and 233

fused by the proposed feature fusion network. Finally, the prediction head performs the 234

binary classification and bounding box regression on the enhanced features to generate the 235

tracking results. 236

MixFormer’s principle. To simplify the multi-stage pipeline of tracking, and unify 237

the process of feature extraction and target information integration, a compact tracking 238

framework is proposed in [14], termed as MixFormer, which is built upon transformers. 239

MixFormer utilizes the flexibility of attention operations, and uses a mixed attention 240

module, for simultaneous feature extraction and target information integration. This 241

synchronous modeling scheme allows to extract target-specific discriminative features, and 242

performs the extensive communication between the target and search areas. MixFormer 243

simplifies the tracking framework by stacking multiple mixed attention modules, with 244

embedding progressive patches and placing a localization head on top. In addition, to 245

handle multiple target templates during online tracking, an asymmetric attention scheme 246

is designed in the mixed attention module, to reduce computational cost, and an effective 247

score prediction module is proposed to select high-quality templates. 248

2.4. Investigation Experiments and Analyses 249

Investigation experiments evaluate the robustness of tracker models based on the 250

transformer framework, namely Transformer and MixFormer, against three distinct adver- 251

sarial attack methods, and the evaluation is performed on three foundational benchmark 252

datasets: OTB2015 [10], VOT2018 [11], and GOT-10k [12]. The investigated attack meth- 253

ods encompass white-box attack (RTAA attack), semi-white-box attack (CSA attack), and 254

black-box attack (IoU attack). The objective is to comprehensively assess the vulnerability 255

of these trackers under varying degrees of adversarial perturbations, shedding light on 256

their limitations and potential defense strategies. The findings from this study contribute 257

to enhancing the overall reliability and security of transformer-based trackers in real-world 258

scenarios. 259

Standard evaluation methodologies are adopted on the benchmark datasets. For 260

the OTB2015 [10] dataset, the one-pass evaluation (OPE) is utilized, which employs two 261

key metrics: precision curve and success curve. The precision curve quantifies the center 262

location error between the tracked results and the ground truth annotations, computed 263

using a threshold distance, such as 20 pixels. The success curve measures the overlap ratio 264
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between the detected bounding boxes and the ground truth annotations, reflecting the 265

accuracy of the tracker at different scales. 266

This study evaluates object tracking algorithms on the VOT2018 [11] dataset using 267

accuracy, robustness, failures, and expected average overlap (EAO) as evaluation metrics. 268

Accuracy measures the precision of tracking algorithms in predicting the target’s position, 269

while robustness assesses the algorithm’s resistance to external disturbances. Failures count 270

the number of times the tracking process fails, and expected average overlap provides a 271

comprehensive metric considering both accuracy and robustness, calculated by integrating 272

the success rate curve to evaluate the overall performance of the object tracking algorithms. 273

The average overlap (AO) and success rate (SR) are adopted as evaluation metrics on 274

the GOT-10k [12] dataset. The average overlap measures the average degree of the overlap 275

between the tracking results and the ground truth annotations, reflecting the accuracy of 276

the tracker’s predictions regarding the target’s locations. The success rate assesses the 277

success detection rate of the tracker at specified thresholds, where the thresholds are set 278

at 0.5 and 0.75. SR0.5 and SR0.75 represent the success rate with overlaps greater than 0.5 279

and 0.75, respectively. A higher SR value indicates that the tracker successfully detects the 280

target within a larger overlapping range. 281

In Table 1, Precision is a measure of accuracy, and it is calculated as the Equation 1. 282

Precision =
1
f

f

∑
i=1

p(i). (1)

Precision is calculated by taking the reciprocal (1 divided by) of the average center 283

location error across all frames. Each frame’s center location error represents how far off 284

the predicted bounding box’s center is from the ground truth bounding box’s center. This 285

error is found by calculating the Euclidean distance between these two centers for each 286

frame. The Precision is obtained by adding up these errors for all frames and then dividing 287

by the total number of frames (denoted as ‘ f ’). 288

Success measures how well the predicted bounding box overlaps with the ground 289

truth bounding box. To calculate the Success, the reciprocal (1 divided by) of the average 290

overlap degree is taken across all frames. The overlap degree for each frame is determined 291

by dividing the area of intersection between the predicted bounding box and the ground 292

truth bounding box by the area of their union. The Success metric is calculated by adding 293

up these overlap degrees for all frames and then dividing by the total number of frames 294

(‘ f ’). 295

In the dataset VOT2018 [11], visual attributes (e.g., partial occlusion, illumination 296

changes) are annotated for each sequence, to evaluate the performance of trackers under 297

different conditions. An evaluation system should detect errors (failures), when a tracker 298

loses the track, and re-initialize the tracker after 5 frames following the failure for effec- 299

tively utilizing the dataset. Five frames for the re-initialization are chosen, because the 300

immediate initialization after failure leads to subsequent tracking failures. Additionally, 301

since occlusions in videos typically do not exceed 5 frames, this setting is established. It is a 302

distinctive mechanism to enable “reset” or “re-initialize”, where a portion of frames after 303

the reset cannot be used for evaluation. 304

In Table 2, the Accuracy metric evaluates how well the predicted bounding box 305

(referred to as AT
t ) aligns with the ground truth bounding box (referred to as AG

t ) for a 306

given frame in a tracking sequence, denoted as the tth frame. This accuracy metric is 307

symbolically represented as ϕt. Furthermore, ϕt(i, k) represents the accuracy of the tth
308

frame within the kth repetition of a particular tracking method, where the total number of 309

repetitions is indicated as Nrep. To calculate the average accuracy for this specific tracking 310

method (ith tracker), the mean accuracy over all valid frames (Nvalid), ρA(i), needs to be 311

determined: ρA(i) is computed as the sum of all ϕt(i) values divided by the total number 312

of valid frames, Nvalid, where t ranges from 1 to Nvalid. The Robustness, conversely, gauges 313

how stable a tracking method is when following a target, and a higher robustness value 314

indicates a lower level of stability. The Robustness is quantified by using the following 315
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Table 1. Attack performance on the dataset OTB2015

Tracker Success Precision
Original Attack_CSA Attack_IoU Attack_RTAA Original Attack_CSA Attack_IoU Attack_RTAA

MixFormer 0.696 0.640 0.555 0.047 0.908 0.839 0.741 0.050
TransT 0.690 0.661 0.625 0.018 0.888 0.859 0.847 0.038

mathematical expression: ρR(i) is calculated as the sum of tracking failures F(i, k) in the 316

kth repetition of the ith tracking method, divided by the total number of repetitions, Nrep. 317

In Table 3, the “Failures” index counts the instances of tracking failures that occur during 318

the tracking process of a tracking algorithm. These failures are typically related to tracking 319

errors and do not include specific restarts or skipped frame numbers. 320

In Table 3, the expected average overlap (EAO), it is denoted as ϕNs . This metric is 321

designed to quantify the expected average coverage rate, specifically for tracking sequences 322

up to an intended maximum length (Ns). To compute the EAO, the average intersection 323

over union (IoU) value is considered, denoted as ϕi, for frames ranging from the first frame 324

to the Nth
s frame in the sequence, even including the frames where tracking may have failed, 325

and Ns represents the total sequence length. In the context of the VOT2018 [11] dataset, the 326

calculation of expected average overlap involves taking the average of EAO values within 327

an interval [Nlow, Nhigh], which corresponds to typical short-term sequence lengths, and 328

the expected average overlap is denoted as ϕ̂ and is calculated by Equation 2. 329

ϕ̂ =
1

Nhigh − Nlow
∑

Ns=Nlow :Nhigh

ϕ̂Ns , (2)

where the Ns ranges from Nlow to Nhigh, and the ϕ̂ captures the expected average 330

overlap across a range of sequence lengths, providing valuable insights into tracking 331

performance. 332

In Table 4, a metric called average overlap (AO) is utilized to gauge the extent of 333

overlap occurring during the tracking process. The AO is determined by assessing the 334

degree of overlap for each individual frame and subsequently computing the average of 335

these individual overlaps. The AO is the average level of overlap, and it takes the sum of 336

the overlap values for each frame, and then it is divided by the total number of frames 337

(N) in the sequence. Each “Overlapi” represents the extent of overlap for the ith frame. 338

Additionally, Table 4 and Table 5 employ a metric known as success rate (SR) to assess how 339

well the tracker performs under various overlap threshold conditions, and the SR quantifies 340

the ratio of frames in which the tracker successfully keeps track of the target, considering a 341

specific overlap threshold. The SR is a measure of how effectively the tracker follows the 342

target. To compute it, an indicator function (I) applied to each frame’s overlap value is 343

summed up. If the overlap (Overlapi) is greater than or equal to the specified threshold 344

(Threshold), I equals 1; otherwise, it equals 0. The resulting sum is then divided by the total 345

number of frames (N) in the sequence. For example, SR0.5 refers to the scenario where the 346

overlap threshold is set to 0.5, and SR0.75 corresponds to a threshold of 0.75. These metrics 347

offer valuable insights into how well the tracking system performs at different levels of 348

overlap. 349

Experimental results are shown as follows: Results on the dataset OTB2015 (shown 350

in Table 1 and Figure 2). 351

The original results shown in Table 1 and Figure 2, along with the results under three 352

types of adversarial attacks, are compared. It is observed that all three attacks have certain 353

impacts. In terms of success rate and precision, the white-box attack RTAA performed 354

the best, causing the decrease of 93.2% and 97.4% in success rate and the drop of 94.5% 355

and 95.7% in precision for MixFormer and TransT, respectively. The next is the black-box 356

attack IoU, which resulted in the success rate decrease of 20.3% and 9.4%, and the precision 357

decrease of 18.4% and 4.6% for MixFormer and TransT, respectively. Finally, the impact 358

of the semi-black-box attack CSA, trained by SiamRPN++, is the least pronounced, with 359
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Figure 2. Evaluation results of trackers with and without adversarial attacks on the dataset OTB2015.

Table 2. Attack performance on the dataset VOT2018 (Accuracy and Robustness)

Tracker Accuracy Robustness
Original Attack_CSA Attack_IoU Attack_RTAA Original Attack_CSA Attack_IoU Attack_RTAA

MixFormer 0.614 0.625 0.599 0.198 0.698 0.819 1.288 10.339
TransT 0.595 0.592 0.578 0.111 0.337 0.323 0.899 5.984

minimal influence on the tracking results. When attacking the MixFormer and TransT 360

models, they are based on the transformer framework, and their success rates are dropped 361

by 8.0% and 4.2%, and their precision values are decreased by 7.6% and 3.2%, respectively. 362

Results on the dataset VOT2018 (shown in Table 2, Table 3 and Figure 3). 363

Figure 3. Quantitative analysis of different attributes on the dataset VOT2018.

As shown in Table 2, the RTAA attack achieves the best performance, followed by 364

the IoU attack, and the CSA attack has the lowest effectiveness. Specifically, both trackers’ 365

accuracies are significantly reduced after being subjected to adversarial attacks, indicating 366

a noticeable deviation between the tracking results after adversarial attacks and the original 367

results. In Table 3, ranked in the order of RTAA, IoU, and CSA adversarial attacks, the main 368

Table 3. Attack performance on the dataset VOT2018 (Failures and EAO)

Tracker Failures EAO
Original Attack_CSA Attack_IoU Attack_RTAA Original Attack_CSA Attack_IoU Attack_RTAA

MixFormer 149 175 275 2208 0.180 0.162 0.110 0.007
TransT 72 69 192 1278 0.302 0.304 0.160 0.014
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Table 4. Attack performance on the dataset GOT10k (AO (%) and SR0.5(%))

Tracker AO(%) SR0.5(%)
Original Attack_CSA Attack_IoU Attack_RTAA Original Attack_CSA Attack_IoU Attack_RTAA

MixFormer 0.716 0.680 0.554 0.048 0.815 0.768 0.629 0.037
TransT 0.720 0.702 0.529 0.046 0.821 0.798 0.609 0.051

metric EAO scores for MixFormer decrease by 96.1%, 38.9%, and 10%, respectively, while 369

for TransT, they decrease by 95.4%, 47%, and 0%. 370

Figure 3 presents the performance of different attributes on the VOT2018 [11] dataset, 371

comparing the tracking results under three types of adversarial attacks with the original 372

results in various specific scenarios. In the radar chart, the closer a point is to the center, the 373

worse the algorithm performs on the attribute, while points farther from the center indicate 374

better performance. 375

Upon observing the target radar chart on the VOT2018 [11] dataset, a decline is clear 376

in tracking performance when facing the three types of adversarial attacks, including 377

scenarios involving occlusion, unassigned and overall. Among them, the RTAA attack has 378

the strongest effect, as it exhibits nearly the worst performance in all scenarios, where the 379

preselected box does not cover the tracking target. The IoU attack comes next, showing 380

a comprehensive performance decrease across all scenarios. As for the CSA attack, it 381

exhibits enhancement in certain scenarios, because the CSA attack mainly targets the 382

SiamRPN++ model and exhibits significant attack effectiveness on this model. It means 383

that the transferability of the CSA attack is not good to TransT and MixFormer models. 384

Results on the dataset GOT10k (shown in Table 4, Table 5 and Figure 4). 385

Table 5. Attack performance on the dataset GOT10k (SR0.75(%))

Tracker SR0.75(%)
Original Attack_CSA Attack_IoU Attack_RTAA

MixFormer 0.687 0.633 0.428 0.013
TransT 0.680 0.661 0.433 0.021

Figure 4. Evaluation results of trackers with or without adversarial attacks on the dataset GOT10k.

As shown in Table 4, Table 5 and Figure 4, three types of adversarial attacks on both 386

trackers are conducted on the GOT-10k [12] dataset. By observing the metrics of average 387

overlap (AO), success rate at 0.5 overlap (SR0.5), and success rate at 0.75 overlap (SR0.75), it 388

is evident that the overall performance of these trackers has been decreased. Specifically, 389

the MixFormer and TransT trackers experience a decline in the average overlap (AO) of 390

93.3%, 22.6%, 5.0%, and 93.6%, 26.5%, and 2.5% under the RTAA attack, the IoU attack, and 391

the CSA attack, respectively. 392
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